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Three-Coloring Three-Dimensional Uniform Hypergraphs
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Abstract

We study the chromatic number of hypergraphs whose
vertex-hyperedge incidence poset has dimension at most
three. Schnyder (1989) showed that graphs with this
property are planar and thus four-colorable. Results
of Keszegh and Pálvölgyi (2015) imply that k-uniform
hypergraphs with dimension at most three are two-
colorable for k ≥ 9. In this paper we show that k-
uniform hypergraphs with dimension at most three are
three-colorable for k ≥ 6. This implies three colorabil-
ity of k-uniform triangle Delaunay hypergraphs and k-
uniform hypergraphs induced by points and octants in
3-space. We also observe that the chromatic number
of k-uniform hypergraphs with dimension d ≥ 4 is not
bounded by any function of k and d.

1 Introduction

A hypergraph G consists of a set of vertices and a col-
lection of non-empty subsets of vertices called hyper-
edges. The incidence poset of G is the partially ordered
set (poset) describing the vertex-hyperedge containment
relationship. The order dimension of a poset P is de-
fined as the minimum size of a set of total orders on
the elements of P whose intersection is P. The dimen-
sion of G is the order dimension of its incidence poset.
A k-uniform hypergraph (or k-graph) is a hypergraph
in which all hyperedges have cardinality k. A (simple)
graph is one for which k is 2. A c-coloring of G is to
color each vertex by one of the colors {1, . . . , c} such
that no edge of G has all vertices of the same color. A
hypergraph is c-colorable if it admits a c-coloring.

In 1989, Schnyder showed that a graph has dimension
at most three if and only if it is planar [13]. Therefore,
all such graphs are 4-colorable by the Four Colour The-
orem. We study the problem of coloring k-graphs of
dimension at most three. We will refer to hypergraphs
of dimension at most three as three-dimensional hyper-
graphs. It follows from the seminal work of Keszegh
and Pálvölgyi [10] that three-dimensional k-graphs are
2-colorable for k ≥ 9. In this note we adapt their ap-
proach and show the following result.
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Theorem 1 Every three-dimensional k-uniform hyper-
graph is 3-colorable, for k ≥ 6.

2 Background

The dimension of a hypergraph can be determined by
representing the incidence poset as the intersection of
a number of total orders on vertices. The following is
a well-known characterization of hypergraphs of dimen-
sion d that we will rely upon often [13].

Proposition 2 (Schnyder 1989) A hypergraph H
has dimension at most d if and only if there exist d
total orders <1, . . . , <d on the vertices of H such that

• the intersection of all the orders is empty, and

• for each hyperedge e of H and each vertex z /∈ e
there exists i such that x <i z for every x ∈ e.

This characterization implies that any hyperedge e is
uniquely determined by its maximum vertices in the d
total orders. Every vertex not in e must be above at
least one of these maxima. See Figure 6 for an illustra-
tion of a hyperedge.
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Figure 1: Illustration of a hyperedge e = {v, w, x}.

Our work is inspired by the work of Keszegh and
Pálvölgyi [10] on coloring octant k-graphs (a subclass of
k-graphs). Given any finite set P of points in R3, take as
hyperedges every set of k points that is the intersection
of P with some axis-parallel octant (which is an open
set of the form (−∞, x)× (−∞, y)× (−∞, z) with apex
point (x, y, z)). They showed that any octant k-graph
is 2-colorable for k ≥ 9, and there are octant 4-graphs
that are not 2-colorable. It is implied by Proposition 2
that three-dimensional k-graphs are a subclass of octant
k-graphs—just use the three total orders to give coor-
dinates to the vertices. (Octant hypergraphs are more
general because the coordinates need not satisfy the first
property in Proposition 2.)

Another relevant class of geometric hypergraphs are
triangle Delaunay k-graphs: Given a finite set P of
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points in general position in R2 and a triangle T , a set
of k points form a hyperedge if there exists a homothet1

of T containing just those k points. The classical De-
launay graph of a point set has a similar construction
but with respect to a circle instead of a triangle.

With Proposition 2, it can readily be seen that tri-
angle Delaunay hypergraphs have dimension at most
three. The three necessary total orders can be obtained
by sweeping P with three lines parallel to the three sides
of T , as in Figure 2. Combining this with Theorem 1
we get the following corollary.

Corollary 3 Every k-uniform triangle Delaunay hy-
pergraph is 3-colorable, for k ≥ 6.
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Figure 2: Obtaining three total orders that satisfy the
conditions of Proposition 2. The set {p, q} is an edge of
triangle Delaunay 2-graph.

Returning to graphs, another (perhaps lesser known)
result of Schnyder [13, Corollary 5.4] implies that every
three-dimensional graph (and thus every planar graph)
can be represented as a subgraph of a triangle Delaunay
graph. Schnyder called these representations ‘barycen-
tric embeddings’. One might wonder whether every
three-dimensional k-graph is also a subgraph of a trian-
gle Delaunay k-graph. We note that there exist three-
dimensional 10-graphs that are not realizable as a tri-
angle Delaunay 10-graph (Stefan Felsner, private com-
munication). To sum up, we can see that the class of
triangle Delaunay hypergraphs is a proper subset of the
class of three-dimensional hypergraphs, which is in turn
a proper subset of the class of octant hypergraphs.

There exist a large number of fascinating coloring
problems for geometric hypergraphs that are closely re-
lated to the problem studied here; e.g. [1, 2, 3, 4, 5, 6,
8, 9, 11, 12]. In particular, the question of whether k-
uniform Delaunay hypergraphs (induced by points and
circles in the plane) are 3-colorable for some k remains
open [1], while the analogous questions for homothets of
a convex n-gon have relatively loose bounds on k [11].
On the other hand, it is known that there is no finite k
such that k-graphs induced by axis parallel rectangles

1Homothets of T include translations and scalings but not ro-
tations or reflections.

on points in the plane are 2-colorable [6]. For further
related problems and results see the discussion in [11].

3 Further results

The result about axis parallel rectangles just mentioned,
which is due to Chen, Pach, Szegedy, and Tardos [6],
implies that there can be no analogue of Theorem 1 in
higher dimensions (see Corollary 5). The statement for
k = 2 (graphs) was first proved by Ossona de Mendez
and Rosenstiehl [12], then rediscovered by Trotter and
Wang [14].

Theorem 4 (Chen et al. [6]) For any positive inte-
gers c and k, there is a finite point set in the plane with
the property that no matter how we color its elements
with c colors, there always exists an axis-parallel rect-
angle containing at least k points, all of which have the
same color.

Corollary 5 For any triple of integers c ≥ 1, k ≥ 1,
and d ≥ 4, there exists a d-dimensional k-uniform hy-
pergraph that is not c-colorable.

Proof. Let H1 be a hypergraph whose vertex set is a fi-
nite point set P in the plane that satisfies the conditions
of Theorem 4, and whose edge set contains all k-subsets
of points that can be obtained by intersecting P with an
axis-aligned rectangle. By considering the four total or-
ders obtained by sweeping P horizontally and vertically
in both directions, and using Proposition 2, we observe
that H1 is a k-uniform hypergraph with dimension at
most 4. Theorem 4 implies that H1 is not c-colorable.

Let H2 be any d-dimensional k-uniform hypergraph.
Then the disjoint union of H1 and H2 is a k-uniform
hypergraph that is d-dimensional due to the dimension
of H2, and not c-colorable because H1 requires more
than c colors. �

Finally we note an extension of Theorem 1. Despite
the important role of graph planarity in the proof of
Theorem 1, the analogous result for octant k-graphs
follows as a corollary.

Corollary 6 Every k-uniform octant hypergraph is 3-
colorable, for k ≥ 6.

Proof. An octant k-graph has vertex set P ⊂ R3. We
consider the three coordinate directions as three total
orders on P . Unlike the case of three-dimensional k-
graphs, the intersection of the three orders may not be
empty. Consider the poset B on P with the order rela-
tion being the intersection of these three orders. Note
that if u dominates v in this partial order then every
octant containing u also contains v.

Start with the subset S ⊂ P consisting of all the
minimal elements in B. As S is an antichain in B, it
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induces a three-dimensional k-graph, and so we may 3-
color it by Theorem 1.

Now add in a point x that is minimal in B \ S, and
notice that x dominates some point(s) of S. This means
that some hyperedges disappear, and some others are
created with x and k − 1 points of S. We need only
ensure that these new hyperedges are properly colored,
and this can be done by giving x any of the 3 colors that
is distinct from the color of a point dominated by x.

By iteratively adding minimal elements from the re-
maining points, we can build up a 3-coloring for the
whole set P . �

4 Proof of Theorem 1

Let H denote the three-dimensional k-graph that we
want to color. Following Keszegh and Pálvölgyi, the
proof strategy involves constructing a graph F that has
an edge in every hyperedge of H. Thus a proper col-
oring of F is a proper coloring of H. In the proof of
Keszegh and Pálvölgyi, F is a forest, and therefore
2-colorable. In our proof, F is a triangle-free three-
dimensional graph, and thus planar by Schnyder’s theo-
rem and hence 3-colorable by Grötzsch’s theorem which
says that triangle-free planar graphs are 3-colorable [7].

Let V be the vertex set of H, and let <1, <2, <3 be the
three total orders on V with empty intersection. For ev-
ery ordered triple (x, y, z) of (not necessarily distinct) el-
ements of V , we define the combinatorial triangle ∆xyz
as the subset of V determined by three maxima x, y, z:

∆xyz = {v ∈ V | v ≤1 x ∧ v ≤2 y ∧ v ≤3 z}.

Triangles containing k elements are precisely the hyper-
edges of H. If two elements of V are reversed by <1

and <2 we say they are incomparable, otherwise they
are comparable. If for two comparable elements x and
y we have x <1 y and x <2 y, then we say y domi-
nates x. See Figure 3 for an illustration. Note that if
y dominates x then we must have y <3 x because the
intersection of <1, <2, <3 is empty.
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Figure 3: The elements x and z are incomparable, while
x and y are comparable and y dominates x.

Without loss of generality we assume that H is edge
maximal, that is, H contains all hyperedges (with k ver-
tices) that satisfy the second property in Proposition 2.
Let G be the edge-maximal planar graph obtained by
the same three orders. We describe an iterative algo-
rithm that processes V in the order of <3 and creates
a planar triangle-free subgraph F of G such that every

hyperedge of H contains an edge of F . By slightly abus-
ing notation, in the rest of description we refer to F as
an edge set (the graph F is induced by this edge set).

We maintain a sequence Y of vertices and a set F
of edges that satisfy the following invariants after each
iteration of the algorithm:

• Elements of Y are pairwise incomparable and no
element in Y dominates a processed element. (By
the definition of incomparability, Y is ordered for-
wards by <1 and backwards by <2.)

• The set F is a subset of G, has no 3-cycles, has no
edge between two vertices of Y , and has an edge in
every hyperedge formed by processed vertices.

The sequence Y plays the role of “staircase” in [10]
that separates the processed vertices from unprocessed
vertices. Initially, F is empty and Y contains the least
element in <3. The algorithm processes the next vertex
m in <3 as follows:

(1) While there exists v ∈ Y that dominates m, then
add vm to F and remove v from Y .

(2) Add m to Y .

(3) While there exist three consecutive vertices
u, v, w ∈ Y such that u <2 v <2 w and ∆uwm
does not contain any vertex outside Y , then add
uv and vw to F and remove v from Y .

Since we apply step (3) greedily, any triple considered
in this step contains m, that is m ∈ {u, v, w}. Moreover,
since u <2 v <2 w and the elements of Y are pairwise
incomparable, we have w <1 v <1 u. This in turn
implies that ∆uwm contains u, v, and w.

It remains to show that each of the claimed properties
for Y and F holds at the end of every iteration. In
the proof of these properties we use the fact that m is
the maximum element in <3 that is processed so far,
without further mentioning. Let X denote the set of
processed elements that are not in Y .
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Figure 4: The processed elements (in the order <3) are
shaded; m is processed in the current iteration.

– Elements of Y are pairwise incomparable: Before we
add a new vertex m to Y in step (2), we remove all
vertices that dominate m in step (1). The vertex m
does not dominate any vertex y ∈ Y because otherwise
we would have y <1 m, y <2 m, and y <3 m which
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contradicts the intersection of total orders being empty;
see Figure 4 for an illustration. Therefore, the elements
of Y are pairwise incomparable after each iteration.

– Elements of Y do not dominate elements of X: We
need to ensure this only when we add the current ele-
ment m to Y . If m dominates an element of X, then
similar to the previous claim (as in Figure 4) we get
a contradiction to the emptiness of the intersection of
total orders.

– F has no edge between two vertices of Y : In step (1)
after adding the edge vm, we remove v from Y . In step
(3) after adding the edges uv and vw, we remove v from
Y . Therefore, this claim follows.

– F is a subset of G: Consider an edge vm added to F
in step (1). We show that the triangle ∆vvm contains
only v and m; this implies that vm is an edge of G. This
triangle contains m because m <1 v and m <2 v (as v
dominates m) and contains v because v <3 m (as m
is the largest element of <3 processed so far). Now we
show, by contradiction, that ∆vvm does not contain any
other point. Recall that before adding vm, the vertex v
belongs to Y . If ∆vvm contains another element y ∈ Y
(as in Figure 5) then v dominates y; this contradicts the
fact that elements of Y are pairwise incomparable. If
∆vvm contains an element x ∈ X (as in Figure 5) then
v dominates x; this contradicts the fact that elements
of Y do not dominate elements of X.
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Figure 5: The triangle ∆vvm contains m, v, x, and y.

Now consider edges uv and vw added to F in step (3),
and recall that due to greedily application of this step
we have m ∈ {u, v, w}. Our choices of u, v, w (as three
consecutive elements of Y ) and ∆uwm (as having no
element of X) ensures that ∆uwm contains only u, v, w.
In this setting the triangle ∆uv∗ contains only u, v, and
the triangle ∆vw∗ contains only v, w (∗ represents the
maximum of the first two elements with respect to <3).
Thus, uv and vw are edges of G. See Figure 6 for an
illustration.

– F has no 3-cycle: Since there are no edges between
elements of Y , the edges added in step (1)—between m
and elements of Y —do not create any 3-cycle. Consider
edges uv and vw added in step (3). Since there was no
edge between u and w which belong to Y , the three
vertices u, v, w cannot form a 3-cycle. If uv creates a 3-
cycle then u and v were joined by a path of length two
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Figure 6: The triangle ∆uwm contains only u, v, w.

through x say which now belongs to X. For x to have
two neighbors in Y , the edges ux and xv must come
from a prior application of step (3), and thus we must
have u <2 x <2 v and v <1 x <1 u, as in Figure 7.
In this setting the triangle ∆uwm contains x, which
contradicts the current application of step (3). Thus uv
does not create a 3-cycle. A similar argument applies
for vw.
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Figure 7: The triangle ∆uwm contains u, v, w and x.

– Every hyperedge formed by processed vertices contains
an edge in F : It suffices to show this only for hyperedges
containing m. Consider any such hyperedge h, and re-
call that |h| = k ≥ 6. Consider the state of Y and F
at the end of current iteration, and set i := |h ∩ X|.
Depending on i, we consider three cases.

If i = 0, then all elements of h belong to Y and an
edge would be added inside h in step (3).

Now suppose that i = 1, and let v be the only element
in h ∩X (here is the place where we use k ≥ 6). Then
|h ∩ Y | ≥ 5. Let a <1 b <1 c <1 d <1 e be five
consecutive elements of h∩ Y , and note that e <2 d <2

c <2 b <2 a. Thus ∆eam ⊆ h, as in Figure 8. Let m1 be
the greatest of a, b, c and let m2 be the greatest of c, d, e
both with respect to <3. In this setting either ∆ecm2

or ∆cam1 does not contain v because otherwise v <1 c,
v <2 c, and v <3 c (as in Figure 8) which contradicts the
emptiness of the intersection of total orders. Therefore,
in step (3) we get edges ed, dc or cb, ba, and thus h
contains an edge of F .
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Figure 8: The triangle ∆eam is a subset of h.
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Now suppose that i ≥ 2. Then h ∩ X contains two
elements that are either comparable or incomparable.

First suppose that h ∩ X contains two comparable
elements v and t. We may assume that t dominates v
(this implies that t <3 v). Moreover, we may assume
that v was added to X in step (3) because otherwise by
step (1) we get an edge in ∆ttm which is a subset of h.
Since step (3) has been applied, as its prerequisites v has
two incomparable neighbors u,w such that u <2 v <2 w
and ∆uwm1 does not contain t, where m1 ≤3 m is the
maximum of u, v, w with respect to <3; see Figure 9. In
step (3) the edges uv and vm were added to F . Recall
that t <3 v, and thus t <3 m1. In this setting either
u, v <1 t (as in Figure 9) or v, w <2 t. In the first case u
and v are contained in ∆ttm1 while in the second case v
and w are contained in ∆ttm1. Since ∆ttm1 is a subset
of ∆ttm which is in turn a subset of h, we get an edge
of F in h.
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Figure 9: The triangle ∆uwm1 does not contain t.

Now suppose that h ∩ X contains two incomparable
elements v and t. We may assume that both were added
to X in step (3) because otherwise by step (1) we get
an edge in ∆vvm or in ∆ttm which are subsets of h.
Without loss of generality assume that t <2 v and that
v was added to X after t. As prerequisite of step (3) the
vertex v has two incomparable neighbors u <2 v <2 w
in the triangle ∆uwm1 that does not contain t, where
m1 ≤3 m is the maximum of u, v, w with respect to <3.
In step (3) the edges uv and vm were added to F . We
show (by contradiction) that ∆tvm contains u and v,
or v and w; this would imply our claim because ∆tvm
is a subset of h.
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Figure 10: The triangle ∆uwm1 does not contain t.

Observe that ∆tvm contains v. For the sake of con-
tradiction assume that ∆tvm does not contain any of u
and w, and thus t <1 u and v <2 w, as in Figure 10.
Recall that v was added to X when we were processing
the greatest element of {u, v, w} in <3, which is m1. At
that time, t was already in X which means that t was
processed before m1, i.e., t <3 m1, as in Figure 10. In

this setting ∆uwm1 contains t, which contradicts the
application of step (3) on u, v, w. This completes the
proof.
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