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Abstract

Given a set P of n points in the plane, the order-k Gabriel graph on P , denoted by k-GG,
has an edge between two points p and q if and only if the closed disk with diameter pq contains
at most k points of P , excluding p and q. It is known that 10-GG contains a Euclidean
bottleneck matching of P , while 8-GG may not contain such a matching. We answer the
following question in the affirmative: does 9-GG contain any Euclidean bottleneck matching
of P? Thereby, we close the gap for the containment problem of Euclidean bottleneck
matchings in Gabriel graphs.

It is also known that 10-GG contains a Euclidean bottleneck Hamiltonian cycle of P ,
while 5-GG may not contain such a cycle. We improve the lower bound and show that 7-GG
may not contain any Euclidean bottleneck Hamiltonian cycle of P .

1 Introduction

Let P be a set of n points in the plane. For any two points p, q ∈ P , let D[p, q] denote the closed
disk that has the line segment pq as diameter. Let |pq| be the Euclidean distance between p and
q. The Gabriel graph on P , denoted by GG(P ), is a geometric graph that has an edge between
two points p and q if and only if D[p, q] does not contain any point of P \{p, q}. Gabriel graphs
were introduced by Gabriel and Sokal [7] and can be computed in O(n log n) time [10]. Every
Gabriel graph has at most 3n− 8 edges, for n ≥ 5, and this bound is tight [10].

Gabriel graphs are a family of proximity graphs that have been well studied in computational
geometry. Beside their interesting graph theoretical properties, they have applications in several
fields such as geographic information systems, computer graphics, or mesh generation (see, for
example, [8, 10, 11]).

The order-k Gabriel graph on P , denoted by k-GG, is the geometric graph that has an edge
between two points p and q if and only if D[p, q] contains at most k points of P \ {p, q}. Thus,
the Gabriel graph, GG(P ), corresponds to 0-GG. Su and Chang [11] showed that k-GG can be
constructed in O(k2n log n) time and contains O(k(n− k)) edges. For two points p, q ∈ P , the
lune of p and q, denoted by L(p, q), is defined as the intersection of the two open disks of radius
|pq| centered at p and q. The order-k Relative Neighborhood Graph on P , denoted by k-RNG,
is the geometric graph that has an edge (p, q) if and only if L(p, q) contains at most k points of
P . Note that k-RNG on P is a subgraph of k-GG on P .
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A matching in a graph G is a set of edges without common vertices. A perfect matching is a
matching that matches all the vertices of G. A Hamiltonian cycle in G is a cycle that visits each
vertex of G exactly once. In the case when G is an edge-weighted graph, a bottleneck matching
is defined to be a perfect matching in G, in which the weight of the maximum-weight edge is
minimized. Moreover, a bottleneck Hamiltonian cycle is a Hamiltonian cycle in G, in which the
weight of the maximum-weight edge is minimized. For a point set P , a Euclidean bottleneck
matching is a perfect matching in the complete graph with vertex set P that minimizes the
longest edge; the weight of an edge is defined to be the Euclidean distance between its two
endpoints. Similarly, a Euclidean bottleneck Hamiltonian cycle is a Hamiltonian cycle that
minimizes the longest edge.

Beside other interesting theoretical properties of higher-order Gabriel graphs, their Hamil-
tonicity and “having a perfect matching” have been well studied, e.g., see [1, 2, 3, 4, 5, 9].
Chang et al. [5] proved that a Euclidean bottleneck matching of P is contained in 16-RNG.1

This implies that 16-GG contains a Euclidean bottleneck matching. In [2] the authors improved
the bound for the latter graphs by showing that 10-GG contains a Euclidean bottleneck match-
ing. They also show that 8-GG may not have any Euclidean bottleneck matching. They asked
if 9-GG contains any Euclidean bottleneck matching. In Section 2, we answer this question in
the affirmative, and thus close the gap for the containment problem of Euclidean bottleneck
matchings in Gabriel graphs..

Theorem 1. For every point set P , 9-GG contains a Euclidean bottleneck matching of P .

Chang et al. [4] proved that a Euclidean bottleneck Hamiltonian cycle of P is contained
in 19-RNG, which implies that 19-GG contains a Euclidean bottleneck Hamiltonian cycle.
Abellanas et al. [1] improved the bound by showing that 15-GG contains a Euclidean bottleneck
Hamiltonian cycle. Kaiser et al. [9] improved the bound further by showing that 10-GG contains
a Euclidean bottleneck Hamiltonian cycle. They also provide an example which shows that
5-GG may not contain any Euclidean bottleneck Hamiltonian cycle. In Section 3, we improve
the lower bound to 7 and prove Proposition 1. For the Hamiltonicity of Gabriel graphs that
are defined by convex shapes, other than disks, we refer an interested reader to the result of
Bose et al. [3].

Proposition 1. There exist point sets P such that 7-GG does not contain any Euclidean bot-
tleneck Hamiltonian cycle of P .

Therefore, it remains open to decide whether or not 8-GG or 9-GG contains a Euclidean
bottleneck Hamiltonian cycle.

2 Proof of Theorem 1

In this section we prove Theorem 1. We combine techniques from [5], [6] and [9] in our proof and
close the gap for the containment problem of Euclidean bottleneck matchings in Gabriel graphs.
A similar combination has been used by Kaiser et al. [9] for Euclidean bottleneck Hamiltonian
cycles. The proofs of Lemmas 1 and 2 are similar to that of [5] for relative neighborhood graphs.
The proof of Lemma 3 is based on a similar technique that is used in [9] for the Hamiltonicity
of 10-GG.

Let M be the set of all perfect matchings of the complete graph with vertex set P . For
a matching M ∈ M we define the weight sequence of M , WS(M), as the sequence containing
the weights of the edges of M in non-increasing order. A matching M1 is said to be less than

1They defined k-RNG to have an edge (p, q) if and only if L(p, q) contains at most k − 1 points of P .
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a matching M2 if WS(M1) is lexicographically smaller than WS(M2). We define a total order
on the elements of M by their weight sequence. If two elements have exactly the same weight
sequence, break ties arbitrarily to get a total order.

Let M∗ = {(a1, b1), . . . , (an
2
, bn

2
)} be a matching in M with minimum weight sequence.

Observe that M∗ is a Euclidean bottleneck matching for P . In order to prove Theorem 1,
we will show that all edges of M∗ are in 9-GG. Consider any edge (a, b) in M∗. If D[a, b]
contains no point of P \ {a, b}, then (a, b) is an edge of 9-GG. Suppose that D[a, b] contains k
points of P \ {a, b}. We are going to prove that k ≤ 9. Let R = {r1, r2, . . . , rk} be the set of
points of P \ {a, b} that are in D[a, b]. Let S = {s1, s2, . . . , sk} represent the points for which
(ri, si) ∈M∗.

Without loss of generality, we assume that D[a, b] has diameter 1 and is centered at the
origin o = (0, 0), and a = (−0.5, 0) and b = (0.5, 0). For any point p in the plane, let ‖p‖ denote
the distance of p from o. Note that |ab| = 1, and for any point x ∈ D[a, b] \ {a, b} we have
max{|xa|, |xb|} < 1.

Lemma 1. For each point si ∈ S, min{|sia|, |sib|} ≥ 1.

Proof. The proof is by contradiction; suppose that |sia| < 1. Let M be the perfect matching
obtained from M∗ by deleting {(a, b), (ri, si)} and adding {(si, a), (ri, b)}. The lengths of the
two new edges are smaller than 1, and hence both (si, a) and (ri, b) are shorter than (a, b).
Thus, WS(M) <lex WS(M∗), which contradicts the minimality of M∗.

As a corollary of Lemma 1, R and S are disjoint.

Lemma 2. For each pair of points si, sj ∈ S, |sisj | ≥ max{|risi|, |rjsj |, 1}.

Proof. The proof is by contradiction; suppose that |sisj | < max{|risi|, |rjsj |, 1}. Let M be
the perfect matching obtained from M∗ by deleting {(a, b), (ri, si), (rj , sj)} and adding {(a, ri),
(b, rj), (si, sj)}. Note that max{|ari|, |brj |, |sisj |} < max{|risi|, |rjsj |, |ab|}. Thus, WS(M) <lex

WS(M∗), which contradicts the minimality of M∗.

Let C(x, r) (resp. D(x, r)) be the circle (resp. closed disk) of radius r that is centered at
a point x in the plane. For i ∈ {1, . . . , k}, let s′i be the intersection point between C(o, 1.5)
and the ray with origin at o passing through si. Let the point pi be si, if ‖si‖ < 1.5, and s′i,
otherwise. See Figure 1. Let T = {a, b, p1, . . . , pk}.

Observation 1. Let sj be a point in S, where ‖sj‖ ≥ 1.5. Then, the disk D(sj , ‖sj‖ − 0.5)
is contained in the disk D(sj , |sjrj |). Moreover, the disk D(pj , 1) is contained in the disk
D(sj , ‖sj‖ − 0.5). See Figure 1.

Lemma 3. The distance between any pair of points in T is at least 1.

Proof. Let x and y be two points in T . We are going to prove that |xy| ≥ 1. We distinguish
between the following three cases.

• {x, y} = {a, b}. In this case the claim is trivial.

• x ∈ {a, b}, y ∈ {p1, . . . , pk}. If ‖y‖ = 1.5, then y is on C(o, 1.5), and hence |xy| ≥ 1. If
‖y‖ < 1.5, then y is a point in S. Therefore, by Lemma 1, |xy| ≥ 1.

• x, y ∈ {p1, . . . , pk}. Without loss of generality assume x = pi and y = pj , where 1 ≤ i <
j ≤ k. We differentiate between three cases:
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Figure 1: Proof of Lemma 3; pi = s′i, pj = s′j , and pk = sk.

Case (i): ‖pi‖ < 1.5 and ‖pj‖ < 1.5. In this case pi and pj are two points in S. Therefore,
by Lemma 2, |pipj | ≥ 1.

Case (ii): ‖pi‖ < 1.5 and ‖pj‖ = 1.5. In this case pi is a point in S. By Observation 1,
the disk D(pj , 1) is contained in the disk D(sj , |sjrj |), and by Lemma 2, pi is not in the
interior of D(sj , |sjrj |). Therefore, pi is not in the interior of D(pj , 1), which implies that
|pipj | ≥ 1.

Case (iii): ‖pi‖ = 1.5 and ‖pj‖ = 1.5. In this case ‖si‖ ≥ 1.5 and ‖sj‖ ≥ 1.5. Without loss
of generality assume ‖si‖ ≤ ‖sj‖. For the sake of contradiction assume that |pipj | < 1;
see Figure 1. Then, for the angle α = ∠siosj we have sin(α/2) < 1

3 . Then, cos(α) =
1− 2 sin2(α/2) > 7

9 . By the law of cosines in the triangle 4siosj , we have

|sisj |2 < ‖si‖2 + ‖sj‖2 −
14

9
‖si‖‖sj‖. (1)

By Observation 1, the disk D(sj , ‖sj‖ − 0.5) is contained in the disk D(sj , |sjrj |), and
by Lemma 2, si is not in the interior of D(sj , |sjrj |). Therefore, si is not in the interior
of D(sj , ‖sj‖ − 0.5). Thus, |sisj | ≥ ‖sj‖ − 0.5. In combination with Inequality (1), this
implies

‖sj‖
(

14

9
‖si‖ − 1

)
< ‖si‖2 −

1

4
. (2)

In combination with the assumption ‖si‖ ≤ ‖sj‖, Inequality (2) implies

5

9
‖si‖2 − ‖si‖+

1

4
< 0,

i.e.,
5

9

(
‖si‖ −

3

10

)(
‖si‖ −

3

2

)
< 0.
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This is a contradiction, because, since ‖si‖ ≥ 1.5, the left-hand side is non-negative. Thus
|pipj | ≥ 1, which completes the proof of the lemma.

By Lemma 3, the points in T have mutual distance at least 1. Moreover, the points in T
lie in D(o, 1.5). Fodor [6] proved that the smallest circle which contains 12 points with mutual
distances at least 1 has radius 1.5148. Therefore, T contains at most 11 points. Since a, b ∈ T ,
this implies that k ≤ 9. Therefore, S, and consequently R, contains at most 9 points. Thus,
(a, b) is an edge in 9-GG. This completes the proof of Theorem 1.

3 Proof of Proposition 1

In this section we prove Proposition 1. We show that for some point sets P , 7-GG does not
contain any Euclidean bottleneck Hamiltonian cycle of P .

Figure 2 shows a configuration of a set P = {a, b, r1, . . . , r8, s1, . . . , s15} of 25 points. The
closed disk D[a, b] is centered at o and has diameter one, i.e., |ab| = 1. D[a, b] contains all
8 points of the set R = {r1, . . . , r8}; these points lie on the circle with radius 1

2 − ε that is
centered at o; all points of R are in the interior of D[a, b]. The 15 red circles have radius 1
and centered at points of the set S = {s1, . . . , s15}. The points of S are placed in such a way
that the distance between each of them to its first and second closest point is exactly 1. These
distances are illustrated by bold black edges in Figure 2; let B be the chain formed by these
edges. Note that r1 and r8 are the endpoints of B, and |r1s1| = |r8s7| = 1. For each point si,
we have |sia| > 1 and |sib| > 1. Consider the Hamiltonian cycle H = B∪{(r1, a), (a, b), (b, r8)}.
The longest edge in H has length 1. Therefore, the length of the longest edge in any bottleneck
Hamiltonian cycle for P is at most 1. We are going to show that any bottleneck Hamiltonian
cycle of P contains (a, b). Since in B each point of S is connected to its first and second closest
point, every bottleneck Hamiltonian cycle of P contains B, because otherwise, one of the points
in S should be connected to a point that is farther than its second closest point, and hence
that edge is longer than 1. The only way to finish a bottleneck Hamiltonian cycle, using the
endpoints of B and the points a and b, is to have the edge (a, b). Therefore, any bottleneck
Hamiltonian cycle of P , contains (a, b). Since D[a, b] contains 8 points of P \ {a, b}, we get that
(a, b) /∈ 7-GG. Therefore 7-GG does not contain any Euclidean bottleneck Hamiltonian cycle
of P .

4 Conclusion

We considered the inclusion of a Euclidean bottleneck matching and a Euclidean bottleneck
Hamiltonian cycle of a point set P in higher order Gabriel graphs. It is known that 10-GG
contains a bottleneck matching and a bottleneck Hamiltonian cycle of P . We proved that 9-GG
contains a bottleneck matching of P and 7-GG may not contain any bottleneck Hamiltonian
cycle of P . It remains open to decide if 8-GG or 9-GG contains any bottleneck Hamiltonian
cycle of P .
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