
Faster Algorithms for some Optimization Problems

on Collinear Points

Ahmad Biniaz∗ Prosenjit Bose† Paz Carmi‡ Anil Maheshwari†

J. Ian Munro∗ Michiel Smid†

June 29, 2018

Abstract

We propose faster algorithms for the following three optimization problems on n collinear
points, i.e., points in dimension one. The first two problems are known to be NP-hard in
higher dimensions.

1. Maximizing total area of disjoint disks: In this problem the goal is to maximize the
total area of nonoverlapping disks centered at the points. Acharyya, De, and Nandy
(2017) presented an O(n2)-time algorithm for this problem. We present an optimal
Θ(n)-time algorithm.

2. Minimizing sum of the radii of client-server coverage: The n points are partitioned
into two sets, namely clients and servers. The goal is to minimize the sum of the radii
of disks centered at servers such that every client is in some disk, i.e., in the coverage
range of some server. Lev-Tov and Peleg (2005) presented an O(n3)-time algorithm
for this problem. We present an O(n2)-time algorithm, thereby improving the running
time by a factor of Θ(n).

3. Minimizing total area of point-interval coverage: The n input points belong to an
interval I. The goal is to find a set of n disks of minimum total area, covering I, such
that every disk contains at least one input point. We present an algorithm that solves
this problem in O(n2) time.

1 Introduction

Range assignment is a well-studied class of geometric optimization problems that arises in
wireless network design, and has a rich literature. The task is to assign transmission ranges to a
set of given base station antennas such that the resulting network satisfies a given property. The
antennas are usually represented by points in the plane. The coverage region of an antenna is
usually represented by a disk whose center is the antenna and whose radius is the transmission
range assigned to that antenna. In this model, a range assignment problem can be interpreted
as the following problem. Given a set of points in the plane, we must choose a radius for each
point, so that the disks with these radii satisfy a given property.

Let P = {p1, . . . , pn} be a set of n points in the d-dimensional Euclidean space. A range
assignment for P is an assignment of a transmission range ri > 0 (radius) to each point pi ∈ P .

∗Cheriton School of Computer Science, University of Waterloo,
ahmad.biniaz@gmail.com, imunro@uwaterloo.ca

†School of Computer Science, Carleton University, {jit, anil, michiel}@scs.carleton.ca
‡Department of Computer Science, Ben-Gurion University of the Negev, carmip@cs.bgu.ac.il

1

The cost of a range assignment, representing the power consumption of the network, is defined
as C =

∑
i r
α
i for some constant α > 1. We study the following three range assignment problems

on a set of points on a straight-line (1-dimensional Euclidean space).

Problem 1 Given a set of collinear points, maximize the total area of nonoverlapping disks
centered at these points. The nonoverlapping constraint requires ri + ri+1 to be no larger
than the Euclidean distance between pi and pi+1, for every i ∈ {1, . . . , n− 1}.

Problem 2 Given a set of collinear points that is partitioned into two sets, namely clients and
servers, the goal is to minimize the sum of the radii of disks centered at the servers such
that every client is in some disk, i.e., every client is covered by at least one server.

Problem 3 Given a set {p1, . . . , pn} of n points on an interval, find a set D1, . . . , Dn of n disks
covering the entire interval such that the total area of disks is minimized and for every i
the disk Di contains the point pi.

In Problem 1 we want to maximize
∑
r2i , in Problem 2 we want to minimize

∑
ri, and in

Problem 3 we want to minimize
∑
r2i . These three problems are solvable in polynomial time in

1-dimension. Both Problem 1 and Problem 2 are NP-hard in dimension d, for every d > 2, and
both have a PTAS [2, 3, 4].

Acharyya et al. [2] showed that Problem 1 can be solved in O(n2) time. Eppstein [7] proved
that an alternate version of this problem, where the goal is to maximize the sum of the radii,
can be solved in O(n2−1/d) time for any constant dimension d. Bilò et al. [4] showed that
Problem 2 is solvable in polynomial time by reducing it to an integer linear program with a
totally unimodular constraint matrix. Lev-Tov and Peleg [9] presented an O(n3)-time algorithm
for this problem. They also presented a linear-time 4-approximation algorithm. Alt et al. [3]
improved the ratio of this linear-time algorithm to 3. They also presented an O(n log n)-time
2-approximation algorithm for Problem 2. Chambers et al. [6] studied a variant of Problem
3—on collinear points—where the disks centered at input points; they showed that the best
solution with two disks gives a 5/4-approximation. Carmi et al. [5] studied a similar version of
the problem for points in the plane.

1.1 Our Contributions

In this paper we study Problems 1-3. In Section 2, we present an algorithm that solves Problem
1 in linear time, provided that the points are given in sorted order along the line. This improves
the previous best running time by a factor of Θ(n). In Section 3, we present an algorithm that
solves Problem 2 in O(n2) time; this also improves the previous best running time by a factor
of Θ(n). In Section 4, first we present a simple O(n3) algorithm for Problem 3. Then with a
more involved proof, we show how to improve the running time to O(n2).

2 Problem 1: Disjoint Disks with Maximum Area

In this section we study Problem 1: Let P = {p1, . . . , pn} be a set of n > 3 points on a straight-
line ` that are given in sorted order. We want to assign to every pi ∈ P a radius ri such that
the disks with the given radii do not overlap and their total area, or equivalently

∑
r2i , is as

large as possible. Acharyya et al. [1] showed how to obtain such an assignment in O(n2) time.
We show how to obtain such an assignment in linear time.

Theorem 1. Given n collinear points in sorted order in the plane, in Θ(n) time, we can find
a set of nonoverlapping disks centered at these points that maximizes the total area of the disks.

2

With a suitable rotation we assume that ` is horizontal. Moreover, we assume that p1, . . . , pn
is the sequence of points of P in increasing order of their x-coordinates. We refer to a set of
nonoverlapping disks centered at points of P as a feasible solution. We refer to the disks in a
feasible solution S that are centered at p1, . . . , pn as D1, . . . , Dn, respectively. Also, we denote
the radius of Di by ri; it might be that ri = 0. For a feasible solution S we define α(S) =

∑
r2i .

Since the total area of the disks in S is π · α(S), hereafter, we refer to α(S) as the total area of
disks in S. We call Di a full disk if it has pi−1 or pi+1 on its boundary, a zero disk if its radius is
zero, and a partial disk otherwise. For two points pi and pj , we denote the Euclidean distance
between pi and pj by |pipj |.

We briefly review the O(n2)-time algorithm of Acharyya et al. [1]. First, compute a set D
of disks centered at points of P , which is the superset of every optimal solution. For every disk
D ∈ D, that is centered at a point p ∈ P , define a weighted interval I whose length is 2r, where
r is the radius of D, and whose center is p. Set the weight of I to be r2. Let I be the set
of these intervals. The disks corresponding to the intervals in a maximum weight independent
set of the intervals in I forms an optimal solution to Problem 1. By construction, these disks
are nonoverlapping, centered at p1, . . . , pn, and maximize the total area. Since the maximum
weight independent set of m intervals that are given in sorted order of their left endpoints
can be computed in O(m) time [8], the time complexity of the above algorithm is essentially
dominated by the size of D. Acharyya et al. [1] showed how to compute such a set D of size
Θ(n2) and order the corresponding intervals in O(n2) time. Therefore, the total running time
of their algorithm is O(n2).

We show how to improve the running time to O(n). In fact we show how to find a set D
of size Θ(n) and order the corresponding intervals in O(n) time, provided that the points of P
are given in sorted order.

2.1 Computation of D
In this section we show how to compute a set D with a linear number of disks such that every
disk in an optimal solution for Problem 1 belongs to D.

Our set D is the union of three sets F ,
−→
D , and

←−
D of disks that are computed as follows. The

set F contains 2n disks representing the full disks and zero disks that are centered at points of

P . We compute
−→
D by traversing the points of P from left to right as follows; the computation

of
←−
D is symmetric. For each point pi with i ∈ {2, . . . , n− 1} we define its signature s(pi) as

s(pi) =

{
+ if |pi−1pi| 6 |pipi+1|
− if |pi−1pi| > |pipi+1|.

Set s(p1) = − and s(pn) = +. We refer to the sequence S = s(p1), . . . , s(pn) as the signature
sequence of P . Let ∆ be the multiset that contains all contiguous subsequences s(pi), . . . , s(pj)
of S, with i < j, such that s(pi) = s(pj) = −, and s(pk) = + for all i < k < j; if j = i + 1,
then there is no k. For example, if S = − + + − + + + − − − + − − + +, then ∆ =
{−+ +−,−+ + +−,−−,−−,−+−,−−}. Observe that for every sequence s(pi), . . . , s(pj) in
∆ we have that

|pipi+1| 6 |pi+1pi+2| 6 |pi+2pi+3| 6 · · · 6 |pj−1pj |, and |pj−1pj | > |pjpj+1|.

Every plus sign in S belongs to at most one sequence in ∆, and every minus sign in S belongs
to at most two sequences in ∆. Therefore, the size of ∆ (the total length of its sequences) is at

most 2n. For each sequence s(pi), . . . , s(pj) in ∆ we add some disks to
−→
D as follows. Consider

the full disk Dj at pj . Iterate on k = j − 1, j − 2, . . . , i. In each iteration, consider the disk Dk

3

that is centered at pk and touches Dk+1. If Dk does not contain pk−1 and its area is smaller than

the area of Dk+1, then add Dk to
−→
D and proceed to the next iteration, otherwise, terminate

the iteration. See Figure 1. This finishes the computation of
−→
D . Notice that

−→
D contains at

most n− 1 disks. The computation of
←−
D is symmetric; it is done in a similar way by traversing

the points from right to left (all the + signatures become − and vice versa).

pi pi+1 pi+2 pj pj+1

|pipi+1| |pi+1pi+2| |pj−1pj | |pjpj+1|

pi−1

− −+ + +

Figure 1: Illustration of a sequence s(pi), . . . , s(pj) = −+ + +− in ∆; construction of
−→
D .

The number of disks in D = F ∪−→D ∪←−D is at most 4n− 2. The signature sequence S can be

computed in linear time. Having S, we can compute the multiset ∆, the disks in
−→
D as well as

the corresponding intervals, as in [1] and described before, in sorted order of their left endpoints
in total O(n) time. Then the sorted intervals corresponding to circles in D can be computed in

linear-time by merging the sorted intervals that correspond to sets F ,
−→
D , and

←−
D . It remains

to show that D contains an optimal solution for Problem 1. To that end, we first prove two
lemmas about the structural properties of an optimal solution.

Lemma 1. Every feasible solution S for Problem 1 can be converted to a feasible solution S′

where D1 and Dn are full disks and α(S′) > α(S).

Proof. Recall that n > 3. We prove this lemma for D1; the proof for Dn is similar. Since S is
a feasible solution, we have that r1 + r2 6 |p1p2|. Let S′ be a solution that is obtained from S
by making D1 a full disk and D2 a zero disk. Since we do not increase the radius of D2, it does
not overlap D3, and thus, S′ is a feasible solution. In S′, the radius of D1 is |p1p2|, and we have
that r21 + r22 6 (r1 + r2)

2 6 |p1p2|2. This implies that α(S′) > α(S).

Lemma 2. If Di, with 1 < i < n, is a partial disk in an optimal solution, then ri <
max(ri−1, ri+1).

Proof. The proof is by contradiction; let S be such an optimal solution for which ri > max(ri−1,
ri+1). First assume that Di touches at most one of Di−1 and Di+1. By slightly enlarging Di and
shrinking its touching neighbor we can increase the total area of S. Without loss of generality
suppose that Di touches Di−1. Since ri > ri−1,

(ri + ε)2 + (ri−1 − ε)2 = r2i + r2i−1 + 2(riε− ri−1ε+ ε2) > r2i + r2i−1 > 0,

for any ε > 0. This contradicts optimality of S. Now, assume that Di touches both Di−1 and
Di+1, and that ri−1 6 ri+1. See Figure 2. We obtain a solution S′ from S by enlarging Di as
much as possible, and simultaneously shrinking both Di−1 and Di+1. This makes Di−1 a zero
disk, Di a full disk, Di+1 a zero or a partial disk, and does not change the other disks. The
difference between the total areas of S′ and S is(

(ri + ri−1)
2 + (ri+1 − ri−1)2

)
− (r2i−1 + r2i + r2i+1) = r2i−1 + 2ri−1(ri − ri+1) > 0;

this inequality is valid since ri > ri+1 > ri−1 > 0. This contradicts the optimality of S.

4

Di Di+1
Di−1

ri−1 ri ri+1
⇒

Di

Di+1

ri + ri−1

ri+1−ri−1

Figure 2: Illustration of the proof of Lemma 2.

Lemma 3. The set D contains an optimal solution for Problem 1.

Proof. It suffices to show that every disk Dk, which is centered at pk, in an optimal solution
S = {D1, . . . , Dn} belongs to D. By Lemma 1, we may assume that both D1 and Dn are full
disks. If Dk is a full disk or a zero disk, then it belongs to F . Assume that Dk is a partial
disk. Since S is optimal, Dk touches at least one of Dk−1 and Dk+1, because otherwise we could
enlarge Dk.

First assume that Dk touches exactly one disk, say Dk+1. We are going to show that

Dk belongs to
−→
D (If Dk touches only Dk−1, by a similar reasoning we can show that Dk

belongs to
←−
D). Notice that rk < rk+1, because otherwise we could enlarge Dk and shrink Dk+1

simultaneously to increase α(S), which contradicts the optimality of S. Since Dk is partial and
touches Dk+1, we have that Dk+1 is either full or partial. If Dk+1 is full, then it has pk+2 on
its boundary, and thus s(pk+1) = −. By our definition of ∆, for some i < k + 1, the sequence

s(pi), . . . , s(pk+1) belongs to ∆. Then by our construction of
−→
D both Dk+1 and Dk belong to

−→
D ,

where k+1 plays the role of j. Assume that Dk+1 is partial. Then Dk+2 touches Dk+1, because
otherwise we could enlarge Dk+1 and shrink Dk simultaneously to increase α(S). Recall that
rk < rk+1. Lemma 2 implies that rk+1 < rk+2. This implies that |pkpk+1| < |pk+1pk+|, and
thus s(pk+1) = +. Since Dk+1 is partial and touches Dk+2, we have that Dk+2 is either full or
partial. If Dk+2 is full, then it has pk+3 on its boundary, and thus s(pk+2) = −. By a similar

reasoning as for Dk+1 based on the definition of ∆ and
−→
D , we get that Dk+2, Dk+1, and Dk are

in
−→
D . If Dk+2 is partial, then it touches Dk+3 and again by Lemma 2 we have rk+2 < rk+3 and

consequently s(pk+2) = +. By repeating this process, we stop at some point pj , with j 6 n− 2,
for which Dj is a full disk, rj−1 < rj , and s(pj) = −; notice that such a j exists because Dn

is a full disk and consequently Dn−1 is a zero disk. To this end we have that s(pk) ∈ {+,−},
s(pj) = −, and s(pk+1), . . . , s(pj−1) is a plus sequence. Thus, s(pk), . . . , s(pj) is a subsequence

of some sequence s(pi), . . . , s(pj) in ∆. Our construction of
−→
D implies that all disks Dk, . . . , Dj

belong to
−→
D .

Now assume that Dk touches both Dk−1 and Dk+1. By Lemma 2 we have that Dk is strictly
smaller than the largest of these disks, say Dk+1. By a similar reasoning as in the previous case

we get that Dk ∈
−→
D .

3 Problem 2: Client-Server Coverage with Minimum Radii

In this section we study Problem 2: Let P = {p1, . . . , pn} be a set of n points on a straight-line
` that is partitioned into two sets, namely clients and servers. We want to assign to every server
in P a radius such that the disks with these radii cover all clients and the sum of their radii
is as small as possible. Bilò et al. [4] showed that this problem can be solved in polynomial

5

time. Lev-Tov and Peleg [9] showed how to obtain such an assignment in O(n3) time. Alt et
al. [3] presented an O(n log n)-time 2-approximation algorithm for this problem. We show how
to solve this problem optimally in O(n2) time.

Theorem 2. Given a total of n collinear clients and servers, in O(n2) time, we can find a set
of disks centered at servers that cover all clients and where the sum of the radii of the disks is
minimum.

Without loss of generality assume that ` is horizontal, and that p1, . . . , pn is the sequence of
points of P in increasing order of their x-coordinates. We refer to a disk with radius zero as a
zero disk, to a set of disks centered at servers and covering all clients as a feasible solution, and
to the sum of the radii of the disks in a feasible solution as its cost. We denote the radius of a
disk D by r(D), and denote by D(p, q) a disk that is centered at the point p with the point q
on its boundary.

We describe a top-down dynamic programming algorithm that maintains a table T with n
entries T (1), . . . , T (n). Each table entry T (k) represents the cost of an optimal solution for the
subproblem that consists of points p1, . . . , pk. The optimal cost of the original problem will be
stored in T (n); the optimal solution itself can be recovered from T . In the rest of this section we
show how to solve a subproblem p1, . . . , pk. In fact, we show how to compute T (k) recursively
by a top-down dynamic programming algorithm. To that end, we first describe our three base
cases:

• There is no client. In this case T (k) = 0.

• There are some clients but no server. In this case T (k) = +∞.

• There are some clients and exactly one server, say s. In this case T (k) is the radius of the
smallest disk that is centered at s and covers all the clients.

Assume that the subproblem p1, . . . , pk has at least one client and at least two servers. We
are going to derive a recursion for T (k).

Observation 1. Every disk in any optimal solution has a client on its boundary.

Lemma 4. No disk contains the center of some other non-zero disk in an optimal solution.

Proof. Our proof is by contradiction. Let Di and Dj be two disks in an optimal solution such
that Di contains the center of Dj . Let pi and pj be the centers of Di and Dj , respectively, and
ri and rj be the radii of Di and Dj , respectively. See Figure 3(a). Since Di contains pj , we
have ri > |pipj |. Let D′i be the disk of radius |pipj |+ rj that is centered at pi. Notice that D′i
covers all the clients that are covered by Di ∪Dj . By replacing Di and Dj with D′i we obtain a
feasible solution whose cost is smaller than the optimal cost, because |pipj |+ rj < ri + rj . This
contradicts the optimality of the initial solution.

Let c be the rightmost client in p1, . . . , pk. For a disk D that covers c, let ψ(D) ∈ {1, . . . , k}
be the smallest index for which the point pψ(D) is in the interior or on the boundary of D, i.e.,
ψ(D) is the index of the leftmost point of p1, . . . , pk that is in D. See Figure 3(b).

We claim that only one disk in an optimal solution can cover c, because, if two disks cover
c then if their centers lie on the same side of c, we get a contradiction to Lemma 4, and if their
centers lie on different sides of c, then by removing the disk whose center is to the right of c
we obtain a feasible solution with smaller cost. Let S∗ be an optimal solution (with minimum
sum of the radii) that has a maximum number of non-zero disks. Let D∗ be the disk in S∗ that
covers c. All other clients in pψ(D∗), . . . , pk are also covered by D∗, and thus, they do not need

6

pipj

Dj
Di

D′
i

rj ri

c

D

pψ(D)

T (ψ(D)−1)

p1 pk

(a) (b)

Figure 3: (a) Illustration of the proof of Lemma 4. (b) Clients are shown by small circles, and
servers are shown by small disks. pψ(D) is the leftmost point (client or server) in D.

to be covered by any other disk. As a consequence of Lemma 4, the servers that are in D∗ and
the servers that lie to the right of D∗ cannot be used to cover any clients in p1, . . . , pψ(D∗)−1.
Therefore, if we have D∗, then the problem reduces to a smaller instance that consists of the
points to the left of D∗, i.e., p1, . . . , pψ(D∗)−1. See Figure 3(b). Thus, the cost of the optimal
solution for the subproblem p1, . . . , pk can be computed as T (k) = T (ψ(D∗)− 1) + r(D∗).

In the rest of this section we compute a set Dk of O(k) disks each of them covering c. Then
we claim that D∗ belongs to Dk. Having Dk, we can compute T (k) by the following recursion:

T (k) = min{T (ψ(D)− 1) + r(D) : D ∈ Dk}.

Now we show how to compute Dk. Recall from Observation 1 that every disk in the optimal
solution (including D∗) contains a client on its boundary. Using this observation, we compute
Dk in two phases. In the first phase, for every server s we add the disk D(s, c) to Dk. In the
second phase, for every client c′, with c′ 6= c, we add a disk D(s′, c′) to Dk, where s′ is the first
server to the right side of the midpoint of segment cc′. Since for every server and for every client
(except for c) we add one disk to Dk, this set has at most k− 1 disks. The disks that we add in
phase one can be computed in O(k) time by sweeping the servers from right to left. The disks
that we add in phase two can also be computed in O(k) time by sweeping the clients from right
to left, using this property that the server s′ associated with the next client c′ is on or to the left
side of the server associated with the current client. Hence, the set Dk, and consequently the
entry T (k), can be computed in O(k) time. Therefore, our dynamic programming algorithm
computes all entries of T in O(n2) time.

One final issue we need to address is the correctness of our algorithm, which is to show that
D∗ belongs to Dk. Let s∗ be the server that is the center of D∗ and let c∗ be the client on the
boundary of D∗ (such a client exists by Observation 1). Recall that D∗ covers the rightmost
client c. If c∗ = c, then D∗ has been added to Dk in the phase one. Assume that c∗ 6= c. In this
case c∗ is the left intersection point of the boundary of D∗ with ` because c∗ is to the left side
of c. Let m be the mid point of the line segment c∗c, and let s be the first server to the right of
m. The server s∗ cannot be to the left side of m because otherwise D∗ could not cover c. Also,
s∗ cannot be to the right side of s because otherwise the disk D(s, c∗), which is smaller than
D∗, covers the same set of clients as D∗ does, in particular it covers c∗ and c. Therefore, we
have s∗ = s, and thus D∗ = D(s, c∗), which has been added to Dk in phase two. This finishes
the proof of correctness of our algorithm.

7

4 Problem 3: Point-Interval Coverage with Minimum Area

Let I = [a, b] be an interval on the x-axis in the plane. We say that a set of disks covers I if
I is a subset of the union of the disks in this set. Let P = {p1, . . . , pn} be a set of n points
on I, that are ordered from left to right, and such that p1 = a and pn = b. A point-interval
coverage for the pair (P, I) is a set S = {D1, . . . , Dn} of n disks that cover I such that for every
i ∈ {1, . . . , n} the disk Di contains the point pi, i.e., pi is in the interior or on the boundary
of Di. See Figure 4. The point-interval coverage problem is to find such a set of disks with
minimum total area. In this section we show how to solve this problem in O(n2) time.

p1 p2 p3 p4 p5
a b

D1 D2

D3 D4 D5

Figure 4: The minimum point-interval coverage for ({p1, . . . , p5}, [a, b]); for every i, Di contains
pi.

Theorem 3. Given n points on an interval, in O(n2) time, we can find a set of disks covering
the entire interval such that every disk contains at least one point and where the total area of
the disks is minimum.

If we drop the condition that Di should contain pi, then the problem can be solved in linear
time by using Observation 2 (which is stated below). First we prove some lemmas about the
structural properties of an optimal point-interval coverage. We say that a disk is anchored at a
point p if it has p on its boundary. We say that two intersecting disks touch each other if their
intersection is exactly one point, and we say that they overlap otherwise.

Di Dj

ci
pjpi

c cj

D′
i D′

j

pi pi+1

Di

Di+1

ci ci+1

(a) (b)

Figure 5: Illustrations of the proofs of (a) Lemma 5, and (b) Lemma 6.

Lemma 5. There is no pair of overlapping disks in any optimal solution for the point-interval
coverage problem.

Proof. Our proof is by contradiction. Consider two overlapping disks Di and Dj , with i < j,
in an optimal solution. Since Di contains pi and Dj contains pj , there exists a point c on the
line segment pipj that is in Di ∩ Dj . Let ci and cj be the leftmost and the rightmost points
of the interval that is covered by Di ∪ Dj ; see Figure 5(a). Let D′i and D′j be the disks with
diameters cic and ccj , respectively. The areas of D′i and D′j are smaller than the areas of Di

and Dj , respectively. Moreover, D′i contains pi, D
′
j contains pj , and D′i ∪D′j covers the same

8

interval [ci, cj] as Di ∪Dj does. Therefore, by replacing Di and Dj with D′i and D′j we obtain
a solution whose total area is smaller than the optimal area, which is a contradiction.

Lemma 6. In any optimal solution, if the intersection point of Di and Di+1 does not belong to
P , then Di and Di+1 have equal radius.

Proof. Let c be the intersection point of Di and Di+1. Let ci be the left intersection point of the
boundary of Di with the x-axis, and let ci+1 be the right intersection point of the boundary of
Di+1 with the x-axis; see Figure 5(b). We proceed by contradiction, and assume, without loss
of generality, that Di+1 is smaller than Di. We shrink Di (while anchored at ci) and enlarge
Di+1 (while anchored at ci+1) simultaneously by a small value. This gives a valid solution whose
total area is smaller than the optimal area, because our gain in the area of Di+1 is smaller than
our loss from the area of Di. This contradicts the optimality of our initial solution.

The following lemma and observation play important roles in our algorithm for the point-
interval coverage problem, which we describe later.

Lemma 7. Let R > 0 be a real number, and r1, r2, . . . , rk be a sequence of positive real numbers
such that

∑k
i=1 ri = R. Then

k∑
i=1

r2i ≥
k∑
i=1

(R/k)2 = R2/k, (1)

i.e., the sum on the left-hand side of (1) is minimum if all ri are equal to R/k.

Proof. If f is a convex function, then—by Jensen’s inequality—we have

f

(
k∑
i=1

ri
k

)
6

k∑
i=1

f(ri)

k
.

Since the function f(x) = x2 is convex, it follows that(
R

k

)2

= f

(
R

k

)
= f

(
k∑
i=1

ri
k

)
6

k∑
i=1

r2i
k
,

which, in turn, implies Inequality (1).

The minimum sum of the radii of a set of disks that cover I = [a, b] is |ab|/2. The following
observation is implied by Lemma 7, by setting R = |ab|/2 and k = n.

Observation 2. The minimum total area of n disks covering I is obtained by a sequence of n
disks of equal radius such that every two consecutive disks touch each other; see Figure 6.

pi pj

Figure 6: A valid unit-disk covering.

We refer to the covering of I that is introduced in Observation 2 as the unit-disk covering
of I with n disks. Such a covering is called valid if it is a point-interval coverage for (P, I).

9

4.1 A Dynamic-Programming Algorithm

In this subsection we present an O(n3)-time dynamic-programming algorithm for the point-
interval coverage problem. In Subsection 4.2 we show how to improve the running time to
O(n2).

First, we review some properties of an optimal solution for the point-interval coverage
problem that enable us to present a top-down dynamic programming algorithm. Let C∗ =
D1, . . . , Dn be the sequence of n disks in an optimal solution for this problem. Recall that as
a consequence of Lemma 5, the intersection of every two consecutive disks in C∗ is a point. If
there is no k ∈ {1, . . . , n − 1} for which the intersection point of Dk and Dk+1 belongs to P ,
then Lemma 6 implies that all disks in C∗ have equal radius, and thus, C∗ is a valid unit-disk
covering. Assume that for some k ∈ {1, . . . , n − 1} the intersection point of Dk and Dk+1 is
a point p ∈ P . Notice that either p = pk or p = pk+1. In either case, C∗ is the union of
the optimal solutions for two smaller problem-instances (P1, I1) and (P2, I2) where I1 = [a, p],
I2 = [p, b], P1 = {p1, . . . , pk} and P2 = {pk+1, . . . , pn}.

pi pjpk

pi pk pjpk

T (i, j, 0, 1)

T (i, k, 0, 0) T (k, j, 1, 1)

Figure 7: An instance for which the unit-disk covering (shown on the top interval) is not valid.

We define a subproblem (Pij , Iij) and represent it by four indices (i, j, i′, j′) where 1 6 i <
j 6 n and i′, j′ ∈ {0, 1}. The indices i and j indicate that Iij = [pi, pj]. The set Pij contains the
points of P that are on Iij provided that pi belongs to Pij if and only if i′ = 1 and pj belongs to
Pij if and only if j′ = 1. For example, if i′ = 1 and j′ = 0, then Pij = {pi, pi+1, . . . , pj−1}. We
define T (i, j, i′, j′) to be the cost (total area) of an optimal solution for subproblem (i, j, i′, j′).
The optimal cost of the original problem will be stored in T (1, n, 1, 1). We compute T (i, j, i′, j′)
as follows. If the unit-disk covering is a valid solution for (i, j, i′, j′), then by Observation 2 it
is optimal, and thus we assign its total area to T (i, j, i′, j′). Otherwise, as we discussed earlier,
there is a point pk of P with k ∈ {i+1, . . . , j−1} that is the intersection point of two consecutive
disks in the optimal solution. This splits the problem into two smaller subproblems, one to the
left of pk and one to the right of pk. The point pk is assigned either to the left subproblem or to
the right subproblem. See Figure 7 for an instance in which the unit-disk covering is not valid,
and pk is assigned to the right subproblem. In the optimal solution, pk is assigned to the one
that minimizes the total area, which is

T (i, j, i′, j′) = min{T (i, k, i′, 1) + T (k, j, 0, j′), T (i, k, i′, 0) + T (k, j, 1, j′)}.

Since we do not know the value of k, we try all possible values and pick the one that minimizes
T (i, j, i′, j′).

There are three base cases for the above recursion. (1) No point of P is assigned to the
current subproblem: we assign +∞ to T (·), which implies this solution is not valid. (2) Exactly
one point of P is assigned to the current subproblem: we cover [pi, pj] with one disk of diameter
|pipj | and assign its area to T (·). (3) More than one point of P is assigned to the current

10

subproblem and the unit-disk covering is valid: we assign the total area of this unit-disk covering
to T (·).

The total number of subproblems is at most 2 · 2 ·
(
n
2

)
= O(n2), because i and j take(

n
2

)
different values, and each of i′ and j′ takes two different values. The time to solve each

subproblem (i, j, i′, j′) is proportional to the time for checking the validity of the unit-disk
covering for this subproblem plus the iteration of k from i + 1 to j − 1; these can be done in
total time O(j − i). Thus, the running time of our dynamic programming algorithm is O(n3).

In the next section we present a more involved dynamic-programming algorithm that im-
proves the running time to O(n2). Essentially, our algorithm verifies the validity of the unit-disk
coverings for all subproblems pi, . . . , pj in O(n2) time.

4.2 Improving the running time

We describe a top-down dynamic programming algorithm that maintains a table T with 2n
entries T (j, j′) where j ∈ {1, . . . , n} and j′ ∈ {0, 1}. Each entry T (j, j′) represents the cost of
an optimal solution for the subproblem that consists of interval Ij = [p1, pj] and a point set Pj .
If j′ = 1, then Pj = Ij ∩ P , whereas, if j′ = 0, then Pj = Ij ∩ P \ {pj}. The optimal cost of
the original problem will be stored in T (n, 1); the optimal solution itself can be recovered from
T . In the rest of this section we show how to solve subproblem (j, j′). If the unit-disk covering
is a valid solution for (j, j′), then we assign its total area to T (j, j′). Otherwise, there must be
some point pk ∈ P with k ∈ {2, . . . , j−1} that is the intersection point of two consecutive disks
in the optimal solution. Let i be the largest such k. This choice of i implies that the interval
[pi, pj] is covered by unit disks, and thus, we only need to solve the subproblem to the left of pi
optimally for two cases where i′ = 0 and i′ = 1. Let U(i, j, i′j′) denote the cost of a unit-disk
covering for the problem instance (i, j, i′, j′) (that is defined in the previous section). Then

T (j, j′) = min{T (i, 1) + U(i, j, 0, j′), T (i, 0) + U(i, j, 1, j′)}.
Since we do not know the value of i, we try all possible values and pick the one that minimizes

T (j, j′).
The total number of subproblems is 2n, and the time to solve each subproblem (j, j′) is

proportional to the total time for the iterations of i from 2 to j− 1 plus the time for computing
the unit-disk covering for (i, j, i′, j′) and checking its validity. Let u(j) denote the time for
computing and checking validity of unit-disk coverings for all i. Then the time to compute
T (j, j′) is O(j) + u(j). Therefore, the running time of our algorithm, i.e. the time to compute
T (n, 1), is

n∑
j=1

O(j) + u(j) = O(n2) +
n∑
j=1

u(j) = O(n2) +
n∑
j=1

j−1∑
i=2

u(i, j, i′, j′),

where u(i, j, i′, j′) denotes the time of computing the unit-disk covering for (i, j, i′, j′) and check-
ing its validity. In the rest of this section we will show how to do this, for all (i, j, i′, j′), in
O(n2) time. This implies that the total running time of our algorithm is O(n2).

Take any i ∈ {1, . . . , n− 1}. We show how to check the validity of the unit-disk covering for
(i, j, i′, j′), where j iterates from i + 1 to n. We are going to show how to do this in O(n − i)
total time, for all values of j. This will imply that we can check the validity of the unit-disk
coverings for all i and j in O(n2) time. We describe the procedure for the case when i′ = 1 and
j′ = 1; the other three cases can be handled similarly. Recall that Iij = [pi, pj] is the interval
and Pij = {pi, . . . , pj} is the point set that are associated with (i, j, i′, j′). Notice that the length
of Iij is |pipj |, and the number of points in Pij is nij = j − i + 1. Then the diameter of each

11

pi pj
pi+1 pi+2 pi+3

|pipi+1|

|pipi+2|

|pipi+3|

dij

2 · dij

3 · dij

Figure 8: The validity of the unit-disk covering for (i, j, 1, 1).

disk in the unit-disk covering of (i, j, 1, 1) is dij = |pipj |/nij . In order to have a valid unit-disk
covering for (i, j, 1, 1), the following conditions are necessary and sufficient (see Figure 8)

|pipi+1| 6 dij

dij 6 |pipi+2| 6 2 · dij
2 · dij 6 |pipi+3| 6 3 · dij
3 · dij 6 |pipi+4| 6 4 · dij

...

(nij − 1) · dij 6 |pipj | 6 nij · dij .
The above inequalities are equivalent to the following two inequalities

dij >max

{
|pipi+1|,

|pipi+2|
2

,
|pipi+3|

3
, . . . ,

|pipj |
nij

}
, (2)

dij 6min

{
|pipi+2|,

|pipi+3|
2

,
|pipi+4|

3
, . . . ,

|pipj |
nij − 1

}
. (3)

Let M(i, j) denote the maximum value in Inequality (2), and let m(i, j) denote the minimum
value in Inequality (3). To check the validity of the unit-disk covering for (i, j, 1, 1), it suffices to
compare dij with these two values. Recall that i is fixed and j iterates from i+ 1 to n. Now we
show how to check the validity of the unit-disk covering for subproblem (i, j + 1, 1, 1), in O(1)
time. In this subproblem, the diameter of the unit disks is di(j+1) and the number of points is
ni(j+1) = nij + 1; these values can be computed in O(1) time. In order to have a valid unit-disk
covering for (i, j + 1, 1, 1), the following two inequalities are necessary and sufficient

di(j+1) >max

{
|pipi+1|,

|pipi+2|
2

,
|pipi+3|

3
, . . . ,

|pipj |
nij

,
|pipj+1|
nij + 1

}
,

di(j+1) 6min

{
|pipi+2|,

|pipi+3|
2

,
|pipi+4|

3
, . . . ,

|pipj |
nij − 1

,
|pipj+1|
nij

}
.

Thus, we can compute

M(i, j + 1) = max

{
M(i, j),

|pipj+1|
nij + 1

}
, and m(i, j + 1) = min

{
m(i, j),

|pipj+1|
nij

}
,

12

in O(1) time. Then the unit-disk covering is valid for (i, j+1, 1, 1) if and only if m(i, j+1) 6
di(j+1) 6 M(i, j + 1); this can be verified in O(1) time. Thus, by keeping M(i, j) and m(i, j)
from the previous iteration, we can check the validity of the unit-disk covering for the current
iteration, in O(1) time. Therefore, we can check the validity of (i, j, 1, 1) for all j ∈ {i+1, . . . , n}
in O(n− i) total time. This finishes the proof.

5 Conclusion: An Open Problem

We considered three optimization problems on collinear points in the plane. Here we present a
related open problem: given a set of collinear points, we want to assign to each point a disk,
centered at that point, such that the underlying disk graph is connected and the sum of the
areas of the disks is minimized. The disk graph has input points as its vertices, and has an
edge between two points if their assigned disks intersect. It is not known whether or not this
problem is NP-hard. In any dimension d > 2 this problem is NP-hard if an upper bound on the
radii of disks is given to us [6].

References

[1] A. Acharyya, M. De, and S. C. Nandy. Range assignment of base-stations maximizing
coverage area without interference. In Proceedings of the 29th Canadian Conference on
Computational Geometry (CCCG), pages 126–131, 2017.

[2] A. Acharyya, M. De, S. C. Nandy, and B. Roy. Range assignment of base-stations maximizing
coverage area without interference. CoRR, abs/1705.09346, 2017.

[3] H. Alt, E. M. Arkin, H. Brönnimann, J. Erickson, S. P. Fekete, C. Knauer, J. Lenchner,
J. S. B. Mitchell, and K. Whittlesey. Minimum-cost coverage of point sets by disks. In
Proceedings of the 22nd ACM Symposium on Computational Geometry, (SoCG), pages 449–
458, 2006.

[4] V. Bilò, I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Geometric clustering to
minimize the sum of cluster sizes. In Proceedings of the 13th European Symposium on
Algorithms, (ESA), pages 460–471, 2005.

[5] P. Carmi, M. J. Katz, and J. S. B. Mitchell. The minimum-area spanning tree problem.
Computational Geometry: Theory and Applications, 35(3):218–225, 2006.

[6] E. W. Chambers, S. P. Fekete, H. Hoffmann, D. Marinakis, J. S. B. Mitchell, S. Venkatesh,
U. Stege, and S. Whitesides. Connecting a set of circles with minimum sum of radii. Com-
putational Geometry: Theory and Applications, 68:62–76, 2018.

[7] D. Eppstein. Maximizing the sum of radii of disjoint balls or disks. In Proceedings of the
28th Canadian Conference on Computational Geometry (CCCG), pages 260–265, 2016.

[8] J. Y. Hsiao, C. Y. Tang, and R. S. Chang. An efficient algorithm for finding a maximum
weight 2-independent set on interval graphs. Information Processing Letters, 43(5):229–235,
1992.

[9] N. Lev-Tov and D. Peleg. Polynomial time approximation schemes for base station coverage
with minimum total radii. Computer Networks, 47(4):489–501, 2005.

13

