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Abstract

Let S be a finite set of points in the plane. In this paper we consider the problem of
computing plane spanners of degree at most three for S.

1. If S is in convex position, then we present an algorithm that constructs a plane 3+4π
3 -

spanner for S whose vertex degree is at most 3.

2. If S is the vertex set of a non-uniform rectangular lattice, then we present an algorithm
that constructs a plane 3

√
2-spanner for S whose vertex degree is at most 3.

3. If S is in general position, then we show how to compute plane degree-3 spanners for
S with a linear number of Steiner points.

1 Introduction

Let S be a finite set of points in the plane. A geometric graph is a graph G = (S,E) with vertex
set S and edge set E consisting of line segments connecting pairs of vertices. The length (or
weight) of any edge (p, q) in E is defined to be the Euclidean distance |pq| between p and q. The
length of any path in G is defined to be the sum of the lengths of the edges on this path. For
any two vertices p and q of S, their shortest-path distance in G, denoted by |pq|G, is a minimum
length of any path in G between p and q. For a real number t > 1, the graph G is a t-spanner
of S if for any two points p and q in S, |pq|G ≤ t|pq|. The smallest value of t for which G is a
t-spanner is called the stretch factor of G. A large number of algorithms have been proposed
for constructing t-spanners for any given point set; see the book by Narasimhan and Smid [22].

The degree of a spanner is defined to be its maximum vertex degree. Note that 3 is a
lower bound on the degree of a t-spanner, for every constant t > 1, because a Hamiltonian
path through a set of points arranged in a grid has unbounded stretch factor (see [22] for more
details). Even for points that are in convex position, 3 is a lower bound on the degree of a
spanner (see Kanj et al. [18]).1 Salowe [23] proved the existence of spanners of degree 4. Das
and Heffernan [12] showed the existence of spanners of degree 3.

A plane spanner is a spanner whose edges do not cross each other. Chew [9] was the
first to prove that plane spanners exist. Chew proved that the L1-Delaunay triangulation of
a finite point set has stretch factor at most

√
10 ≈ 3.16 (observe that lengths in this graph

are measured in the Euclidean metric). In the journal version [10], Chew proves that the
Delaunay triangulation based on a convex distance function defined by an equilateral triangle
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1It can be shown that the stretch factor is Ω(

√
n).
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is a 2-spanner. Dobkin et al. [13] proved that the L2-Delaunay triangulation is a t-spanner for

t = π(1+
√
5)

2 ≈ 5.08. Keil and Gutwin [19] improved the upper bound on the stretch factor to
t = 4π

3
√
3
≈ 2.42. This was subsequently improved by Cui et al. [11] to t = 2.33 for the case when

the point set is in convex position. Currently, the best result is due to Xia [24], who proved that
t is less than 1.998. For points that are in convex position the current best upper bound on the
stretch factor of plane spanners is 1.88 that was obtained by Amani et al. [1]. Regarding lower
bounds, by considering the four vertices of a square, it is obvious that a plane t-spanner with
t <
√

2 does not exist. Mulzer [21] has shown that every plane spanning graph of the vertices
of a regular 21-gon has stretch factor at least 1.41611. Recently, Dumitrescu and Ghosh [15]
improved the lower bound to 1.4308 for the vertices of a regular 23-gon.

The problem of constructing bounded-degree spanners that are plane and have small stretch
factor has received considerable attention (e.g., see [4, 5, 6, 7, 8, 17, 18, 20]). Bonichon et al. [5]
proved the existence of a degree 4 plane spanner with stretch factor 156.82. A simpler algorithm
by Kanj et al. [18] constructs a degree 4 plane spanner with stretch factor 20; for points that
are in convex position, this algorithm gives a plane spanner of degree at most 3 with the same
stretch factor. Dumitrescu and Ghosh [14] considered plane spanners for uniform grids. For
the infinite uniform square grid, they proved the existence of a plane spanner of degree 3 whose
stretch factor is at most 2.607; the lower bound is 1 +

√
2.

In this paper we consider bounded-degree plane spanners. In Section 3 we present an
algorithm that computes a plane 3+4π

3 ≈ 5.189-spanner of degree 3 for points in convex position.
In Section 4 we consider finite non-uniform rectangular grids; we present an algorithm that
computes a degree 3 plane spanner whose stretch factor is at most 3

√
2 ≈ 4.25. In Section 5

we show that any plane t-spanner for points in the plane that are in general position can be
converted to a plane (t + ε)-spanner of degree at most 3 that uses a linear number of Steiner
points, where ε > 0 is an arbitrary small constant.

2 Preliminaries

For any two points p and q in the plane, let pq denote the line segment between p and q, let
`(p, q) denote the line passing through p and q, let R(p→q) denote the ray emanating from p and
passing through q, and let D(p, q) denote the closed disk that has pq as a diameter. Moreover,
let L(p, q) denote the lune of p and q, which is the intersection of the two closed disks of radius
|pq| that are centered at p and q.

Let S be a finite and non-empty set of points in the plane. We denote by CH(S) the
boundary of the convex hull of S. The diameter of S is the largest distance among the distances
between all pairs of points of S. Any pair of points whose distance is equal to the diameter
is called a diametral pair. Any point of any diametral pair of S is called a diametral point. A
chain is a sequence of points together with line segments connecting every pair of consecutive
vertices.

Observation 1. Let S be a finite set of at least two points in the plane, and let {p, q} be any
diametral pair of S. Then, the points of S lie in L(p, q).

The following theorem is a restatement of Theorem 7.11 in [3].

Theorem 1 (See [3]). If C1 and C2 are convex polygonal regions with C1 ⊆ C2, then the length
of the boundary of C1 is at most the length of the boundary of C2.

By simple calculations, one can verify the correctness of the following lemma; however, you
can find a proof of it in [1].
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Lemma 1. Let a, b, and c be three points in the plane, and let β = ∠abc. Then,

|ab|+ |bc|
|ac| 6

1

sin(β/2)
.

Lemma 2. Let a and b be two points in the plane. Let c be a point that is on the boundary or
in the interior of L(a, b). Then, ∠acb > π

3 .

Proof. Since c ∈ L(a, b), we have |ca| 6 |ab| and |cb| 6 |ab|. Thus, ab is a largest side of the
triangle 4abc. This implies that ∠acb is a largest internal angle of 4abc. Based on this, and
since the sum of the internal angles of 4abc is π, we conclude that ∠acb > π

3 .

3 Plane Spanners for Points in Convex Position

In this section we consider degree-3 plane spanners for points that are in convex position. Let
S be a finite set of points in the plane that are in convex position. Consider the two chains
that are obtained from CH(S) by removing any two edges. Let τ be the larger stretch factor of
these two chains; notice that τ is not necessarily determined by the endpoints of the chain. In
Section 3.1 we present an algorithm that computes a plane (2τ + 1)-spanner of degree 3 for S.
Based on that, in Section 3.2 we show how to compute a plane 3+4π

3 -spanner of degree 3 for S.
Moreover, we show that if S is centrally symmetric, then there exists a plane (π + 1)-spanner
of degree 3 for S.

3.1 Spanner for Convex Double Chains

Let C1 and C2 be two chains of points in the plane that are separated by a straight line. Let S1
and S2 be the sets of vertices of C1 and C2, respectively, and assume that S1 ∪ S2 is in convex
position. Let τ be a real number. In this section we show that if the stretch factor of each of
C1 and C2 is at most τ , then there exists a plane (2τ + 1)-spanner for S1∪S2 whose degree is 3.

In order to build such a spanner, we join C1 and C2 by a set of edges that form a matching.
Thus, the spanner consists of C1, C2, and a set E of edges such that each edge has one endpoint
in C1 and one endpoint in C2. The set E is a matching, i.e., no two edges of E are incident on
a same vertex. We show how to compute E recursively. Let (a, b) be the closest pair of vertices
between C1 and C2; see Figure 1. Add this closest pair (a, b) to E. Then remove (a, b) from
C1 and C2, and recurse on the two pairs of chains obtained on each side of `(a, b). Stop the
recursion as soon as one of the chains is empty. Given C1 and C2, the algorithm Matching
computes a set E.

Algorithm 1 Matching(C1, C2)

Input: Two linearly separated chains C1 and C2 with the vertices of C1∪C2 in convex position.
Output: A matching between the points of C1 and the points of C2.

1: if C1 = ∅ or C2 = ∅ then
2: return ∅
3: (a, b)← a closest pair of vertices between C1 and C2 such that a ∈ C1 and b ∈ C2

4: C ′1, C
′′
1 ← the two chains obtained by removing a from C1

5: C ′2, C
′′
2 ← the two chains obtained by removing b from C2

6: return {ab} ∪Matching(C ′1, C
′
2) ∪Matching(C ′′1 , C

′′
2 )

In the rest of this section we prove the following theorem.
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Figure 1: Illustration of the proof of Theorem 2.

Theorem 2. Let C1 = (S1, E1) and C2 = (S2, E2) be two linearly separated chains of points in
the plane, each with stretch factor at most τ , such that S1∪S2 is in convex position. Let E be the
set of edges returned by algorithm Matching(C1, C2). Then, the graph G = (S1∪S2, E1∪E2∪E)
is a plane (2τ + 1)-spanner for S1 ∪ S2 in which the degree of each of the endpoints of C1 and
C2 is at most 2 and every other vertex has degree at most 3.

Proof. We prove this theorem by induction on min{|S1|, |S2|}. As for the base cases, if |S1| = 0,
then G = C2 is a plane τ -spanner whose vertex degree is at most 2. If |S2| = 0, then G = C1 is
a plane τ -spanner whose vertex degree is at most 2.

Assume |S1| > 1 and |S2| > 1. Let ` be a line that separates C1 and C2. Without loss of
generality assume ` is horizontal, C1 is above `, and C2 is below `. Let (a, b) be the pair of
vertices selected by algorithm Matching, where (a, b) is a closest pair of vertices between C1

and C2 such that a ∈ C1 and b ∈ C2. Let C ′1 and C ′′1 be the left and right sub-chains of C1,
respectively, that are obtained by removing a; see Figure 1. We obtain C ′2 and C ′′2 similarly.
Note that the chains C ′1 and C ′2 satisfy the conditions of Theorem 2. Let G′ be the spanner
obtained for the vertices of C ′1 and C ′2. By the induction hypothesis, G′ is a plane (2τ + 1)-
spanner for the vertices of C ′1 ∪ C ′2 in which the degree of each of the endpoints of C ′1 and C ′2
is at most 2 and every other vertex has degree at most 3. Similarly, let G′′ be the spanner
obtained for the vertices of C ′′1 and C ′′2 .

Observe that in G the degree of a, b, the right endpoint of C ′1, the right endpoint of C ′2,
the left endpoint of C ′′1 , and the left endpoint of C ′′2 is at most 3. Moreover, in G, the degree
of each endpoint of C1 and C2 is at most 2. Thus, G satisfies the degree condition. As for
planarity, since G′ and G′′ are both plane and they are separated by `(a, b), G′ ∪ G′′ is also
plane. Moreover, because of convexity, the edges that are incident on each of a and b do not
cross any edge of G′ ∪G′′. Therefore, G is plane.

It remains to prove that the stretch factor of G is at most 2τ + 1. We are going to prove
that for any two points u, v ∈ S1 ∪ S2 we have |uv|G 6 (2τ + 1)|uv|. If both u and v belong to
S1, or both belong to S2, then |uv|G 6 τ |uv|; this is valid because each of C1 and C2 has stretch
factor at most τ . Assume u ∈ S1 and v ∈ S2. If u, v ∈ G′ or u, v ∈ G′′ then, by the induction
hypothesis, |uv|G 6 (2τ + 1)|uv|. Thus, it only remains to prove |uv|G 6 (2τ + 1)|uv| for the
following cases: (a) u = a and v ∈ C2, (b) u ∈ C1 and v = b, (c) u ∈ C ′1 and v ∈ C ′′2 , and (d)
u ∈ C ′′1 and v ∈ C ′2. Because of symmetry we only prove cases (a) and (c).

First, we prove case (a). Assume u = a and v ∈ C2. Note that

|av|G 6 |ab|+ |bv|C2 6 |av|+ τ |bv|, (1)

where the second inequality is valid since |ab| 6 |av|, by our choice of (a, b), and since |bv|C2 6
τ |bv|, given that the stretch factor of C2 is at most τ . By the triangle inequality we have
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|bv| 6 |ab|+ |av|. Since |ab| 6 |av|, we have |bv| 6 2|av|. By combining this with Inequality (1)
we get |av|G 6 (2τ + 1)|av|, which completes the proof for case (a).

Now, we prove case (c). Assume u ∈ C ′1 and v ∈ C ′′2 . Since S is in convex position, the
polygon Q formed by u, a, v, and b is convex and its vertices appear in the order u, a, v, b. Note
that

|uv|G 6 |ua|C1 + |ab|+ |bv|C2 6 τ |ua|+ |uv|+ τ |bv| = |uv|+ τ(|ua|+ |bv|), (2)

where the second inequality is valid since |ab| 6 |uv|, by our choice of (a, b), and since |ua|C1 6
τ |ua| and |bv|C2 6 τ |bv|, given that the stretch factor of each of C1 and C2 is at most τ . Let
c be the intersection point of ab and uv; see Figure 1. By the triangle inequality, we have
|ua| 6 |uc|+ |ca| and |bv| 6 |bc|+ |cv|. It follows that |ua|+ |bv| 6 |uv|+ |ab|. Since |ab| 6 |uv|,
we have |ua|+ |bv| 6 2|uv|. By combining this with Inequality (2) we get |uv|G 6 (2τ + 1)|uv|,
which completes the proof of case (c).

3.2 Spanner for Points in Convex Position

In this section we show how to construct plane spanners of degree at most 3 for points that are
in convex position.

Theorem 3. Let S be a finite set of points in the plane that is in convex position. Then, there
exists a plane spanner for S whose stretch factor is at most 3+4π

3 and whose vertex degree is at
most 3.

The proof of this theorem uses the following result, which will be proved in Subsection 3.2.2:

Theorem 4. Let C be a convex chain with endpoints p and q. If C is in L(p, q), then the
stretch factor of C is at most 2π

3 .

Proof of Theorem 3. The proof is constructive; we present an algorithm that constructs such a
spanner for S. The algorithm works as follows. Let (p, q) be a diametral pair of S. Consider the
convex hull of S. Let C1 and C2 be the two chains obtained from CH(S) by removing p and q
(and their incident edges). Note that C1 and C2 are separated by `(p, q). Let G′ be the graph
on S \ {p, q} that contains the edges of C1, the edges of C2, and the edges obtained by running
algorithm Matching(C1, C2). By Theorem 2, G′ is plane and the endpoints of C1 and C2 have
degree at most 2. We obtain a desired spanner, G, by connecting p and q, via their incident
edges in CH(S), to G′. This construction is summarized in algorithm Deg3PlaneSpanner.

Algorithm 2 Deg3PlaneSpanner(S)

Input: A non-empty finite set S of points in the plane that is in convex position
Output: A plane degree-3 spanner of S.

1: (p, q)← a diametral pair of S
2: C1, C2 ← the two chains obtained by removing p and q from CH(S)
3: E ← CH(S) ∪Matching(C1, C2)
4: return G = (S,E)

Observe that G is plane. Moreover, all vertices of G have degree at most 3; p and q
have degree 2. Now we show that the stretch factor of G is at most 3+4π

3 ≈ 5.19. Note that G
consists of CH(S) and a matching which is returned by algorithm Matching. Since p and q are
diametral points, then by a result of [1], for any point s ∈ S \ {p} we have |ps|CH(S) 6 1.88|ps|.
Since CH(S) ⊆ G, we have |ps|G 6 1.88|ps|. By symmetry, the same result holds for q and
any point s ∈ S \ {q}. Since (p, q) is a diametral pair of S, both C1 and C2 are in L(p, q).
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Based on that, in Theorem 4, we will see that both C1 and C2 have stretch factor at most 2π
3 .

Then, by Theorem 2, the stretch factor of G′ is at most 3+4π
3 . Since G′ ⊂ G, for any two points

r, s ∈ S \ {p, q} we have |rs|G 6 3+4π
3 |rs|. Therefore, the stretch factor of G is at most 3+4π

3 .
This completes the proof of the theorem.

A point set S is said to be centrally symmetric (with respect to the origin), if for every point
p ∈ S, the point −p also belongs to S.

Theorem 5. Let S be a finite centrally symmetric point set in the plane that is in convex
position. Then, there exists a plane spanner for S whose stretch factor is at most π + 1 and
whose vertex degree is at most 3.

The proof of this theorem uses the following result, which will be proved in Subsection 3.2.1:

Theorem 6. Let C be a convex chain with endpoints p and q. If C is in D(p, q), then the
stretch factor of C is at most π

2 .

Proof of Theorem 5. Let G be the graph obtained by Deg3PlaneSpanner(S). As we have
seen in the proof of Theorem 3, G is plane and has vertex degree at most 3. It remains to
show that the stretch factor of G is at most π + 1. Let (p, q) be the diametral pair of S that
is considered by algorithm Deg3PlaneSpanner. Since S is centrally symmetric, all points of
S are in D(p, q). Based on that, in Theorem 6, we will see that both C1 and C2 have stretch
factor at most π

2 . Then Theorem 2 implies that the stretch factor of G is at most π + 1.

In the following two subsections we will prove Theorems 4 and 6. Let C be a chain of points.
For any two points u and v on C we denote by δC(u, v) the path between u and v on C. Recall
that |uv|C denote the length of δC(u, v).

3.2.1 Proof of Theorem 6

Let p and q be the endpoints of the convex chain C. Assume that C is in D(p, q). We are going
to show that the stretch factor of C is at most π

2 .
Since C is convex, it is contained in a half-disk of D(p, q), i.e., a half-disk with diameter pq.

Let u and v be any two points of C. We show that δC(u, v) is in D(u, v). Then, by Theorem 1
the length of δC(u, v) is at most the length of the half-arc of D(u, v), which is π

2 |uv|. Without
loss of generality assume that pq is horizontal, p is to the left of q, and C is above pq. Assume
that u appears before v while traversing C from p to q. See Figure 2. We consider the following
cases.

p=u q

v

v′

p q

v
u

c

p q

v

c

u

u′ v′

(a) (b) (c)

Figure 2: Proof of Theorem 6: the path δC(u, v) is inside the shaded regions, where (a) u = p
and v 6= q, (b) u 6= p, v 6= q, and c ∈ D(p, q), and (c) u 6= p, v 6= q, and c /∈ D(p, q).

• u = p and v = q. Then δC(p, q) = C is in D(p, q) by the hypothesis.
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• u = p and v 6= q. Let v′ be the intersection point of R(q→v) with the boundary of
D(p, q). See Figure 2(a). Observe that ∠pv′v = ∠pv′q = π

2 . Thus, v′ is on the boundary
of D(p, v). Since two circles can intersect in at most two points, p and v′ are the only

intersection points of the boundaries of D(p, q) and D(p, v). Thus, the clockwise arc p̂v′

on the boundary of D(p, q) is inside D(p, v). On the other hand, because of convexity, no
point of δC(p, v) is to the right of R(p→v) or R(q→v). This implies that δC(p, v) is in
D(p, v).

• u 6= p and v = q. The proof of this case is similar to the proof of the previous case.

• u 6= p and v 6= q. Let c be the intersection point of R(p→u) and R(q→v). Because of
convexity, δC(u, v) is in the triangle 4ucv. We look at two cases:

– c is inside D(p, q). In this case ∠ucv > π
2 . See Figure 2(b). This implies that the

point c, and consequently the triangle 4ucv, are inside D(u, v). Thus, δC(u, v) is
inside D(u, v).

– c is outside D(p, q). Let u′ (resp. v′) be the intersection point of R(p→u) (resp.
R(q→v)) with D(p, q). Because of the convexity and the fact that the path δC(u, v)
is contained in D(p, q), this path is inside the region that is bounded by line segments
(u′, u), (u, v), (v, v′) and the boundary of D(p, q); see the shaded region of Figure 2(c).
Observe that by convexity ∠uv′v > ∠pv′q = π

2 , and ∠uu′v > ∠pu′q = π
2 . Thus, both

u′ and v′ are inside D(u, v). Consequently, the clockwise arc ū′v′ on the boundary
of D(p, q) is inside D(u, v). Therefore, δC(u, v) is inside D(u, v).

3.2.2 Proof of Theorem 4

Let p and q be the endpoints of the convex chain C. Assume that C is in L(p, q). We are going
to show that the stretch factor of C is at most 2π

3 .
Since C is convex, it is contained in a half-lune of L(p, q); i.e., a portion of L(p, q) that is

obtained by cutting it through pq. Let u and v be any two points of C. We show that the
length of δC(u, v) is at most 2π

3 times |uv|. Without loss of generality assume pq is horizontal,
p is to the left of q, and C is above pq. Assume that u appears before v when traversing C from
p to q. See Figure 3. We consider two cases: (1) u = p or v = q, (2) u 6= p and v 6= q.

1. u = p or v = q. Without loss of generality assume u = p. If v = q then δC(p, q) is inside
the half-lune of L(p, q) and by Theorem 1 the length of δC(p, q) is at most the length of
the half-lune, which is 2π

3 |pq|. Assume v 6= q. For simplicity, we assume that |pq| = 1. Let
α = ∠pqv and x = |qv|. If α = 0, then the length of δC(p, v) is equal to |pv| and we are
done. Thus, assume that α > 0. Moreover, since v 6= q, x > 0. We consider the following
two cases: (a) α 6 π

3 , (b) α > π
3 .

(a) α 6 π
3 . Let v′ be the intersection point of R(q→v) and L(p, q). Because of the

convexity and the fact that the path δC(p, v) is contained in L(p, q), this path is
inside the region that is bounded by line segments (p, v), (v, v′) and the boundary of
L(p, q); see the shaded region of Figure 3(a). By Theorem 1 we have the following
inequality:

|pv|C 6 |vv′|+ |p̂v′| = 1− x+ α,

where |p̂v′| is the length of the clockwise arc from p to v′ which has radius 1 and is
centered at q. Note that

|pv| =
»

(x sinα)2 + (1− x cosα)2.
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Define

f(x, α) =
1− x+ α»

(x sinα)2 + (1− x cosα)2
. (3)

Then |pv|C|pv| 6 f(x, α). In Appendix A, we will show that f(x, α) 6 2.04738 6 2π
3 for

0 < x 6 1 and 0 < α 6 π
3 .

p=u q

v

v′

α

x

1-x

p=u q

v

v′

α

x

r

β

(a) (b)

p q

v

β

u

c

p q

v

u

v′

c

u′

v′′

A

(c) (d)

Figure 3: Proof of Theorem 4: the path δC(u, v) is inside the shaded regions, where (a) u = p
and α 6 π

3 , (b) u = p and α > π
3 , (c) u 6= p, v 6= q, and c ∈ L(p, q), and (d) u 6= p, v 6= q, and

c /∈ L(p, q).

(b) α > π
3 . Let v′ be the intersection point of R(q→v) and L(p, q), and let r be the

topmost intersection point of the two circles of radius |pq| that are centered at p and
q, i.e., the highest point of L(p, q). Because of the convexity and the fact that the
path δC(p, v) is contained in L(p, q), this path is inside the region that is bounded
by line segments (p, v), (v, v′) and the boundary of L(p, q); see the shaded region of
Figure 3(b). By Theorem 1 we have the following inequality:

|pv|C 6 |vv′|+ |r̂v′|+ |ıpr|,
where |r̂v′| is the length of the clockwise arc from r to v′ which has radius 1 and is
centered at p and |ıpr| is the length of the clockwise arc from p to r which has radius

1 and is centered at q. Let β = ∠v′pq. Then, |r̂v′| = π
3 − β. Note that the triangle

4pqv′ is isosceles. Thus, β = π − 2α and |qv′| = 2 cosα. Thus |vv′| = 2 cosα − x.
Therefore,

|pv|C 6 (2 cosα− x) +

Å
π

3
− β
ã

+
π

3
= 2(α+ cosα)−

Å
x+

π

3

ã
.
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Define

g(x, α) =
2(α+ cosα)− (x+ π/3)»
(x sinα)2 + (1− x cosα)2

. (4)

Then |pv|C
|pv| 6 g(x, α). In Appendix B, we will show that g(x, α) 6 2π

3 for 0 < x 6
2 cosα and π

3 6 α 6 π
2 .

2. u 6= p and v 6= q. Let c be the intersection point of rays R(p→u) and R(q→v). We
differentiate between two cases: (a) c is inside L(p, q), (b) c is outside L(p, q).

(a) c is inside L(p, q). Because of the convexity, δC(u, v) is inside the triangle 4uvc; see
Figure 3(c). Thus |uv|C 6 |uc| + |vc|. Let β = ∠ucv. By Lemma 2 we have β > π

3 .
Based on this, and by Lemma 1, we have

|uv|C
|uv| 6

|uc|+ |vc|
|uv| 6

1

sin(β/2)
6

1

sin(π/6)
= 2 <

2π

3
.

(b) c is outside L(p, q). We reduce this case to case 1 where u = p or v = q. See
Figure 3(d). Let u′ and v′ be the intersection points of R(p→u) and R(q→v) with
L(p, q), respectively. Let δuv be the convex chain consisting of uu′, vv′, and the
portion of the boundary of L(p, q) that is between u′ and v′ (δuv is the bold chain in
Figure 3(d)). Observe that the length of δC(u, v) is at most the length of δuv. Thus
|uv|C
|uv| 6 |δuv |

|uv| . Let A be the convex region that is bounded by δuv and the segment

(u, v). Let A′ be obtained from A by a homothetic transformation with respect to

the center c and scale factor min{ |cp||cu| ,
|cq|
|cv|}. Assume |cp||cu| 6

|cq|
|cv| . Then, after this

transformation u lies on p as shown in Figure 3(d). Let v′′ be the point on qv where
v ended up after this transformation. Let δpv′′ (the dashed chain in Figure 3(d))
be the chain obtained from δuv after this transformation. Since this transformation

preserves ratios of distances we have
|δpv′′ |
|pv′′| = |δuv |

|uv| . Thus, |uv|C|uv| 6
|δpv′′ |
|pv′′| . Note that

δpv′′ is in L(p, q). To obtain an upper bound on
|δpv′′ |
|pv′′| , we apply case 1 where u = p

and v′′ plays the role of v.

4 Non-Uniform Rectangular Grid

In this section we build a plane spanner of degree three for the point set of the vertices of a
non-uniform rectangular grid. In a finite non-uniform m× k grid, Λ, the vertices are arranged
on the intersections of m horizontal and k vertical lines. The distances between the horizontal
lines and the distances between the vertical lines are chosen arbitrary. The total number of
vertices of Λ—the number of points of the underlying point set—is n = m · k.
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h1

h2

hi

hi+1

hm

v1 v2 vj vj+1
vk

Vj

Hi

(a) (b)

Figure 4: The grid Λ: (a) horizontal and verticals slabs, and (b) red and blue staircases.

If m ∈ {1, 2} or k ∈ {1, 2} then Λ is a plane spanner whose degree is at most 3 and whose
stretch factor is at most

√
2. Assume m > 3 and k > 3. We present an algorithm that constructs

a degree-3 plane spanner, G, for the points of Λ.
Let h1, . . . , hm be the horizontal lines of Λ from bottom to top. Similarly, let v1, . . . , vk be

the vertical lines of Λ from left to right. For each pair (i, j) where 1 6 i 6 m and 1 6 j 6 k, we
denote by pi,j the vertex of Λ that is the intersection point of hi and vj . The vertices that are
on h1, hm, v1, or vk are referred to as boundary vertices; other vertices are referred to as internal
vertices. The edges both of whose endpoints are boundary vertices are referred to as boundary
edges; other edges are referred to as internal edges. The grid Λ consists of m − 1 horizontal
slabs (rows) and k − 1 vertical slabs (columns). Each horizontal slab Hi, with 1 6 i < m, is
bounded by consecutive horizontal lines hi and hi+1. Each vertical slab Vj , with 1 6 j < k, is
bounded by consecutive vertical lines vj and vj+1. See Figure 4(a). For each slab we define the
width of that slab as the distance between the two parallel lines on its boundary.

We partition the set of internal edges of Λ into two sets: a set R of red edges and a set B
of blue edges. See Figure 4(b). The set R is the union of the following edge sets:

{(pi,j , pi+1,j) : 2 6 i 6 m− 1, 2 6 j 6 k − 1, i and j are even},
{(pi,j , pi+1,j) : 2 6 i 6 m− 1, 2 6 j 6 k − 1, i and j are odd},
{(pi,j , pi,j+1) : 2 6 i 6 m− 1, 2 6 j 6 k − 1, i and j are even},
{(pi,j , pi,j+1) : 2 6 i 6 m− 1, 2 6 j 6 k − 1, i and j are odd}.

The set B consists of all other internal edges. As shown in Figure 4(b), the edges of R (and
also the edges of B) form staircases in Λ; a staircase is a maximal directed path in Λ consisting
of an alternating sequence of horizontal and vertical internal edges, in which each horizontal
edge is traversed from left to right and each vertical edge is traversed from top to bottom. Each
internal vertex is incident on two red edges and two blue edges. Moreover, each of the staircases
formed by red edges is next to either two staircases of blue edges or a stair case of blue edges
and the boundary.

We know that Λ is a plane
√

2-spanner of degree 4. We present an algorithm that constructs,
from Λ, a plane graph whose degree is 3 and whose stretch factor is 3

√
2. Let G′ be the graph

obtained by removing all red edges from Λ as in Figure 5(a). Since in Λ every internal vertex is
incident on two red edges, in G′ these vertices have degree 2. Initialize E′ to be the empty set.
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The algorithm iterates over all slabs, {H1, . . . ,Hm−1, V1, . . . , Vk−1}, in a non-decreasing order
of their widths. Let S be the current slab. The algorithm considers the red edges in S from
left to right if S is horizontal and bottom-up if S is vertical (however, this ordering does not
matter). Let e = (a, b) be the current red edge. The algorithm adds e to E′ if both endpoints
of e have degree 2 in G′ ∪ E′, i.e., degG′(a) + degE′(a) = 2 and degG′(b) + degE′(b) = 2. See
Figure 5(b). Note that E′ and the edge set of G′ are disjoint. At the end of this iteration, let
G be the graph obtained by taking the union of G′ and E′. We will show that G is a plane
3
√

2-spanner of degree three for the point set of the vertices of Λ.

1

4

5

8 9

10

13

14 2 6

7

11

12 3

F

1

4

5

8 9

10

13

14 2 6

7

11

12 3

(a) (b)

Figure 5: (a) The graph G′ that is obtained by removing the red edges (the reflex vertices of
the face F are marked, and the path between them is highlighted), and (b) the graph G that is
the union of G′ and E′; the bold red edges belong to E′. The numbers close to the slabs show
the order in which the slabs are considered.

The graph G is plane because it is a subgraph of Λ. As for the degree constraint, since we
add edges only between vertices that have degree 2 in G′∪E′ (at most one edge per vertex), no
vertex of degree 4 can appear. Thus, G has maximum degree 3. It only remains to show that
G is a 3

√
2-spanner. Before that, we review some properties of G.

A cell of Λ refers to a region that is bounded by two consecutive horizontal lines and two
consecutive vertical lines of Λ. Every face of G′ is the union of the cells of Λ that are between
two consecutive blue staircases and the boundary of Λ; see Figure 5(a). Consider one iteration
of the algorithm. We refer to the red edges that are not in G′ ∪E′ as missing edges. For every
face F in G′ ∪ E′ we define the set of reflex vertices of F as the vertices on the boundary of F
that are incident on two missing edges in F ; reflex vertices have degree 2 in G′ ∪ E′. Notice
that there exists a path of missing edges that connects the reflex vertices of F ; see Figure 5(a).
Since the algorithm connects the reflex vertices by missing edges, all faces that have more than
one reflex vertex have been broken into subfaces. Thus at the end of the algorithm every face
of G contains at most one reflex vertex. Therefore, every face of G consists of one cell, two
cells, or three cells. We refer to these faces as 1-cell, 2-cell, and 3-cell faces, respectively. See
the shaded faces in Figure 5(b).

Observation 2. Each face in G is either a 1-cell face, a 2-cell face, or a 3-cell face.

Lemma 3. Every missing edge that has an endpoint on the boundary of Λ is in a 2-cell face of
G.

Proof. The proof is by contradiction. Assume (a, b) is a missing edge that has an endpoint
on the boundary of Λ and lies in a 3-cell face F of G. Without loss of generality assume a is
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on the boundary. Thus, in G, b is the reflex vertex of F and has degree 2. At the moment
the algorithm considers (a, b), both a and b have degree 2, and thus, adds (a, b) to E′. Since
all edges of E′, including (a, b), are also edges of G, we get a contradiction with (a, b) being a
missing edge.

a b

c

d

f

e

a b

c

d

f

e

a b

c
d

efg

h

(a) (b) (c)

Figure 6: Illustration of Lemmas 4 and 5: (a) (c, f) is the missing edge of a 2-cell face and
f is a boundary vertex, (b) (c, f) is the missing edge of a 2-cell face and none of c and f are
boundary vertices, and (c) (c, h) is a missing edge of a 3-cell face.

Lemma 4. Let (c, f) be the missing edge of a 2-cell face in G. Then, |cf |G 6 3|cf |.
Proof. Let F = (a, b, c, d, e, f) be a 2-cell face of G with the edge (c, f) is missing. Without
loss of generality assume that (c, f) is horizontal, f is to the left of c, and a, b, c, d, e, f is the
clockwise order of the vertices along the boundary of F ; see Figures 6(a) and 6(b). Note that
|cf | = |ab| = |de|, |af | = |bc|, and |ef | = |cd|. We consider two cases:

• One of c and f is a boundary vertex. Without loss of generality assume that f is a
boundary vertex, and thus, it has degree 2. See Figure 6(a). Then, (c, d) is a red edge
that has been added during the algorithm. At the moment the algorithm considers (c, f),
the vertex c has degree 3, because otherwise, the algorithm adds (c, f) to E′, and hence to
G. Thus, the edge (c, d) has been considered before (c, f), which implies that |cd| 6 |cf |.
Thus, the length of the path (c, d, e, f), i.e., |cd|+ |de|+ |ef |, is at most 3|cf |.

• Both c and f are internal vertices. See Figure 6(b). Then, (a, f) and (c, d) are red edges
that have been added during the algorithm. At the moment the algorithm considers (c, f),
at least one of c and f has degree 3, because otherwise, the algorithm adds (c, f) to E′,
and hence to G. Without loss of generality assume that c has degree 3. Thus, the edge
(c, d) has been considered before (c, f), which implies that |cd| 6 |cf |. Thus, the length
of the path (c, d, e, f), i.e., |cd|+ |de|+ |ef |, is at most 3|cf |.

Lemma 5. Let (c, h) be a missing edge of a 3-cell face in G. Then, |ch|G 6 3|ch|.
Proof. Let F = (a, b, c, d, e, f, g, h) be a 3-cell face in G with the edge (c, h) missing; see Fig-
ure 6(c). Let a, b, c, d, e, f, g, h be the clockwise order of the vertices along the boundary of F .
Without loss of generality assume that c is the reflex vertex of F , the edge (c, h) is horizontal,
and h is to the left of c. Note that |ch| = |ab| and |bc| = |ah|. Since F is a 3-cell face, by
Lemma 3, f is not a boundary vertex. Thus, (a, h) is a red edge that is added during the
algorithm. At the moment the algorithm considers (c, h), the vertex h has degree 3, because
otherwise, the algorithm adds (c, h) to E′. Thus, (a, h) has been considered before (c, h), which
implies that |ah| 6 |ch|. Thus, the length of the path (c, b, a, h), i.e., |cb|+ |ba|+ |ah|, is at most
3|ch|.
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u

v

Figure 7: The path δuv is shown in dashed blue and the path δ′uv is shown in bold blue.

Theorem 7. Let Λ be a finite non-uniform rectangular grid. Then, there exists a plane spanner
for the point set of the vertices of Λ such that its degree is at most 3 and its stretch factor is at
most 3

√
2.

Proof. If Λ has less than three rows or less than three columns, then it is a plane
√

2-spanner
of degree 3. Assume Λ has at least three rows and at least three columns. Let G be the graph
obtained by the algorithm described in this section. Then, G is plane and its vertex degree is
at most 3. Since Λ is a

√
2-spanner, between any two vertices u and v, there exists a path δuv

in Λ such that |δuv| 6
√

2|uv|. By Lemmas 4 and 5, for any edge (a, b) on δuv that is not in G,
there exists a path in G whose length is at most 3 times |ab|. Thus, δuv can be turned into a
path δ′uv in G such that |δ′uv| 6 3

√
2|uv|; see Figure 7. Therefore, the stretch factor of G is at

most 3
√

2.

5 Final Remarks

In order to obtain plane spanners with small stretch factor, one may think of adding Steiner
points2 to the point set and build a spanner on the augmented point set. In the L1-metric,
a plane 1-spanner of degree 4 can be computed by using O(n log n) Steiner points (see [16]).
Arikati et al. [2] showed how to compute, in the L1-metric, a plane (1 + ε)-spanner with O(n)
Steiner points, for any ε > 0. Moreover, for the Euclidean metric, they showed how to construct
a plane (

√
2 + ε)-spanner that uses O(n) Steiner points and has degree 4.

Let S be a set of n points in the plane that is in general position; no three points are collinear.
Let G be a plane t-spanner of S. We show how to construct, from G, a plane (t+ ε)-spanner of
degree 3 for S with O(n) Steiner points, for any ε > 0. Let CP denotes the closest pair distance
in S and let ε′ = ε · CP .

p

p′

Cp

a
b

c

For each point p of the point set S, consider a circle Cp with

radius ε′

πn that is centered at p. Introduce a Steiner point on each
intersection point of Cp with the edges of G that are incident
on p. Also, introduce a Steiner point p′ on Cp that is different
from these intersection points. Delete the part of the edges of
G inside each circle Cp (each edge e = (p, q) of G turns into an
edge e′ of G′ with endpoints on Cp and Cq). Add an edge from
p to p′, and add a cycle whose edges connect consecutive Steiner

2some points in the plane that do not belong to the input point set.

13



points on the boundary of Cp. This results in a degree-3 geometric plane graph G′. For each
vertex of degree k in G, we added k+ 1 Steiner points in G′. Since G is planar, its total vertex
degree is at most 6n− 12. Thus, the number of Steiner points is 7n− 12, in total (by removing
Steiner vertices p′ and b together with the edges incident on them in the above figure, keeping
the edge (a, p) of G, and adding the edge (p, c) we get a different construction of G′ that uses
5n− 12 Steiner vertices).

A path δuv between two vertices u and v in G can be turned into a path δ′uv in G′ as follows.
For each point p in S corresponding to an internal vertex of δuv incident on two edges e1 and
e2 of δuv, replace the part of e1 and e2 inside Cp by the shorter of the two paths along Cp
connecting the corresponding Steiner points. Also, for each point p ∈ {u, v} incident on an edge
e of δuv replace the part of e inside Cp with edge (p, p′) together with the shorter of the two
paths along Cp connecting p′ and the Steiner point corresponding to e.

Since G is a t-spanner, |δuv ||uv| 6 t. Since the Steiner points are located at distance ε′

πn from

points of S, the length of the detour caused by Cp at each vertex is at most ε′

n . Since δuv has

at most n vertices, the length of δ′uv in G′ is at most |δuv| + n · ε′n . Thus, |δ
′
uv |
|uv| 6 |δuv |+ε′

|uv| =
|δuv |
|uv| + ε · CP|uv| 6 t+ ε, is valid because the closet pair distance CP is smaller than |uv|.

Acknowledgement

Some parts of this work have been done at the Fourth Annual Workshop on Geometry and
Graphs, held at the Bellairs Research Institute in Barbados, March 6-11, 2016. The authors
are grateful to the organizers and to the participants of this workshop. Also, we would like to
thank Günter Rote for his comments that simplified the proofs of Theorems 4 and 6, and an
anonymous referee for simplifying the construction of the spanner for non-uniform grids.

References

[1] M. Amani, A. Biniaz, P. Bose, A. Maheshwari, J. De Carufel, and M. Smid. A plane 1.88-
spanner for points in convex position. Journal of Computational Geometry, 7(1):520–539,
2016.

[2] S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M. Smid, and C. D. Zaroliagis.
Planar spanners and approximate shortest path queries among obstacles in the plane. In
Proceedings of the 4th European Symposium on Algorithms (ESA), pages 514–528, 1996.

[3] R. V. Benson. Euclidean geometry and convexity. McGraw-Hill, 1966.

[4] N. Bonichon, C. Gavoille, N. Hanusse, and L. Perkovic. Plane spanners of maximum
degree six. In Proceedings of the 37th International Colloquium on Automata, Languages
and Programming (ICALP), pages 19–30, 2010.
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A Upper bound for Function (3)

We prove that

f(x, α) =
1− x+ α»

(x sinα)2 + (1− x cosα)2
6

 
1 +

1

27
(3 + 2π)2 ≈ 2.04738

for all 0 < x 6 1, 0 < α 6 π
3 . We rewrite f(x, α) as

1− x+ α»
(x sinα)2 + (1− x cosα)2

=
1− x

√
sin2α+ cos2α+ α»

(x sinα)2 + (1− x cosα)2

=
1−
»

(x sinα)2 + (x cosα)2 + α»
(x sinα)2 + (1− x cosα)2

=
1−
√
a2 + b2 + α»

a2 + (1− b)2
,

where a = x sinα and b = x cosα. Note that a2 + (1 − b)2 > 0, because α > 0. We prove the
following equivalent inequality:

f(α, a, b) =
1−
√
a2 + b2 + α»

a2 + (1− b)2
6

 
1 +

1

27
(3 + 2π)2 ≈ 2.04738

for all a = b tanα, 0 < b 6 cosα, 0 < α 6 π
3 . We have

∂

∂α
f(α, a, b) =

1»
a2 + (1− b)2

.

Therefore, the system

∂

∂α
f(α, a, b) =

∂

∂a
f(α, a, b) =

∂

∂b
f(α, a, b) = 0

does not have a solution. Thus, we look at the boundary conditions. Since a = b tanα, the
boundary conditions are (1) α = 0, (2) α = π

3 , (3) b = 0, and (4) b = cosα.

1. Since a = b tanα, we have

f(0, a, b) = f(0, 0, b) = 1 <

 
1 +

1

27
(3 + 2π)2.

2. Since a = b tanα and using elementary calculus, we can show that

f

Å
π

3
, a, b

ã
= f

Å
π

3
,
√

3 b, b

ã
=

1− 2b+ π
3»

3b2 + (1− b)2

6 f

Å
π

3
,
√

3
π − 3

4π + 6
,
π − 3

4π + 6

ã
=

 
1 +

1

27
(3 + 2π)2

for all 0 < b 6 cos
(π
3

)
.

16



3. Since a = b tanα, we have

f(α, a, 0) = f(α, 0, 0) = 1 + α 6 1 +
π

3
<

 
1 +

1

27
(3 + 2π)2

for all 0 < α 6 π
3 .

4. Since a = b tanα and using elementary calculus, we can show that

f (α, a, cosα) = f (α, sinα, cosα) =
α√

2− 2 cosα

6 f

Ç
π

3
,

√
3

2
,
1

2

å
=
π

3
<

 
1 +

1

27
(3 + 2π)2

for all 0 < α 6 π
3 .

B Upper bound for Function (4)

We prove that

g(x, α) =
2(α+ cosα)− (x+ π

3

)»
(x sinα)2 + (1− x cosα)2

6
2π

3
≈ 2.09440

for all 0 < x 6 2 cosα, π
3 6 α 6 π

2 . We rewrite g(x, α) as

2(α+ cosα)− (x+ π
3

)»
(x sinα)2 + (1− x cosα)2

=
2

Å
α+ 1√

tan2α+1

ã
−
Ä
x
√

sin2α+ cos2α+ π
3

ä»
(x sinα)2 + (1− x cosα)2

=

2

(
α+ 1»

( x sinα
x cosα)

2
+1

)
−
(»

(x sinα)2 + (x cosα)2 + π
3

)»
(x sinα)2 + (1− x cosα)2

=

2

(
α+ 1»

(ab )
2
+1

)
−
Ä√

a2 + b2 + π
3

ä»
a2 + (1− b)2

=
2
(
α+ b√

a2+b2

)
−
Ä√

a2 + b2 + π
3

ä»
a2 + (1− b)2

=
6
(
α+ b√

a2+b2

)
−
Ä
3
√
a2 + b2 + π

ä
3
»
a2 + (1− b)2

=
6α− π

3
»
a2 + (1− b)2

−
3
√
a2 + b2 − 6b√

a2+b2

3
»
a2 + (1− b)2

=
6α− π

3
»
a2 + (1− b)2

− a2 + (1− b)2 − 1√
a2 + b2

»
a2 + (1− b)2

,

where a = x sinα and b = x cosα. Note that a2 + b2 > 0 and a2 + (1− b)2 > 0, because x > 0
and α > 0. We prove the following equivalent inequality:

g(α, a, b) =
6α− π

3
»
a2 + (1− b)2

− a2 + (1− b)2 − 1√
a2 + b2

»
a2 + (1− b)2

6
2π

3
≈ 2.09440
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for all a = b tanα, 0 6 b 6 2 cos2α, π
3 6 α 6 π

2 . We have

∂

∂α
g(α, a, b) =

2»
a2 + (1− b)2

.

Therefore, the system

∂

∂α
g(α, a, b) =

∂

∂a
g(α, a, b) =

∂

∂b
g(α, a, b) = 0

does not have a solution. Thus, we look at the boundary conditions. Since a = b tanα, the
boundary conditions are (1) α = π

3 , (2) α = π
2 , (3) b = 0, and (4) b = 2 cos2α.

1. Since a = b tanα and using elementary calculus, we can show that

g

Å
π

3
, a, b

ã
= g

Å
π

3
,
√

3 b, b

ã
=

1− 2b+ π
3»

3b2 + (1− b)2

6 g

Å
π

3
,
√

3
π − 3

4π + 6
,
π − 3

4π + 6

ã
=

 
1 +

1

27
(3 + 2π)2 <

2π

3

for all 0 6 b 6 2 cos2
(π
3

)
.

2. When α = π
2 , a = b tanα is not well-defined. Instead, we write b = a cotα = 0 and

0 6 a 6 2 sinα cosα = 0, from which a = b = 0. We have

g

Å
π

2
, 0, 0

ã
=

2π

3
.

3. Since a = b tanα, we have

g(α, a, 0) = g(α, 0, 0) =
6α− π

3
6

2π

3

for all π
3 6 α 6 π

2 .

4. Since a = b tanα, we have

g
Ä
α, a, 2 cos2α

ä
= g
Ä
α, 2 sinα cosα, 2 cos2α

ä
= 2α− π

3
6

2π

3

for all π
3 6 α 6 π

2 .
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