On the Hardness of Full Steiner Tree Problems®

Ahmad Biniaz! Anil Maheshwarif Michiel Smidf
June 2, 2015

Abstract

Given a weighted graph G = (V| F) and a subset R of V| a Steiner tree in G is a
tree which spans all vertices in R. The vertices in V' \ R are called Steiner vertices. A
full Steiner tree is a Steiner tree in which each vertex of R is a leaf. The full Steiner tree
problem is to find a full Steiner tree with minimum weight. The bottleneck full Steiner
tree problem is to find a full Steiner tree which minimizes the length of the longest
edge. The k-bottleneck full Steiner tree problem is to find a bottleneck full Steiner tree
with at most k Steiner vertices. The smallest full Steiner tree problem is to find a full
Steiner tree with the minimum number of Steiner vertices.

We show that the full Steiner tree problem in general graphs cannot be approxi-
mated within a factor of O(log? ¢ |R|) for any ¢ > 0. We also provide a polynomial-
time approximation factor preserving reduction from the full Steiner tree problem to
the group Steiner tree problem. Based on that, the first approximation algorithm for
the full Steiner tree problem in general graphs is obtained. Moreover, we show that
the same hardness result holds for the node-weighted version of the full Steiner tree
problem. We prove that it is NP-hard to approximate the k-bottleneck full Steiner tree
problem within a factor of 2 —e. The smallest full Steiner tree problem is shown to be
NP-complete and does not admit any polynomial-time O((1 — ¢) Inn)-approximation
algorithm. The presented reductions show the connection between the full Steiner tree,
the group Steiner tree, and the connected set cover problems. In addition, we present
an O(|E|log|V|) time algorithm for the bottleneck full Steiner tree problem which
relaxes the assumption, that G is a complete graph, in Chen et al. [7] algorithm.

1 Introduction

Given a graph G = (V, E), a subset R of V| and a weight function w : E — R™, a Steiner
tree of GG is a tree which spans all vertices in R. The vertices in R are called terminals; these
vertices must be in the tree. The vertices in S = V' \ R are called Steiner vertices. A full
Steiner tree is defined as a Steiner tree in which each vertex of R is a leaf. The full Steiner

*Research supported by NSERC.
fSchool of Computer Science, Carleton University, Ottawa, Canada.

tree (FST) problem is to find a full Steiner tree 7" with minimum weight w(T") = > ., w(e).
This problem is NP-hard, and cannot be approximated within a factor of (1 — ¢)lnn in
polynomial-time [9].

The bottleneck full Steiner tree (BFST) problem is to find a full Steiner tree 7" such that
the weight of the longest edge in T is minimized. We refer to the weight of the longest edge
in T as its bottleneck. This problem can be solved exactly in polynomial-time [7]. However,
the k-bottleneck full Steiner tree (k-BFST) problem which is to find a bottleneck full Steiner
tree which contains at most & Steiner vertices is NP-hard [1].

Another variant of the Steiner tree problem is the node-weighted Steiner tree (NST)
problem. Given a weight function w : V' — R* on the vertex set V', we are looking for a
minimum node-weighted Steiner tree 7', where w(T") = >, ., w(v). Since any Steiner tree
contains all vertices in R, we may set w(r) = 0, for all nodes r € R. This problem cannot
be approximated within a factor of (1 —¢)Inn in polynomial-time (personal communication
with Berman; see the reference 2 in [20]). Symmetrically, the node-weighted full Steiner tree
(NFST) problem is defined to compute a full Steiner tree with minimum node-weight.

For an unweighted graph G, the smallest full Steiner tree (SFST) problem is to compute
a full Steiner tree with the minimum number of Steiner vertices. Clearly, the SFST problem
is a special case of the NFST problem, where all the Steiner vertices have the same weight.

Given an edge-weighted graph G(V, E) and a set G = {g1, 92, - , gr}, where each g; is a
subset of V', the group Steiner tree (GST) problem is to find a minimum weight Steiner tree
in G that contains at least one vertex from each g; € G. Each subset g; is called a “group” of
terminals. The vertices in V' which do not belong to any group in G are Steiner vertices. In
the node-weighted group Steiner tree (NGST) problem we are given a node-weighted graph
and we are looking for a minimum node-weighted Steiner tree that contains at least one
terminal from each group. We denote an instance of a weighted group Steiner tree problem
by (G, G,w). The directed Steiner tree (DST) problem is the directed version of the Steiner
tree problem. Given an edge-weighted directed graph G = (V| E), a root vertex r € V,
a subset R of V| the DST problem is to find a minimum weight out-branching tree in G,
rooted at r, that spans all vertices in R.

Given a finite set U of elements, a family S of subsets of U, the set cover (SC) problem is
to find a smallest subset R of S such that every element of U is covered by at least one set
in R. We denote an instance of the SC problem by (U, S). In the connected set cover (CSC)
problem we are given a graph G on vertex set S, and we want to find a smallest subset R
of § such that every element of U is covered by at least one set in R, and the subgraph
of G induced by R is connected. We denote an instance of the CSC problem by (U, S, G).
By taking G to be a complete graph, the SC problem is a special case of the CSC problem.
In an extension of the CSC problem, which is known as the weighted connected set cover
(WCSC) problem, there are real weights assigned to the elements of S, and we are looking
for a connected set cover which minimizes the total weight.

In this paper we show a connection between the (node-weighted) full Steiner tree problems
and the (node-weighted) group Steiner tree problems. In addition, we show the connection
between the smallest full Steiner tree problem and the connected set cover problem. Based

on that, we give new lower bounds on the inapproximablility of the full Steiner tree problems,
as well as the first approximation algorithms.

1.1 Previous Work

Drake and Hougardy [9] showed that approximating the FST problem is at least as hard
as approximating the set cover problem, and there is no polynomial time approximation
algorithm for the FST problem with performance ratio better than Inn unless NP = D.!
When the input graph is metric, i.e., it is a complete graph and edge weights satisfy the
triangle inequality, constant factor approximation algorithms are presented in [6, 7, 9, 13,
18, 21, 22]. Biniaz et al. [3] presented a 20-approximation algorithm for the FST problem in
unit disk graphs.

Chen et al. [7] presented an O(mlogn) time algorithm which solves the BEST problem in
a complete graph G, where n is the number of vertices and m = ©(n?) is the number of the
edges of GG. The geometric version of this problem, where V' is a set of points in the plane,
G is a complete graph over V', and the edge weights are equal to the Euclidean distances
between the points, was considered in [1]. Biniaz et al. [4] presented an algorithm which
solves the Euclidean BFST problem optimally in ©(nlogn) time. However, Abu-Affash [1]
proved that the k-BFST problem is NP-hard, and the geometric version of this problem
cannot be approximated better than /2, unless P=NP. For the metric version, he presented
an approximation algorithm which computes a k-BFST with bottleneck at most four times
the optimal bottleneck. He mentioned the improvement of the approximation ratio as an
open problem. He also left an interesting version of the k-BFST as an open problem: Given
a desired bottleneck, we are looking for a full Steiner tree which minimizes k to achieve that
bottleneck. In this paper we show some results on the inapproximablility of these problems.

In 1991, Berman (personal communication; see the reference 2 in [20]) proved that
unless P=NP, the NST problem cannot be approximated better than Inn by giving an
approximation-preserving reduction from the set cover problem [12]. Asymptotically opti-
mal approximation algorithms with performance ratio of O(Inn) are presented in [20, 16].
Zou et al. [26] gave a constant factor approximation algorithm for the NST problem in unit
disk graphs. Naor et al. [23] considered an online version of the NST problem where G is a
(node and edge) weighted graph which is known in advance, and the terminals appear on-
line. They presented a polynomial-time randomized online algorithm for this problem with
a competitive ratio of O(lognlog® k), where k is the number of terminals.

Halperin and Krauthgamer [17] proved that the GST problem cannot be approximated
within a factor of O(log®* |G|), unless Z O NP.2 Garg et al. [15] presented the first polylog-
arithmic approximation algorithm for the GST problem. They use a randomized algorithm
that solves the GST problem on trees with the approximation ratio of O(log klog N) where

1Here we use D to denote the complexity class deterministic quasi-polynomial time, or DTIME (nP° log m,
where DTIME(¢) is the class of languages that have a deterministic algorithm that runs in time t.

2Here we use Z to denote the complexity class Las-Vegas quasi-polynomial time, or ZTIME (nP°Y log”),
where ZTIME(t) denote the class of languages that have a probabilistic algorithm that runs in expected time
t (with zero error probability).

k is the number of groups and NN is the size of the largest group. For a general graph G,
they find a group Steiner tree of cost within O(lognloglognlogklog N) of the cost of the
best group Steiner tree by reducing the problem to the case where G is a tree and then
applying the results of Bartal [2]. The improved approximation factor of O(log® nlog k) can
be achieved by applying the results of [11]. This result can even be improved to get an
algorithm with approximation factor O(lognlog2 k) (personal communication with Gupta,
Halperin, Kortsarz, Krauthgamer, Ravi, Srinivasan, and Wang; see the reference 14 in [17]).

The NGST problem cannot be approximated within a factor of O(log®*®n); this follows
from the result in [10] where WCSC and NGST problems are shown to be equivalent and
WCSC problem is (log®* n)-hard.

Demaine et al. [8] showed that there is a polynomial-time 6-approximation algorithm
for the node-weighted Steiner tree problem in planar graphs. In general they proved that
node-weighted Steiner trees have polynomial-time O(1)-approximation algorithms for any
family of graphs that exclude a fixed minor. They also presented an O(logn poly loglogn)
approximation algorithm for the special case where G is an embedded planar graph and each
group is the set of nodes on a face.

Khandekar et al. [19] studied the fault-tolerant versions of the group Steiner tree problem.
Given an edge or node-weighted graph GG, a root vertex r, a set G of groups, the goal is to find
a minimum weight subgraph of GG that contains two edges or vertex-disjoint paths from each
group in G to r. They showed that this problem cannot be approximated within a factor of
O(log** k), where k is the number of groups. In addition, they presented a polynomial-time
O(y/nlogn)-approximation algorithm for this problem. The online version of the NGST
problem is also considered in [23].

Halperin and Krauthgamer [17] proved that the DST problem cannot be approximated
within a factor of O(log>® n), unless Z O NP. Charikar et al. [5] presented an O(i2(i — 1)k/?)
approximation algorithm for the DST problem running in O(n'k?') time for any 7 > 1, where
k = |R|. It achieves an O(k®) approximation ratio in polynomial time for any ¢ > 0, and
O(log® k) approximation ratio in quasi-polynomial time. Similar results are also obtained
in [24].

The SC problem is NP-hard [14], and cannot be approximated within a factor of (1 —
€)Inn, unless D D NP [12]. It is obvious that the SC problem is a special case of the
CSC problem, where the input graph G is complete. Thus, the CSC problem is NP-hard
and cannot be approximated within a factor of (1 — ¢)Inn in polynomial-time. Shuai and
Hu [25] showed that even when G is a spider graph (a graph with exactly one vertex of
degree greater than two), the CSC problem is (1 — ¢) In n-inapproximable, unless D D NP.
In that case, they presented a (1 + Inn)-approximation algorithm. In the case where all the
vertices of G have degree at most two, they presented polynomial-time algorithms.

Elbassioni et al. [10] showed that the CSC problem is equivalent to the GST problem
with all edge weights set to 1. Hence, by applying the results of Garg et al. [15] on the
equivalent GST problem, a polylogarithmic approximation algorithm for CSC is obtained.

Table 1: Summary of results (note that the set cover problem is a special case of the connected
set cover problem where the input graph is complete).

Problem Inapproximability | Reference
set cover (I1—¢)lnn [12]
connected set cover (1—¢)lnn

weighted connected set cover log”* n [10]
group Steiner tree log”* |G| [17]
directed Steiner tree log”* n [17]

. l1—¢)lnn 9

full Steiner tree (log2'€)| 7] Thec[n"Lm i
node-weighted full Steiner tree log”® | R Theorem 2
k-bottleneck full Steiner tree 2—¢ Theorem 5
smallest full Steiner tree (I1—¢)lnn Theorem 6

1.2 Our Results

Motivated by the open problems mentioned in [1] we present some results on the hardness of
the FST, NFST, k-BFST, and SFST problems. The presented reductions show the relation
between the FST, GST, and CSC problems.

In Section 2 we show that the FST problem cannot be approximated within a factor of
O(log*® |R|) unless Z D NP, using a reduction from the GST problem. Then, we present
a polynomial time approximation factor preserving reduction from the FST problem to the
GST and DST problems. This leads to the first approximation algorithms for the FST
problem in general graphs. In addition, we show that the similar results are achievable for
the NFST problem. In Section 3, we first introduce the largest full Steiner tree problem in
a given graph G, and present an algorithm which solves this problem in O(n + m) time.
Then, we show how to use this algorithm to solve the BFST problem in G in O(mlogn)
time. In addition we reduce the CSC problem to the metric version of the k-BFST problem
and prove that it is NP-hard to approximate the k-BFST problem within a factor of 2 — ¢,
for any ¢ > 0. Using a reduction from the CSC problem, in Section 4 we show that the
SFST problem is NP-complete and cannot be approximated within a factor of (1 —¢)Inn
unless D D NP. Table 1 summarizes the inapproximability results. We conclude this paper
in Section 5.

2 Full Steiner Trees

Given a graph G = (V) E), a subset R of V, and a weight function w : E — R*, we
are interested to find a full Steiner tree 7" with minimum weight. This problem cannot be
approximated better than Inn unless NP = D [9]. In this section we give a tighter bound
on the inapproximability of the FST problem, as well as the first approximation algorithm
for this problem in general graphs. Since in any full Steiner tree all the terminals are leaves,

we assume w.l.o.g. that there are no edges between the vertices of R. In [17], Halperin
and Krauthgamer proved that the GST problem cannot be approximated within a factor
of O(log¥® |G|), unless Z O NP. Using a reduction from the GST problem, we show that
the FST problem cannot be approximated within a factor of O(log®* |R|). For a tree T, we
define the skeleton tree of T, as a tree obtained by removing the leaves of T'.

Theorem 1. There is no polynomial-time O(log®* | R|)-approzimation for the FST problem
for any € > 0 unless Z O NP.

Proof. Using contradiction, suppose that there is a polynomial-time O(log** | R|)-approximation
algorithm for the FST problem.

We reduce the GST problem to the FST problem in the following way. Let (Ggst, G, w)
be an instance of the GST problem, where Gu = (Vgst, Egst). We construct an instance
(Gst, R, w) of the FST problem as follows.

Figure 1: Reducing an instance of the GST problem to an instance of the FST problem.
Solid circles show the terminals and light circles show the Steiner vertices.

For each group g; € G, create a new vertex r(g;). Let R denote the set of these new
vertices:

R ={r(g:) : g € G}.

Let E; = {(u,7(g:)) : v € g;} and E = {J, s Ei. For each edge e € E let w(e) = 0.
Let Gt = (Vist, Erst), where Vig = Ve U R and Egy = Egq U E. This gives an instance
(Ggst, R, w) of the FST problem. See Figure 1. Since |R| = |G|, for simplicity of notation we
define k = |R|.

First, we show that the weight of an optimal solution for the FST problem is equal to
the weight of an optimal solution for the GST problem. Let T, be an optimal solution
for the FST problem. Let T3 be the skeleton tree of T¢;, obtained by removing the leaves
of Tf,. Note that in Ty, all leaves are terminals (and vice versa), and the terminals are
incident on the edges of weight zero, thus, w(Tg,) = w(Tg;). We prove that Ty is an
optimal solution for the GST problem. Each group ¢; in G has a corresponding vertex in
R. In Tg,, each vertex 7(g;) € R is connected to Ty via a vertex belonging to g;. That

Thus, T3 is a group

is, at least one vertex from each g; € G is covered by the tree T

gst*
Steiner tree. We prove the optimality of T, by contradiction. Suppose that there is a
solution T for the GST problem, where w(Tys) < w(Tg*st). For each g; € G, let u; € g; be

6

a vertex that is covered by T,s. By connecting u; to r(g;) we obtain a full Steiner tree Ty
for the FST problem. Since w(u;,r(g;)) = 0 for all g; € G, we have w(Tts) = w(Tys). Thus,
w(Ti) = w(Tys) < w(Tyy) = w(Tg,), which contradicts the optimality of T¢;. Therefore,
w(Tyst) > w(Tyy), which implies that T is an optimal solution for the GST problem.

Now, let T¢, be the polynomial-time O(log>* k)-approximation solution for the FST
problem. Then

w(Tf(;t) < O(logQ-e k) - w(Tth)‘

Let Ty be the skeleton tree of Tg. It is obvious that T3, is a group Steiner tree, and
w(Te,) = w(Tg,). Therefore,

gst
w<Tgst) < 0(10g2'€ k) - w(Tg,) = 0(10g2_€ k) - w(Tg*st)a
that is, T is a polynomial-time O(log>* k)-approximation tree for the GST problem. Note

S

that k = |G|, thus T, is a polynomial-time O(log** |G|)-approximation tree for the GST

problem. Based on a result of Halperin and Krauthgamer [17], this implies that NP has
quasi-polynomial Las-Vegas algorithms. O

Now, we prove that there is a polynomial-time approximation factor preserving reduction
from the full Steiner tree problem to the group Steiner tree problem.

Lemma 1. Any polynomial time a-approximation algorithm for the GST problem yields a
polynomial time a-approximation algorithm for the FST problem.

Proof. We will transform, in polynomial time, an instance (G, R, w) of the FST problem,
where Gy = (Vist, Erst) and S = Vi \ R, to an instance (G, G, w) of the GST problem as
follows. For each node r € R, let N(r) denote the adjacent vertices of r in Gyy. For each
vertex u € N(r), create a new vertex r(u). Let g, denote the set of these new vertices:

gr={r(u) :u e N(r)}.

We consider g, to be one “group”. Let G = {g, : r € R}. Let E = {(u,r(u)) : r €
R,u € N(r)}, and for each edge (u,r(u)) € E let w(u,r(u)) = w(u,r) where r(u) € g,.
Let Gt[S] be the subgraph of Gy induced by vertex set S. Let Ggsy = (Vist, Past), Where
Vst = SU{r(u) : 7(u) € gr, 9, € G} and Egq is the union of E and the edges of G [S]. This
gives an instance (Ggs, G, w) of the GST problem. See Figure 2.

First, we show that the weight of an optimal solution for the GST problem is equal to
the weight of an optimal solution for the FST problem. Let Ty be an optimal solution for
the GST problem. Note that the groups in G are pairwise disjoint, and the vertices in each
group have degree one. Thus, T contains exactly one vertex r(u) from each group g,, where
7(u) is a leaf. Let T¢; be the tree obtained from T} by replacing each edge (u,r(u)) € Ty,
where r(u) € g,, with its corresponding edge (u,r) € Ggy. Clearly, T¢, is a full Steiner tree
in Gy, and w(Tg,) = w(Ty) because w(u,r) = w(u,r(u)). Now, we prove that T, is an
optimal full Steiner tree. Using contradiction, suppose that there is a solution T for the

Figure 2: Reducing an instance of the FST problem to an instance of the GST problem.
Solid circles show the terminals and light circles show the Steiner vertices.

FST problem where w(Ti) < w(Tg,). Consider the skeleton tree T of Ti. Recall that each
group ¢, € G corresponds to a terminal » € R. For a terminal r € R, let u be the neighbor of
rin T. Recall that for each u € N(r) there is a vertex r(u) € g, where w(u,r) = w(u,r(u)).
Let T, be the tree obtaining from 7" by connecting r(u) to u for all » € R. That is, Ty
is a group Steiner tree, and w(Tys) = w(Ti). Thus, w(Tys) = w(Tiw) < w(TE,) = w(Tg),
which contradicts the optimality of T} ;. Therefore, w(Tty) > w(TE,;), which implies that T¢;
is an optimal solution for the FST problem.

Now, let 75 be an a-approximation for the GST problem. As described above we can
obtain a full Steiner tree T, for the FST problem where w(Tg,) = w(Tg,). Therefore,

w(Tyy) = w(Ty

gst) <a- w(iy) = w(Tth)’

gst

and hence T, is an a-approximation for the FST problem. O

By Lemma 1, the improved version (see the reference 14 in [17]) of Garg et al. [15]
algorithm can be used to solve the FST problem (by reducing the FST problem to the
equivalent GST problem first). Hence, an O(lognlog? | R|)-approximation algorithm for the
FST problem is obtained. Charikar et al. [5] and Rothvofl [24] presented a polynomial-
time O(k®)-approximation algorithm and a quasi-polynomial-time O(log® k)-approximation
algorithm for the DST problem, where k is the number of terminals in an instance of the
DST problem. We transform an instance of the FST problem to an instance of the DST
problem with the same number of terminals; as a direct consequence of the following lemma a
polynomial-time O(|R|?)-approximation algorithm and a quasi-polynomial-time O(log® |R|)-
approximation algorithm for the FST problem are obtained, where |R| is the number of
terminals in an instance of the FST problem.

Lemma 2. Any polynomial time a-approximation algorithm for the DST problem yields a
polynomial time a-approximation algorithm for the FST problem.

Proof. We will transform an instance of the FST problem on graph G to an instance of the
DST problem with the same number of terminals. Replace each Steiner edge (an edge both
of whose endpoints are Steiner vertices) in G with a pair of anti-parallel directed edges of
the same weight. Then replace each terminal edge (s,r), where s € S and r € R, with a

8

directed edge of the same weight from s to r. Let G’ be the resulting directed graph. It is
easy to verify that an out-going directed Steiner tree originating from a Steiner node to any
terminal in G’ can be converted to a full Steiner tree of the same weight in G. Let T’ be the
minimum weight directed Steiner tree among all the directed Steiner trees in G’ obtained by
picking any of the Steiner vertices as the root vertex. Clearly, the weight of an optimal full
Steiner tree T, in G is at least the weight of T}, i.e., w(Tg,) > w(Ty,)-

Now, consider an a-approximation algorithm Ay for the DST problem. Let T, be
the minimum weight tree among all the trees obtained by running Ay, on all the Steiner
vertices of G'. Let T, be the tree obtained from T3, by replacing the directed edges with
undirected edges of the same weight. It is obvious that 7§, is a full Steiner tree in G and
w(Tg,) = w(Ty,). Therefore,

w(Tg) = w(Tgst) <a- w<T§st) <a- w(Tth)v

which implies that T¢, is an a-approximation for the FST problem. O

2.1 Node Weighted Full Steiner Trees

Given a graph G = (V, E), a subset R of V, and a weight function w : V' — R*, we are
interested in finding a full Steiner tree 7" with minimum node weight. Since any full Steiner
tree contains all the vertices in R, we assign w.l.o.g. w(r) = 0 for each r in R. In this section
we show that the same inapproximability results presented in Section 2 for the FST problem,
hold for the NFST problem, using a reduction from the node-weighted GST problem. The
NGST problem cannot be approximated within a factor of O(log®*®n); this follows from
the result in [10] where WCSC and NGST problems are equivalent and WCSC problem is
Q(log®* n)-hard.

Theorem 2. There is no polynomial-time O(log** n)-approzimation for the NFST problem
for any € > 0 unless Z O NP.

Proof. We reduce the NGST problem to the NFST problem. Given an instance of the NGST
problem, we construct an instance (G, R, w) of the NFST problem with the same node
weight function, as described in the proof of Theorem 1. For each r(g;) in R corresponding
to a group g; € G we assign w(r;) = 0. Each solution T for the NFST problem gives a
solution Thg for the NGST problem of the same weight, where T, is the skeleton tree of

Tht- Using the same analysis as in the proof of Theorem 1, the statement of the lemma
holds. O

Using the same reduction as described in the proof of Lemma 1, and by assigning weight
zero to each node r(u) € g,, we have the following lemma. Note that for each terminal r,
we have w(r) = 0.

Lemma 3. Any polynomial time a-approximation algorithm for the NGST problem yields a
polynomial time a-approximation algorithm for the NFST problem.

3 Bottleneck Full Steiner Trees

Given a graph G = (V,E), a subset R of V, and a weight function w : E — R*, the
bottleneck full Steiner tree (BFST) problem is to find a full Steiner tree T}, in G such that
the weight of the maximum-weight edge in T}, is minimized. This problem can be solved
exactly in polynomial time [1, 4, 7]. Chen et al. [7] presented an O(mlogn) time algorithm
that solves the BEST problem in a complete graph. Their algorithm maintains a forest F' of
the full Steiner trees and a tree which contains the bottleneck edge. Initially, for each Steiner
vertex u, they add to F' a star T, centered at u which contains all vertices of R as its leaves.
Each star is a full Steiner tree. Let T™ be the tree in F' with minimum bottleneck. Then,
they consider the Steiner edges iteratively in the increasing order of their weights. If the
addition of a Steiner edge (p, q) reduces the current bottleneck, they add (p, ¢) to F—which
results in merging the trees containing p and ¢—and update 7. In order to merge the trees,
disjoint-set operations are used. Since in each iteration F' is a forest of full Steiner trees, the
input to their algorithm is a complete graph, thus, the running time of their algorithm is
O(n*logn). We relax the assumption that G is a complete graph, and present an algorithm
for the BFST problem running in O(mlogn) time. The geometric version of the BFST
problem is also of interest; in [1], the authors presented an O(nlog”n) time algorithm for
this problem which was improved to O(nlogn) [4].

The k-BFST problem is to find a bottleneck full Steiner tree which contains at most k
Steiner vertices. This problem is NP-hard. For metric graphs, a 4-approximation algorithm
is presented by Abu-Affash [1].

The rest of this section is organized as follows. In Section 3.1 we define the largest full
Steiner tree problem, and present a linear time algorithm for this problem. In Section 3.2
we show how to use the largest full Steiner tree algorithm to solve the BFST problem in
O(mlogn) time. In Section 3.3 we show that it is NP-hard to approximate the k-BFST
problem in metric graphs within a factor of two.

3.1 Largest Full Steiner Tree Problem

Let G = (V, E) be a graph with n vertices and m edges. Given a terminal vertex set R C V;
in the case that G does not have a full Steiner tree which spans all the terminals in R, we
define a largest full Steiner tree as a full Steiner tree in G with maximum cardinality. The
cardinality of a tree T is the number of terminal vertices in T, i.e., car(T) = |V(T) N R|,
where V(T') is the set of vertices of T. The largest full Steiner tree (LFST) problem is to
find a largest full Steiner tree.

We present an algorithm which computes a largest full Steiner tree T, in G in O(n+m)
time. Algorithm 1 receives a graph G and a set R as input and returns a largest full Steiner
tree. It computes a forest F' containing all the maximal full Steiner trees of G. A full Steiner
tree T in G is maximal if by adding any vertex of G (terminal or Steiner) to T, the resulting
tree is not a full Steiner tree. A largest full Steiner tree in G is a maximal tree Ty,,, in F which
has the maximum cardinality (recall that the cardinality of a tree is defined as the number
of its terminal vertices). Now we describe how to compute F'. We run a modified version

10

of the depth first search algorithm (MODIFIEDDFS) on the Steiner vertices, and add the
tree returned by the MODIFIEDDF'S to F'. Note that the DFS algorithm explores the graph
from a given root vertex as far as possible along each possible branch before backtracking.
To avoid looping through cycles, DFS marks each vertex upon first visiting it and does not
explore the children of a previously visited vertex. In the MODIFIEDDFS algorithm, we
mark all the terminal vertices as “visited” in advance, and start exploring G from a Steiner
vertex, say u. That is, while exploring GG, if we see a Steiner vertex s, we visit and explore
s, but, if we see a terminal vertex r, we do not explore it. Since the MODIFIEDDF'S does
not explore the terminal vertices, the resulting tree, say T, is a full Steiner tree in G. If
G contains some unvisited Steiner vertices, we repeatedly run the MODIFIEDDFS on an
unvisited Steiner vertex. See Algorithm 1.

Algorithm 1 LFST(G, R)
Input: an undirected graph G(V, E), and a set R C V.
Output: a largest full Steiner tree T, in G.
: S+ V\R
F+0
while S is not empty do
u < a vertex of S
T, < MODIFIEDDFS(G, u)
F+ FU{T,}
S« S\ S(T,)
Thax < a tree in F' with the maximum cardinality
return 7,,.,

For a full Steiner tree T" we define R(T) and S(T) as the set of terminals and Steiner
vertices of T', respectively. In addition, we define Tk as the set of all terminal edges in T
(recall that a terminal edge is an edge incident on a terminal vertex), and T as the skeleton
tree obtained from T by removing Tx. Actually, Ty is the induced subgraph of T by S(T),
and contains all the Steiner edges of T'. For two vertices p and ¢ in G, we say that p is
accessible from ¢ if there is path in G between p and ¢ which does not contain any terminal
vertex as an internal node. It is obvious that in an undirected graph G, the accessibility of
p and ¢ is symmetric.

Observation 1. In a full Steiner tree T, each terminal in R(T) is accessible from each
Steiner vertex in S(T).

Observation 2. Consider a Steiner vertex u in G and the tree T, obtained by running the
MOoDIFIEDDFES on u. Then, R(T,) U S(T,) is the set of all vertices accessible from u in G.

Theorem 3. The algorithm LEST returns a largest full Steiner tree of G in O(m) time.

Proof. The MODIFIEDDF'S subroutine in algorithm LFST, does not explore any terminal
vertex, and hence the resulting tree T, does not contain any terminal vertex as an internal

11

node. Thus, T, is a full Steiner tree in G. Now we prove the maximality of 7T,. While
exploring a Steiner vertex u, the MODIFIEDDF'S visits all the unvisited vertices (terminals
and Steiner) adjacent to u, and explore all the unexplored Steiner vertices. By this argument
and by Observation 2 the MODIFIEDDF'S visits all the vertices accessible from u, and hence
T, is a maximal full Steiner tree in GG. In addition, we repeatedly run MODIFIEDDFS on
unvisited Steiner vertices. According to the symmetry of the accessibility in G, any choice
of u in line 4, in any order, results in the same full Steiner trees. Therefore, after the while
loop, F' contains all the maximal full Steiner trees of G.

Now we show that the tree Ti,.. returned by the algorithm LFST has the maximum
cardinality. Let T" be a full Steiner tree in G. Consider the skeleton tree Ts with the vertex
set S(T). Let u be the first vertex of S(T") that is visited by MODIFIEDDFS. Clearly,
R(T) is accessible by u. In algorithm LFST, let T, be the tree in F' which contains u. By
Observation 1, T, contains all the terminals accessible from u. Thus, R(T) C R(T,), and
hence, car(T) < car(T,). In line 9, Tp.x is a tree in F' with maximum cardinality, then,
car(T,) < car(Tyax). Therefore, car(T) < car(Tmax), implies that Tp.y is a maximum full
Steiner tree of G.

Now we analyze the time complexity of the algorithm. In the while loop, when we run
the MODIFIEDDF'S starting at a Steiner vertex wu, it visits all the vertices that are accessible
from u, but explores only the Steiner vertices. In the successor iterations of the while loop,
the Steiner vertices accessible by u are never visited again. Thus, LFST explores each
Steiner vertex exactly once. The total number of times that the MODIFIEDDF'S visits a
vertex (terminal or Steiner vertex) is at most the number of edges incident on that vertex.
Therefore, the total running time of the algorithm is O(n + m). [

3.2 Bottleneck Full Steiner Tree Problem

In this section we are looking for a bottleneck full Steiner tree Ti.; in G, i.e., a largest
full Steiner tree in which the weight of the longest edge is minimized. We combine the
binary search algorithm with the LEST algorithm—presented in Section 3.1—to compute
Thor in O(mlogn) time. We define the cardinality of a graph G, car(G), as the cardinality
of a maximum full Steiner tree in G. Using the LFST algorithm, we compute car(G) in
O(n+m) time. The first step is to sort the edges by weight. This takes O(mlogn) time. Let
€1, €s,...,e, be the edges of G, in nondecreasing order by their weight. Let G; = (V, E;) be
the graph with vertex set V' and edge set E;, where E; = {e1, ey,...,€;}. Then, we use binary
search to find the minimum value ¢* of ¢ such that G;+ has the same cardinality as G, i.e.,
car(Gi+) = car(G). Therefore, the largest full Steiner tree in G;« is a bottleneck full Steiner
tree in G. In each iteration of the binary search we run the algorithm LFST to compute
a maximum full Steiner tree in G; with cardinality car(G;) and test whether the “guess” i
for 7* is too high or too low. The LFST algorithm takes O(n + m) time per execution and
the total number of times we execute LFST is O(logn), thus, the total running time of this
algorithm is O((n 4+ m)logn). W.l.o.g. one may only consider a connected component of G
which contains all the terminals, that is n = O(m), which results in the following theorem.

12

Theorem 4. The BFST problem can be solved ezxactly in O(mlogn) time.

3.3 Ek-Bottleneck Full Steiner Tree Problem

In this section we show that it is NP-hard to approximate the k-BFST problem in metric
graphs within a factor of two. This is achieved by providing a reduction from the connected
set cover problem, which is known to be NP-complete. Recall that the decision version of
this problem is defined as follows: Given a finite set U of elements, a family S of subsets of
U, a graph G on vertex set S, does there exist a set S* C S, such that |S*| < k and the
subgraph G[S*] is a connected cover?

Theorem 5. It is NP-hard to approximate the metric version of the k-BFST problem within
a factor of 2 — ¢, for any € > 0.

Proof. We present a reduction from the CSC problem. Consider an instance (U, S, G, k)
of the CSC problem, where Gese = (Vese, Fese) and Ve = S. We construct an instance
(Ggse, R, w, k) of the metric k-BFST problem, such that G has a connected set cover of
size at most k if and only if Gy has a full Steiner tree with at most k& Steiner vertices and
bottleneck at most 2 — ¢, for some € > 0.

Let R={u:ue€ U}, Vigp =SUR, and £ = E;c U{(S,u) : S € S,u € S}. Let
Gist = (Vist, Erst) be the complete graph over Vi For each edge e € E, let w(e) = 1ife € F,
and w(e) = 2, otherwise. This gives an instance of the metric k~-BFST problem. Note that
the vertices in G are analogous to Steiner vertices in Gg. The induced subgraph of G
by S which contains the edges of weight 1 is isomorphic to Ges[S].

Let §* C S be a connected vertex cover of size at most k in Ge. Clearly, Ggy[S*] is
connected. Let 7" be a spanning tree in G[S*|. By connecting each u € R to one of its
neighbors in 7" we obtain a full Steiner tree 7%, in Gy with at most k Steiner vertices and
the length of each edge is exactly 1.

Conversely, suppose that there exists a full Steiner tree Tg, in Gy with at most k Steiner
vertices and bottleneck at most 2 —e. It is obvious that 7, does not contain any edge in
Ei \ E. Let 8* denote the set of the Steiner vertices of T¢,, and let 7" denote the skeleton
tree of T¢, which contains only the edges of weight 1. Clearly, G.s[S?] is connected. Each
element u € U corresponding to a terminal vertex in R, is covered by at least one set in S§¢,
and hence 8% is a connected set cover in Ge. On the other hand, |S%| = k, thus, §® is a
solution for the CSC problem. O

4 Smallest Full Steiner Trees

Abu-Affash [1] introduced a variant, or dual version, of the A-BFST as an open problem.
Given a fixed desired bottleneck A\, we are interested in finding a full Steiner tree with the
minimum number of Steiner points to achieve this bottleneck. In this section, we show
that this problem is NP-complete and Q((1 —) Inn)-hard, for all ¢ > 0. Without loss of
generality, we can remove all edges of weight greater than A from the input graph, and look

13

for the full Steiner tree with the minimum number of Steiner vertices in the resulting graph.
Hence, we define the smallest full Steiner tree (SFST) problem to compute a full Steiner tree
which contains the smallest number of Steiner vertices. In the SFST problem we can assume
that the input graph G is unweighted, or all edges of G have equal weight. W.l.o.g. assume
that G is a unit-weighted graph, where all edge weights are set to 1.

Lemma 4. An optimal solution for the FST problem on a unit-weighted graph G can be
reconstructed from an optimal solution of the SFST problem on G, and vice versa.

Proof. Consider a unit-weight instance (G, R) of the FST problem. Consider any full Steiner
tree T of GG. Partition the edges of T" into two sets A and B, where A is the set of all edges
incident to terminals in R, and B is the set of all edges in the skeleton tree of T'. Clearly,
|Al = |R], and

w(T) =w(A)+w(B) =|R|+ |B| — 1.

Since w(A) is fixed for all full Steiner trees of G, an optimal full Steiner tree in G (say
T*) minimizes w(B), which is the number of edges in B, and consequently it is the number
of Steiner vertices of T™*. Therefore, to compute an optimal full Steiner tree in GG, one can
compute a smallest full Steiner tree in G, and vice versa. n

To prove the hardness of the problem, we present a reduction from the connected set
cover problem. First, we introduce the decision version of the SFST problem: Given a graph
G = (V, E) and a subset R of V, does there exist a full Steiner tree in G which contains at
most k Steiner vertices?

Lemma 5. The smallest full Steiner tree problem is NP-complete.

Proof. 1t is easy to see that smallest full Steiner tree problem belongs to NP. Now, we present
a reduction from the connected set cover problem. Consider an instance (U, S, Gesc, k) of the
CSC problem, where Gese = (Vese, Eese) and Vige = S. We construct an instance (Gygt, R, k)
of the SFST problem, such that G has a connected set cover of size at most k if and only
if G4t has a full Steiner tree with at most k£ Steiner vertices.

Define R = {u: u € U}, Gt = (Vigsts Bt), where Vigge = SUR and Eygy = Eesc U{(S, 1) :
S € S,u € S}. This gives an instance of the SFST problem. Note that the vertices in Gese
are analogous to Steiner vertices in Gy, and the induced subgraphs by S are isomorphic,
i.e., Ggsi[S] = Gese[S]. Let T be a full Steiner tree with k Steiner vertices in Ggg. It is
obvious that the skeleton tree of T' (obtained by removing its leaves) is a connected set cover
of size k for the CSC problem. On the other hand, if S* is a connected set cover of size k
in G, then any spanning tree of G [S*] is the skeleton tree of a full Steiner tree with k
Steiner vertices in Gg:. Therefore, G has a connected set cover of size at most k, if and
only if, G' contains a full Steiner tree with at most k Steiner vertices. O

By the reduction in the proof of Lemma 5, we have the following corollary.

Corollary 1. There is a polynomial-time approximation factor preserving reduction from
the smallest full Steiner tree problem to the connected set cover problem.

14

Thus, the inapproximability results for the CSC problem hold for the SFST problem.

Theorem 6. There is no polynomial-time (1 —¢) Inn-approzimation algorithm for the SFST
problem for any € > 0 unless D O NP.

As a direct result of Lemma 4 and Theorem 6 we have the following corollary.

Corollary 2. There is no polynomial-time (1 — €) In n-approzimation algorithm for the FST
problem on a unit-weighted graph, for any € > 0, unless D O NP.

5 Conclusion

We considered full Steiner tree problems and presented their hardness results. We proved
that the full Steiner tree problem is Q(log®* | R|)-hard, and the node-weighted full Steiner tree
problem is Q(log®* n)-hard. We also presented approximation factor preserving reductions
from the FST and NFST problems to the GST and NGST problems, respectively. We
presented an O(|E|log |V]) time algorithm for the bottleneck full Steiner tree problem; which
relaxes the assumption in Chen et al. [7] algorithm that the input graph is complete. As for
the k-bottleneck full Steiner tree problem we showed that it cannot be approximated within
a factor 2 — e on metric graphs. We introduced the unweighted (or smallest) full Steiner tree
problem and proved that this problem is NP-complete, and Q((1 —) Inn)-hard. We also
presented an approximation factor preserving reduction from this problem to the connected
set cover problem. The presented reductions in this paper, show the connection between the
full Steiner tree, the group Steiner tree, and the connected set cover problems.

References

[1] A. K. Abu-Affash. The euclidean bottleneck full steiner tree problem. Algorithmica,
71(1):139-151, 2015.

[2] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA,
May 23-26, 1998, pages 161-168, 1998.

[3] A. Biniaz, A. Maheshwari, and M. Smid. Approximating full Steiner tree in a unit disk
graph. In the Proceedings of the 26th Canadian Conference in Computational Geometry
(CCCG 2014), 2014.

[4] A. Biniaz, A. Maheshwari, and M. Smid. An optimal algorithm for the Euclidean bot-
tleneck full Steiner tree problem. Computational Geometry: Theory and Applications,
47(3):377-380, 2014.

[5] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approx-
imation algorithms for directed Steiner problems. J. Algorithms, 33(1):73-91, 1999.

15

[6]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Y. H. Chen. An improved approximation algorithm for the terminal Steiner tree prob-
lem. In the Proceedings of International Conference on Computational Science and Its
Applications (ICCSA 2011), pages 141-151, 2011.

Y. H. Chen, C. L. Lu, and C. Y. Tang. On the full and bottleneck full Steiner tree
problems. In COCOON, pages 122-129, 2003.

E. D. Demaine, M. T. Hajiaghayi, and P. N. Klein. Node-weighted Steiner tree and
group Steiner tree in planar graphs. ACM Transactions on Algorithms, 10(3):13:1-13:20,
2014.

D. E. Drake and S. Hougardy. On approximation algorithms for the terminal Steiner
tree problem. Inf. Process. Lett., 89(1):15-18, 2004.

K. M. Elbassioni, S. Jelic, and D. Matijevic. The relation of connected set cover and
group Steiner tree. Theor. Comput. Sci., 438:96-101, 2012.

J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485-497, 2004.

U. Feige. A threshold of Inn for approximating set cover. J. ACM, 45(4):634-652, 1998.

B. Fuchs. A note on the terminal Steiner tree problem. Inf. Process. Lett., 87(4):219-220,
2003.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms, 37(1):66-84, 2000.

S. Guha and S. Khuller. Improved methods for approximating node weighted Steiner
trees and connected dominating sets. Inf. Comput., 150(1):57-74, 1999.

E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In STOC, pages
585-594, 2003.

S.-Y. Hsieh and W.-H. Pi. On the partial-terminal Steiner tree problem. In ISPAN,
pages 173-177, 2008.

R. Khandekar, G. Kortsarz, and Z. Nutov. Approximating fault-tolerant group-Steiner
problems. Theor. Comput. Sci., 416:55-64, 2012.

P. N. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-
weighted Steiner trees. J. Algorithms, 19(1):104-115, 1995.

G.-H. Lin and G. Xue. On the terminal Steiner tree problem. Inf. Process. Lett.,
84(2):103-107, 2002.

16

[22]

[23]

F. V. Martinez, J. C. de Pina, and J. Soares. Algorithms for terminal Steiner trees.
Theor. Comput. Sci., 389(1-2):133-142, 2007.

J. Naor, D. Panigrahi, and M. Singh. Online node-weighted Steiner tree and related
problems. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 210-219, 2011.

T. RothvoB. Directed Steiner tree and the Lasserre hierarchy. CoRR, abs/1111.5473,
2011.

T. Shuai and X.-D. Hu. Connected set cover problem and its applications. In AAIM,
pages 243-254, 2006.

F. Zou, X. Li, S. Gao, and W. Wu. Node-weighted Steiner tree approximation in unit
disk graphs. J. Comb. Optim., 18(4):342-349, 2009.

17

