
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Approximating Full Steiner Tree in a Unit Disk Graph

Ahmad Biniaz∗ Anil Maheshwari∗ Michiel Smid∗

June 18, 2014

Abstract

Given an edge-weighted graph G = (V,E) and a sub-
set R of V , a Steiner tree of G is a tree which spans
all the vertices in R. A full Steiner tree is a Steiner
tree which has all the vertices of R as its leaves. The
full Steiner tree problem is to find a full Steiner tree
of G with minimum weight. In this paper we present
a 20-approximation algorithm for the full Steiner tree
problem when G is a unit disk graph.

1 Introduction

Given a graph G = (V,E) of n vertices with a weight
function w : E → R+ on edges and a subset R of
V . The vertices in R are called the terminals and the
vertices in V \R are called Steiner vertices (usually de-
noted by S, i.e., S = V \R); see Figure 1(a). A Steiner
tree of G is a tree which contains all the vertices in
R; see Figure 1(b). The weight of a tree T is defined
as the sum of the weights of all the edges in T ; i.e.,
w(T ) =

∑
e∈T w(e). The Steiner tree problem is to find

a Steiner tree T of G with minimum weight [9]. This
problem is known to be MAX SNP-hard [1]. Robins
and Zelikovsky [12] presented a 1.55-approximation al-
gorithm for this problem. The approximation ratio was
improved to ln(4) + ε < 1.39 by Byrka et al. [2]. A full
Steiner tree of G is defined as a Steiner tree which has
all the vertices of R as its leaves; see Figure 1(c). The
full Steiner tree problem is to find a full Steiner tree T
of G with minimum weight. This problem is also known
as the terminal Steiner tree problem. In a full Steiner
tree problem one may assume that G does not have any
edge between the vertices of R.

A metric graph is defined as a complete graph, whose
edge weights satisfy the triangle inequality, i.e., for any
three vertices x, y, and z, w(x, y) ≤ w(x, z) + w(y, z)
[5, 15]. Lin and Xue [10] showed that the full Steiner
tree problem for metric graphs is NP-complete and
MAX SNP-hard, even when the lengths of the edges
are restricted to be either 1 or 2. Many approximation
algorithms have been proposed for the full Steiner tree
problem in a metric graph [3, 4, 5, 6, 10, 11]. Lin and
Xue [10] presented an approximation algorithm with
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Figure 1: (a) the input graph G; terminals are black,
non-terminals are white, (b) a Steiner tree, and (c) a
full Steiner tree of G.

performance ratio 2 + ρ, where ρ is the approximation
ratio for the Steiner tree problem. The currently best-
known approximation ratio for the Steiner tree problem
is 1.39 [2]. The approximation ratio was improved to
2ρ in [4, 5, 6], and further to 2ρ − ( ρ

3ρ−2 ) in [11], and

2ρ − (ρα2−ρα)
(α+α2)(ρ−1)+2(α−1)2 in [3] for any α ≥ 2. The

straightforward 2ρ-approximation algorithms [4, 5, 6]
start by computing a Steiner tree T of G which has
no edge between any pair of terminals. Then, for each
non-leaf terminal r in T , pick one of its adjacent Steiner
vertices, say s, and connect all other Steiner neighbors
of r to s [4, 5, 6].

Drake and Hougardy [5] showed that approximating
the non-metric version of the full Steiner tree problem
is at least as hard as approximating the set cover prob-
lem. They showed that there is no polynomial time
approximation algorithm for the full Steiner tree prob-
lem with performance ratio better than (1 − o(1)) lnn
unless NP = DTIME(nO(log logn)).

1.1 Our Results

Let P denote a set of n points in the plane. The unit
disk graph, UDG(P ), is defined to have P as its vertex
set and there is an edge between two points p and q if
their Euclidean distance is at most 1, i.e., |pq| ≤ 1.
Given a set of terminals R ⊂ P , we are interested
in computing the minimum-weight full Steiner tree of
UDG(P ); thus the Steiner vertices must be chosen from
the set P \ R. We assume that the weight of an edge
(p, q) is equal to the Euclidean distance between p and
q; i.e., w(p, q) = |pq|. It is not known whether this
problem can be solved in polynomial time.

In this paper we consider the full Steiner tree problem
in UDG. Note that all previous results [3, 4, 5, 6, 10, 11]
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Figure 2: A non-metric instance for the full Steiner tree
problem.

are only applicable when the input graph G is metric.
Thus, they cannot be applied to UDG, because it is not
necessarily a complete graph. In Section 2 we present
a 20-approximation algorithm for the full Steiner tree
problem in a unit disk graph. The presented idea can be
extended to compute a full Steiner tree of approximation
ratio 2∆ for general graphs, where ∆ is the maximum
vertex degree in the graph.

1.2 Preliminaries

Vazirani [15] showed that in polynomial time one can
transform an instance of a Steiner tree problem into an
equivalent instance of the metric Steiner tree problem;
the transformation preserves the approximation factor.
The transformation is as follows. For a given graph
G = (V,E), consider a complete graph G′ with vertex
set V . Define the weight of an edge (u, v) in G′ as the
weight of the shortest path between u and v in G. Next
compute a minimum Steiner tree T ′ in G′ and replace
each edge (u, v) in T ′ by the corresponding shortest path
in G. Finally compute a spanning tree T of the resulting
subgraph. For any edge (x, y) ∈ G, its cost in G′ is
no more than its cost in G. Therefore, the cost of an
optimal solution in G′ is no more than the cost of an
optimal solution in G [15].

Theorem (Vazirani [15]). There is a polynomial-time
approximation factor preserving reduction from the
Steiner tree problem to the metric Steiner tree problem.

Drake and Hougardy [5] showed that the similar
transformation cannot be applied for the full Steiner
tree problem. Figure 2 which is borrowed from [5] shows
that if x > 2 then the shortest path between Steiner ver-
tices u and v passes through a terminal vertex. Finally
when replacing (u, v) in T ′ with the original shortest
path in G, the resulting Steiner tree T is not a full
Steiner tree. As a result we have the following observa-
tion:

Observation 1 If the shortest path between any pair
of vertices in G does not contain any terminal as an
internal vertex, the above transformation can be applied
for the full Steiner tree problem.

Group Steiner Tree (GST): The group Steiner tree
problem is defined as follows. Given an edge-weighted

graph G(V,E), a set G′ = {g1, g2, . . . , gk}, where each gi
is a subset of V . Each such subset gi is called a group of
terminals. The objective is to find a minimum weight
tree T that contains at least one terminal from each
group. The classical Steiner tree problem is a special
case of GST when each group gi, 1 ≤ i ≤ k, contains
one vertex. Since the GST problem is a generalization
of the classical Steiner tree problem, it is also NP-hard.

It is well known that the GST problem is at least as
hard as the set cover problem. Therefore, it cannot be
approximated to a factor o(ln k) unless P = NP , where
k = |G′|. In [8], the authors showed that the GST prob-
lem cannot be approximated better than Ω(log2−ε n),
even when the host graph is a tree. Garg et al. [7] gave
an approximation algorithm which, with high probabil-
ity, finds a GST of cost within O(log2 n log log n log k)
of the cost of an optimal GST. Slav́ık [13, 14] devel-
oped a 2σ approximation algorithm for GST problem,
where σ is the size of the largest group in G′. As part of
their algorithm, they compute a complete graph G′ on
vertex set V with a shortest-path metric inherited from
G. Without loss of generality, for the group Steiner tree
problem one can assume that the given graph is metric,
i.e., it is a complete graph and the edge lengths satisfy
the triangle inequality.

2 Approximation algorithm for UDG

Let P be a set of n points in the plane and let R ⊂ P
be a set of terminals. In this section we present a 20-
approximation algorithm for computing a full Steiner
tree in a unit disk graph G(P ) = UDG(P ). We define a
terminal edge as an edge connected to a terminal vertex.
For a full Steiner tree T let T (R) denote the set of all
terminal edges in T and let T (S) denote the skeleton tree
obtained from T by removing T (R). Clearly, T (S) does
not contain any terminal vertex. Let Topt be an optimal
full Steiner tree of G(P ). Let Topt(R) denote the set of
its terminal edges and Topt(S) denote its skeleton tree.

Note that in a full Steiner tree T , there are paths be-
tween any Steiner vertex s ∈ T (S) and all terminal ver-
tices. Thus, we can check if G(P ) has a full Steiner tree
by running depth first search algorithm—which does not
explore the terminals—on Steiner vertices and checking
whether all terminals can be reached. This takes O(m)
time where m is the number of edges of G(P ). If G(P )
does not have a full Steiner tree we stop, otherwise, we
find an approximated full Steiner tree in the following
way.

Let G′(P ) be the graph obtaining from G(P ) in the
following way. For each terminal r ∈ R, consider a
collection of six cones each of angle π/3, all having their
apex at r, that cover the plane. Let sr be the nearest
Steiner neighbor of r in G(P ). Place the cones in such
a way that sr is shared between two cones; see Figure
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3(a). For each cone C for which C ∩S 6= ∅ consider the
nearest Steiner neighbor s of r in G(P ) in C. Remove
from G(P ) all the edges incident on r in C except the
edge (r, s). Denote the resulting graph by G′(P ). For
simplicity of notation in the rest of the paper we use G
and G′ instead of G(P ) and G′(P ), respectively.

r

sr

r

s
s∗
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Figure 3: (a) sr is the nearest neighbor of r which is
shared between two cones; bold edges are added to G′.
(b) The edge (r, s∗) ∈ Topt is replaced by two edges (r, s)
and (s, s∗).

Lemma 1 The weight of an optimal full Steiner tree in
G′(P ) is at most two times the weight of an optimal full
Steiner tree in G(P ).

Proof. Recall that Topt is an optimal full Steiner tree of
G. We describe a method that transforms Topt to a tree
T ′ which is a full Steiner tree of G′ and has weight at
most two times w(Topt). For each terminal r ∈ R, let s∗

be the neighbor of r in Topt, and let Cr(s
∗) be the cone

with apex at r which contains s∗. If (r, s∗) is not an edge
in G′, then let s be the nearest Steiner neighbor of r in
Cr(s

∗); see Figure 3(b). Clearly, s does not belong to
Topt because otherwise, we can replace the edge (r, s∗)
by (r, s); the weight of the resulting tree is smaller than
the weight of Topt which is a contradiction. Thus, s /∈
Topt. We replace the edge (r, s∗) by the edges (r, s) and
(s, s∗). Let T ′ denote the resulting tree. Clearly, (r, s)
is an edge of G′ and hence T ′ is a full Steiner tree of G′.
Since |rs| < |rs∗| and ∠srs∗ ≤ π

3 , we have ∠rss∗ > π
3 .

Thus, in triangle 4rss∗ the segment rs∗ is the longest.
Therefore, |rs|+ |ss∗| ≤ 2|rs∗| and hence the weight of
T ′ is at most two times the weight of Topt. �

For each terminal r, let N(r) denote the set of neigh-
bors of r in G′. Define σ = maxr∈R |N(r)|. Note that
1 ≤ σ ≤ 5. Let G[S] denote the subgraph of G, induced
by S. Let G′′ be the graph obtaining from G′ in the
following way. For each s ∈ N(r) create a copy of r and
call it rs; see Figure 4(b). Connect rs to s with an edge
of weight equal to w(r, s), i.e., w(rs, s) = w(r, s), then
remove r and the edges incident on r. Denote the result-
ing graph as G′′. Note that in G′′ all the terminals (new
vertices) have degree one, and hence they cannot be in-
ternal vertex of any simple path. Thus, by Observation
1 we can use Vazirani’s method to transform G′′ to a
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Figure 4: (a) neighbors of a terminal r in G′, (b) group
gr of the copies of a terminal r in G′′.

metric graph, i.e., a complete graph which satisfies the
triangle inequality. For each r ∈ R, let gr be the set of
copies of r in G′′ as shown in Figure 4(b). We consider
gr to be one “group”. Let G denote the set of groups gr,
for all r ∈ R. Algorithm FSTUDG computes the group
Steiner tree of G′′ with respect to G. Finally it computes
the full Steiner tree T by replacing one of the covered
vertices of gr by r. Algorithm GroupSteinerTree
is the 2σ-approximation algorithm presented by Slav́ık
[13, 14]. This algorithm first computes a complete graph
using the shortest path distances in G′′ and then uses
integer programming to formulate an optimal solution.
Finally it approximates the optimal solution in polyno-
mial time by using linear programming relaxation.

Algorithm 1 FSTUDG(G(P ), R)

Input: a unit disk graph G(P ) and a subset R ⊂ P .
Output: a full Steiner tree T of G(P ).

1: S ← V \R, G ← ∅
2: compute G′ from G
3: compute G′′ from G′

4: for each r ∈ R do
5: gr ← set of |N(r)| many copies of r in G′′

6: G ← G ∪ {gr}
7: end for
8: T ′′ ← GroupSteinerTree(G′′,G)
9: T ← for each r ∈ R, replace one of the vertices in
T ′′ ∩ gr with r, and discard all other vertices of gr
from T ′′

10: return T

Lemma 2 An optimal group Steiner tree in G′′ (with
respect to G) can be transformed to an optimal full
Steiner tree in G′ with the same weight.

Proof. Let T ′′opt denote an optimal group Steiner tree
of G′′ and let T ′opt denote an optimal full Steiner tree
of G′. We show how one can transform T ′′opt to a full
Steiner tree T ′ of G′ with w(T ′) = w(T ′opt). Note that
in G′′ all terminals have degree one, and hence T ′′opt
does not contain any internal terminal vertex. In ad-
dition, T ′′opt is optimal, so it covers exactly one termi-
nal from each group gr, and it does not contain any
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Steiner vertex as a leaf. For each gr, where r ∈ R,
let rs be the member of gr covered by T ′′opt. Recall
that for each edge (rs, s) in G′′ there is an edge (r, s)
in G′ with the same weight. Let T ′ be the tree ob-
tained from T ′′opt by replacing each edge (rs, s) by (r, s).
Since w(r, s) = w(rs, s), w(T ′) = w(T ′′opt). Clearly, T ′

is a full Steiner tree of G′ and hence w(T ′) ≥ w(T ′opt).
Now we prove that w(T ′) = w(T ′opt). Using contra-
diction, suppose that w(T ′) > w(T ′opt). Consider the
skeleton tree T ′opt(S). Each terminal r ∈ R is con-
nected to a Steiner vertex s ∈ T ′opt(S). Note that
T ′opt(S) ⊆ G[S] ⊆ G′′. By connecting rs ∈ gr to
s we obtain a solution T ′′ for the group Steiner tree
problem which has the same weight as T ′opt. Thus,
w(T ′′) = w(T ′opt) < w(T ′) = w(T ′′opt), which contra-
dicts the optimality of T ′′opt. Thus, w(T ′) = w(T ′opt) and
T ′ is an optimal full Steiner tree of G′. �

Theorem 3 Algorithm FSTUDG runs in polynomial
time. The tree T returned by this algorithm is a 20-
approximation for an optimal full Steiner tree Topt of a
unit disk graph G(P ).

Proof. As shown in [13, 14] the GroupSteinerTree
routine in line 8 can be done in polynomial time. There-
fore, FSTUDG runs in polynomial time.

Let T ′′opt denote an optimal group Steiner tree of G′′

with respect to G. The tree T ′′ obtained in line 8 is a
10-approximation for T ′′opt. By using the same argument
as in Lemma 2, the tree T obtained in line 9 is a full
Steiner tree for G′ and w(T ) = w(T ′′). According to
the statement of Lemma 2, we argue that

w(T ) = w(T ′′) ≤ 10 · w(T ′′opt) = 10 · w(T ′opt).

By Lemma 1, the weight of an optimal full Steiner
tree in G′ is at most 2 times the weight of an optimal
full Steiner tree in G. Therefore,

w(T ) ≤ 10 · w(T ′opt) ≤ 20 · w(Topt).

�

3 Conclusion

We considered the problem of computing a minimum-
weight full Steiner tree in a unit disk graph. We pre-
sented a 20-approximation algorithm in Section 2. We
leave as an open problem to improve the approximation
ratio. We also leave as an open problem whether the
exact solution can be computed in polynomial time.

The proposed algorithm for a UDG in Section 2 can
be extended to any simple graph G as follow. Let G′′ be
the graph obtaining from G in the following way. Let
N(r) denote the Steiner neighbors of a terminal vertex
r in G. For each s ∈ N(r), where r ∈ R, create a copy

of r and call it rs. Connect rs to s with an edge of
weight equal to w(r, s), then remove r and its adjacent
edges. Denote the resulting graph by G′′. Then we run
algorithm FSTUDG from line 4. The tree T ′′ obtained
in line 8 is a 2∆-approximation for the group Steiner
tree problem where ∆ = max{|N(r)| : r ∈ R}; ∆ is
possibly the maximum vertex degree in G. Finally, by
using the same argument as in Lemma 2, we conclude
that the tree T obtained in line 9 is a 2∆-approximation
for an optimal full Steiner tree in G.
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