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Abstract

Given a set P of n points in the plane, the order-k Gabriel graph on P , denoted by
k-GG, has an edge between two points p and q if and only if the closed disk with diameter
pq contains at most k points of P , excluding p and q. We study matching problems in k-GG
graphs. We show that a Euclidean bottleneck matching of P is contained in 10-GG, but
8-GG may not have any Euclidean bottleneck matching. In addition we show that 0-GG
has a matching of size at least n−1

4 and this bound is tight. We also prove that 1-GG has a

matching of size at least 2(n−1)
5 and 2-GG has a perfect matching. Finally we consider the

problem of blocking the edges of k-GG.

1 Introduction

Let P be a set of n points in the plane. For any two points p, q ∈ P , let D[p, q] denote the closed
disk which has the line segment pq as diameter. Let |pq| be the Euclidean distance between p
and q. The Gabriel graph on P , denoted by GG(P ), is defined to have an edge between two
points p and q if D[p, q] is empty of points in P \ {p, q}. Let C(p, q) denote the circle which has
pq as diameter. Note that if there is a point of P \ {p, q} on C(p, q), then (p, q) /∈ GG(P ). That
is, (p, q) is an edge of GG(P ) if and only if

|pq|2 < |pr|2 + |rq|2 ∀r ∈ P, r 6= p, q.

Gabriel graphs were introduced by Gabriel and Sokal [11] and can be computed in O(n log n)
time [13]. Every Gabriel graph has at most 3n−8 edges, for n ≥ 5, and this bound is tight [13].

A matching in a graph G is a set of edges without common vertices. A perfect matching
is a matching which matches all the vertices of G. In the case that G is an edge-weighted
graph, a bottleneck matching is defined to be a perfect matching in G in which the weight of the
maximum-weight edge is minimized. For a perfect matching M , we denote the bottleneck of M ,
i.e., the length of the longest edge in M , by λ(M). For a point set P , a Euclidean bottleneck
matching is a perfect matching which minimizes the length of the longest edge.

In this paper we consider perfect matching and bottleneck matching admissibility of higher
order Gabriel Graphs. The order-k Gabriel graph on P , denoted by k-GG, is the geometric
graph which has an edge between two points p and q iff D[p, q] contains at most k points of
P \ {p, q}. The standard Gabriel graph, GG(P ), corresponds to 0-GG. It is obvious that 0-GG
is plane, but k-GG may not be plane for k ≥ 1. Su and Chang [14] showed that k-GG can be
constructed in O(k2n log n) time and contains O(k(n − k)) edges. In [7], the authors proved
that k-GG is (k + 1)-connected.
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1.1 Previous Work

For any two points p and q in P , the lune of p and q, denoted by L(p, q), is defined as the inter-
section of the open disks of radius |pq| centred at p and q. The order-k Relative Neighborhood
Graph on P , denoted by k-RNG, is the geometric graph which has an edge (p, q) iff L(p, q)
contains at most k points of P . The order-k Delaunay Graph on P , denoted by k-DG, is the
geometric graph which has an edge (p, q) iff there exists a circle through p and q which contains
at most k points of P in its interior. It is obvious that

k-RNG ⊆ k-GG ⊆ k-DG.

The problem of determining whether a geometric graph has a (bottleneck) perfect matching
is quite of interest. Dillencourt showed that the Delaunay triangulation (0-DG) admits a perfect
matching [10]. Chang et al. [9] proved that a Euclidean bottleneck perfect matching of P is
contained in 16-RNG.1 This implies that 16-GG and 16-DG contain a (bottleneck) perfect
matching of P . In [1] the authors showed that 15-GG is Hamiltonian. Recently, Kaiser et
al. [12] improved the bound by showing that 10-GG is Hamiltonian. This implies that 10-GG
has a perfect matching.

Given a geometric graph G(P ) on a set P of n points, we say that a set K of points blocks
G(P ) if in G(P ∪ K) there is no edge connecting two points in P , in other words, P is an
independent set in G(P ∪ K). Aichholzer et al. [2] considered the problem of blocking the
Delaunay triangulation (i.e. 0-DG) for P in general position. They show that 3n

2 points are
sufficient to block DT(P ) and at least n − 1 points are necessary. To block a Gabriel graph,
n− 1 points are sufficient, and 3

4n− o(n) points are sometimes necessary [3].
In a companion paper [6], we considered the matching and blocking problems in triangular-

distance Delaunay (TD-Delaunay) graphs. The order-k TD-Delaunay graph, denoted by k-TD,
on a point set P is the graph whose convex distance function is defined by a fixed-oriented
equilateral triangle. Then, (p, q) is an edge in k-TD if there exists an equilateral triangle which
has p and q on its boundary and contains at most k points of P \ {p, q}. We showed that
6-TD contains a bottleneck perfect matching and 5-TD may not have any. As for maximum
matching, we proved that 1-TD has a matching of size at least 2(n−1)

5 and 2-TD has a perfect
matching (when n is even). We also showed that dn−12 e points are necessary and n − 1 points
are sufficient to block 0-TD. In [4] it is shown that 0-TD has a matching of size dn−13 e.

1.2 Our Results

In this paper we consider the following three problems: (a) for which values of k does every
k-GG have a Euclidean bottleneck matching of P? (b) for a given value k, what is the size of a
maximum matching in k-GG? (c) how many points are sufficient/necessary to block a k-GG?
In Section 2 we review and prove some graph-theoretic notions. In Section 3 we consider the
problem (a) and prove that a Euclidean bottleneck matching of P is contained in 10-GG. In
addition, we show that for some point sets, 8-GG does not have any Euclidean bottleneck
matching. In Section 4 we consider the problem (b) and give some lower bounds on the size
of a maximum matching in k-GG. We prove that 0-GG has a matching of size at least n−1

4 ,

and this bound is tight. In addition we prove that 1-GG has a matching of size at least 2(n−1)
5

and 2-GG has a perfect matching. In Section 5 we consider the problem (c). We show that at
least dn−13 e points are necessary to block a Gabriel graph and this bound is tight. We also show

that at least d (k+1)(n−1)
3 e points are necessary and (k + 1)(n− 1) points are sufficient to block

a k-GG. The open problems and concluding remarks are presented in Section 6.

1They defined k-RNG in such a way that L(p, q) contains at most k − 1 points of P .
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2 Preliminaries

Let G be an edge-weighted graph with vertex set V and weight function w : E → R+. Let T
be a minimum spanning tree of G, and let w(T ) be the total weight of T .

Lemma 1. Let δ(e) be a cycle in G that contains an edge e ∈ T . Let δ′ be the set of edges in
δ(e) which do not belong to T and let e′max be the largest edge in δ′. Then, w(e) ≤ w(e′max).

Proof. Let e = (u, v) and let Tu and Tv be the two trees obtained by removing e from T . Let
e′ = (x, y) be an edge in δ′ such that one of x and y belongs to Tu and the other one belongs
to Tv. By definition of e′max, we have w(e′) ≤ w(e′max). Let T ′ = Tu ∪ Tv ∪ {(x, y)}. Clearly, T ′

is a spanning tree of G. If w(e′) < w(e) then w(T ′) < w(T ); contradicting the minimality of T .
Thus, w(e) ≤ w(e′), which completes the proof of the lemma.

For a graph G = (V,E) and S ⊆ V , let G−S be the subgraph obtained from G by removing
all vertices in S, and let o(G− S) be the number of odd components in G− S, i.e., connected
components with an odd number of vertices. The following theorem by Tutte [15] gives a
characterization of the graphs which have perfect matching:

Theorem 1 (Tutte [15]). G has a perfect matching if and only if o(G−S) ≤ |S| for all S ⊆ V .

Berge [5] extended Tutte’s theorem to a formula (known as the Tutte-Berge formula) for the
maximum size of a matching in a graph. In a graph G, the deficiency, defG(S), is o(G−S)−|S|.
Let def(G) = maxS⊆V defG(S).

Theorem 2 (Tutte-Berge formula; Berge [5]). The size of a maximum matching in G is

1

2
(n− def(G)).

For an edge-weighted graph G we define the weight sequence of G, WS(G), as the sequence
containing the weights of the edges of G in non-increasing order. A graph G1 is said to be less
than a graph G2 if WS(G1) is lexicographically smaller than WS(G2).

3 Euclidean Bottleneck Matching

Given a point set P , in this section we prove that 10-GG contains a Euclidean bottleneck
matching of P . We also present a configuration of a point set P such that 8-GG does not
contain any Euclidean bottleneck matching of P . We use a similar argument as in [1, 8]. First
consider the following lemma of [1]:

Lemma 2 (Abellanas et al. [1]). Let 0 < θ ≤ π/5. Let C(A, θ, L,R) be a cone with apex
A, bounding rays L and R emanating from A and angle θ computed clockwise from L to R.
Consider two points x, y ∈ C(A, θ, L,R) and a constant r > 0. If |xA| > 2r and |yA| > 2r,
then |xy| < 2r or |xy| < max{|xA| − r, |yA| − r}.

Theorem 3. For every point set P , 10-GG contains a Euclidean bottleneck matching of P .

Proof. Let M be the set of all perfect matchings on the points of P . Define a total order on
the elements of M by their weight sequence. If two elements have exactly the same weight
sequence, break ties arbitrarily to get a total order. Let M∗ = {(a1, b1), . . . , (an

2
, bn

2
)} be a

perfect matching in M with minimal weight sequence. It is obvious that M∗ is a Euclidean
bottleneck matching for P . We will show that all edges of M∗ are in 10-GG. Consider any
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Figure 1: Illustration for Theorem 3.

edge e = (ai, bi) in M∗ and its corresponding disk D[ai, bi]. Suppose that D[ai, bi] contains
w points of P \ {ai, bi}. Let U = {u1, u2, . . . , uw} represent the points inside D[ai, bi], and
U ′ = {r1, r2, . . . , rw} represent the points where (ri, ui) ∈ M∗. We will show that w ≤ 10. Let
r = |aibi|/2 be the radius of D[ai, bi].

Claim 1: For each rj ∈ U ′, min{|rjai|, |rjbi|} ≥ 2r. To prove this, assume that |rjai| < 2r
and let M be the perfect matching obtained from M∗ by deleting {(ai, bi), (rj , uj)}, and adding
{(ai, rj), (bi, uj)}. The two new edges are smaller than the old ones. Thus, WS(M) < WS(M∗)
which contradicts the minimality of M∗.

Let D1 and D2 respectively be the open disks with radius 2r centered at ai and bi. By
Claim 1, we know that no point of U ′ lies inside D1 ∪D2. In other words all points of U ′ are
contained in D1 ∪D2.

Claim 2: For each pair rj and rk of points in U ′, |rjrk| ≥ max{|aibi|, |rjuj |, |rkuk|}. To prove
this, assume that |rjrk| < max{|aibi|, |ujrj |, |ukrk|}. Let M be the perfect matching obtained
from M∗ by deleting {(uj , rj), (uk, rk), (ai, bi)} and adding {(ai, uj), (bi, uk), (rj , rk)}. Since
max{|aiuj |, |biuk|, |rjrk|} < max{|ujrj |, |ukrk|, |aibi|}, WS(M) < WS(M∗) which contradicts
the minimality of M∗.

Let ci be the center of D[ai, bi]. Consider a decomposition of the plane into 10 cones
C1, . . . , C10 of angle π/5 with apex at ci. See Figure 1. By contradiction, we will show that
each cone Ci, 1 ≤ i ≤ 10, contains at most one point of U ′. Suppose that a cone Ci where
1 ≤ i ≤ 10 contains two points rj , rk ∈ U ′. It is obvious that

|rjuj | ≥ |rjci| − r and |rkuk| ≥ |rkci| − r. (1)

Claim 3: Each cone Ci where 1 ≤ i ≤ 10 and i 6= 3, 8 contains at most one point of
U ′. Suppose that Ci contain two points rj , rk ∈ U ′. By Claim 1, rj and rk are contained in
D1 ∪D2. Consider the disk D3 with radius 2r centered at ci, as shown in Figure 1. Since the
intersection of D3 and D1 ∪D2 in Ci is empty, rj and rk are outside D3, i.e., |rjci| > 2r and
|rkci| > 2r. By Lemma 2, |rjrk| < 2r or |rjrk| < max{|rjci| − r, |rkci| − r}. By inequality (1),
|rjrk| < max{|aibi|, |rjuj |, |rkuk|} which contradicts Claim 2.

Claim 4: Each of C3 and C8 contains at most one point of U ′. Let S1 and S2 be the
connected components of D3 ∩ (D1 ∪D2) which lie inside C3 and C8, respectively, as shown
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Figure 2: (a) The angle ∠bac is smaller than the angle ∠abc, and hence (b) ∠rka′rj < ∠a′rkrj .

in Figure 1. Because of symmetry, we only prove the claim for C3. Suppose that C3 contains
two points rj , rk ∈ U ′. For the rest of the proof, refer to Figure 2. W.l.o.g. assume that rj is
further from ci than rk and rk is to the left of rj (i.e., rk is to the left of the line through ci
and rj oriented from ci to rj). If rk /∈ S1 then |rkci| > 2r and |rjci| > 2r. Then, by Lemma 2
and Claim 2 we have a contradiction. Therefore, assume that rk ∈ S1. Let L and R be the two
rays defining C3. Let a be the intersection of R and C(ai, bi). Let b be the intersection of the
boundaries of D1 and D3 which is inside C3. Define the point c on R such that |bc| = 2r and
c 6= ci. See Figure 2(a). The triangle 4cbci is isosceles, and hence ∠bcci = ∠bcic < π

5 . This
implies that ∠cbci > 3π

5 . On the other hand, in triangle 4abci, |ab| > |aci|, which implies that
∠abci < ∠acib < π

5 . Thus ∠abc > 2π
5 . In addition ∠baci > 3π

5 and hence ∠bac < 2π
5 . Therefore

in the triangle 4abc we have

∠abc >
2π

5
> ∠bac.

Let C(b, c) be the circle with radius 2r having bc as diameter, and let A be the ray emanating
from b which goes through c as shown in Figure 2(b). The intersection of C3 with D1 ∪D2

which lies to the right of A is completely inside C(b, c). Thus, if rj is to the right of A, |rjrk| <
2r = |aibi|, which contradicts Claim 2. Therefore rj lies to the left of A. If rj is in the interior
of C3, rotate C3 counter-clockwise around ci until rj lies on R. Since rk is to the left of rj , the
point rk is still in the interior of C3. Let a′ be the intersection of the new R with C(ai, bi). Note
that S1 and hence rk is contained in 4abc. In addition rj and a′ are outside 4abc and to the
left of the line through a and c. Therefore, ∠a′rkrj ≥ ∠abc > ∠bac ≥ ∠rka′rj and hence

|rjrk| < |rja′| = |rjci| − r ≤ |rjuj |,

which contradicts Claim 2.
By Claim 3 and Claim 4 each cone Ci where 1 ≤ i ≤ 10 contains at most one point of U ′.

Thus, w ≤ 10, and e = (ai, bi) is an edge of 10-GG.

Now, we will show that for some point sets, 8-GG does not contain any Euclidean bottleneck
matching. Consider Figure 3 which shows a configuration of a set P of 20 points. The closed
disk D[a, b] is centred at c and has diameter one, i.e., |ab| = 1. D[a, b] contains 9 points
U = {u1, . . . , u9} which lie on a circle with radius 1

2 − ε which is centred at c. Nine points in
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Figure 3: A set of 20 points such that 8-GG does not contain any Euclidean bottleneck matching.

U ′ = {r1, . . . , r9} are placed on a circle with radius 1.5 which is centred at c in such a way
that |rjuj | = 1 + ε, |rja| > 1 + ε, |rjb| > 1 + ε, and |rjrk| > 1 + ε for 1 ≤ j, k ≤ 9 and j 6= k.
Consider a perfect matching M = {(a, b)} ∪ {(ri, ui) : i = 1, . . . , 9} where each point ri ∈ U ′ is
matched to its closest point ui. It is obvious that λ(M) = 1 + ε, and hence the bottleneck of
any bottleneck perfect matching is at most 1 + ε. We will show that any Euclidean bottleneck
matching of P contains (a, b). By contradiction, let M∗ be a Euclidean bottleneck matching
which does not contain (a, b). In M∗, a is matched to a point x ∈ U ∪ U ′. If x ∈ U ′, then
|ax| > 1 + ε. If x ∈ U , w.l.o.g. assume that x = u1. Thus, in M∗ the point r1 is matched to a
point y where y 6= u1. Since u1 is the closest point to r1 and |r1u1| = 1 + ε, |r1y| > 1 + ε. In
both cases λ(M∗) > 1 + ε, which is a contradiction. Therefore, M∗ contains (a, b). Since D[a, b]
contains 9 points of P \ {a, b}, (a, b) /∈ 8-GG. Therefore 8-GG does not contain any Euclidean
bottleneck matching of P .

4 Maximum Matching

Let P be a set of n points in the plane. In this section we will prove that 0-GG has a matching
of size at least n−1

4 ; this bound is tight. We also prove that 1-GG has a matching of size at

least 2(n−1)
5 and 2-GG has a perfect matching (when n is even).

First we give a lower bound on the number of components that result after removing a set
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S of vertices from k-GG. Then we use Theorem 1 and Theorem 2, respectively presented by
Tutte [15] and Berge [5], to prove a lower bound on the size of a maximum matching in k-GG.

ea b
Pi

Pj

(a) (b)

Figure 4: The point set P of 16 points is partitioned into white/black disks, white/black
squares, and crosses. (a) The graph G(P), (b) The set T of straight-line edges corresponding
to MST (G(P)) is in bold, and the set D of their corresponding disks.

Let P = {P1, P2, . . . } be a partition of the points in P . For two sets Pi and Pj in P define
the distance d(Pi, Pj) as the smallest Euclidean distance between a point in Pi and a point in Pj ,
i.e., d(Pi, Pj) = min{|ab| : a ∈ Pi, b ∈ Pj}. Let G(P) be the complete edge-weighted graph with
vertex set P. For each edge e = (Pi, Pj) in G(P), let w(e) = d(Pi, Pj). This edge e is defined
by two points a and b, where a ∈ Pi and b ∈ Pj . Therefore, an edge e ∈ G(P) corresponds to a
straight line edge between two points a, b ∈ P ; see Figure 4(a). Let MST (G(P)) be a minimum
spanning tree of G(P). It is obvious that each edge e in MST (G(P)) corresponds to a straight
line edge between a, b ∈ P . Let T be the set of all these straight line edges. Let D be the set of
disks which have the edges of T as diameter, i.e., D = {D[a, b] : (a, b) ∈ T }. See Figure 4(b).

Observation 1. T is a subgraph of a minimum spanning tree of P , and hence T is plane.

Lemma 3. A disk D[a, b] ∈ D does not contain any point of P \ {a, b}.

Proof. By Observation 1, T is a subgraph of a minimum spanning tree of P . It is well known
that any minimum spanning tree of P is a subgraph of 0-GG(P ). Thus, T is a subgraph of
0-GG(P ), and hence, any disk D[a, b] ∈ D—representing an edge of T—does not contain any
point of P \ {a, b}.

Lemma 4. For each pair Di and Dj of disks in D, Di (resp. Dj) does not contain the center
of Dj (resp Di).

Proof. Let (ai, bi) and (aj , bj) respectively be the edges of T which correspond to Di and Dj .
Let Ci and Cj be the circles representing the boundary of Di and Dj . W.l.o.g. assume that Cj
is the bigger circle, i.e., |aibi| < |ajbj |. By contradiction, suppose that Cj contains the center ci
of Ci. Let x and y denote the intersections of Ci and Cj . Let xi (resp. xj) be the intersection
of Ci (resp. Cj) with the line through y and ci (resp. cj). Similarly, let yi (resp. yj) be the
intersection of Ci (resp. Cj) with the line through x and ci (resp. cj).

As illustrated in Figure 5, the arcs x̂ix, ŷiy, x̂jx, and ŷjy are the potential positions for the
points ai, bi, aj , and bj , respectively. First we will show that the line segment xixj passes through
x and |aiaj | ≤ |xixj |. The angles ∠xixy and ∠xjxy are right angles, thus the line segment xixj
goes through x. Since x̂ix < π (resp. x̂jx < π), for any point ai ∈ x̂ix, |aix| ≤ |xix| (resp.
aj ∈ x̂jx, |ajx| ≤ |xjx|). Therefore,

|aiaj | ≤ |aix|+ |xaj | ≤ |xix|+ |xxj | = |xixj |.
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Figure 5: Illustration of Lemma 4: Ci and Cj intersect, and Cj contains the center of Ci.

Consider triangle 4xixjy which is partitioned by segment cixj into t1 = 4xixjci and t2 =
4cixjy. Since xiy is a diameter of Ci which passes through the center ci, the length of the
segment xici of t1 is equal to the length of the segment ciy of t2. The segment cixj is shared
by t1 and t2. Since ci is inside Cj and ŷxj = π, the angle ∠ycixj > π

2 . Thus, ∠xicixj in t1
is smaller than π

2 (and hence smaller than ∠ycixj in t2). Therefore, the segment xixj of t1 is
smaller than the segment xjy of t2. Thus,

|aiaj | ≤ |xixj | < |xjy| = |ajbj |.
By symmetry |bibj | < |ajbj |. Therefore max{|aiaj |, |bibj |} < max{|aibi|, |ajbj |}. In addition

δ = (ai, aj , bj , bi, ai) is a cycle and at least one of (ai, aj) and (bi, bj) does not belong to T . This
contradicts Lemma 1 (Note that by Observation 1, T is a subgraph of a minimum spanning
tree of P ).

Now we show that the intersection of every four disks in D is empty. In other words, every
point in the plane cannot lie in more than three disks in D. In Section 4.1 we prove the following
theorem, and in Section 4.2 we present the lower bounds on the size of a maximum matching
in k-GG.

Theorem 4. For every four disks D1, D2, D3, D4 ∈ D, D1 ∩D2 ∩D3 ∩D4 = ∅.

4.1 Proof of Theorem 4

The proof is by contradiction. Let D1, D2, D3, and D4 be four disks in D. Let X = D1 ∩D2 ∩
D3 ∩ D4 and let x be a point in X . For i = 1, 2, 3, 4, let ci be the center of Di, let Ci be the
boundary of Di, and let (ai, bi) be the edge in T which corresponds to Di. Denote the angle
∠aixbi by αi, for i = 1, 2, 3, 4. Since (ai, bi) is a diameter of Di and x lies in Di, αi ≥ π

2 . First
we prove the following observation.

Observation 2. For i, j ∈ {1, 2, 3, 4}, where i 6= j, the angles αi and αj are either disjoint or
one is completely contained in the other.

8



Proof. The proof is by contradiction. Suppose that αi and αj are not disjoint and none of them
is completely contained in the other. Thus αi and αj share some part and w.l.o.g. assume that
bi is in the cone which is obtained by extending the edges of αj , and bj is in the cone which is
obtained by extending the edges of αi. Three cases arise:

• bi ∈ 4xajbj . In this case bi is inside Dj which contradicts Lemma 3.

• bj ∈ 4xaibi. In this case bj is inside Di which contradicts Lemma 3.

• bi /∈ 4xajbj and bj /∈ 4xaibi. In this case (ai, bi) intersects (aj , bj) which contradicts
Observation 1.

We call αi a blocked angle if αi is contained in an angle αj for some j ∈ {1, 2, 3, 4}, where
j 6= i. Otherwise, we call αi a free angle.

Lemma 5. At least one αi, for i ∈ {1, 2, 3, 4}, is blocked.

Proof. Suppose that all angles αi, where i ∈ {1, 2, 3, 4}, are free. This implies that the αis are
pairwise disjoint and α =

∑4
i=1 αi ≥ 2π. If α > 2π, we obtain a contradiction to the fact that

the sum of the disjoint angles around x is at most 2π. If α = 2π, then the four edges (ai, bi)
where i ∈ {1, 2, 3, 4}, form a cycle which contradicts the fact that T is a subgraph of a minimum
spanning tree of P .

bi

ci

x

ai

Ci

cj
d

b′i

c′i
d′

l1

l2
bi

ai

ci

(a) (b)

Figure 6: (a) The point x should be inside the circle segment sc(ci, bi). (b) The trap(ai, bi)
which consists of two lenses lens(ai, ci) and lens(bi, ci).

By Lemma 5 at least one of the angles is blocked. Hereafter, assume that αj is blocked by
αi where 1 ≤ i, j ≤ 4 and i 6= j. W.l.o.g. assume that aibi is a vertical line segment and the
point x (which belongs to X ) is to the left of aibi. Thus, ajbj and cj are to the right of aibi.
This implies that aibi ∩ Dj 6= ∅. See Figure 6(a). By Lemma 4, ci cannot be inside Dj , thus
either aici ∩Dj 6= ∅ or cibi ∩Dj 6= ∅, but not both. W.l.o.g. assume that cibi ∩Dj 6= ∅. Let C ′

be the circle with radius |cibi| which is centered at bi. Let d denote the intersection of C ′ with
Ci which is to the right of cibi. Consider the circle C ′′ with radius |dbi| centered at d. Note
that C ′′ goes through bi and ci. Let sc(ci, bi) be the segment of the circle C ′′ which is between

the chord cibi and the arc ĉibi as shown in Figure 6(a).
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We show that x cannot be outside sc(ci, bi). By contradiction suppose that x is outside
sc(ci, bi) (and to the left of cibi). Let l1 and l2 respectively be the perpendicular bisectors of xbi
and xci. Let b′i and c′i respectively be the intersection of l1 and l2 with cibi and let d′ be the
intersection point of l1 and l2. Since x is outside sc(ci, bi), the intersection point d′ is to the left
of (the vertical line through) d and inside triangle 4bicid. If cj is below l1 then |cjbi| < |cjx|
and Dj contains bi which contradicts Lemma 4. If cj is above l2 then |cjbi| < |cjx| and Dj

contains ci which contradicts Lemma 4. Thus, cj is above l1 and below l2, and (by the initial
assumption) to the right of cibi. That is, cj is in triangle 4b′ic′id′. Since 4b′ic′id′ ⊆ 4bicid ⊆ Di,
cj lies inside Di which contradicts Lemma 4. Therefore, x is contained in sc(ci, bi).

By symmetry Dj can intersect aici and/or cj can be to the left of aibi as well. Therefore, if
αi blocks αj , the point x can be in sc(ci, bi) or any of the symmetric segments of the circles. For
an edge aibi we denote the union of these segments by trap(ai, bi) which is shown in Figure 6(b).
For each disk Di, let trap(Di) = trap(ai, bi) where (ai, bi) is the edge in T corresponding to Di.
Therefore x is contained in trap(Di) which implies that

X ⊆ trap(Di).

Note that trap(Di) consists of two symmetric lenses lens(ai, ci) and lens(bi, ci), i.e., trap(Di) =
lens(ai, ci) ∪ lens(bi, ci).

Lemma 6. For any point x ∈ trap(ai, bi), ∠aixbi ≥ 150◦.

Proof. See Figure 6(a). The angle ∠bidci = 60◦, which implies that ĉibi = 60◦. Thus, for any

point x′ on the arc ĉibi, ∠x′cibi + ∠x′bici = 30◦, and hence for any point x in the segment
sc(ci, bi), ∠xcibi+∠xbici ≤ 30◦. This implies that in 4xbici, ∠bixci ≥ 150◦. On the other hand
∠bixci ≤ ∠bixai, which proves the lemma.

ci

ai

cj

aj

x

ci

ai

aj

cj

x

ci

ai

aj

cj

x

(a) (b) (c)

Figure 7: Illustration of Lemma 7.

Lemma 7. For any two disks Di and Dj in D, trap(Di) ∩ trap(Dj) = ∅.

Proof. We prove this lemma by contradiction. Suppose x ∈ trap(Di) ∩ trap(Dj) and w.l.o.g.
assume that x ∈ lens(ai, ci) ∩ lens(aj , cj) as shown in Figure 7. Connect x to ai, ci, aj , and cj
(ai may be identified with aj). As shown in the proof of Lemma 6, min{∠aixci,∠ajxcj} > 150◦.
Two configurations may arise:
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• ∠cixcj ≤ 60◦. In this case |cicj | ≤ max{|xci|, |xcj |}. W.l.o.g. assume that |xci| ≤ |xcj |
which implies that |cicj | ≤ |xcj |; see Figure 7(a). Clearly |xcj | < |cjaj |, and hence
|cicj | < |cjaj |. Thus, Dj contains ci which contradicts Lemma 4.

• ∠cixcj > 60◦. In this case ∠aixcj ≤ 60◦ and ∠ajxci ≤ 60◦, hence |aicj | ≤ max{|aix|, |cjx|}
and |ajci| ≤ max{|ajx|, |cix|}. Three configurations arise:

– |aix| < |cjx|, in this case |aicj | < |cjx| < |cjaj | and hence Dj contains ai. See
Figure 7(b).

– |ajx| < |cix|, in this case |ajci| < |cix| < |ciai| and hence Di contains aj .

– |aix| ≥ |cjx| and |ajx| ≥ |cix|, in this case w.l.o.g. assume that |aix| ≤ |ajx|. Thus
|aicj | ≤ |aix| ≤ |ajx| < |ajcj | which implies that Dj contains ai. See Figure 7(b).

All cases contradict Lemma 3.

Recall that each blocking angle represents a trap. Thus, by Lemma 5 and Lemma 7, we
have the following corollary:

Corollary 1. Exactly one αi, where 1 ≤ i ≤ 4, is blocked.

Recall that αj is blocked by αi, aibi is vertical line segment, cj is to the right of aibi, and
x ∈ sc(ci, bi). As a direct consequence of Corollary 1, αi, αk, and αl are free angles, where 1 ≤
i, j, k, l ≤ 4 and i 6= j 6= k 6= l. In addition, ck and cl are to the left of aibi. It is obvious that

X ⊆ trap(Di) ∩Dk ∩Dl.

bi

ci

aibk

ak
bl

al

x αi

αk

αl

Figure 8: Illustration of Lemma 8.
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Lemma 8. For a blocking angle αi and free angles αk and αl, trap(Di) ∩Dk ∩Dl = ∅.

Proof. Since αi is a blocking angle and αk, αl are free angles, ck and cl are on the same side
of aibi. By contradiction, suppose that x ∈ trap(Di) ∩ Dj ∩ Dk. See Figure 8. It is obvious
that max{|xai|, |xbi|} < |aibi|, max{|xak|, |xbk|} < |akbk|, and max{|xal|, |xbl|} < |albl|. By
Lemma 6, αi ≥ 150◦. In addition αk, αl ≥ 90◦. Thus, max{∠aixbk,∠akxbl,∠alxbi} ≤ 30◦.
Hence, |aibk| < max{|xai|, |xbk|}, |akbl| < max{|xak|, |xbl|}, and |albi| < max{|xal|, |xbi|}.
Therefore, max{|aibk|, |akbl|, |albi|} < max{|aibi|, |akbk|, |albl|}. In addition δ = (ai, bi, al, bl, ak,
bk, ai) is a cycle and at least one of (ai, bk), (ak, bl) and (al, bi) does not belong to T . This
contradicts Lemma 1.

Thus, X = ∅; which contradicts the fact that x ∈ X . This completes the proof of Theorem 4.

4.2 Lower Bounds

In this section we present some lower bounds on the size of a maximum matching in 2-GG,
1-GG, and 0-GG.

Theorem 5. For a set P of an even number of points, 2-GG has a perfect matching.

Proof. First we show that by removing a set S of s points from 2-GG, at most s+1 components
are generated. Then we show that at least one of these components must be even. Using
Theorem 1, we conclude that 2-GG has a perfect matching.

Let S be a set of s vertices removed from 2-GG, and let C = {C1, . . . , Cm(s)} be the resulting
m(s) components, where m is a function depending on s. Actually C = 2-GG − S and P =
{V (C1), . . . , V (Cm(s))} is a partition of the vertices in P \ S.

Claim 1. m(s) ≤ s + 1. Let G(P) be the complete graph with vertex set P which is
constructed as described above. Let T be the set of all edges between points in P corresponding
to the edges of MST (G(P)) and let D be the set of disks corresponding to the edges of T . It
is obvious that T contains m(s) − 1 edges and hence |D| = m(s) − 1. Let F = {(p,D) : p ∈
S,D ∈ D, p ∈ D} be the set of all (point, disk) pairs where p ∈ S, D ∈ D, and p is inside D.
By Theorem 4 each point in S can be inside at most three disks in D. Thus, |F | ≤ 3 · |S|. Now
we show that each disk in D contains at least three points of S in its interior. Consider any
disk D ∈ D and let e = (a, b) be the edge of T corresponding to D. By Lemma 3, D does not
contain any point of P \ S. Therefore, D contains at least three points of S, because otherwise
(a, b) is an edge in 2-GG which contradicts the fact that a and b belong to different components
in C. Thus, each disk in D has at least three points of S. That is, 3 · |D| ≤ |F |. Therefore,
3(m(s)− 1) ≤ |F | ≤ 3s, and hence m(s) ≤ s+ 1.

Claim 2: o(C) ≤ s. By Claim 1, |C| = m(s) ≤ s + 1. If |C| ≤ s, then o(C) ≤ s. Assume
that |C| = s + 1. Since P = S ∪ {⋃s+1

i=1 V (Ci)}, the total number of vertices of P is equal to
n = s+

∑s+1
i=1 |V (Ci)|. Consider two cases where (i) s is odd, (ii) s is even. In both cases if all

the components in C are odd, then n is odd; contradicting our assumption that P has an even
number of vertices. Thus, C contains at least one even component, which implies that o(C) ≤ s.

Finally, by Claim 2 and Theorem 1, we conclude that 2-GG has a perfect matching.

Theorem 6. For every set P of n points, 1-GG has a matching of size at least 2(n−1)
5 .

Proof. Let S be a set of s vertices removed from 1-GG, and let C = {C1, . . . , Cm(s)} be the
resulting m(s) components. Actually C = 1-GG − S and P = {V (C1), . . . , V (Cm(s))} is a
partition of the vertices in P \ S. Note that o(C) ≤ m(s). Let M∗ be a maximum matching in
1-GG. By Theorem 2,
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|M∗| = 1

2
(n− def(1-GG)), (2)

where

def(1-GG) = max
S⊆P

(o(C)− |S|)

≤ max
S⊆P

(|C| − |S|)

= max
0≤s≤n

(m(s)− s). (3)

Define G(P), T , D, and F as in the proof of Theorem 5. By Theorem 4, |F | ≤ 3 · |S|. By the
same reasoning as in the proof of Theorem 5, each disk in D has at least two points of S in its
interior. Thus, 2 · |D| ≤ |F |. Therefore, 2(m(s)− 1) ≤ |F | ≤ 3s, and hence

m(s) ≤ 3s

2
+ 1. (4)

In addition, s+m(s) = |S|+ |C| ≤ |P | = n, and hence

m(s) ≤ n− s. (5)

By Inequalities (4) and (5),

m(s) ≤ min{3s

2
+ 1, n− s}. (6)

Thus, by (3) and (6)

def(1-GG) ≤ max
0≤s≤n

(m(s)− s)

≤ max
0≤s≤n

{min{3s

2
+ 1, n− s} − s}

= max
0≤s≤n

{min{s
2

+ 1, n− 2s}}

=
n+ 4

5
, (7)

where the last equation is achieved by setting s
2 +1 equal to n−2s, which implies s = 2(n−1)

5 .
Finally by substituting (7) in Equation (2) we have

|M∗| ≥ 2(n− 1)

5
.

By similar reasoning as in the proof of Theorem 6 we have the following Theorem.

Theorem 7. For every set P of n points, 0-GG has a matching of size at least n−1
4 .

The bound in Theorem 7 is tight, as can be seen from the graph in Figure 9, for which the
maximum matching has size n−1

4 . Actually this is a Gabriel graph of maximum degree four
which is a tree. The dashed edges do not belong to 0-GG because any closed disk which has
one of these edges as diameter has a point on its boundary. Observe that each edge in any
matching is adjacent to one of the vertices of degree four.
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Figure 9: A 0-GG of n = 17 points with a maximum matching of size n−1
4 = 4 (bold edges).

The dashed edges do not belong to the graph because any of their corresponding closed disks
has a point on its boundary.

Note: For a point set P , let νk(P ) and αk(P ) respectively denote the size of a maximum
matching and a maximum independent set in k-GG. For every edge in the maximum matching,
at most one of its endpoints can be in the maximum independent set. Thus,

αk(P ) ≤ |P | − νk(P ).

By combining this formula with the results of Theorems 7, 6, 5, respectively, we have α0(P ) ≤
3n+1

4 , α1(P ) ≤ 3n+2
5 , and α2(P ) ≤ dn2 e. The 0-GG graph in Figure 9 has an independent set

of size 3n+1
4 = 13, which shows that this bound is tight for 0-GG. On the other hand, 0-GG is

planar and every planar graph is 4-colorable; which implies that α0(P ) ≥ dn4 e. There are some
examples of 0-GG in [13] such that α0(P ) = dn4 e, which means that this bound is tight as well.

5 Blocking Higher-Order Gabriel Graphs

In this section we consider the problem of blocking higher-order Gabriel graphs. Recall that a
point set K blocks k-GG(P ) if in k-GG(P ∪K) there is no edge connecting two points in P .

Theorem 8. For every set P of n points, at least dn−13 e points are necessary to block 0-GG(P ).

Proof. Let K be a set of m points which blocks 0-GG(P ). Let G(P) be the complete graph
with vertex set P = P . Let T be a minimum spanning tree of G(P) and let D be the set of
closed disks corresponding to the edges of T . Since G(P) has n vertices, T has n − 1 edges.
Thus, |D| = n− 1. By Lemma 3 each disk D[a, b] ∈ D does not contain any point of P \ {a, b},
thus, T ⊆ 0-GG(P ). To block each edge of T , corresponding to a disk in D, at least one point
is necessary. By Theorem 4 each point in K can lie in at most three disks of D. Therefore,
m ≥ dn−13 e, which implies that at least dn−13 e points are necessary to block all the edges of T
and hence 0-GG(P ).

Figure 10(a) shows a 0-GG with n = 13 (black) points which is blocked by dn−13 e = 4 (white)
points. Note that all the disks, corresponding to the edges of every cycle, intersect at the same
point in the plane (where we have placed the white points). As shown in Figure 10(b), the
dashed edges do not belong to 0-GG. Thus, the lower bound provided by Theorem 8 is tight.
It is easy to generalize the result of Theorem 8 to higher-order Gabriel graphs. Since in a k-GG
we need at least k + 1 points to block an edge of T and each point can be inside at most three
disks in D, we have the following corollary:

Corollary 2. For every set P of n points, at least d (k+1)(n−1)
3 e points are necessary to block

k-GG(P ).

In [3] the authors showed that every Gabriel graph can be blocked by a set K of n−1 points
by putting a point slightly to the right of each point of P , except for the rightmost one. Every
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(a) (b)

Figure 10: (a) 0-GG graph of n = 13 points (in bold edges) which is blocked by dn−13 e = 4
white points, (b) dashed edges do not belomg to 0-GG.

disk with diameter determined by two points of P will contain a point of K. Using a similar
argument one can block a k-GG by putting k + 1 points slightly to the right of each point of
P , except for the rightmost one. Thus,

Corollary 3. For every set P of n points, there exists a set of (k+ 1)(n− 1) points that blocks
k-GG(P ).

Note that this upper bound is tight, because if the points of P are on a line, the disks
representing the minimum spanning tree are disjoint and each disk needs k + 1 points to block
the corresponding edge.

6 Conclusion

In this paper, we considered the bottleneck and perfect matching admissibility of higher-order
Gabriel graphs. We proved that

• 10-GG contains a Euclidean bottleneck matching of P and 8-GG may not have any.

• 0-GG has a matching of size at least n−1
4 and this bound is tight.

• 1-GG has a matching of size at least 2(n−1)
5 .

• 2-GG has a perfect matching.

• At least dn−13 e points are necessary to block 0-GG and this bound is tight.

• d (k+1)(n−1)
3 e points are necessary and (k + 1)(n− 1) points are sufficient to block k-GG.

We leave a number of open problems:

• Does 9-GG contain a Euclidean bottleneck matching of P?

• What is a tight lower bound on the size of a maximum matching in 1-GG?
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