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Abstract. We consider an extension of the triangular-distance Delau-
nay graphs (TD-Delaunay) on a set P of points in general position in
the plane. In TD-Delaunay, the convex distance is defined by a fixed-
oriented equilateral triangle 5, and there is an edge between two points
in P if and only if there is an empty homothet of5 having the two points
on its boundary. We consider higher-order triangular-distance Delaunay
graphs, namely k-TD, which contains an edge between two points if
the interior of the smallest homothet of 5 having the two points on its
boundary contains at most k points of P . We consider the connectivity,
Hamiltonicity and perfect-matching admissibility of k-TD. Finally we
consider the problem of blocking the edges of k-TD.

1 Introduction

The triangular-distance Delaunay graph of a point set P in the plane, TD-
Delaunay for short, was introduced by Chew [12]. A TD-Delaunay is a graph
whose convex distance function is defined by a fixed-oriented equilateral triangle.
Let 5 be a downward equilateral triangle whose barycenter is the origin and one
of its vertices is on the negative y-axis. A homothet of 5 is obtained by scaling
5 with respect to the origin by some factor µ ≥ 0, followed by a translation to
a point b in the plane: b+µ5 = {b+µa : a ∈ 5}. In the TD-Delaunay graph of
P , there is a straight-line edge between two points p and q if and only if there
exists a homothet of 5 having p and q on its boundary and whose interior does
not contain any point of P . In other words, (p, q) is an edge of TD-Delaunay
graph if and only if there exists an empty downward equilateral triangle having
p and q on its boundary. In this case, we say that the edge (p, q) has the empty
triangle property.

We say that P is in general position if the line passing through any two points
from P does not make angles 0◦, 60◦, or 120◦ with horizontal. In this paper we
consider point sets in general position and our results assume this pre-condition.
If P is in general position, the TD-Delaunay graph of P is planar, see [7]. We
define t(p, q) as the smallest homothet of 5 having p and q on its boundary. See
Figure 1(a). Note that t(p, q) has one of p and q at a vertex, and the other one
on the opposite side. Thus,
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Observation 1 Each side of t(p, q) contains either p or q.

Since every homothet of 5 with p and q on its boundary contains t(p, q), the
TD-Delaunay graph has an edge (p, q) iff the interior of t(p, q) does not contain
any point of P .

t(p, q)

p

q

q

p
t(p, q)

(a) (b) (c)

Fig. 1. (a) Triangular-distance Delaunay graph (0-TD), (b) 1-TD graph, the light edges
belong to 0-TD as well, and (c) Delaunay triangulation.

In [4], the authors proved a tight lower bound of dn−13 e on the size of a
maximum matching in a TD-Delaunay graph. In this paper we study higher-
order TD-Delaunay graphs. An order-k TD-Delaunay graph of a point set P ,
denoted by k-TD, is a geometric graph which has an edge (p, q) iff the interior
of t(p, q) contains at most k points of P ; see Figure 1(b). The standard TD-
Delaunay graph corresponds to 0-TD. We consider graph-theoretic properties
of higher-order TD-Delaunay graphs (connectivity, Hamiltonicity, and perfect-
matching admissibility). We also consider the problem of blocking TD-Delaunay
graphs.

1.1 Previous Work

A Delaunay triangulation (DT) of P (which does not have any four co-circular
points) is a graph whose distance function is defined by a fixed circle © centered
at the origin. DT has an edge between two points p and q iff there exists a
homothet of © having p and q on its boundary and whose interior does not
contain any point of P ; see Figure 1(c). In this case the edge (p, q) is said to
have the empty circle property. An order-k Delaunay Graph on P , denoted by
k-DG, is defined to have an edge (p, q) iff there exists a homothet of © having
p and q on its boundary and whose interior contains at most k points of P . The
standard Delaunay triangulation corresponds to 0-DG.

For each pair of points p, q ∈ P let D[p, q] be the closed disk having pq as
diameter, and let L(p, q) be the intersection of the two open disks with radius
|pq| centered at p and q, where |pq| is the Euclidean distance between p and
q. A Gabriel Graph on P is a geometric graph which has an edge between two
points p and q iff D[p, q] does not contain any point of P \ {p, q}. An order-k
Gabriel Graph on P , denoted by k-GG, is defined to have an edge (p, q) iff D[p, q]
contains at most k points of P \ {p, q}. A Relative Neighborhood Graph on P is
a geometric graph which has an edge between two points p and q iff L(p, q)
does not contain any point of P . An order-k Relative Neighborhood Graph on P ,
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denoted by k-RNG, is defined to have an edge (p, q) iff L(p, q) contains at most
k points of P . It is obvious that for a fixed point set, k-RNG is a subgraph of
k-GG, and k-GG is a subgraph of k-DG.

Let Kn(P ) be a complete edge-weighted geometric graph on a point set P
which contains a straight-line edge between any pair of points in P . For an edge
(p, q) in Kn(P ) let w(p, q) denote the weight of (p, q). A bottleneck matching
(resp. bottleneck Hamiltonian cycle) in P is defined to be a perfect matching
(resp. Hamiltonian cycle) in Kn(P ) in which the weight of the maximum-weight
edge is minimized. A graph is biconnected if there is a simple cycle between any
pair of its vertices. A bottleneck biconnected spanning graph of P is a spanning
subgraph, G(P ), of Kn(P ) which is biconnected and in which the weight of the
longest edge is minimized. For H ⊆ G we denote the bottleneck of H, i.e., the
length of the maximum-weight edge in H, by λ(H).

The problem of determining whether an order-k geometric graph always has
a (bottleneck) perfect matching or a (bottleneck) Hamiltonian cycle is quite of
interest. If for each edge (p, q) in Kn(P ), w(p, q) is equal the Euclidean distance
between p and q, then Chang et al. [10, 11, 9] proved that a bottleneck bicon-
nected spanning graph, a bottleneck perfect matching, and a bottleneck Hamil-
tonian cycle of P are contained in 1-RNG, 16-RNG, 19-RNG, respectively. This
implies that 16-RNG has a perfect matching and 19-RNG is Hamiltonian. Since
k-RNG is a subgraph of k-GG, the same results hold for 16-GG and 19-GG. It
is known that k-GG is (k + 1)-connected [8] and 15-GG (and hence 15-DG) is
Hamiltonian [1]. Recently, Kaiser et al. [15] proved that 10-GG is Hamiltonian.
Dillencourt showed that any Delaunay triangulation (0-DG) admits a perfect
matching [14] but it can fail to be Hamiltonian [13].

Given a geometric graph G(P ) on a set P of n points, we say that a set K of
points blocks G(P ) if in G(P ∪K) there is no edge connecting two points in P .
Actually P is an independent set in G(P ∪K). Aichholzer et al. [2] considered
the problem of blocking the Delaunay triangulation (i.e. 0-DG) for P in general
position. They show that 3n

2 points are sufficient to block 0-DG and at least
n− 1 points are necessary. To block 0-GG, n− 1 points are sufficient [3].

1.2 Our Results

In this paper we consider the bottleneck problems in P with respect to the
triangular-distance. We assume that the weight of each edge (p, q) in Kn(P ) is
equal to the area of t(p, q). We define some geometric notions in Section 2. In
Section 3 we prove that every k-TD graph is (k + 1)-connected. In addition we
show that a bottleneck biconnected spanning graph of P is contained in 1-TD.
Using a similar approach as in [1, 9], in Section 4 we show that a bottleneck
Hamiltonian cycle of P is contained in 8-TD. In Section 5 we prove that a
bottleneck perfect matching of P is contained in 6-TD. In addition we prove

that 2-TD has a matching of size d (n−1)2 e and 1-TD has a matching of size at

least d 2(n−1)5 e. For some configurations of P , 5-TD fails to have any bottleneck
Hamiltonian cycle or bottleneck perfect matching. In Section 6 we consider the
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problem of blocking k-TD. We show that at least dn−12 e points are necessary
and n − 1 points are sufficient to block a 0-TD. Due to the space limitations,
details of some proofs are omitted from this version of the paper.

2 Preliminaries
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Fig. 2. Construction of
the TD-Delaunay graph.

Bonichon et al. [6] showed that the half-Θ6 graph
of a point set P in the plane is equal to the TD-
Delaunay graph of P . A half-Θ6 graph on a point
set P can be constructed in the following way. For
each point p in P , let lp be the horizontal line through
p. Define lγp as the line obtained by rotating lp by γ-
degrees in counter-clockwise direction around p. Actu-
ally l0p = lp. Consider three lines l0p, l

60
p , and l120p which

partition the plane into six disjoint cones with apex
p. Let C1

p , . . . , C
6
p be the cones in counter-clockwise

order around p as shown in Figure 2. C1
p , C

3
p , C

5
p will

be referred to as odd cones, and C2
p , C

4
p , C

6
p will be

referred to as even cones. For each even cone Cip, connect p to the “nearest”

point q in Cip. The distance between p and q, d(p, q), is defined as the Euclidean

distance between p and the orthogonal projection of q onto the bisector of Cip.
See Figure 2. The resulting graph is the half-Θ6 graph which is defined by even
cones [6]. Moreover, the resulting graph is the TD-Delaunay graph defined with
respect to homothets of 5. By considering the odd cones, another half-Θ6 graph
is obtained. The well-known Θ6 graph is the union of half-Θ6 graphs defined by
odd and even cones. To construct k-TD, for each point p ∈ P we connect p to
its (k + 1) nearest neighbors in each even cone around p.

Recall that t(p, q) is the smallest homothet of 5 having p and q on its bound-
ary, i.e., t(p, q) is the smallest downward equilateral triangle through p and q.
Similarly we define t′(p, q) as the smallest upward equilateral triangle through p
and q. Clearly, the even cones correspond to downward triangles and odd cones
correspond to upward triangles. We define an order on the equilateral triangles:
for each two equilateral triangles t1 and t2 we say that t1 ≺ t2 if the area of t1
is less than the area of t2. Since the area of t(p, q) is directly related to d(p, q),

d(p, q) < d(r, s) if and only if t(p, q) ≺ t(r, s).

Observation 2 If t(p, q) contains a point r, then t(p, r) and t(q, r) are contained
in t(p, q) (see Figure 3).

As a direct consequence of Observation 2, if a point r is contained in t(p, q), then
max{t(p, r), t(q, r)} ≺ t(p, q). It is obvious that,

Observation 3 For each two points p, q ∈ P , the area of t(p, q) is equal to the
area of t′(p, q).
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Fig. 3. Illustration of Observation 2: the triangles t(p, r) and t(q, r) are inside t(p, q).

Thus, we define X(p, q) as a regular hexagon centred at p which has q on its
boundary, and its sides are parallel to l0p, l

60
p , and l120p .

Observation 4 If X(p, q) contains a point r, then t(p, r) ≺ t(p, q).

For a graph G = (V,E) and K ⊆ V , let G − K be the subgraph obtained
from G by removing the vertices in K, and let o(G−K) be the number of odd
components in G − K. Tutte [16] gave a characterization of the graphs which
have a perfect matching. Berge [5] extended Tutte’s result to a formula (known as
Tutte-Berge formula) for the maximum size of a matching in a graph. In a graph
G, the deficiency, defG(K), is o(G−K)− |K|. Let def(G) = maxK⊆V defG(K).

Theorem 1 (Tutte-Berge formula; Berge [5]). The size of a maximum
matching in G is (n− def(G))/2.

For an edge-weighted graph G we define the weight sequence of G, WS(G), as the
sequence containing the weights of the edges ofG in non-increasing order. For two
graphs G1 and G2 we say that WS(G1) ≺WS(G2) if WS(G1) is lexicographically
smaller than WS(G2). A graph G1 is said to be less than a graph G2 if WS(G1) ≺
WS(G2).

3 Connectivity

For a set P of points in general position in the plane, the TD-Delaunay graph, i.e.,
0-TD, is not necessarily a triangulation [12], but it is connected and internally
triangulated [4]. As shown in Figure 1(a), 0-TD may not be biconnected.

Theorem 2. For every point set P in general position, k-TD is (k+1)-connected.
In addition, for every k, there exists a point set P such that k-TD is not (k+2)-
connected.

By Theorem 2, 0-TD may not be biconnected, but 1-TD is biconnected. We
show that a bottleneck biconnected spanning graph of P is contained in 1-TD.

Theorem 3. For every point set P in general position, 1-TD contains a bottle-
neck biconnected spanning graph of P .

Proof. Let G be the set of all biconnected spanning graphs with vertex set P . We
define a total order on the elements of G by their weight sequence. If two elements
have the same weight sequence, we break the ties arbitrarily to get a total order.
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Let G∗ = (P,E) be a graph in G with minimal weight sequence. Clearly, G∗ is a
bottleneck biconnected spanning graph of P . We will show that all edges of G∗

are in 1-TD. By contradiction suppose that some edges in E do not belong to
1-TD, and let e = (a, b) be the longest one (by the area of the triangle t(a, b)). If
the graph G∗−{e} is biconnected, then by removing e, we obtain a biconnected
spanning graph G with WS(G) ≺ WS(G∗); this contradicts the minimality of
G∗. Thus, there is a pair {p, q} of points such that any cycle between p and q in
G∗ goes through e. Since (a, b) /∈ 1-TD, t(a, b) contains at least two points of P ,
say x and y. Let G be the graph obtained from G∗ by removing the edge (a, b)
and adding the edges (a, x), (b, x), (a, y), (b, y). We show that in G there is a
cycle C between p and q which does not go through e. Consider a cycle C∗ in G∗

between two points p and q (which goes through e). If none of x and y belong
to C∗, then C = (C∗−{(a, b)})∪{(a, x), (b, x)} is a cycle in G between p and q.
If one of x or y, say x, belongs to C∗, then C = (C∗ − {(a, b)}) ∪ {(a, y), (b, y)}
is a cycle in G between p and q. If both x and y belong to C∗, w.l.o.g. assume
that x is between b and y in the path C∗ − {(a, b)}. Consider the partition of
C∗ into four parts: (a) edge (a, b), (b) path δbx between b and x, (c) path δxy
between x and y, and (d) path δya between y and a. There are four cases:

1. None of p and q are on δxy. Let C = δbx ∪ δya ∪ {(a, x), (b, y)}.
2. Both p and q are on δxy. Let C = δxy ∪ {(a, x), (a, y)}.
3. One of p, q is on δxy while the other is on δbx. Let C = δbx ∪ δxy ∪ {(b, y)}.
4. One of p, q is on δxy while the other is on δya. Let C = δxy ∪ δya ∪ {(a, x)}.

In all cases, C is a cycle in G between p and q. Thus, between any pair of
points in G there exists a cycle, and hence G is biconnected. Since x and y
are inside t(a, b), by Observation 2, max{t(a, x), t(a, y), t(b, x), t(b, y)} ≺ t(a, b).
Therefore, WS(G) ≺WS(G∗); contradicting the minimality of G∗. ut

4 Hamiltonicity

In this section we show that 8-TD contains a bottleneck Hamiltonian cycle. For
some point sets, 5-TD does not contain any bottleneck Hamiltonian cycle.

Theorem 4. For every point set P in general position, 8-TD has a bottleneck
Hamiltonian cycle.

Proof. Let H be the set of all Hamiltonian cycles through the points of P . Define
a total order on the elements of H by their weight sequence. If two elements have
exactly the same weight sequence, break ties arbitrarily to get a total order. Let
H∗ = a0, a1, . . . , an−1, a0 be a cycle in H with minimal weight sequence. It is
obvious that H∗ is a bottleneck Hamiltonian cycle of P . We will show that all
the edges of H∗ are in 8-TD. Consider any edge e = (ai, ai+1) in H∗ and let
t(ai, ai+1) be the triangle corresponding to e (all the index manipulations are
modulo n).

Claim 1: None of the edges of H∗ can be completely in the interior t(ai, ai+1).
Suppose there is an edge f = (aj , aj+1) inside t(ai, ai+1). Let H be a cycle
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obtained from H∗ by deleting e and f , and adding (ai, aj) and (ai+1, aj+1). By
Observation 2, t(ai, ai+1) � max{t(ai, aj), t(ai+1, aj+1)}, and hence WS(H) ≺
WS(H∗). This contradicts the minimality of H∗.

Therefore, we may assume that no edge ofH∗ lies completely inside t(ai, ai+1).
Suppose there are w points of P inside t(ai, ai+1). Let U = u1, u2, . . . , uw repre-
sent these points indexed in the order we would encounter them on H∗ starting
from ai. Let R′ = r1, r2, . . . , rw represent the vertices where ri is the vertex suc-
ceeding ui in the cycle. All the vertices in R′, probably except rw, are different
from ai and ai+1. Let R = R′ − {rw}. Without loss of generality assume that
ai ∈ C4

ai+1
, and t(ai, ai+1) is anchored at ai+1, as shown in Figure 4.

Claim 2: For each rj ∈ R, t(rj , ai+1) � max{t(ai, ai+1), t(uj , rj)}. Suppose
there is a point rj ∈ R such that t(rj , ai+1) ≺ max{t(ai, ai+1), t(uj , rj)}. Con-
struct a new cycle H by removing the edges (uj , rj), (ai, ai+1) and adding the
edges (ai+1, rj) and (ai, uj). Since the two new edges have length strictly less
than max{t(ai, ai+1), t(uj , rj)}, WS(H) ≺WS(H∗); which is a contradiction.

Claim 3: For each rj , rk ∈ R, t(rj , rk) � max{t(ai, ai+1), t(uj , rj), t(uk, rk)}.
Suppose there is a pair rj and rk such that t(rj , rk) ≺ max{t(ai, ai+1), t(uj , rj),
d(uk, rk)}. Construct a cycle H from H∗ by first deleting (uj , rj), (uk, rk),
(ai, ai+1). This results in three paths. One of the paths must contain both ai and
either rj or rk. W.l.o.g. suppose that ai and rk are on the same path. Add the
edges (ai, uj), (ai+1, uk), (rj , rk). Since max{t(uj , rj), t(uk, rk), d(ai, ai+1)} �
max{t(ai, uj), t(ai+1, uk), t(rj , rk)}, WS(H) ≺WS(H∗); we get a contradiction.

We use Claim 2 and Claim 3 to show that the size of R is at most seven, and
consequently w ≤ 8. Consider the lines l0ai+1

, l60ai+1
, l120ai+1

, and l120ai as shown in
Figure 4. Let l1 and l2 be the rays starting at the corners of t(ai, ai+1) opposite
to ai+1 and parallel to l0ai+1

and l60ai+1
respectively. These lines and rays partition

the plane into 12 regions, as shown in Figure 4. We will show that each of
the regions D1, D2, D3, D4, C1, C2, and B = B1 ∪ B2 contains at most one
point of R, and the other regions do not contain any point of R. Consider the
hexagon X(ai+1, ai). By Claim 2 and Observation 4, no point of R can be inside
X(ai+1, ai). Moreover, no point of R can be inside the cones A1, A2, or A3,
because if rj ∈ {A1 ∪ A2 ∪ A3}, the (upward) triangle t′(uj , rj) contains ai+1.
Then by Observation 4, t(rj , ai+1) ≺ t(uj , rj); which contradicts Claim 2.

We show that each of the regions D1, D2, D3, D4 contains at most one point
of R. Consider the region D1; by similar reasoning we can prove the claim for
D2, D3, D4. Using contradiction, let rj and rk be two points in D1, and w.l.o.g.
assume that rj is the farthest to l60ai+1

. Then rk can lie inside any of the cones

C1
rj , C5

rj , and C6
rj (but not in X). If rk ∈ C1

rj , then t′(rj , rk) is smaller than

t′(ai, ai+1) which means that t(rj , rk) ≺ t(ai, ai+1). If rk ∈ C5
rj , then t′(uj , rj)

contains rk, that is t(rj , rk) ≺ t(uj , rj). If rk ∈ C6
rj , then t(uj , rj) contains rk,

that is t(rj , rk) ≺ t(uj , rj). All cases contradict Claim 3.
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Now consider the region C1 (or C2). By contradiction assume that it contains
two points rj and rk. Let rj be the farthest from l0ai+1

. It is obvious that t′(uj , rj)
contains rk, that is t(rj , rk) ≺ t(uj , rj); which contradicts Claim 3.

ai

ai+1

A1

A2

A3

B1

B2

C1

C2

D1

D2

D3

D4

B1B1

rj

rj

rj

X

B1

l60ai+1

l120ai

rj

uj

l2

l1

rk

l0ai+1

l120ai+1

Fig. 4. Illustration of Theorem 4.

Consider the region B = B1∪
B2. If both rj and rk belong to
B2, then t′(rj , rk) is smaller that
t(ai, ai+1). If rj ∈ B1 and rk ∈
B2, then t′(uj , rj) contains rk,
and hence t(rj , rk) ≺ t(uj , rj).
If both rj and rk belong to B1,
let rj be the farthest from l120ai .
Clearly, t(uj , rj) contains rk and
hence t(rj , rk) ≺ t(uj , rj). All
cases contradict Claim 3.

Therefore, any of the regions
D1, D2, D3, D4, C1, C2, and
B = B1 ∪ B2 contains at most
one point of R. Thus, |R| ≤ 7 and
w ≤ 8, and t(ai, ai+1) contains
at most 8 points of P . Therefore,
e = (ai, ai+1) is an edge of 8-TD.

ut

5 Perfect Matching Admissibility

In this section we consider the matching problem in k-TD graphs.

Theorem 5. For a set P of an even number of points in general position in the
plane, 6-TD contains a bottleneck perfect matching.

For some point sets, 5-TD does not contain any bottleneck perfect matching.
As for the maximum matching, in [4] the authors proved a tight lower bound of
dn−13 e on the size of a maximum matching in 0-TD. We prove that 1-TD has a

matching of size at least d 2(n−1)5 e and 2-TD has a matching of size dn−12 e.
Let P = {P1, P2, . . . } be a partition of the points in P . Let G(P) be the

complete graph with vertex set P. For each edge e = (Pi, Pj) in G(P), let w(e)
be equal to the area of the smallest triangle between a point in Pi and a point
in Pj , i.e. w(e) = min{t(a, b) : a ∈ Pi, b ∈ Pj}. That is, the weight of an edge
e ∈ G(P) corresponds to the size of the smallest triangle t(e) defined by the
endpoints of e. Let T be a minimum spanning tree of G(P). Let T be the set of
triangles corresponding to the edges of T , i.e. T = {t(e) : e ∈ T }.

Lemma 1. The interior of any triangle in T does not contain any point of P .

Lemma 2. Each point in the plane can be in the interior of at most three tri-
angles in T .
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The following two theorems are based on Lemma 1, Lemma 2, and Theorem 1.

Theorem 6. For every set P of n points in general position in the plane, 2-TD
has a matching of size dn−12 e.

Proof. First we show that by removing a set K of k points from 2-TD, at most
k + 1 components are generated. Let K be a set of k vertices removed from
2-TD, and let C = {C1, . . . , Cm(k)} be the resulting m(k) components, where m
is a function depending on k. Actually, C = 2-TD − K and P = {V (C1), . . . ,
V (Cm(k))} is a partition of the vertices in P \K.

Claim 1. m(k) ≤ k + 1. Let G(P) be a complete graph with vertex set P
which is constructed as described above. Let T be a minimum spanning tree
of G(P) and let T be the set of triangles corresponding to the edges of T .
It is obvious that T contains m(k) − 1 edges and hence |T | = m(k) − 1. Let
F = {(p, t) : p ∈ K, t ∈ T, p ∈ t} be the set of all (point, triangle) pairs
where p ∈ K, t ∈ T , and p is inside t. By Lemma 2 each point in K can be
inside at most three triangles in T . Thus, |F | ≤ 3 · |K|. Now we show that each
triangle in T contains at least three points of K. Consider any triangle τ ∈ T .
Let e = (V (Ci), V (Cj)) be the edge of T which is corresponding to τ , and let
a ∈ V (Ci) and b ∈ V (Cj) be the points defining τ . By Lemma 1, τ does not
contain any point of P \ K in its interior. Therefore, τ contains at least three
points of K, because otherwise (a, b) is an edge in 2-TD which contradicts the
fact that a and b belong to different components in C. Thus, each triangle in T
contains at least three points of K in its interior. That is, 3 · |T | ≤ |F |. Therefore,
3(m(k)− 1) ≤ |F | ≤ 3k, and hence m(k) ≤ k + 1.

Note that o(C) ≤ |C| = m(k). By Claim 1, m(k) ≤ k + 1. Thus, o(C) ≤
k + 1. This implies that def(2-TD) ≤ 1. Therefore, by Theorem 1, the size of a
maximum matching,M∗, is n−1

2 . Since |M∗| is an integer number, |M∗| = dn−12 e.
ut

Theorem 7. For every set P of n points in general position in the plane, 1-TD

has a matching of size at least d 2(n−1)5 e.

Proof. Let K be a set of k vertices removed from 1-TD, and let C = {C1, . . . ,
Cm(k)} be the resulting m(k) components. Actually, C = 1-TD − K and P =
{V (C1), . . . , V (Cm(k))} is a partition of the vertices in P \K. Note that o(C) ≤
m(k). Let M∗ be a maximum matching in 1-TD. By Theorem 1,

|M∗| = 1

2
(n− def(1-TD)), (1)

where

def(1-TD) = max
K⊆P

(o(C)− |K|) ≤ max
K⊆P

(|C| − |K|) = max
0≤k≤n

(m(k)− k). (2)

Define G(P), T , T , and F as in the proof of Theorem 6. By Lemma 2, |F | ≤
3 · |K|. By the same reasoning as in the proof of Theorem 6, each triangle in
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T has at least two points of K in its interior. Thus, 2 · |T | ≤ |F |. Therefore,
2(m(k)− 1) ≤ |F | ≤ 3k, and hence

m(k) ≤ 3k

2
+ 1. (3)

In addition, k +m(k) = |K|+ |C| ≤ |P | = n, and hence

m(k) ≤ n− k. (4)

By Inequalities (3) and (4),

m(k) ≤ min{3k

2
+ 1, n− k}. (5)

Thus, by (2) and (5)

def(1-TD) ≤ max
0≤k≤n

(m(k)− k)

≤ max
0≤k≤n

{min{3k

2
+ 1, n− k} − k}

= max
0≤k≤n

{min{k
2

+ 1, n− 2k}} =
n+ 4

5
, (6)

where the last equation is obtained by setting k
2 + 1 equal to n− 2k. Finally

by substituting (6) in Equation (1) we have |M∗| ≥ 2(n−1)
5 . Sine |M∗| is an

integer number, |M∗| ≥ d2(n−1)5 e. ut

6 Blocking TD-Delaunay graphs

In this section we consider the problem of blocking TD-Delaunay graphs. Let P
be a set of n points in general position in the plane. Recall that a point set K
blocks k-TD(P ) if in k-TD(P ∪K) there is no edge connecting two points in P .
That is, P is an independent set in k-TD(P ∪K).

Theorem 8. At least d (k+1)(n−1)
3 e points are necessary to block k-TD(P ).

Proof. Let K be a set of m points which blocks k-TD(P ). Let G(P) be the com-
plete graph with vertex set P = P . Let T be a minimum spanning tree of G(P)
and let T be the set of triangles corresponding to the edges of T . It is obvious
that |T | = n − 1. By Lemma 1 the triangles in T are empty, thus, the edges of
T belong to any k-TD(P ) where k ≥ 0. To block each edge, corresponding to
a triangle in T , at least k + 1 points are necessary. By Lemma 2 each point in

K can lie in at most three triangles of T . Therefore, m ≥ d (k+1)(n−1)
3 e, which

implies that at least d (k+1)(n−1)
3 e points are necessary to block all the edges of

T and hence k-TD(P ). ut
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pi

C1
pi

C2
pi

C3
pi

≥ δ ≥ δ

p′i

q

qq

(a) (b)

Fig. 5. (a) A 0-TD graph which is shown in bold edges is blocked by dn−1
2
e white

points, (b) p′i blocks all the edges connecting pi to the vertices above l0pi .

By Theorem 8, at least dn−13 e, d
2(n−1)

3 e, n−1 points are necessary to block 0-,
1-, 2-TD(P ) respectively. Now we introduce another formula which gives a better
lower bound for 0-TD. For a point set P , let νk(P ) and αk(P ) respectively denote
the size of a maximum matching and a maximum independent set in k-TD(P ).
For every edge in the maximum matching, at most one of its endpoints can be
in the maximum independent set. Thus,

αk(P ) ≤ |P | − νk(P ). (7)

Let K be a set of m points which blocks k-TD(P ). By definition there is no
edge between points of P in k-TD(P ∪K). That is, P is an independent set in
k-TD(P ∪K). Thus,

n ≤ αk(P ∪K). (8)

By (7) and (8) we have

n ≤ αk(P ∪K) ≤ (n+m)− νk(P ∪K). (9)

Theorem 9. At least dn−12 e points are necessary to block 0-TD(P ).

Proof. Let K be a set of m points which blocks 0-TD(P ). Consider 0-TD(P∪K).
It is known that ν0(P ∪K) ≥ dn+m−13 e; see [4]. By Inequality (9),

n ≤ (n+m)− dn+m− 1

3
e ≤ 2(n+m) + 1

3
,

and consequently m ≥ dn−12 e (note that m is an integer number). ut

Figure 5(a) shows a 0-TD graph on a set of 12 points which is blocked by
6 points. By removing the topmost point we obtain a set with odd number of
points which can be blocked by 5 points.

Theorem 10. There exists a set K of (k+1)(n−1) points that blocks k-TD(P ).
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This bound is tight. Consider the case where k = 0. In this case 0-TD(P )
can be a path representing n− 1 disjoint triangles and for each triangle we need
at least one point to block its corresponding edge. In k-TD(P ) we need at least
k + 1 points to block each of these edges.

Acknowledgments

We thank the referees for helpful suggestions improving the quality of the paper.

References
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