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Abstract. Let M be a perfect matching on a set of points in the plane
where every edge is a line segment between two points. We say that M is
globally maximum if it is a maximum-length matching on all points. We
say that M is k-local maximum if for any subset M ′ = {a1b1, . . . , akbk}
of k edges of M it holds that M ′ is a maximum-length matching on
points {a1, b1, . . . , ak, bk}. We show that local maximum matchings are
good approximations of global ones.
Let µk be the infimum ratio of the length of any k-local maximum match-
ing to the length of any global maximum matching, over all finite point
sets in the Euclidean plane. It is known that µk > k−1

k
for any k > 2.

We show the following improved bounds for k ∈ {2, 3}: µ2 >
√

3/7 and
µ3 > 1/

√
2. We also show that every pairwise crossing matching is unique

and it is globally maximum.
Towards our proof of the lower bound for µ2 we show the following
result which is of independent interest: If we increase the radii of pairwise
intersecting disks by factor 2/

√
3, then the resulting disks have a common

intersection.

Keywords: planar points· maximum matching · global maximum ·
local maximum· pairwise crossing matching· pairwise intersecting disks

1 Introduction

A maximum-weight matching in an edge-weighted graph is a matching in which
the sum of edge weights is maximized. Maximum-weight matching is among well-
studied structures in graph theory and combinatorial optimization. It has been
studied from both combinatorial and computational points of view in both ab-
stract and geometric settings, see for example [1, 3, 4, 10, 8, 11, 12, 15, 16, 18, 23,
24, 30]. Over the years, it has found applications in several areas such as schedul-
ing, facility location, and network switching. It has also been used as a key sub-
routine in other optimization algorithms, for example, network flow algorithms
[13, 25], maximum cut in planar graphs [19], and switch scheduling algorithms
[27] to name a few. In the geometric setting, where vertices are represented by
points in a Euclidean space and edges are line segments, the maximum-weight
matching is usually referred to as the maximum-length matching.
? Supported by NSERC.
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Let P be a set of 2n distinct points in the plane, and let M be a perfect
matching on P where every edge of M is a straight line segment. We say that
M is globally maximum if it is a maximum-length matching on P . For an integer
k 6 n we say that M is k-local maximum if for any subset M ′ = {a1b1, . . . , akbk}
of k edges of M it holds that M ′ is a maximum-length matching on points {a1, b1,
. . . , ak, bk}; in other words M ′ is a maximum-length matching on the endpoints
of its edges. Local maximum matchings appear in local search heuristics for
approximating global maximum matchings, see e.g. [2].

It is obvious that any global maximum matching is locally maximum. On the
other hand, local maximum matchings are known to be good approximations of
global ones. Let µk be the infimum ratio of the length of any k-local maximum
matching to the length of any global maximum matching, over all finite point
sets in the Euclidean plane. For k = 1, the ratio µ1 could be arbitrary small,
because any matching is 1-local maximum. For k > 2, however, it is known that
µk > k−1

k (see e.g. [2, Corollary 8]); this bound is independent of the Euclidean
metric and it is valid for any edge-weighted complete graph. A similar bound is
known for matroid intersection [26, Corollary 3.1]. We present improved bounds
for µ2 and µ3; this is going to be the main topic of this paper.

1.1 Our contributions

The general lower bound k−1
k implies that µ2 > 1/2 and µ3 > 2/3. We use the ge-

ometry of the Euclidean plane and improve these bounds to µ2 >
√
3/7 ≈ 0.654

and µ3 > 1/
√
2 ≈ 0.707. In the discussion at the end of this paper we show that

analogous ratios for local minimum matchings could be arbitrary large.
For an edge set E, we denote by w(E) the total length of its edges. To obtain

the lower bound 1/
√
2 for µ3 we prove that for any 3-local maximum matching

M it holds that w(M) > w(M∗)/
√
2 where M∗ is a global maximum matching

for the endpoints of edges in M . To do so, we consider the set D of diametral
disks of edges in M . A recent result of Bereg et al. [4] combined with Helly’s
theorem [21, 29] implies that the disks in D have a common intersection. We
take a point in this intersection and connect it to endpoints of all edges of M to
obtain a star S. Then we show that w(M∗) 6 w(S) 6

√
2 · w(M), which proves

the lower bound.
Our proof approach for showing the lower bound

√
3/7 for µ2 is similar to

that of µ3. However, our proof consists of more technical ingredients. We show
that for any 2-local maximum matching M it holds that w(M) >

√
3/7 ·w(M∗)

where M∗ is a global maximum matching for the endpoints of edges of M .
Again we consider the set D of diametral disks of edges of M . A difficulty
arises here because now the disks in D may not have a common intersection,
although they pairwise intersect. To overcome this issue we enlarge the disks
in D to obtain a new set of disks that have a common intersection. Then we
take a point in this intersection and construct our star S as before, and we
show that w(M∗) 6 w(S) 6

√
7/3 · w(M). To obtain this result we face two

technical complications: (i) we need to show that the enlarged disks have a
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common intersection, and (ii) we need to bound the distance from the center of
star S to endpoints of M . To overcome the first issue we prove that if we increase
the radii of pairwise intersecting disks by factor 2/

√
3 then the resulting disks

have a common intersection; the factor 2/
√
3 is the smallest that achieves this

property. This result has the same flavor as the problem of stabbing pairwise
intersecting disks with four points [6, 7, 20, 31]. To overcome the second issue we
prove a result in distance geometry.

In a related result, which is also of independent interest, we show that every
pairwise crossing matching is unique and it is globally maximum. To show the
maximality we transform our problem into an instance of the “multicommodity
flows in planar graphs” that was studied by Okamura and Seymour [28] in 1981.

1.2 Some related works

From the computational point of view, Edmonds [11, 12] gave a polynomial-
time algorithm for computing weighted matchings in general graphs (the term
weighted matching refers to both minimum-weight matching and maximum-
weight matching). Edmonds’ algorithm is a generalization of the Hungarian al-
gorithm for weighted matching in bipartite graphs [23, 24]. There are several
implementations of Edmonds’ algorithm (see e.g. [15, 17, 18, 25]) with the best
known running time O(mn + n2 log n) [15, 16] where n and m are the number
of vertices and edges of the graph. One might expect faster algorithms for the
“maximum-length matching” in the geometric setting where vertices are points
in the plane and any two points are connected by a straight line segment; we
are not aware of any such algorithm. For general graphs, there is a linear-time
(1− ε)-approximation of maximum-weight matching [8].

The analysis of maximum-length matching ratios has received attention in
the past. In a survey by Avis [3] it is shown that the matching obtained by a
greedy algorithm (that picks the largest available edge) is a 1/2-approximation
of the global maximum matching (even in arbitrary weighted graphs). Alon, Ra-
jagopalan, Suri [1] studied non-crossing matchings, where edges are not allowed
to cross each other. They showed that the ratio of the length of a maximum-
length non-crossing matching to the length of a maximum-length matching is at
least 2/π; this ratio is the best possible. Similar ratios have been studied for non-
crossing spanning trees, Hamiltonian paths and cycles [1, 5, 9]. Bereg et al. [4]
showed the following combinatorial property of maximum-length matchings: the
diametral disks, introduced by edges of a maximum-length matching, have a com-
mon intersection. A somewhat similar property was proved by Huemer et al. [22]
for bi-colored points.

2 A lower bound for k-local maximum matchings

For the sake of completeness, and to facilitate comparisons with our improved
bounds, we repeat a proof of the general lower bound k−1

k , borrowed from [2].
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Theorem 1. Every k-local maximum matching is a k−1
k -approximation of a

global maximum matching for any k > 2.

Proof. Consider any k-local maximum matching M and a corresponding global
maximum matching M∗. The union of M and M∗ consists of even cycles and/or
single edges which belong to both matchings. It suffices to show, for each cycle C,
that the length of edges in C ∩M is at least k−1

k times that of edges in C ∩M∗.
Let e0, e1, . . . , e|C|−1 be the edges of C that appear in this order. Observe

that |C| > 4, and that the edges of C alternate between M and M∗. Let CM

and CM∗ denote the sets of edges of C that belong to M and M∗, respectively.
If |C| 6 2k then w(CM ) = w(CM∗) because M is k-local maximum, and thus
we are done. Assume that |C| > 2k + 2. After a suitable shifting of indices we
may assume that CM = {ei : i is even} and CM∗ = {ei : i is odd}. Since M is
k-local maximum, for each even index i we have

w(ei) + w(ei+2) + · · ·+ w(ei+2k−2) > w(ei+1) + w(ei+3) + · · ·+ w(ei+2k−3)

where all indices are taken modulo |C|. By summing this inequality over all
even indices, every edge of CM appears exactly k times and every edge of CM∗

appears exactly k − 1 times, and thus we get k · w(CM ) > (k − 1) · w(CM∗). ut

It is implied from Theorem 1 that µ2 > 1/2 and µ3 > 2/3. To establish
stronger lower bounds, we need to incorporate more powerful ingredients. We
use geometry of the Euclidean plane and improve both lower bounds.

3 Better lower bound for 3-local maximum matchings

We describe our improved bound for 3-local maximum matchings first because
it is easier to understand. Our Theorem 4 implies that µ3 > 1/

√
2. The proof

of our theorem benefits from the following result of Bereg et al. [4] and Helly’s
theorem [21, 29].

Theorem 2 (Bereg et al. [4]). Consider any maximum matching of any set
of six points in the plane. The diametral disks of the three edges in this matching
have a nonempty intersection.

Theorem 3 (Helly’s theorem in R2). If in a family of convex sets in the
plane every triple of sets has a nonempty intersection, then the entire family has
a nonempty intersection.

Theorem 4. Every 3-local Euclidean maximum matching is a 1√
2
-approximation

of a global Euclidean maximum matching.

Proof. Consider any 3-local maximum matching M . Let M∗ be a global maxi-
mum matching for the endpoints of edges of M . Consider the set D of diametral
disks introduced by edges of M . Since M is 3-local maximum, any three disks in
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c
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b

a∗

b∗

Fig. 1. Red edges belong to M , black edges belong to S, and blue edge belongs to M∗.

D have a common intersection (by Theorem 2). With this property, it is implied
by Theorem 3 that the disks in D have a common intersection (the shaded region
in Figure 1). Let c be a point in this intersection. Let S be the star obtained
by connecting c to all endpoints of edges of M as in Figure 1. Since c is in the
diametral disk of every edge ab ∈ M , it is at distance at most |ab|/2 from the
midpoint of ab. By applying Lemma 1 (which will be proved in Section 4), with
c playing the role of p and r = 1, we have

|ca|+ |cb| 6
√
2 · |ab|. (1)

In Inequality (1), for every edge ab ∈ M , a unique pair of edges in S is charged
to ab. Therefore, w(S) 6

√
2 ·w(M). Now consider any edge a∗b∗ ∈ M∗. By the

triangle inequality we have that

|a∗b∗| 6 |ca∗|+ |cb∗|. (2)

In Inequality (2), every edge of M∗ is charged to a unique pair of edges in S.
Therefore, w(M∗) 6 w(S). Combining the two resulting inequalities we have
that w(M) > w(M∗)/

√
2. ut

Remark 1. In 1995, Fingerhut [14] conjectured that for any maximum-length
matching {(a1, b1), . . . , (an, bn)} on any set of 2n points in the plane there exists
a point c such that

|aic|+ |bic| 6 α · |aibi| (3)
for all i ∈ {1, . . . , n}, where α = 2/

√
3. The smallest known value for α that

satisfies Inequality (3) is α =
√
2, which is implied by the result of [4]. A proof

of this conjecture, combined with an argument similar to our proof of Theorem 4,
would imply approximation ratio

√
3
2 ≈ 0.866 for 3-local maximum matchings.

4 Better lower bound for 2-local maximum matchings

In this section we prove that µ2 >
√
3/7 ≈ 0.65, that is, 2-local maximum

matchings are
√
3/7 approximations of global ones. Our proof approach em-

ploys an argument similar to that of 3-local maximum matchings. Here we are
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facing an obstacle because diametral disks that are introduced by edges of a
2-local maximum matching may not have a common intersection. To handle this
issue, we require stronger tools. Our idea is to increase the radii of disks—while
preserving their centers—to obtain a new set of disks that have a common in-
tersection. Then we apply our argument on this new set of disks. This gives rise
to somewhat lengthier analysis. Also, two technical complications arise because
now we need to show that the new disks have a common intersection, and we
need to bound the total distance from any point in new disks to the endpoints of
the corresponding matching edges. The following lemmas play important roles
in our proof.

p

p′

a=(−1, 0) b=(1, 0)

r

a
r

d

d

p

p′

b

Fig. 2. Illustration of the proof of Lemma 1.

Lemma 1. Let r > 0 be a real number. If ab is a line segment in the plane and
p is a point at distance at most r·|ab|

2 from the midpoint of ab then

|pa|+ |pb| 6
√

r2 + 1 · |ab|.

Proof. After scaling by factor 2/|ab| we will have |ab| = 2 and p at distance at
most r from the midpoint of ab. After a suitable rotation and translation assume
that a = (−1, 0) and b = (1, 0). Any point p = (x, y) at distance at most r from
the midpoint of ab lies in the disk d of radius r that is centered at (0, 0) as in
Figure 2. Since |ab| = 2, it suffices to prove that |pa|+ |pb| 6 2

√
r2 + 1. Without

loss of generality we may assume that x > 0 and y > 0. Let p′ be the vertical
projection of p onto the boundary of d as in Figure 2. Observe that |pa| 6 |p′a|
and |pb| 6 |p′b|. Thus the largest value of |pa| + |pb| occurs when p is on the
boundary of d. Therefore, for the purpose of this lemma we assume that p is on
the boundary circle of d. The circle has equation x2 + y2 = r2. Therefore, we
can define |pa| + |pb| as a function of x as follows where 0 6 x 6 r (recall that
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x is the x-coordinate of p, and y is the y-coordinate of p).

f(x) = |pa|+ |pb| =
√
(x+ 1)2 + y2 +

√
(x− 1)2 + y2

=
√
x2 + y2 + 1 + 2x+

√
x2 + y2 + 1− 2x

=
√
r2 + 1 + 2x+

√
r2 + 1− 2x.

We are interested in the largest value of f(x) on interval x ∈ [0, r]. By computing
its derivative it turns out that f(x) is decreasing on this interval. Thus the largest
value of f(x) is achieved at x = 0, and it is 2

√
r2 + 1. ut

Lemma 2. Let a, p, b, q be the vertices of a convex quadrilateral that appear in
this order along the boundary. If |pa| = |pb| and ∠aqb > 2π/3 then |pq| 6 2√

3
|pa|.

Proof. After a suitable scaling, rotation, and reflection assume that |pa| = 1, ab
is horizontal, and p lies below ab as in Figure 3-left. Since |pa| = 1 in this new
setting, it suffices to prove that |pq| 6 2/

√
3. Consider the ray emanating from p

and passing through q. Let q′ be the point on this ray such that ∠aq′b = 2π/3,
and observe that |pq′| > |pq|. Thus for the purpose of this lemma we can assume
that ∠aqb = 2π/3. The locus of all points q, with ∠aqb = 2π/3, is a circular
arc C with endpoints a and b. See Figure 3-middle. Let c be the center of the
circle that defines arc C. Since ab is horizontal and |pa| = |pb|, the center c lies
on the vertical line through p. Let d be the disk of radius 1 centered at p. If
c lies on or below p then C lies in d and consequently q is in d. In this case
|pq| 6 1, and we are done. Assume that c lies above p as in Figure 3-middle. By
the law of cosines we have |pq| =

√
|pc|2 + |cq|2 − 2|pc||cq| cosβ where β is the

angle between segments cp and cq. Since |pc| and |cq| are fixed for all points q
on C, the largest value of |pq| is attained at β = π. Again for the purpose of this
lemma we can assume that β = π, in which case |qa| = |qb|. Let α denote the
angle between segments pa and pb. Define f(α) = |pq| where 0 6 α 6 π. Recall
that ∠aqb = 2π/3. This setting is depicted in Figure 3-right. By the law of sines
we have

f(α) = |pq| =
sin

(
π
6 + π−α

2

)
sin

(
π
3

) =
2 sin

(
4π−3α

6

)
√
3

,

where 0 6 α 6 π. By computing the derivative of f(α) it turns out that its
largest value is attained at α = π/3, and it is 2/

√
3. ut

Theorem 5. Let D be a set of pairwise intersecting disks. Let D′ be the set
of disks obtained by increasing the radii of all disks in D by factor 2/

√
3 while

preserving their centers. Then all disks in D′ have a common intersection. The
factor 2/

√
3 is tight.

Proof. It suffices to show that any three disks in D′ have a common intersection
because afterwards Theorem 3 implies that all disks in D′ have a common inter-
section. Consider any three disks d′1, d′2, d′3 in D′ that are centered at c1, c2, c3,
and let d1, d2, d3 be their corresponding disks in D. If d1, d2, d3 have a common
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C

c

p

q

a b

β

p

qq

α

2π
3

π
6
π−α
2

a b

1 1 1 1

d

p

q′

a b

1 1

q

2π
3

Fig. 3. Illustration of the proof of Lemma 2.

intersection, so do d′1, d′2, and d′3. Assume that d1, d2, d3 do not have a common
intersection, as depicted in Figure 4. Let u be the innermost intersection point
of boundaries of d1 and d2, v be the innermost intersection point of boundaries
of d2 and d3, and w be the innermost intersection point of boundaries of d3 and
d1, as in Figure 4. We show that the Fermat point of triangle 4uvw lies in all
disks d′1, d′2, and d′3. This would imply that these three disks have a common
intersection. The Fermat point of a triangle is a point that minimizes the total
distance to the three vertices of the triangle. If all angles of the triangle are less
than 2π/3 the Fermat point is inside the triangle and makes angle 2π/3 with
every two vertices of the triangle. If the triangle has a vertex of angle at least
2π/3 the Fermat point is that vertex.

c1

c2

c3

d1

d2

d3

d′1

d′2

d′3

f 2π
3 c1

c2

c3

d1

d2

d3

d′1

vf =
u

ww

uv

Fig. 4. Illustration of the proof of Theorem 5

Let f be the Fermat point of 4uvw. First assume that all angles of 4uvw
are less than 2π/3, as in Figure 4-left. In this case f is inside 4uvw and ∠ufw =
∠wfv = ∠vfu = 2π/3. By Lemma 2 we have |c1f | 6 2√

3
|c1u| (w, c1, u, f play

the roles of a, p, b, q in the lemma, respectively). This and the fact that the radius
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of d′1 is 2√
3
|c1u| imply that f lies in d′1. Analogously, we can show that f lies in

d′2 and d′3. This finishes our proof for this case.
Now assume that one of the angles of 4uvw, say the angle ∠uvw at v, is at

least 2π/3; see Figure 4-right. In this case f = v. Since f is on the boundaries of
d2 and d3, it lies in d′2 and d′3. By Lemma 2 we have |c1f | 6 2√

3
|c1u|. Similarly

to the previous case, this implies that f lies in d′1. This finishes our proof.
The factor 2/

√
3 in the theorem is tight in the sense that if we replace it by

any smaller constant then the disks in D′ may not have a common intersection.
To verify this consider three disks of the same radius that pairwise touch (but do
not properly intersect). For example assume that d1, d2, d3 in Figure 4-left have
radius 1 and pairwise touch at u, v, and w. In this case d′1, d′2, d′3 have radius
2/
√
3. Moreover ∠wc1u = ∠uc2v = ∠vc3w = π/3 and f is inside 4uvw. In this

setting |c1f | = |c2f | = |c3f | = 2/
√
3. This implies that f is the only point in

the common intersection of d′1, d′2 and d′3. Therefore, if the radii of these disks
are less than 2/

√
3 then they wouldn’t have a common intersection. ut

Theorem 6. Every 2-local Euclidean maximum matching is a
√
3/7 approxi-

mation of a global Euclidean maximum matching.

Proof. Our proof approach is somewhat similar to that of Theorem 4. Consider
any 2-local maximum matching M . Let M∗ be a global maximum matching
for the endpoints of edges of M . It is well known that that the two diametral
disks introduced by the two edges of any maximum matching, on any set of
four points in the plane, intersect each other (see e.g. [4]). Consider the set
D of diametral disks introduced by edges of M . Since M is 2-local maximum,
any two disks in D intersect each other. However, all disks in D may not have
a common intersection. We increase the radii of all disks in D by factor 2/

√
3

while preserving their centers. Let D′ be the resulting set of disks. By Theorem 5
the disks in D′ have a common intersection. Let c be a point in this intersection.
Let S be the star obtained by connecting c to all endpoints of edges of M .
Consider any edge ab ∈ M , and let d be its diametral disk in D and d′ be the
corresponding disk in D′. The radius of d′ is 2√

3
· |ab|2 . Since c is in d′, its distance

from the center of d′ (which is the midpoint of ab) is at most 2√
3
· |ab|

2 . By
applying Lemma 1, with p = c and r = 2/

√
3, we have |ca|+ |cb| 6

√
7/3 · |ab|.

This implies that w(S) 6
√
7/3 ·w(M). For any edge a∗b∗ ∈ M∗, by the triangle

inequality we have |a∗b∗| 6 |ca∗| + |cb∗|, and thus w(M∗) 6 w(S). Therefore,
w(M) >

√
3/7 · w(M∗). ut

5 Pairwise-crossing matchings are globally maximum

A pairwise crossing matching is a matching in which every pair of edges cross
each other. It is easy to verify that any pairwise crossing matching is 2-local
maximum. We claim that such matchings are in fact global maximum. We also
claim that pairwise crossing matchings are unique. Both claims can be easily
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verified for points in convex position. In this section we prove these claims for
points in general position, where no three points lie on a line.

Observation 1 Let M be a pairwise crossing perfect matching on a point set
P . Then for any edge ab ∈ M it holds that the number of points of P on each
side of the line through ab is (|P | − 2)/2.

Theorem 7. A pairwise crossing perfect matching on a point set is unique if it
exists.

Proof. Consider any even-size point set P that has a pairwise crossing perfect
matching. For the sake of contradiction assume that P admits two different
perfect matchings M1 and M2 each of which is pairwise crossing. The union of
M1 and M2 consists of connected components which are single edges (belong to
both M1 and M2) and even cycles. Since M1 6= M2, M1 ∪ M2 contains some
even cycles. Consider one such cycle, say C. Let C1 and C2 be the sets of edges
of C that belong to M1 and M2 respectively. Observe that each of C1 and C2 is
a pairwise crossing perfect matching for vertices of C.

b1
b2

a

L R

Let a denote the lowest vertex of C; a is a vertex of
the convex hull of C. Let b1 and b2 be the vertices of
C that are matched to a via C1 and C2 respectively.
After a suitable reflection assume that b2 is to the
right side of the line through a and b1 as in the figure
to the right. Let L be the set of vertices of C that are
to the left side of the line through ab1, and let R be
the set of vertices of C that are to the right side of
the line through ab2. Since C1 is pairwise crossing, by
Observation 1 we have |L| = (|C|−2)/2. Analogously we have |R| = (|C|−2)/2.
Set C ′ = L ∪ R ∪ {a, b1, b2}, and observe that C ′ ⊆ C. Since the sets L, R,
and {a, b1, b2} are pairwise disjoint, |C ′| = |L| + |R| + 3 = |C| + 1. This is a
contradiction because C ′ is a subset of C. �

In Theorem 9 we prove that a pairwise crossing matching is globally max-
imum, i.e., it is a maximum-length matching for its endpoints. The following
“edge-disjoint paths problem” that is studied by Okamura and Seymour [28]
will come in handy for our proof of Theorem 9. To state this problem in a simple
way, we borrow some terminology from [32].

Let G = (V,E) be an embedded planar graph and let N = {(a1, b1), . . . ,
(ak, bk)} be a set of pairs of distinct vertices of V that lie on the outerface, as
in Figure 5(a). A problem instance is a pair (G,N) where the augmented graph
(V,E∪{a1b1, . . . , akbk}) is Eulerian (i.e. it has a closed trail containing all edges).
We note that the augmented graph may not be planar. The problem is to decide
whether there are edge-disjoint paths P1, . . . , Pk in G such that each Pi connects
ai to bi.3 Okamura and Seymour [28] gave a necessary and sufficient condition
for the existence of such paths; this condition is stated below in Theorem 8. A
3 This problem has applications in multicommodity flows in planar graphs [28].
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cut X is a nonempty proper subset of V . Let c(X) be the number of edges in G
with one endpoint in X and the other in V \X, and let d(X) be the number of
pairs (ai, bi) with one element in X and the other in V \X. A cut X is essential
if the subgraphs of G induced by X and V \X are connected and neither set is
disjoint with the outerface of G. If X is essential then each of X and V \X shares
one single connected interval with the outerface; see Figure 5(a).

Theorem 8 (Okamura and Seymour, 1981). An instance (G,N) is solvable
if and only if for any essential cut X it holds that c(X)− d(X) > 0.

Wagner and Weihe [32] studied a computational version of the problem and
presented a linear-time algorithm for finding edge-disjoint paths P1, . . . , Pk.

a1 a2

a3

a4

a5

b1

b2

b3

b5

b4

X

a5

a2

b4

b2

a4

a3

b3a1
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Fig. 5. (a) An essential cut X with c(X) = 4 and d(X) = 2. (b) Edge-disjoint paths
between endpoints of edges of M∗.

Theorem 9. Any pairwise crossing matching is globally maximum.

Proof. Consider any matching M with pairwise crossing segments, and let P be
the set of endpoints of edges of M . Let A be the arrangement defined by the
segments of M . Notice that w(A) = w(M), where w(A) is the total length of
segments in A. This arrangement is a planar graph where every vertex, that
is a point of P , has degree 1 and every vertex, that is an intersection point
of two segments of M , has degree 4 (assuming no three segments intersect at
the same point). Now consider any perfect matching M∗ on P ; M∗ could be a
global maximum matching. Denote the edges of M∗ by a1b1, a2b2, . . . . To prove
the theorem it suffices to show that w(M∗) 6 w(A). To show this inequality, we
prove existence of edge-disjoint paths between all pairs (ai, bi) in A, as depicted
in Figure 5(b). We may assume that M and M∗ are edge disjoint because shared
edges have the same contribution to each side of the inequality.

Observe that the pair (A,M∗) is an instance of the problem of Okamura and
Seymour [28] because the augmented graph is Eulerian (here we slightly abuse
M∗ to refer to a set of pairs). In the augmented graph, every point of P has



12 A. Biniaz et al.

degree 2, whereas the degree of every other vertex is the same as its degree in
A. Consider any essential cut X in A. Set XP = X ∩ P . Consider the two sets
XP and P \XP . Denote the smaller set by Y1 and the larger set by Y2. Notice
that |Y1 ∪ Y2| = |P |, |Y1| 6 |P |/2, and |Y2| > |P |/2. We claim that no two
points of Y1 are matched to each other by an edge of M . To verify this claim we
use contradiction. Assume that for two points a and b in Y1 we have ab ∈ M .
Since X is essential, each of Y1 and Y2 consists of some points of P that are
consecutive on the outerface of A. This and the fact that M is pairwise crossing
imply that all points of Y2 lie on one side of the line through ab. This contradicts
Observation 1, and hence proves our claim.

The above claim implies that every point in Y1 is matched to a point in Y2 by
an edge of M . Any such edge of M introduces at least one edge between X and
A \X in A. Therefore c(X) > |Y1|. Since every ai and every bi belong to P , the
number of pairs (ai, bi) with one element in X and another one in A\X is the
same as the number of such pairs with one element in Y1 and the other in Y2. The
number of such pairs cannot be more than |Y1|, and thus d(X) 6 |Y1|. To this
end we have that c(X) > d(X). Having this constraint, Theorem 8 implies that
the instance (A,M∗) is solvable, and thus there are edge-disjoint paths between
all pairs (ai, bi). By the triangle inequality, w(M∗) is at most the total length of
these edge-disjoint paths, which is at most w(A). ut

6 Discussion

We believe that 3-local Euclidean maximum matchings are “very good” approx-
imations of global Euclidean maximum matchings. In particular we think that
the lower bound on the length ratio should be closer to 1 than to 1/

√
2. A nat-

ural open problem is to use the geometry of the Euclidean plane and improve
the lower bounds on the length ratios for 2- and 3-local maximum matchings.

From the computational point of view, there are algorithms that compute a
global maximum matching in polynomial time [15–18, 25] and there is a linear-
time algorithm that gives a (1− ε)-approximation [8]. It would be interesting to
see how fast a k-local maximum matching can be computed. Theorem 1 suggests
a local search strategy where repeatedly k-subsets of the current matching are
tested for improvement. In its straightforward version this requires superlinear
time. It would be interesting to see whether geometric insights could speed up
the local search, maybe not (theoretically) matching the linear-time bound from
[8], but leading to a practical and in particular simple algorithm.

a

b

We note that analogous ratios for minimum-length
matchings could be arbitrary large. In the figure to the
right 2n points are placed on a circle such that distances
between consecutive points are alternating between 1
and arbitrary small constant ε. For a sufficiently large n,
the red matching which has n edges of length 1, would
be 2-local minimum (the two arcs in the figure are cen-
tered at a and b, and show that the length |ab| is larger



Euclidean maximum matchings in the plane—local to global 13

than the total length of two consecutive red edges). In this setting, the global
minimum matching would have n edges of length ε. This shows that the ratio of
the length of 2-local minimum matchings to that of global minimum matchings
could be arbitrary large. By increasing the number of points (and hence flatten-
ing the perimeter of the circle) in this example, it can be shown that the length
ratio of k-local minimum matchings could be arbitrary large, for any fixed k > 2.
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