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Abstract

We study the following maximization problem in the Euclidean plane: Given a collection of
neighborhoods (polygonal regions) in the plane, the goal is to select a point in each neighborhood
so that the longest spanning tree on selected points has maximum length. It is not known
whether or not this problem is NP-hard. We present an approximation algorithm with ratio
0.548 for this problem. This improves the previous best known ratio of 0.511 due to Chen and
Dumitrescu (Discrete Mathematics, Algorithms and Applications, 2020).

The presented algorithm takes linear time after computing a diameter of the neighborhoods.
Even though our algorithm itself is fairly simple, its analysis is rather involved. In some part
we deal with a minimization problem involving multiple parameters. We use a sequence of
geometric transformations to reduce the number of parameters and simplify the analysis.

1 Introduction

The spanning tree is a well-studied and fundamental structure in graph theory and combinatorics.
The well-known minimum spanning tree (Min-ST) problem asks for a spanning tree with minimum
total edge-weight. In contrast, the maximum spanning tree (Max-ST) problem asks for a spanning
tree with maximum total edge-weight. In the context of abstract graphs, the two problems are
algorithmically equivalent in the sense that an algorithm that finds a Min-ST can also find a
Max-ST within the same time bound (by simply negating the edge weights), and vice versa. The
situation is quite different in the context of geometric graphs where vertices are points in the plane
and edge-weights are Euclidean distances between points. In geometric graphs, an algorithm that
exploits geometry for finding a Min-ST is not necessarily useful for finding a Max-ST because
there is no known geometric transformation between the “nearest” and “farthest” relations among
points [22]. The existing geometric algorithms, for solving these two problems, exploit different
sets of techniques.

Problems related to maximum configurations in the plane (also know as long configurations)
have received considerable attention after the seminal work of Alon, Rajagopalan, and Suri [2]. They
studied configurations such as spanning trees, perfect matchings and Hamiltonian paths. In this
paper we study the longest spanning tree with neighborhoods (Max-ST-NB) problem. We are given
a collection of n neighborhoods (polygonal regions) in the Euclidean plane and we want to find a
maximum-length tree that connects n representative points, one point from each neighborhood, as in
Figure 1(a). The length of the tree is the total Euclidean length of its edges. Each neighborhood is the
union of simple polygons, and the neighborhoods are not necessarily disjoint. The neighborhoods
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are assumed to be colored by n different colors. The classical Euclidean Max-ST problem is a special
case of the Max-ST-NB in which each neighborhood consists of exactly one point, as in Figure 1(b).
Although the Euclidean Max-ST problem can be solved in O(nlogn) time [22], it is not known
whether or not the Max-ST-NB problem can be solved in polynomial time. The difficulty lies in
choosing representative points from neighborhoods; once these points are selected, the problem is
reduced to the Euclidean Max-ST problem.

(a) Max-ST-NB (b) Max-ST

Figure 1: (a) Longest spanning tree with four polygonal neighborhoods that are colored red, green,
blue, and purple. (b) Euclidean maximum spanning tree.

It is easily seen (see Section 2) that the longest star (a staris a tree that connects a point in one
neighborhood to a point in each of the other neighborhoods) achieves a 0.5-approximate solution for
the Max-ST-NB problem. Recently, Chen and Dumitrescu [10] present an approximation algorithm
with ratio 0.511, which is the first improvement beyond 0.5.

Although any optimal solution for the Max-ST problem contains a diametral pair (two points
with maximum distance) as an edge, an optimal solution for the Max-ST-NB problem does not
necessarily contain any bichromatic diametral pair (two points with maximum distance that belong
to different neighborhoods). Another result of Chen and Dumitrescu [10] shows that any algorithm,
that always includes a bichromatic diametral pair in the solution, cannot achieve an approximation
ratio better than /2 — v/3 ~ 0.517. This somehow breaks the hope for getting a good approxi-
mation ratio by using greedy techniques. Thus, to improve the ratio beyond 0.517 one needs to
employ some nontrivial ideas.

1.1 Our contribution and approach

We present an approximation algorithm for the Max-ST-NB problem with improved ratio @ ~
0.548. Our algorithm is not complicated: We compute a double-star (a tree of diameter 3 in which
every vertex is connected to one of the two vertices that are considered as centers) centered at a
bichromatic diametral pair, and compute up to three stars (trees of diameter 2) centered at points
on the smallest enclosing circle, and then report the longest one; see Figure 2. Our algorithm takes
linear time after computing a bichromatic diameter. Our analysis involves a minimization problem
with multiple variables. To simplify the analysis we apply a sequence of geometric transformations
and reduce the number of variables. The following theorem summarizes our main contribution.

Theorem 1. A 0.548-approximation for the longest spanning tree with neighborhoods can be com-
puted in linear time after computing a bichromatic diameter.

As a minor result we improve the upper bound 0.517 on the approximation ratio of algo-
rithms that always include a bichromatic diameter in their solutions. We show that the ratio of
such algorithms cannot be better than 0.5. This upper bound is tight because there exists a 0.5-
approximation algorithm that always includes a bichromatic diameter (see Section 2). Therefore,



to obtain a ratio of better than 0.5 one should take into account also spanning trees that do not
contain any bichromatic diameter. Indeed the output of our 0.548-approximation algorithm does
not necessarily contain a bichromatic diameter.

1.2 Related problems and applications

The Max-ST-NB problem has the same flavor as the Euclidean group Steiner tree problem in which
we are given n groups of points in the plane and the goal is to find a shortest tree that contains
“at least” one point from each group. The group Steiner tree problem in graphs is NP-hard and
cannot be approximated by a factor O(log?~n) for any e > 0 [16]. The Max-ST-NB also lies
in the concept of imprecision in computational geometry where each input point is provided as
a region of uncertainty and the exact position of the point may be anywhere in the region; see
for example [13, 18]. Analogous problems have been studied for other structures, e.g., minimum
spanning tree with neighborhoods [8, 13, 25], traveling salesman tour with neighborhoods [3, 20, 21]
(which is APX-hard [12]), and convex hull of imprecise points [18, 23], to name a few. We refer the
interested readers to the thesis of Loffler [17].

The maximum spanning tree and related problems, in addition to their fundamental nature,
find applications in worst-case analysis of various heuristics in combinatorial optimization [2], and
in approminating maximum triangulations [5, pp. 338]. They also appear in clustering algorithms
where one needs to partition a set of entities into well-separated and homogeneous clusters [4, 22].
Maximum spanning trees are directly related to computing diameter and farthest neighbors which
are fundamental problems in computational geometry, with many applications [1].

2 Preliminaries for the algorithm

The output of our algorithm is either a star or a double-star. A star, centered at a vertex p, is a
tree in which every edge is incident to p. A double-star, centered at two vertices p and ¢, is a tree
that contains the edge pq and its every other edge is incident to either p or q.

Let P be a set of points in the Euclidean plane. The smallest enclosing disk for P is the smallest
disk that contains all the points of P. A diametral pair of P is a pair of points in P that attain
the maximum Euclidean distance. If the points in P are colored, then a bichromatic diametral pair
of P is defined as a pair of points in P with different colors that attain the maximum Euclidean
distance. The center of mass of P (also knows as the centroid) is a point m in the plane such that
for any arbitrary point u in the plane we have

peP

where @ is the position vector of p relative to u. Intuitively, the center of mass of a system of
weighted points is a point where the system balances (in our case, we assume that all points of P
have the same weight).

The intersection of two disks is called a lens. We denote the straight line segment between two
points p and ¢ in the plane by pg and we denote the Euclidean distance between them by |pg|. In
our context, a geometric graph is a graph whose vertices are points in the plane and whose edges
are straight line segments. The length of a geometric graph G, denoted by len(G), is the total
Euclidean length of its edges.



A simple 0.5-approximation algorithm. Chen and Dumitrescu [10] pointed out the following
simple 0.5-approximation algorithm for the Max-ST-NB problem (a similar approach was previously
used in [2] and [14]). Take a bichromatic diametral pair (a,b) from the vertices of the given n
polygonal neighborhoods; a and b belong to two different neighborhoods. Choose an arbitrary
point from each of the other n — 2 neighborhoods. Let S, be the star obtained by connecting a to b
and a to all chosen points. Define S, analogously on the same point set. Every edge of any optimal
solution T* has length at most |ab|, and thus len(7%) < (n — 1)|abl. By the triangle inequality
len(Sy) + len(Sy) > n|ab] > len(T*). Therefore the longer of S, and S is a 0.5-approximate
solution for the problem.

3 The approximation algorithm

In this section we prove Theorem 1. Put § = @ ~ 0.548. To facilitate comparisons we use
the same notation as of Chen and Dumitrescu [10]. Let X = {Xji, Xs,...,X,} be the given
collection of n polygonal neighborhoods of total N vertices. We assume that each X; is colored
by a unique color. Our algorithm selects representative points only from boundary vertices of
the polygonal neighborhoods. Thus, in the algorithm (but not in the analysis) we consider each
polygonal neighborhood X; as the set of its boundary vertices, and consequently we consider X as
a collection of N points colored by n colors. Define the longest spanning star centered at a point
p € X; as the star connecting p to its farthest point in every other neighborhood.

Algorithm. The main idea of the algorithm is simple: We compute a spanning double-star D
and (at most) three spanning stars Si,S2, 53, and then return the longest one.

We compute D as follows. Let (a,b) be a bichromatic diametral pair of X. After a suitable
relabeling assume that a € X; and b € X5. Add the edge ab to D. For each X;, with ¢ € {3,...,n},
find a vertex p; € X; that is farthest from a and find a vertex ¢; € X; that is farthest from b (it
might be the case that p; = ¢;). If |ap;| > |bg;| then add ap; to D otherwise add bg; to D. The
double-star D spans all neighborhoods in X', and each edge of D has length at least |ab|/2 because
|ap;| + |bg;| = |ab| due to our choices of p; and g;; see Figure 2(a). Next we introduce the stars S7,
So, and S3. Let C' be the smallest enclosing disk for X'. Notice that the boundary of C' contains at
least two points of X'. If it contains exactly two points then we define S7 and S5 as the two longest
spanning stars that are centered at these points (in this case we do not have S3). If it contains
three or more points then there exist three of them such that the triangle formed by those points
contains the center of C' [11, Chapter 4, Section 4.7]. In this case we define Si, S2, and S3 as the
three longest spanning stars that are centered at those three points, as in Figure 2(b).

Notice that, although the double-star D contains the bichromatic diameter ab, the stars S, So,
and S3 may not contain any bichromatic diameter.

Running time. The smallest enclosing disk C' for X can be computed in O(N) time [9, 19, 24].
The result of [7], that computes a maximum spanning tree on multicolored points, implies that a
bichromatic diametral pair (a,b) for X can be found in O(N log Nlogn) time (the algorithm of
Bhattacharya and Toussaint [6] also computes a bichromatic diameter, but only for two-colored
points). The rest of our algorithm (finding farthest points from a, b, and from the points on the
boundary of C') takes O(N) time.



Figure 2: Illustration of the algorithm: (a) the double-star D, and (b) longest stars Si, So, and Ss.

3.1 Analysis of the approximation ratio

Our main plan for analysis works as follows: We show that if the radius of C' is at least § then one
of the stars 5; is a desired tree, otherwise the double-star D is a desired tree.

For the analysis we consider X as the initial collection of polygonal neighborhoods. Let T™
denote a longest spanning tree with neighborhoods in X. It is not hard to see that for any point
in the plane, its farthest point in a polygon P must be a vertex of P (see also [11, Chapter 7,
Section 7.4]). Thus, any bichromatic diameter of X" is introduced by two vertices of polygons in X'.
Hence the pair (a,b), selected in the algorithm, is a bichromatic diameter of the initial collection X'.
Therefore, |ab| is an upper bound for the length of edges in T*. After a suitable scaling assume
that |ab] = 1. Since T* has n — 1 edges,

len(T*) < (n—1)|ab] =n — 1. (2)

Recall the smallest enclosing disk C' from the algorithm. Let ¢ denote the center of C' and r
denote its radius. If the boundary of C has exactly two points of X then denote them by ¢; and cs.
In this case the segment cjcy is a diameter of C; see [11, Chapter 4, Section 4.7]. If the boundary
of C has three or more points of X’ then denote the three points (that are chosen in the algorithm)
by c1, c2, and c3. In this case cjcacs is an acute or a right triangle and the center c lies in its interior
or on its boundary; see [11, Chapter 4, Section 4.7]. Recall the longest spanning stars S, S2, S3
from the algorithm. After a suitable relabeling assume that the star S; is centered at the point ¢;.

Lemma 1. If r > § and the boundary of C contains ezxactly two points of X then
max{len(S1),len(S2)} > § - len(T™).

Proof. In this case c¢icg is a diameter of C, and thus |cica] = 2r > 2§ > 1. As the bichromatic
diameter is |ab| = 1 and |cieg| > 1, it turns out that ¢; and ¢y have the same color. Assume that
c1,c2 € X1. Pick an arbitrary point p; from each X; with i € {2,...,n}. Let S| be the spanning
star that connects c¢; to all p;s. Let S be the spanning star that connects ¢z to all p;s. Notice
that len(S]) < len(S7) and len(S%) < len(S2). By bounding the maximum of two numbers by their
average, then using the triangle inequality and (2) we get:
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Figure 3: Illustration of the proofs of (a) Lemma 1, (b) Lemma 2, and (c) Lemma 3.

Lemma 2. If the boundary of C contains three or more points of X then for any point m in the
plane there exists a point c; € {c1,ca,c3} such that |c;m| > 7.

Proof. Let C; be the disk of radius r centered at each ¢;. The boundary of each C; passes through
the center c of C, as in Figure 3(b). As the triangle ¢jcacg contains c it holds that C1NC2NCs = {c}.
Therefore there exists a disk C; that does not have m in its interior, and thus |c;m| > r. O

Lemma 3. Ifr > § and the boundary of C contains three or more points of X then
max{len(S7),len(S3),len(S3)} > 0 - len(T™).

Proof. Recall that the triangle cjcac3 contains the center ¢ of C. We consider three cases depending
on similarity of colors of ¢1, ¢, and c3.

e The points c¢1, c2, c3 have pairwise distinct colors. Thus, they belong to three different
neighborhoods. After a suitable relabeling assume that ¢; € X1, ¢o € X9, and ¢3 € X3. Pick
an arbitrary point from each X; with i € {4,...,n}. Denote the selected points by P. Let m
be the center of mass of P. By Lemma 2 there exists a point ¢; € {c1, c2, c3} where |¢;m| > 7.
After a suitable relabeling assume that ¢; = ¢, and thus |c;m| > r. By (1) we get

> lewpl = |P| - leam| = (n=3) -7 = (n—3) 4.
peP

Let S} be the star that connects ¢; to all points of P and to ¢z and c3. Since S is the
longest spanning star centered at ci, we have that len(S;) > len(S]). Since the triangle
c1c2c3 contains ¢, we have |cacq| + |eser| = |eac| + |ese| = 2r > 2. These inequalities and (2)
give

len(Sy) = len(S]) = |erea| + |eres| + Z leipl 2204+ (n—3)-0=(n—1)-0 >6-len(T™).
pEP

o All points ¢1, ¢2, c3 have the same color. Assume that cq, ca, c3 € X7. Pick an arbitrary point
from each X; with ¢ € {2,...,n}. Denote the selected points by P. Let m be the centroid
of P, and let ¢; be the point in {ci,ca,c3} for which |eym| > r (by Lemma 2 such a point
exists). Let S{ be the star that connects ¢; to all points of P. Similar to the previous case
by using (1) we get

len(S1) = len(Sy) > Z leip| = |P| - leim| > (n—1)-r>(n—1)-6 = -len(T™).
peEP



o Only two of ¢1, g, c3 have the same color. This case is depicted in Figure 3(c). Assume that
co and c3 have the same color and they belong to Xs. Also assume that ¢; € X;. We handle
this case in a slightly different way; this is because if the point ¢; from Lemma 2 (which would
have distance at least r to the centroid) belongs to {c2,c3} then there is no guarantee that
lcje1| = 0, and hence we may not be able to establish the lower bound ¢ - (n — 1).

Pick an arbitrary point from each X; with ¢ € {3,...,n}. Let P be the set containing all
selected points together with the point ¢;. Let m be the centroid of P. Consider the point ¢;
(from Lemma 2) for which |¢;m| > r. If ¢; = ¢y then let S5 be the star that connects ¢z to
all points of P. In this case

len(Sy) > len(S%) = Z leap| = |P| - |cam| = (n—1)-r>(n—1)-6 > -len(T™).
peP

If ¢; = c3 then by a similar argument we get len(S3) > § - len(7).

Now assume that ¢; = ¢1, and thus |cym| > r. Let P’ = P\ {c1}, and let m' be the centroid of
P'. Using the recursive definition of centroid [15]' (based on the Euclidean rule of the lever)
the point m lies on the segment c¢;m’, as in Figure 3(c). Informally speaking, if we remove
¢1 from P then its (new) centroid moves away from c;. Therefore |cym/| > |eym| > r. Let S
be the star obtained by connecting ¢; to all points of P’ and to the one of co and c3 that is
farther from c;. Assume that cg is the farther one, and notice that |cica| > r. Then,

len(S1) > len(S)) = [erca| + Y leipl = v+ [P'] - jexm/| = v+ (n = 2) -7 > 6 -len(T*). O
pEP’

Lemmas 1 and 3 take care of our analysis for the case where the radius r of C' is at least §. The
next lemma takes care of the case where r < ¢ by showing that in this case the double-star D is a
desired tree. We employ a collection of geometric transformations to simplify the proof.

Lemma 4. Ifr < ¢ then len(D) > ¢ - len(T™).

Proof. Recall (a,b) as a bichromatic diametral pair of X'. Also recall our assumptions that a € X7,
b € Xs, and that |ab| = 1.

One challenge that we face here is that the vertices of our double-star D could be different from
the vertices of the optimal tree T*; this could make it difficult to obtain a lower bound for the
length of D in terms of the length of T*. But we know that the vertices of both D and T™ come
from the same ground sets X, ..., X,. Our plan is to compare the length of D with the length of
T* by comparing the lengths of their edges separately. For each i € {1,...,n} let p! and p; be the
vertices of T* and D that belong to Xj, respectively (it might be that p; = p;). Notice that a = p;
and b = py. Direct all edges of T towards p] and direct all edges of D towards p;. To each vertex
of T* and D (except p} and p;) assign its unique outgoing edge. For each i € {2,...,n} let len(p})
and len(p;) be the length of edges that are assigned to p} and p;, respectively. We already know that
len(pz) = |abl = 1 and len(p}) < |ab| =1 for all 4. Thus, in order to show that len(D) > ¢ - len(T™)
it suffices to show that

len(p;
len(p})
for each ¢ € {3,...,n}. From the optimization point of view, we are interested in the minimum
value of the ratio 112;1((’) ) over all pairs (pi, p}). In particular we want this value to be at least ¢.
b; ) ?

!To determine the centroid of k > 2 points we can replace any k — 1 of them by their centroid and then find the
centroid of the two remaining points.



From now on we consider a fixed value of i € {3,...,n}. For simplicity we write p for p;, p*
for p¥, and X for X;. In the rest of this section we will show that len(p) > ¢ - len(p*). Recall from
the algorithm that p is connected to the farther of a and b, and thus len(p) = max{|pal, |pb|}. Let
D(a,d) and D(b,0) be the disks of radii § that are centered at a and b, respectively. If p is outside
D(a,d) then len(p) > |pa| = 6 > §-len(p*). Likewise, if p is outside D(b, ) then len(p) = J-len(p*),
and we are done.

In the rest of this section we assume that p is in the lens L = D(a,0) N D(b, ) which is depicted
in Figure 4(a). In the current setting, the neighborhood X (which contains p) lies entirely in L
because otherwise our algorithm would have picked a point of X outside L. Therefore, the point p*
(which also belongs to X)) lies in L. Moreover max{|ap|, |bp|} > max{|ap*|, |bp*|} because otherwise
our algorithm would have picked p* instead of p. Thus, to achieve (3), it suffices to show that

max{|ap*|, |bp*[}
len(p*)

> 6, (4)

For any point ¢ in disk C' let go be the intersection point of the boundary of C' with the ray
emanating from ¢ and passing through the center ¢; Figure 4(a) depicts this for point ¢ = p*. The
point g¢ is the farthest point of C' from ¢. Thus, the largest possible length of the edge of T™* that
is assigned to p* is [p*pg|, that is, len(p*) < |p*p&|. Thus, to achieve (4), it suffices to show that

max{|ap*|, |bp*|}
PP

> 4. (5)

Inequality (5) deals with a minimization problem which has multiple variables, including the
coordinates of a, b, p*, and c. We use a sequence of geometric transformations to reduce the number
of variables and simplify the analysis. Our transformations will not increase the ratio in (5).

If we increase the radius of C' (while fixing its center c) then |p*pf| would increase but |ap*|
and |bp*| remain unchanged. Thus, for the purpose of (5) we can assume that C' has maximum
possible radius which is §. Then, for any point ¢ € C' it holds that |gqc| = |qc| + |cqc| = |ge| + 9.

Let ¢(a, b) be the line through a and b. If p* lies in the same side
of £(a,b) as ¢ does, then let p* be the reflection of p* with respect
to £(a,b); see the figure to the right. Notice that p* also lies in
lens L (which is not drawn in the figure). Moreover lap*| = |ap*| (a,b)
and |bp*| = [bp*|, but |p*pf| < |p* p*| because p* is closer to ¢ ’
than p* to c¢. Thus, for the purpose of inequality (5), the point p*
achieves a smaller ratio than p*. Therefore, we can assume that p*
lies in a different side of ¢(a,b) than ¢ does.

Let £ denote the configuration that is the union of the lens L, the segment ab, and the point p*.
Notice that any translation, rotation, and reflection of £ will not change |ap*| and |bp*|. Consider
the ray that is emanating from ¢ and passing through p*. Move £ along this ray and stop as soon
as one of a and b lies on the boundary of C. Assume that b is the point that lies on C. This
translation can only increase [p*pf,|, but not decrease. Now fix £ at b and rotate it in the direction,
that moves p* away from ¢, until a also lies on the boundary of C. After rotation, one vertex of
the lens L lies on ¢ because the boundaries of D(a,d) and D(b,d) go through c; see Figure 4(b).
Also, the lens L does not intersect the boundary of C' because the distance of its other vertex to ¢
is 24/62 — (1/2)2, which is strictly smaller than 6. The rotation can only increase [p*p&|, but not
decrease. (Such a rotation moves p{, on the boundary of C, but that does not affect the argument
because the value |cpf|, which is equal to the radius of C, remains unchanged.) Therefore, above
transformations do not increase the ratio in (5). After these transformations assume, without loss




Figure 4: Illustration of (a) the lens L and the point p{ associated with p*, (b) the configuration
L after translation and rotation, (c) the points g, c1, ca.

of generality, that ab is horizontal, a is to the left of b, and ¢ lies above ab. The current setting is
depicted in Figure 4(b). Notice that |p*p&| = |ep*| + |epi| = |ep*| + . Due to symmetry we may
assume that p* lies to the right side of the vertical line through ¢, and thus |ap*| > |bp*|, as shown
in Figure 4(c). In the current setting, to achieve (5) it suffices to show that

|ap™|

— > 6

[+ 0

Let ¢ be the intersection point of ap* with the vertical line through ¢, as in Figure 4(c). Then
lap*| = |ag| + |qp*| and |ep*| < |cq| + |gp*|. Thus,

ap*| o _lag| +lep*|  laq]
= = Y
lep*|+6 ™ leql + lqp*[ +6 ~ |eql + 6
where the second inequality is valid because we subtract the same amount |gp*| from the numerator

and denominator of a fraction which is smaller than 1 (notice that |aq| < |cq|+3). Thus, to show (6)
it suffices to show that

|ag]
> 0.
legl +6 ~ 0 (7)

Recall the definition of L and that its topmost point lies on the center c¢. Let ¢; be the
intersection point of ab with the vertical line through ¢, and let co be the lowest point of L; see
Figure 4(c). Then |cci| = |c1eal, |ac| = |aca] = 9, and |aci| = 1/2. Notice that ¢ lies on the
segment cice, and |cq| = |cc1| + |ger|. Denote the length |gei| by . Then 0 < x < |e¢pez|. Using
the Pythagorean theorem we get |ag| = \/2? + 1/4 and |cic2| = /62 — 1/4. Thus we can write the
ratio in (7) as a function f which depends only on z:

fla) = lag| B x2+1/4

Cleg +6 z4 o432 —1/4

where z € [O, \/W] . The function f(z) is monotonically decreasing on this interval of 2 and
thus its minimum value is attained at \/m Plugging this into f we get f (M) =
@ = ¢. This verifies (7) and finishes the proof of the lemma. O




The cases considered in Lemmas 1, 3, and 4 ensure that the length of one of Sy, So, S3, and D
is at least 0 - len(7™). This concludes our analysis and finishes the proof of Theorem 1.
3.2 Inclusion of bichromatic diameter

Here we show that the approximation ratio of an algorithm, that always includes a bichromatic
diametral pair in its solution, cannot be larger than 0.5.

Xl X3 ’k'—‘\, Xn X2 Xl

o—1] 1 1 o<—] —2c——0

Po 1 P2 p3
B

Figure 5: Illustration of the upper bound 0.5 for inclusion of a bichromatic diametral pair.

We introduce an input instance with n neighborhoods. Consider four points pg = (0,0), p1 =
(1,0), p2 = (2,0), and p3 = (3—2¢,0) for arbitrary small € > 0, e.g. € = 1/n. Our input consists of
neighborhoods X1, ..., X, where X1 = {po,p3}, X2 = {p2}, and each of X3, ..., X,, has exactly one
point that is placed at distance at most ¢ from p;; see Figure 5. In this setting, (po, p2) is the unique
bichromatic diametral pair. Consider any tree T' that contains the bichromatic diameter popo (this
means that ps is not in T'). Any edge of T incident to X3, ..., X has length at most 1+&. Therefore
len(T) <2+ (1+¢)(n—2) <n+ 1. Now consider another tree 7" that does not contain pops but
connects each of X, ..., X,, to p3. The length of T” is at least (1 — 2¢) + (2 — 3¢)(n — 2) > 2n — 6.
Then, the ratio

len(T") n+1
len(T") T 6

tends to 1/2 in the limit. This establishes the upper bound 0.5 on the approximation ratio.

4 Conclusions

A natural open problem is to further improve the approximation ratio for the Max-ST-NB problem.
We believe that our algorithm has better approximation guarantee, however this requires more
detailed analysis. We obtained the ratio of 0.548 by analyzing the stars S7,.S2,.53 and the double-
star D separately. One might be able to improve the ratio by analyzing the stars and the double-star
together and then taking the longest one.
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