
Minimum Ply Covering of Points with Disks and Squares

Therese Biedl Ahmad Biniaz Anna Lubiw

University of Waterloo, Canada

June 7, 2019

Abstract

Following the seminal work of Erlebach and van Leeuwen in SODA 2008, we introduce
the minimum ply covering problem. Given a set P of points and a set S of geometric
objects, both in the plane, our goal is to find a subset S′ of S that covers all points of
P while minimizing the maximum number of objects covering any point in the plane (not
only points of P). For objects that are unit squares and unit disks, this problem is NP-
hard and cannot be approximated by a ratio smaller than 2. We present 2-approximation
algorithms for this problem with respect to unit squares and unit disks. Our algorithms run
in polynomial time when the optimum objective value is bounded by a constant.

Motivated by channel-assignment in wireless networks, we consider a variant of the prob-
lem where the selected unit disks must be 3-colorable, i.e., colored by three colors such that
all disks of the same color are pairwise disjoint. We present a polynomial-time algorithm
that achieves a 2-approximate solution, i.e., a solution that is 6-colorable.

We also study the weighted version of the problem in dimension one, where P and S are
points and weighted intervals on a line, respectively. We present an algorithm that solves
this problem in O(n + m + M)-time where n is the number of points, m is the number of
intervals, and M is the number of pairs of overlapping intervals. This repairs a solution
claimed by Nandy, Pandit, and Roy in CCCG 2017.

1 Introduction

Motivated by interference reduction in cellular networks, Kuhn et al. [12] introduced Minimum
Membership Set Cover (MMSC) as a combinatorial optimization problem. The input to this
problem consists of a set U of elements and a collection S of subsets of U , whose union contains
all elements of U . The membership of an element u ∈ U with respect to a subset S′ of S is
the number of sets in S′ that contain u. The goal is to find a subset S′ of S that covers all
elements of U and that minimizes the maximum membership of elements in U . The MMSC
problem is closely related to the well-studied Minimum Set Cover problem in which the goal
is to find a minimum cardinality subset S′ of S that covers all elements of U . By a reduction
from the minimum set cover problem, Kuhn et al. [12] showed that the MMSC problem is
NP-complete and cannot be approximated, in polynomial time, by a ratio less than lnn unless
NP ⊂ TIME

(
nO(log logn)

)
, where n := |U | is the number of elements. They also presented an

O(lnn)-approximation algorithm for the MMSC problem by formulating it as a linear program.
Demaine et al. [5] introduced a maximization version of the MMSC problem, in which the

input contains an extra parameter β, and the goal is to find a subset S′ of S that covers the
maximum number of elements of U such that the membership of every covered element with
respect to S′ is at most β. The special case, where β = 1, is known as the unique coverage

1

problem. See [5] for a collection of inapproximability results and [13] for the parameterized
complexity of the unique coverage problem.

The geometric versions of the above problems, where the elements are points in the plane and
the sets are geometric objects in the plane, are also well studied. See [1, 2, 14] (and references
therein) for some recent results on the geometric minimum set cover problem and its variants,
and see [7, 10, 11, 17] for some recent results on the geometric unique coverage problem.

The geometric MMSC problem attracted considerable attention following the seminal work
of Erlebach and van Leeuwen in SODA 2008 [7]. The input to this problem consists of a set P
of points and a set S of geometric objects both in the plane. The goal is to find a subset S′ of
S such that (i) S′ covers all points of P , i.e., the membership of every point is at least 1, and
(ii) S′ minimizes the maximum membership of points of P . They proved that the geometric
MMSC problem is NP-hard for unit disks and for axis-aligned unit squares, and does not admit
a polynomial-time approximation algorithm with ratio smaller than 2 unless P=NP. For unit
squares, they presented a 5-approximation algorithm that takes polynomial time if the optimal
objective value (i.e., the maximum membership) is bounded by a constant. To the best of our
knowledge, no O(1)-approximation algorithm is known for unit disks.

p

S′
In some applications, e.g. interference reduction in cellular

networks, it is desirable to minimize the membership of every
point in the plane, not only points of P . Thus we study a version
of the geometric MMSC problem in which we want to find a subset
S′ of S that covers all points of P and minimizes the maximum
membership of all points of the plane (not only points of P).
We refer to this version of the problem as minimum ply covering
(MPC). The ply [6] of a set S′ is defined to be the maximum
membership of points of the plane with respect to S′. With this definition, the MPC problem
asks for a subset S′, with minimum ply, that covers P . In the figure to the right, the membership
of input points with respect to S′ is at most 2 (see point p), while the ply of S′ is 3 (see the
shaded area).

By a simple modification of the hardness proof of [7], we show (in Section 6) that the MPC
problem is NP-hard, for both unit squares and unit disks, and does not admit polynomial-
time approximation algorithms with ratio smaller than 2 unless P=NP. As our main result,
we present 2-approximation algorithms for the MPC problem on unit squares and unit disks.
Both algorithms run in polynomial time if the optimal objective value (i.e., the minimum ply)
is bounded by a constant.

Motivated by channel-assignment in wireless networks, where the use of 3 channels is a
standard practice, we study a variant of the MPC problem on unit disks where we want the
solution to be 3-colorable, i.e., to be partitioned into three subsets such that the disks in each
subset are pairwise disjoint (each subset has ply 1). See [3] for a justification of the importance
of 3 channels. We present a polynomial-time 2-approximation algorithm for this version as well.

We also revisit the weighted version of the geometric MMSC problem in dimension one,
where P and S are points and weighted intervals on the real line, respectively. This problem
was previously claimed solved by Nandy, Pandit, and Roy [15], who referred to the problem
as “minimum depth covering”. We point out a mistake in their algorithm. We present an
O(n + m + M)-time algorithm that solves this problem optimally, where n is the number of
points, m is the number of intervals, and M is the number of pairs of overlapping intervals.
Our algorithm can be adapted in a simple way to solve the MPC problem on weighted intervals
within the same time bound.

2

2 Minimum Ply Covering with Unit Squares

In this section we study the MPC problem on unit squares. We are given a set P of n points
and a set S of m axis-aligned unit squares, both in the plane. We assume that unit squares
are closed (contain their boundaries) and have side length 1. Our goal is to find a subset S′

of S, with minimum ply, that covers all points of P . This problem cannot be approximated
in polynomial-time by a ratio smaller than 2; see Section 6. We present a 2-approximation
algorithm that takes polynomial time if the minimum ply is bounded by a constant. In the rest
of this section we assume that the minimum ply is bounded by `.

We partition the plane into horizontal slabs of height 2; this is a standard initial step of
many geometric covering algorithms. We may assume that no point of P or edge of a square in
S lies on the boundary of any slab. Let H1, H2, . . . denote the slabs from bottom to top. For
j ∈ {1, 2, . . . }, let Pj be the points of P in Hj and let Sj be the set of squares that intersect Hj .
Note that if there exists a solution S∗ for the MPC problem then S∗ ∩Sj covers all points in Pj

and has ply at most `, and thus S∗∩Sj is a solution for the MPC problem on input instance Pj

and Sj that has ply at most `. Our approach is therefore to solve MPC for this input instance,
i.e., for slab Hj . If this fails for some j, then the MPC problem on P and S has no solution
with ply `. If this succeeds for all j, then we set S′ =

⋃
j S
′
j , where S′j is the solution for slab

Hj . Certainly all points of P are covered. Any square in S′ belongs to solutions of at most two
consecutive slabs Hj and Hj+1. Thus, any point in the plane is covered by squares of at most
two solutions S′j and S′j+1, and hence is covered by at most 2` squares of S′. Therefore, the ply
of S′ is at most 2`.

In the rest of this section we show how to solve the MPC problem for every slab Hj . To
simplify our description we assume that the left and right sides of all squares in Sj have distinct
x-coordinates and no point lies on the left or right side of a square; we will describe later how
to handle coinciding x-coordinates. We partition the plane into vertical strips by lines through
left and right sides of all squares in Sj . Let t0, t1, . . . , tk denote these vertical strips, ordered
from left to right. We consider every strip as an open set, i.e., the vertical line between ti−1 and
ti belongs to neither of them. The leftmost strip t0 is unbounded to the left and the rightmost
strip tk is unbounded to the right. Since |Sj |6m, we have k 6 2m. The following lemma is
important for our strategy to solve the problem.

Lemma 1. Let S∗j ⊆Sj be any solution, with ply at most `, for the MPC problem. The number
of squares in S∗j that intersect any strip ti is at most 3`.

Hj

ti

a

b

c

l

2

Proof. Let l be a vertical line in the interior of ti. Let a and b be the
intersection points of l with the upper and lower boundaries of the slab
Hj , and let c be the midpoint of the line segment ab; see the figure to
the right. Notice that |ac| = |bc| = 1. Because of this, and since no
square has its left or right side in the interior of ti, it follows that every
square in S∗j that intersects ti contains at least one of the three points a,
b and c. Therefore, if more than 3` squares of S∗j intersect ti, then by the
pigeonhole principle one of the three points lies in more than ` squares of
S∗j , a contradiction.

Based on Lemma 1, we construct a directed acyclic graph G such that any solution S∗j
corresponds to a path from the source vertex to the sink vertex in G. Afterwards, we will
find a path in G which will correspond to a solution with ply at most `. Now we describe the
construction of G. For every ti, with i ∈ {0, . . . , k}, we define a set Vi of vertices as follows: For
every subset Q ⊆ Sj , containing at most 3` squares that intersect ti, we add a vertex vi(Q) to
Vi if the following conditions hold

3

(i) the squares in Q cover all points of Pj that lie in ti (all points in ti ∩ Pj),

(ii) the ply of Q is at most ` (i.e. every point in R2 is in at most ` squares of Q).

Since no square intersects t0 and tk, we have V0 = {v0(∅)} and Vk = {vk(∅)}. The vertices
v0(∅) and vk(∅) are the source and sink vertices of G. The vertex set of G is the union of the
sets Vi. The edge set of G consists of directed edges from the vertices in Vi to the vertices in
Vi+1 defined as follows. For every i ∈ {0, . . . , k − 1} and for every vertex vi(Q) ∈ Vi we add
three directed edges from vi(Q) to the following three vertices in Vi+1 (provided they exist):

1. the vertex vi+1(Q
′) with Q′ = Q,

2. the vertex vi+1(Q
′) with Q′ = Q \ {q}, where q is the square whose right side is on the

left boundary of ti+1; see Figure 1(a),

3. the vertex vi+1(Q
′) with Q′ = Q∪ {q}, where q is the square whose left side is on the left

boundary of ti+1; see Figure 1(b).

This the end of our construction of G. Observe that in all cases sets Q and Q′ differ by at
most one square, and Q ⊆ Q′ and/or Q ⊇ Q′.

Hj

ti ti+1

s1

q

s2

Hj

ti ti+1

s1

s2

s3

q

(a) (b)

Figure 1: Construction of G. The representation of an edge from vi(Q) to vi+1(Q
′) in two cases:

(a) Q = {s1, s2, q} and Q′ = {s1, s2}, and (b) Q = {s1, s2, s3} and Q′ = {s1, s2, s3, q}.

Consider any path δ from v0(∅) to vk(∅) in G. Let S′j be the union of all sets Q corresponding
to the vertices of δ. Our algorithm outputs S′j as a solution of the MPC problem on Pj and Sj .
The following claim proves the correctness of our algorithm.

Claim 1. If the MPC problem on Pj and Sj has a solution with ply at most `, then there exists
a path δ from v0(∅) to vk(∅) in G. If there exist such a path δ, then the set S′j is a solution with
ply at most `.

Proof. For the first direction, consider a solution S∗j with ply at most `. For 0 6 i 6 k, let Q∗i
be the squares of S∗j that intersect ti. Observe that any point of Pj that lies in ti is covered by
a square that intersects ti. Thus Q∗i covers all points in ti. Since the ply of S∗j is at most `,
the set Q∗i has at most 3` squares by Lemma 1. Therefore, Q∗i satisfies conditions (i) and (ii)
and thus vi(Q

∗
i) is a vertex of G. Since (by our initial assumption) no two squares begin or end

at the same x-coordinate, Q∗i and Q∗i+1 differ by at most one square, and thus there is an edge

4

from vi(Q
∗
i) to vi+1(Q

∗
i+1) in G. Since this holds for every i, the solution S∗j can be mapped to

the path v0(∅), v1(Q∗1), . . . , vk−1(Q∗k−1), vk(∅) in G. Therefore, δ exists.
For the other direction, observe that the edges of G only connect the vertices of adjacent

strips. Thus, δ contains exactly one vertex, say vi(Qi), for each strip ti, with 0 6 i 6 k. With
this notation, we have that S′j =

⋃
iQi. By condition (i) the set Qi covers all points of Pj

that lie in ti. By our assumption of no coinciding x-coordinates, every point of Pj lies in some
(open) strip, and thus S′j covers all points of Pj . Now we verify the ply of S′j . To that end,

fix an arbitrary point p ∈ R2 and notice that p can be in some strip ti or on the boundary
between two strips ti and ti+1. If p is in ti, then by condition (ii) it has membership at most
` in Qi. Therefore it also has membership at most ` in S′j because by our definition of edges
no square in S′j \Qi can intersect ti. Assume now that p lies on the boundary between ti and
ti+1. Any square of S′j that contains p must belong to Qi or Qi+1 (or both). Furthermore, by
our construction of G, we have Qi ⊆ Qi+1 or Qi ⊇ Qi+1. Since p has membership at most ` in
both Qi and Qi+1 (by condition (ii)), the membership of p in S′j is at most `. Therefore, the
ply of S′j is at most `.

Remark 1. Our algorithm does not use the fact that elements of S are squares, but only
uses that they have unit height. Therefore the algorithm extends to axis-aligned unit-height
rectangles.

Remark 2. The case where sides of squares and/or input
points have coinciding x-coordinates can be handled by a
symbolic perturbation. At any x-coordinate X we order
first all the left sides of squares at X, breaking ties by
their y-ordering; then the input points at X; and finally,
all the right sides of squares at X, breaking ties by their
y-ordering; see the figure to the right for illustration.

For the running time to solve the problem in Hj , set nj = |Pj | and mj = |Sj |. Recall that
every vertex of G corresponds to a set Q of at most 3` squares by our construction, and thus
there are O(m3`

j) such sets Q. This and the fact that each set Q could be used repeatedly

among O(mj) strips, imply that G has O(m3`+1
j) vertices. Since every vertex has at most three

outgoing edges, the number of edges of G is also O(m3`+1
j). By an initial sorting of the points

of Pj and the squares of Sj with respect to the y-axis, conditions (i) and (ii) can be verified in
O(` + nj) time for each vertex. A path δ can be found in time linear in the size of G. Thus,
the total running time to solve the MPC problem in slab Hj is O((`+ nj) ·m3`+1

j).

Theorem 1. There exists a polynomial-time algorithm that solves the problem of minimum ply
covering of points in a slab of height two with unit-height rectangles, provided that the optimal
objective value is constant.

As discussed at the beginning of this section, the union of the solutions of all slabs is a
2-approximate solution for the original problem of covering n points in the plane with m unit
squares. Since every point belongs to exactly one slab and every square belongs to at most two
slabs, this 2-approximate solution can be computed in

∑
(`+ nj) ·m3`+1

j = O((`+n)·(2m)3`+1)
time, where the sum runs over all slabs. The following theorem summarizes our result.

Theorem 2. There exists a polynomial-time 2-approximation algorithm that solves the problem
of minimum ply covering of points with unit-height rectangles, provided that the optimal objective
value is constant.

5

3 Minimum Ply Covering with Unit Disks

In this section we study the MPC problem on unit disks, i.e., disks with diameter 1. Given a
set P of n points and a set S of m unit disks, both in the plane, the goal is to find a subset S′

of S, with minimum ply, that covers all points of P . This problem cannot be approximated in
polynomial-time by a ratio better than 2; see Section 6. We present a 2-approximation algorithm
that takes polynomial time if the minimum ply is bounded by a constant. In the rest of this
section we assume that the minimum ply is bounded by `. Our algorithm is a modification of
that of unit squares. After a suitable rotation of the plane we assume that in the set consisting
of points of P together with the leftmost and rightmost points of disks in S, no two points have
the same x-coordinate.

As in the previous section we partition the plane into horizontal slabs of height 2. Then we
solve the MPC problem in every slab Hj by constructing a directed acyclic graph G. Let Pj be
the set of points in Hj , and let Sj be the set of all disks that intersect Hj . We partition the
plane into vertical strips t0, . . . , tk by vertical lines through the leftmost and rightmost points
of disks in Sj . The only major change to the algorithm of the previous section is the definition
of vertices of G, because Lemma 1 does not hold for unit disks. For unit disks we have the
following helper lemma.

Lemma 2. Let S∗j ⊆ Sj be any solution, with ply at most `, for the MPC problem. Then for
any strip ti at most 8` disks in S∗j intersect ti.

y

(−1
2 , −3

2

)

(
1
2 ,

3
2

)
R

Hj 2
x

Proof. After a suitable translation assume that Hj has y-
range [−1,+1], and assume that the y-axis lies in ti. Any disk
s ∈ Sj , that intersects ti, must also intersect the y-axis be-
cause boundaries of vertical strips are defined by vertical lines
through leftmost and rightmost points of disks in Sj . It follows
that the center of s must lie within a rectangle R with corners
(±1

2 ,±
3
2); see the figure to the right. The rectangle R can be

covered by eight unit disks {D1, . . . , D8} that are centered at
eight points {p1, . . . , p8} = {(±1

4 ,±
3
8), (±1

4 ,±
9
8)} respectively—

the red points in the figure. Thus, the center of s lies in a disk
Di, for some i ∈ {1, . . . , 8}, and hence at distance at most 1

2 from
pi. This implies that pi ∈ s. Thus, each disk in Sj that intersects ti contains at least one of
the points {p1, . . . , p8}. Since S∗j has ply at most `, each point pi lies in at most ` disks of S∗j .
Therefore, at most 8` disks of S∗j intersect ti.

For every strip ti we introduce a set Vi that contains vertices vi(Q), for all sets Q of at most
8` disks that (i) intersect ti, (ii) cover all points of Pj in ti, and (iii) have ply at most `. Then
we connect the vertices of Vi to the vertices of Vi+1 in a similar fashion as for unit squares.

Using Lemma 2, we can claim (similar to that of unit squares) that any path from the source
to the sink in G corresponds to a solution with ply at most ` for the MPC problem with input
Pj and Sj . Therefore, we can compute in O((`+ nj) ·m8`+1

j) time a solution with ply at most

` for every slab, and in O((` + n) · (2m)8`+1) time a 2-approximate solution for the original
problem. The following theorem summarizes our result.

Theorem 3. There exists a polynomial-time 2-approximation algorithm that solves the problem
of minimum ply covering of points with unit disks, provided that the optimal objective value is
constant.

6

4 3-Colorable Unit Disk Covering

In this section we study the 3-colorable unit disk covering problem. Given
a set P of n points and a set S of m unit disks, both in the plane, the goal
is to find a subset S′ of S that covers all points of P and such that S′ can
be partitioned into {S′1, S′2, S′3} where the disks in each S′a, a ∈ {1, 2, 3}, are
pairwise disjoint, i.e., the ply of each S′a is 1. Although at first glance this
problem seems to be a special case of the MPC problem with ply ` = 3, they
are different because there are input instances that have a solution with ply
at most 3 but do not have any 3-colorable solution; see for example the input instance in the
figure to the right. We present a polynomial-time algorithm that achieves a 2-approximate
solution, i.e., a solution that is 6-colorable.

Before presenting our algorithm we point out a related problem that is the problem of
coloring a unit disk graph (the intersection graph of a set S of unit disks in the plane) with
k colors. This problem NP-hard for any k > 3 [4]. There are 3-approximation algorithms for
this problem (see e.g. [9, 16]), and a 2-approximation algorithm when the unit disk graph has
constant clique number (see [8, Chapter 4, Proposition 4.8]). We note that this problem is also
different from our 3-colorable unit disk cover problem; for example if all the disks in S have
a common intersection and we place our point set P in this intersection, then there exists a
1-colorable solution for our problem, while the unit disk graph is not (|S| − 1)-colorable. The
NP-hardness of 3-coloring a unit disk graph [4] immediately implies the NP-hardness of the
3-colorable unit disk cover problem: every disk in the reduction of [4, Theorem 2.1] covers a
unique region of the plane, so by placing points of P in those regions we can enforce the solution
S′ to contain all disks of S.

Now we present our algorithm, which is a modified version of the algorithm of Section 3.
Again we partition the plane into horizontal slabs of height 2. Then for every slab Hj we test
the existence of a 3-colorable covering for points Pj using disks in Sj . If this test fails for
some j, then there is no 3-colorable solution for P and S. If this test is successful for all j,
then we assign colors 1, 2, 3 to solutions of H1, H3, . . . and assign colors 4, 5, 6 to solutions of
H2, H4, The union of these solutions will be a 6-colorable solution for the original problem.

After a suitable rotation we assume that in the set consisting of points of P together with
the leftmost and rightmost points of disks in S, no two points have the same x-coordinate.
To solve the problem for every Hj , as in Section 3, we partition the plane into vertical strips
t0, . . . , tk. Then we construct a directed acyclic graph G such that any path from the source
to the sink in G corresponds to a 3-colorable solution for Hj . Consider a 3-colorable solution
S∗ = S∗1 ∪ S∗2 ∪ S∗3 . The disks in each S∗a (for a = 1, 2, 3) are pairwise disjoint, and thus each
S∗a has ply 1. Therefore, by Lemma 2 at most 8 disks in each S∗a intersect each strip ti. Based
on this, for every ti we introduce a set Vi containing vertices vi(Q1, Q2, Q3) for all sets Q1, Q2,
and Q3 that satisfy all following conditions:

(i) each of Q1, Q2, and Q3 contains at most 8 disks that intersect ti,

(ii) the disks in each of Q1, Q2, and Q3 are pairwise disjoint, and

(iii) Q1 ∪Q2 ∪Q3 covers all points of Pj that lie in ti.

We connect a vertex vi(Q1, Q2, Q3) to a vertex vi+1(Q
′
1, Q

′
2, Q

′
3) if one of the following

conditions hold:

• for every index a in {1, 2, 3} we have Q′a = Qa, or

7

• for exactly one index a in {1, 2, 3} we have Q′a = Qa \ {d}, where d is the disk whose
rightmost point is on the left boundary of ti+1, and for every other index b we have
Q′b = Qb, or

• for exactly one index a in {1, 2, 3} we have Q′a = Qa ∪ {d}, where d is the disk whose
leftmost point is on the left boundary of ti+1, and for every other index b we have Q′b = Qb.

We briefly justify that paths from the source to the sink in G correspond to 3-colorable
solutions. Fix a path δ. For a = 1, 2, 3, let S′a be the union of the disks in all sets Qa associated
with vertices in δ. Condition (iii) ensures that S′1 ∪ S′2 ∪ S′3 covers all points of Pj . Condition
(ii) ensures that the disks in each of S′1, S

′
2, and S′3 are pairwise disjoint. Thus, S′1 ∪ S′2 ∪ S′3

is a 3-colorable solution. It remains to verify the existence of such a path δ in G. Consider a
3-colorable solution S∗ = S∗1 ∪ S∗2 ∪ S∗3 . For any a ∈ {1, 2, 3} and i ∈ {0, . . . , k} let Qi

a be the
disks in S∗a that intersect ti. As discussed above, we have |Qi

a| 6 8. Thus, vi(Q
i
1, Q

i
2, Q

i
3) is a

vertex of G. By an argument similar to that of Section 2, one can verify that S∗ can be mapped
to a path in G. Therefore, δ exists.

The running time analysis is similar to that of Section 3, except here we consider 24 disks
in every vertical strip (8 disks for every set Qi). Therefore the total running time of our
2-approximation algorithm is O(nm25). The following theorem summarizes our result.

Theorem 4. There exists a polynomial-time 2-approximation algorithm for the 3-colorable cov-
ering problem of points in the plane with unit disks.

5 Minimum Membership and Minimum Ply Coverings with
Weighted Intervals

Nandy, Pandit, and Roy [15] studied the geometric MMSC problem in dimension one, where P
is a set of n points and S is a set of m closed intervals, both on the real line. By formulating this
problem as an instance of the maximum independent set problem, they solved it in O(n + m)
time, provided that the points of P and the endpoints of intervals in S are given in sorted order.

Nandy et al. [15] also studied the weighted version of the geometric MMSC problem in
dimension one. In this version every interval has a weight, and the membership of a point
p is defined as the sum of the weights of the intervals in S′ that cover p. They claimed an
O(nm log n)-time algorithm that solves this version of the problem. However, as we point
out in Section 5.1, their algorithm does not always find the optimal solution. We present
here an algorithm that solves the weighted version of the MMSC problem in dimension one in
O(n + m + M) time, where M 6

(
m
2

)
is the number of pairs of overlapping intervals, i.e., the

number of edges of the interval graph formed by the intervals in S. As we will see later in
Remark 3, our algorithm can easily be modified to also solve the MPC problem on weighted
intervals in the same time.

5.1 Nandy, Pandit, and Roy’s Algorithm

We briefly review the algorithm of Nandy et al. [15], which uses dynamic programming and
proceeds as follows. Let p1, p2, . . . , pn be the points of P from left to right, and let s1, s2, . . . , sm
be the intervals in S sorted from left to right according to their right endpoints. (In the original
presentation of this algorithm in [15], the points of P are ordered from right to left and the
intervals in S are also sorted from right to left according to their left endpoints.) Let w(si)
denote the weight of si. For every k ∈ {1, . . . ,m} let Qk = (Pk, Sk) be an instance of the
problem, where Sk = {s1, . . . , sk} and Pk is the set of points of P that lie on or to the left of the

8

right endpoint of sk. Note that Qm is the original problem. Now solve Q1, . . . , Qm in order, i.e.,
process interval sk to find a solution S′k of Qk, using previously computed solutions S′1, . . . , S

′
k−1

for subproblems Q1, . . . , Qk−1. Nandy et al. claim that the following approach will find S′k:

(i) If Pk = Pk−1 then set S′k = S′k−1.

(ii) If Pk 6= Pk−1 and some points of Pk \Pk−1 are not covered by sk, then there is no solution
for Qk, i.e., S′k does not exist.

(iii) If Pk 6= Pk−1 and every point of Pk \ Pk−1 is covered by sk, then find the index i, with
i ∈ {1, . . . , k− 1}, such that S′i ∪ {sk} covers Pk and the membership of points of Pk with
respect to S′i ∪ {sk} is minimum. Then set S′k = S′i ∪ {sk}.

There are two reasons why this algorithm is not correct. First, item (i) does not consider sk,
while in some cases we may need to include it in the solution, for example if sk has the minimum
weight and covers all points in Pk. This may perhaps be fixable with a minor change of formula,
but there is major issue in item (iii) which somehow breaks the hope for any straightforward
dynamic programming approach for this problem.

P3

P4

s3, 1
s4, 2

s2, 2s1, 2

p1 p2 p3 p4 p5

Figure 2: An instance for which the previous algorithm does not compute an optimal solution.
“s1, 2” indicates that interval s1 has weight 2.

Figure 2 shows an example with five points p1, p2, p3, p4, p5, ordered from left to right, and
four weighted intervals s1, s2, s3, s4, ordered according to their right endpoints. The optimal
solutions for Q1, Q2, Q3 are S′1 = {s1}, S′2 = {s1, s2}, S′3 = {s1, s2}, with maximum member-
ships 2, 2, 2. Notice that S′3 should not contain s3 because otherwise it should also contain s1
to cover p1, and this will make the membership of p2 be w(s1) +w(s3) = 3. The recursive com-
putation in item (iii) considers as solution for Q4 the candidates S′1 ∪{s4}, S′2 ∪{s4}, S′3 ∪{s4}.
The first one is not valid (it does not cover p3) and the other two have maximum membership
w(s2) +w(s4) = 4 (this membership is obtained by p4 which is covered by s2 and s4). However,
the set S′4 = {s1, s3, s4} is a solution for Q4 with maximum membership 3. We are skeptical
about using a straightforward dynamic programming for solving the problem, because while S′4
is the optimum solution for Q4, its induced solutions for Q2 and Q3 contain the superfluous
interval s3. To use the dynamic programming approach, a more structured recursion is needed,
as described in the next section.

5.2 Our Algorithm

Now we present our algorithm for the geometric MMSC problem on weighted intervals. Our
approach is to create a directed acyclic graph (DAG) such that all optimal solutions correspond
to directed paths from the source to the sink. More precisely, we construct a vertex-weighted
DAG (because the intervals are weighted), and then search for a bottleneck path from the source
to the sink; a bottleneck path is a path that minimizes the maximum weight along the path.

9

Such a DAG could be obtained directly from Section 2, but we introduce a new construction
with better running time.

Let P be a set of n points and let S = {s1, . . . , sm} be a set of m intervals on a line, where
each si has weight w(si). Assume that the points of P and the endpoints of intervals in S
are given in sorted order from left to right. In the remainder of this section we show how to
transform our problem, in O(n+m+M) time, to an instance of the bottleneck path problem
in a DAG of size O(m + M). The bottleneck path problem in a DAG can be solved in linear
time. For simplicity of our description we assume points of P and endpoints of intervals of S
have distinct x-coordinates; this can be achieved by a symbolic perturbation similar to that of
Remark 2 in Section 2.

r5

t0 t1 t2

r1

r2

r3

r4

r6
r7

v0(t0) v1(r2, t2) v2(r2, r3) v1(r3, t7)

t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

v1(r3, t6) v2(r3, r5) v1(r5, t10) v0(t11) v1(r7, t12) v0(t14)v1(r7, t13)v0(t1)

Figure 3: Correspondence between an optimal solution ({r2, r3, r5, r7}) and a bottleneck path
from v0(t0) to v0(t14) in G.

Draw vertical lines through the endpoints of intervals in S to partition the plane into vertical
strips t0, . . . , tk (ordered from left to right). Notice that k 6 2m, the leftmost strip t0 is
unbounded to the left, and the rightmost strip tk is unbounded to the right. Also t0 and tk
have no points in them. See Figure 3. For every i ∈ {1, . . . , k}, all points of P in strip ti belong
to the same set of intervals. Thus, it suffices to keep only one of the points in each strip ti and
discard the other points. This can be done in O(n+m) time. Thus, we assume that n 6 2m−1.
We say that an interval s is dominated by an interval r if r starts before s and ends after s.
The following lemma has been proved in [15].

Lemma 3. There exists an optimal solution in which no interval is dominated by some other
interval, and no vertical line intersects more than two intervals.

Based on this lemma, it suffices to search for an optimal solution S∗ ⊆ S such that the
interior of every strip ti intersects at most two intervals of S∗; see Figure 3. We therefore
endow our DAG, denoted by G, with the following three types of vertices, corresponding to the
intersection of strips by 0, 1, or 2 intervals, respectively.

• For every strip ti that contains no points of P , create a vertex v0(ti) with weight 0. Choosing
v0(ti) in our path will correspond to having 0 intervals cover the interior of ti. Vertices v0(t0)
and v0(tk) will be the source and sink vertices of our graph.

• For every interval q and for every strip ti that is intersected by q, create a vertex v1(q, ti).
Choosing v1(q, ti) in our path will correspond to choosing interval q and choosing no other
interval that intersects ti. If some point of P is in ti, then set w(v1(q, ti)) = w(q), otherwise
set w(v1(q, ti)) = 0.

• For every two overlapping intervals q and r, with q starting before r starts and also ending
before r ends, create a vertex v2(q, r). Choosing v2(q, r) in our path will correspond to

10

choosing intervals q and r. If there is a point of P in the intersection of q and r, then set
w(v2(q, r)) = w(q) + w(r), otherwise set w(v2(q, r)) = 0.

We define edges as follows. Consider each i < k and the strip ti. The right boundary of ti
exists since some interval has an endpoint there. Assume first that this was a left endpoint, so
there exists an interval r whose left endpoint lies on the right boundary of ti (and r is unique
by our assumption). Then we add the edges listed in Figure 4(a), adding only those where the
vertices exist. If instead some interval s has its right endpoint at the right boundary of ti, then
we add the following edges listed in Figure 4(b) (again, provided the vertices listed there exist).
Note that every vertex has at most two outgoing edges.

v1(q, ti) → v1(q, ti+1)

ti ti+1

q

r

v0(ti) → v0(ti+1)

v1(q, ti) → v2(q, r)

v0(ti) → v1(r, ti+1)
v1(q, ti) → v1(q, ti+1)

ti ti+1

q

s

v0(ti) → v0(ti+1)

v2(s, q) → v1(q, ti+1)

v1(s, ti) → v0(ti+1)

(a) (b)

Figure 4: The edges of G.

The above construction of graph G implies the following claim.

Claim 2. The solutions that satisfy the constraints of Lemma 3 are in one-to-one correspon-
dence with the paths from v0(t0) to v0(tk) in G. In particular, the bottleneck path in G corre-
sponds to an optimal solution of the minimum membership covering problem for P and S. See
Figure 3 for an illustration.

Now we analyze the running time of our algorithm. Since G is a DAG, a bottleneck path in
G can be computed in linear time on the size of G.

We claim that the size of G is O(m+M), where M is number of edges in the interval graph
defined by S. Since every vertex has at most two outgoing edges, it suffices to show that G has
O(m+M) vertices. There are at most 2m+ 1 vertices of type v0 (one per strip). Every vertex
of type v2 is uniquely defined by two overlapping intervals, so there are at most M of them. To
bound the number of vertices of type v1, observe that such a vertex is defined by an interval r
and a strip ti with 1 6 i < k. Let r′ be the interval that defines the left boundary of ti; it might
be the case that r′ = r. The number of vertices for which r′ = r is at most 2m− 1 because this
happens (by the general position assumption) only once per strip. Assume that r′ 6= r. Since
r and r′ intersect (at the left boundary of ti), it follows that (r, r′) is an edge in the interval
graph. Any such edge can be charged at most 4 times, once at each of the left and the right
boundaries of r and r′. Thus, the number of vertices for which r′ 6= r is at most 4M . Hence G
has size O(m+M) and the bottleneck path can be found within the same time.

The linked-list representation of G can be obtained in O(m + M) time by going through
the strips from left to right. This, together with the initial pruning of points of P in O(n+m)
time, implies that the total running time of our algorithm is O(n+m+M).

Remark 3. We can solve the MPC problem on n points and m weighted intervals in O(n +
m + M) time; this can be done by adjusting the weights of the vertices of G and then finding

11

a bottleneck path in the resulting graph. We set the weight of every vertex v1(q, ti) to w(q)
regardless of whether ti contains a point of P or not, and we set the weight of every vertex
v2(q, r) to w(q) + w(r) regardless of whether the intersection of q and r contains a point of P
or not.

Theorem 5. Both minimum membership and minimum ply covering problems of n points with
m weighted intervals on the real line can be solved in O(n + m + M) time where M is the
number of pairs of overlapping intervals, provided that the input points and the endpoints of the
intervals are given in sorted order.

6 NP-hardness

In this section we study the hardness of the MPC problem on unit squares and unit disks.
Erlebach and van Leeuwen [7] proved that the MMSC problem, on both unit disks and unit
squares, is NP-hard and cannot be approximated by a ratio smaller than 2. More precisely,
they proved it is NP-hard to decide whether or not a solution with membership 1 exists. They
use a reduction from the NP-complete problem of deciding whether or not a planar graph G is
3-colorable. Their reduction uses a rectilinear embedding of G in the plane; see [17, Chapter 10]
for details. By adjusting the gadgets in their reduction we can show that the MPC problem on
unit squares and unit disks, with objective ply 1, is also NP-hard and cannot be approximated
by a ratio smaller than 2. We sketch the reduction using our adjusted gadgets, and hence prove
the following theorem.

Theorem 6. It is NP-hard to decide whether or not there exists a solution with ply one, for
the minimum ply cover problem on unit squares and on unit disks.

Since ply—of a set of squares or disks—is an integer, this theorem implies that there is no
polynomial-time approximation algorithm, with ratio smaller than 2, for the MPC problem on
unit squares and on unit disks, unless P=NP.

In the rest of this section we prove Theorem 6. Similar to that of Erlebach and van Leeuwen
[7], our proof uses a reduction from the problem of 3-coloring a planar graph G. We sketch this
reduction for the MPC problem on unit sqaures; the reduction for unit disks is analogous. We
need a few gadgets, their construction is described below.

Figure 5(a) shows the vertex gadget for every vertex v in G. To cover the point pv, exactly
one of the three squares containing pv must be in the solution, and this corresponds to assigning
one of the three colors to v. Depending on this choice, either 0, 1, or 2 points among the triple of
points on the right will also be covered. Figure 5(b) shows a transport gadget, which transports
a chosen color along a chain of squares from left to right. The reader may verify that this
representation can be modified to bend around corners to represent vertical transportations.
Figure 5(c) shows a gadget that duplicates a chosen color. We need one extra gadget to make
sure that two adjacent vertices u and v in G will be assigned different colors. Figure 5(d) shows
this gadget, assuming the color of u arrives from right and the color of v arrives from left. If
u and v have the same color, then to cover a, b and c, we require overlapping squares, which
contradicts the ply being 1. If u and v have different colors, then a, b, and c can be covered by
three of the six dashed disks. Therefore, our instance of the MPC problem has a solution with
ply 1 if and only if G is 3-colorable. Thus the hardness of the 3-colorability problem implies
the hardness of the MPC problem. A similar construction of gadgets for the NP-harness of the
MPC problem on unit disks is shown in Figure 6; the points b and c play the same role as in
Figure 5(d), while a1, a2, a3 play the role of a. Therefore, the above reduction proves Theorem 6.

12

pv

(a) (b)

color v color u

a

b

c

(c) (d)

Figure 5: The NP-hardness of the MPC problem on unit squares: (a) the vertex gadget, (b)
the transport gadget, (c) the duplicate gadget, and (d) the color checking gadget.

7 Conclusions

The following questions arise from this work and that of Erlebach and van Leeuwen [7]: (i) Are
there polynomial-time O(1)-approximation algorithms for the MPC problem on unit squares or
unit disks when the objective value is not necessarily a constant? (ii) Is there a polynomial-time
O(1)-approximation algorithm for the MMSC problem on unit disks when the objective value
is constant?

Acknowledgment. We thank Albert Gräf for sending us his PhD thesis.

References

[1] M. Basappa, R. Acharyya, and G. K. Das. Unit disk cover problem in 2D. Journal of
Discrete Algorithms, 33:193–201, 2015.

[2] A. Biniaz, P. Liu, A. Maheshwari, and M. H. M. Smid. Approximation algorithms for the
unit disk cover problem in 2D and 3D. Computational Geometry: Theory and Applications,
60:8–18, 2017.

[3] P. Brass, F. Hurtado, B. J. Lafreniere, and A. Lubiw. A lower bound on the area of a 3-
coloured disk packing. International Journal of Computational Geometry & Applications,
20(3):341–360, 2010.

[4] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics,
86(1-3):165–177, 1990.

13

pv

color v color u

b

c

a1 a2
a3

Figure 6: Gadgets for the NP-hardness proof of the MPC problem on unit disks.

[5] E. D. Demaine, U. Feige, M. Hajiaghayi, and M. R. Salavatipour. Combination can be
hard: Approximability of the unique coverage problem. SIAM Journal on Computing,
38(4):1464–1483, 2008. Also in Proceedings of SODA 2006.

[6] D. Eppstein and M. T. Goodrich. Studying (non-planar) road networks through an algo-
rithmic lens. In Proceedings of the 16th ACM SIGSPATIAL International Symposium on
Advances in Geographic Information Systems, ACM-GIS, 2008.

[7] T. Erlebach and E. J. van Leeuwen. Approximating geometric coverage problems. In
Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1267–1276, 2008.

[8] A. Gräf. Coloring and recognizing special graph classes. PhD thesis, Musikinformatik &
Medientechnik 20/95, Johannes Gutenberg-Universität Mainz, 1995.

[9] A. Gräf, M. Stumpf, and G. Weißenfels. On coloring unit disk graphs. Algorithmica,
20(3):277–293, 1998.

[10] T. Ito, S. Nakano, Y. Okamoto, Y. Otachi, R. Uehara, T. Uno, and Y. Uno. A 4.31-
approximation for the geometric unique coverage problem on unit disks. Theoretical Com-
puter Science, 544:14–31, 2014. Also in Proceedings of ISAAC 2012.

[11] T. Ito, S. Nakano, Y. Okamoto, Y. Otachi, R. Uehara, T. Uno, and Y. Uno. A polynomial-
time approximation scheme for the geometric unique coverage problem on unit squares.
Comput. Geom., 51:25–39, 2016. Also in Proceedings of SWAT 2012.

14

[12] F. Kuhn, P. von Rickenbach, R. Wattenhofer, E. Welzl, and A. Zollinger. Interference
in cellular networks: The minimum membership set cover problem. In Proceedings of the
11th International Computing and Combinatorics Conference (COCOON), pages 188–198,
2005.

[13] N. Misra, H. Moser, V. Raman, S. Saurabh, and S. Sikdar. The parameterized complexity
of unique coverage and its variants. Algorithmica, 65(3):517–544, 2013.

[14] N. H. Mustafa and S. Ray. Improved results on geometric hitting set problems. Discrete
& Computational Geometry, 44(4):883–895, 2010.

[15] S. C. Nandy, S. Pandit, and S. Roy. Covering points: Minimizing the maximum depth. In
Proceedings of the 29th Canadian Conference on Computational Geometry (CCCG), pages
37–42, 2017.

[16] R. Peeters. On coloring j-unit sphere graphs. FEW 512. Technical report, Department of
Economics, Tilburg University, 1991.

[17] E. J. van Leeuwen. Optimization and approximation on systems of geometric objects. PhD
thesis, University of Amsterdam, June 2009.

15

