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Minimum Ply Covering of Points with Convex Shapes
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Abstract

Introduced by Biedl, Biniaz, and Lubiw (CCCG 2019),
the minimum ply covering of a point set P with a set
S of geometric objects in the plane asks for a subset
S′ of S that covers all points of P while minimizing
the maximum number of overlapping objects at any
point in the plane (not only at points of P ). This prob-
lem is NP-hard and cannot be approximated by a fac-
tor better than 2. Biedl et al. studied this problem
for objects that are unit squares or unit disks. They
present 2-approximation algorithms that run in polyno-
mial time when the optimum objective value is bounded
by a constant. We generalize this result and obtain
a 2-approximation algorithm for any fixed-size convex
shape. The new algorithm also runs in polynomial time
if the optimum objective value is bounded.

1 Introduction

The problem of covering clients with antennas has been
well studied in wireless networks [1, 3, 4, 5, 7, 9, 11].
Covering clients by placing new antennas can cause in-
terference (this happens when more than one antenna
cover the same region). Covering clients and—at the
same time—reducing interference is a big challenge in
wireless networks. In this paper we study a geometric
problem that addresses this issue.

S ′

Figure 1: The ply of S′ (shown in red) is 3.

Let P be a set of points and S be a set of geometric
objects, both in the plane; each element of P represents
a client and each object in S represents a coverage re-
gion of an antenna. We want to find a subset S′ of S
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that covers all points in P and minimizes the maximum
number of overlapping objects at any point in the plane.
The ply of S′ is the maximum number of overlapping
objects of S′ over all points of the plane. In other words,

ply(S′) = max
p∈R2

|{O ∈ S′ : p ∈ O}|.

See Figure 1 for an illustration. The term ply was used
earlier by Eppstein and Goodrich [6]. With this def-
inition, our goal is to find a subset of S, with mini-
mum ply, that covers P . This problem is introduced by
Biedl et al. [2], and it is known as the minimum ply
covering (MPC). We denote an instance of the MPC
problem by (P, S). The MPC problem has the same
flavor as the geometric minimum membership set cover
(MMSC) problem which asks for a subset S′ of S that
covers all points of P and minimizes the maximum num-
ber of overlapping objects only at points of P . Notice
that the MPC problem minimizes the maximum number
of overlapping objects over all points of the plane.

Erlebach and van Leeuwen [7] showed that the geo-
metric MMSC problem is NP-hard for axis-aligned unit
squares and unit disks, and it cannot be approximated
by a factor better than 2 in polynomial time. According
to Biedl et al. [2] the MPC problem is also NP-hard for
axis-aligned unit squares and unit disk, and it cannot
be approximated by a ratio better than 2. They pre-
sented factor-2 approximation algorithms for the MPC
problem with unit squares and unit disks. Their algo-
rithms run in linear time if the optimal ply is bounded
by a constant.

In this paper we study the MPC problem for general
convex shapes. Let C be an arbitrary convex polygon
in the plane. The objects in S are translations of C. We
present an algorithm that finds a subset S′ of S, with ply
at most 2`, that covers all points of P , where ` is the op-
timal ply. In other word, we present a 2-approximation
algorithm for the problem instance (P, S). The follow-
ing theorem summarizes our result.

Theorem 1 There exists a 2-approximation algorithm
for the minimum ply covering of points with fixed-size
convex polygons that runs in polynomial-time when the
optimal objective value is bounded by a constant.

Our algorithm is a generalization of the algorithm
of Biedl et al. [2]. We first give an overview of their
algorithm, and then we show how to extend it to work
for any convex shape.
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2 Algorithm of Biedl, Biniaz, and Lubiw

We describe their 2-approximation algorithm for unit
squares. The main idea of their unit disks algorithm
is similar to that of unit squares. Let S be a set of
axis-aligned squares of side length 1. Recall that P is a
set of points in the plane. To solve the instance (P, S),
the algorithm partitions the plane into horizontal slabs
of height 2. Let H1, H2, . . . denote these slabs from
bottom to top. Let Pj be the points of P in Hj and let
Sj be the squares of S that intersect Hj , as in Figure 2.
Every square intersects at most two (neighboring) slabs
and thus it can appear in at most two sets Sj . The
idea is to first solve the MPC problem for each slab Hj

optimally, i.e., to solve (Pj , Sj) instances. Let S′j be
an optimal solution for slab Hj . Then take S′ as the
union of all solutions S′j . The set S′ is a 2-approximate
solution for the original problem because every square
can appear in at most two S′j .
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Figure 2: Partitioning the plane into slabs. Red points
belong to Pj and red squares belong to Sj .

Assume that the optimal ply is at most `. To solve
the (Pj , Sj) instance, partition Hj into vertical strips by
vertical lines through the leftmost and rightmost points
of all squares.1 Let t1, t2, . . . , tk denote these strips
from left to right. The following observation plays an
important role in the design of the algorithm: if S∗j
is a solution of (Pj , Sj) with ply at most `, then each
strip ti is intersected by at most 3` squares of S∗j .2 This
observation is used to construct a directed acyclic graph
G such that any path from the source to the destination
in G corresponds to a solution of (Pj , Sj). The graph G
is constructed as follows.

For every strip ti, define a vertex set Vi as follows.
Consider every subset Q ⊆ Sj containing at most 3`
squares that intersect ti. Add a vertex vi(Q) to Vi if (i)
the ply of Q is at most `, and (ii) the squares in Q cover
all points of Pj that lie in ti. Notice that no square
intersects the strips t1 and tk. Thus the set V1 has
exactly one vertex v1(∅) which is called the “source”,
and the set Vk has exactly one vertex vk(∅) which is
called the “sink”. The vertex set of G is the union of
all vertex sets Vi.

1In case of squares, the vertical line through the leftmost (resp.
rightmost) point is essentially the line through the left (resp.
right) side of square.

2This number is at most 8` for unit disks [2].

The edges of G are defined base on the following ob-
servation. Imagine we scan an optimal solution S∗j from
left to right. While moving from a strip ti to ti+1 either
one square stops at their boundary, or one square starts
at their boundary, or the squares that intersect ti+1 are
the same as those intersect ti. Based on this, we add
a directed edge from every vertex vi(Q) in Vi to every
vertex vi+1(Q′) in Vi+1 if one of the following conditions
hold

1. Q′ = Q as in Figure 3(a), or

2. Q′ = Q\{q}, where q is the square whose right side
is on the left boundary of ti+1 as in Figure 3(b), or

3. Q′ = Q∪ {q}, where q is the square whose left side
is on the left boundary of ti+1 as in Figure 3(c).

ti ti+1 ti ti+1

q

ti ti+1

q
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(a) (b) (c)

Figure 3: Constructing edges of G where (a) Q = Q′ =
{s1, s2, s3} (b) Q = {s1, s2, q} and Q′ = {s1, s2} (c)
Q = {s1, s2} and Q′ = {s1, s2, q}.

Let δ be any path from the source v1(∅) to the sink
vk(∅). The union of all sets Q corresponding to the ver-
tices of δ is a solution of (Pj , Sj). The running time of
this algorithm for one slabHj is O

(
(`+ |Pj |) · |Sj |3`+1

)
,

and for all slabs is O
(
(`+ n) · (2m)3`+1

)
where n = |P |

and m = |S|; see section 3.1 for more details. If ` is
bounded by a constant then the running time is poly-
nomial. The main ingredient to achieve this running
time is the fact that the number of squares of any op-
timal solution S∗j that intersect any strip ti is bounded
by a constant multiple of `. We are going to obtain a
similar fact for all convex shapes, and then extend the
algorithm to work for any convex shape.

3 Minimum ply covering with convex shapes

Let P be a set of n points in the plane, and let S be a
set of m objects that are translations of the same convex
polygon C, as in Figure 1. We show how to find a subset
S′ of S, with ply at most 2`, that covers all points of P ,
where ` is the optimal ply. In other words, we present
a 2-approximation algorithm for the problem instance
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(P, S). The algorithm takes polynomial time when ` is
a constant.

Before proceeding to the algorithm we introduce some
terminology. A pair of rectangles (r,R) is called homo-
thetic if they are parallel and have the same aspect ratio
(r and R need not be axis-parallel). A homothetic pair
(r,R) is an approximating pair for C if r ⊆ C ⊆ R,
that is, r is enclosed in C and C is enclosed in R; see
Figure 4. Let λ(r,R) be the smallest ratio of the length
of R to the length of r, over all convex shapes. Pólya
and Szegö [12] showed that for every convex shape there
exists an approximating pair (r,R) with λ(r,R) 6 3.
Schwarzkopf et al. [13] and Lassak [10] improved this
upper bound to 2.3 For any convex polygon C, an ap-
proximating pair of ratio at most 2, can be computed
in O(log2 |C|) time if the vertices of C are given as a
sorted array [13]. The upper bound 2 for λ(r,R) is the
best possible because for a triangle the length of small-
est enclosing rectangle is at least 2 times the length of
its largest enclosed homothetic rectangle.

Let (r,R) be an approximating pair for our convex
polygon C such that λ(r,R) 6 2. For simplicity we as-
sume that λ(r,R) = 2 (this can be achieved by enlarging
R or by shrinking r). After a suitable rotation and scal-
ing assume that the longer side of R is vertical and its
length is 1. Let α denote the length of the smaller side
of R after scaling, as in Figure 4. In this setting the side
lengths of r are 1/2 and α/2.

As before, we partition the plane into horizontal slabs
of height 2, and then for every slabHj we solve the prob-
lem instance (Pj , Sj) optimally. To solve this instance
we partition Hj into vertical strips t1, . . . , tk by verti-
cal lines through the leftmost and the rightmost points
of every object in Sj . To construct the corresponding
directed acyclic graph G we use the following lemma.
This lemma, which is our main technical result, uses
the concept of approximating pair of rectangles.

Lemma 2 Let S∗j ⊆ Sj be any solution with ply at most
` for the problem instance (Pj , Sj). Then any strip ti is
intersected by at most 12` objects in S∗j .

Proof. After a suitable translation assume that Hj has
y-range [0, 2], and that the y-axis lies in ti, as in Fig-
ure 4. Consider any object C in Sj , and let (r,R) be its
approximating pair. We refer to the bottom-left corner
of r as the representative point of C, and denote it by c.
Let h and w be the distances from c to the bottom and
left sides of R, respectively. Then the distances from c
to the top and right sides of R are 1− h and α− w, as
in Figure 4. Consider the rectangle F with bottom-left
corner (w − α, h − 1) and top-right corner (w, 2 + h).
The length of F is 3 and its width is α. Cover F by 12
instances of r, say r1, r2, . . . , r12. Denote the top-right

3A similar ratio is also obtained for pairs of ellipses that ap-
proximate convex shapes [8].
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Figure 4: Illustration of the proof of Lemma 2.

corner of each rk by pk; these corners are marked by
green points in Figure 4.

Assume that C intersects the strip ti. Then C inter-
sects the y-axis because vertical strips are defined by
vertical lines through leftmost and rightmost points of
objects in Sj . In this setting, our definition of h, w, and
F imply that the representative c of C must lie in rect-
angle F . Since F is covered by instances of r, the point
c must lie in one of these instances, say rk. In this case
the enclosed rectangle r of C contains pk, and so does
C. Thus, each object in Sj that intersects ti contains
at least one of the points p1, . . . , p12. Since S∗j has ply
at most `, each point pk lies in at most ` objects of S∗j .
Therefore, at most 12` objects of S∗j intersect ti. �

We use Lemma 2 to construct a directed acyclic graph
G, analogous to that of [2]. The main difference between
the two constructions is in the definition for vertex set
Vi of each strip ti: for every subset Q of at most 12`
squares that intersect ti we introduce a vertex vi(Q) if
(i) the ply of Q is at most `, and (ii) its squares cover
all points in ti. The edges of G are defined as before.
Any path from the source to the sink in G corresponds
to a solution of (Pj , Sj)—this claim, which is proved in
[2] for squares and circles, holds for any convex shape
and in particular for C. This is the end of the algorithm
and its correctness proof.

3.1 Time complexity

The running time analysis is analogous to that of [2] for
squares, and thus we keep it short. Set nj = |Pj | and
mj = |Sj |. Then the number of strips is k = 2mj +
1. The number of vertices in every set Vi is O

(
m12`

j

)
.

Therefore the total number of vertices of G is at most k ·
O
(
m12`

j

)
= O

(
m12`+1

j

)
. Since every vertex has at most

three outgoing edges, the number of edges of G is also
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O
(
m12`+1

j

)
. By an initial sorting of the points of Pj and

the objects of Sj with respect to the y-axis, conditions
(i) and (ii) can be verified in O (|C| · (`+ nj)) time for
each subset Q, where |C| is the number of vertices of
C. Therefore, it takes O(|C| · (`+ nj) ·m12`+1

j ) time to
constructG. A path from the source to the sink inG can
be found in time linear in the size of G. Thus, the total
running time to solve the problem instance (Pj , Sj) is
O(|C| · (`+nj) ·m12`+1

j ). Since every point of P belongs
to one slab and every object of S belongs to at most two
slabs, the running time of the entire algorithm—for all
slabs—is O(|C| ·(`+n) ·(2m)12`+1), which is polynomial
when ` is bounded by a constant.

4 Conclusion

We generalized the 2-approximation algorithm of Biedl
et al. [2] for the MPC problem to work for any con-
vex shape. A natural question is to verify if there are
polynomial-time O(1)-approximation algorithms for the
MPC problem when the objective value is not necessar-
ily a constant.
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