
On the size of outer-string representations
Therese Biedl1

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada
biedl@uwaterloo.ca

Ahmad Biniaz2

Cheriton School of Computer Science, University of Waterloo
Waterloo, Canada
ahmad.biniaz@gmail.com

Martin Derka3

School of Computer Science, Carleton University
Ottawa, Canada
mderka@uwaterloo.ca

Abstract
Outer-string graphs, i.e., graphs that can be represented as intersection of curves in 2D, all of
which end in the outer-face, have recently received much interest, especially since it was shown
that the independent set problem can be solved efficiently in such graphs. However, the run-
time for the independent set problem depends on N , the number of segments in an outer-string
representation, rather than the number n of vertices of the graph. In this paper, we argue
that for some outer-string graphs, N must be exponential in n. We also study some special
string graphs, viz. monotone string graphs, and argue that for them N can be assumed to be
polynomial in n. Finally we give an algorithm for independent set in so-called strip-grounded
monotone outer-string graphs that is polynomial in n.

2012 ACM Subject Classification Theory of computation → Computational geometry, Mathe-
matics of computing → Graph theory

Keywords and phrases string graph, outer-string graph, size of representation, independent set

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.10

1 Introduction

A string graph is a graph G = (V,E) that has a string representation, i.e., an assignment
of curves in the plane to the vertices in such a way that two vertices v, w are connected by
an edge (v, w) if and only if their corresponding curves v,w intersect. In this paper, we
only consider string representations where any two curves v and w intersect in a finite set of
points (denoted v ∩w). We will always use bold-face v to denote the curve of a vertex v.

The study of string graphs goes back over 50 years, see e.g. [24, 7]. It is known that
every planar graph is a string graph [7], but in general, testing whether a graph is a string
graph is NP-complete [15, 20, 22]. Many variants of string graphs have been studied in
the literature. Of chief interest to us are the so-called outer-string graphs, which have a
string representation such that for every vertex v the curve v has at least one endpoint on

1 Supported by NSERC.
2 Supported by NSERC Postdoctoral Fellowship.
3 Supported by NSERC Vanier fellowship while author was a student at University of Waterloo.

© Therese Biedl, Ahmad Biniaz, and Martin Derka;
licensed under Creative Commons License CC-BY

16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018).
Editor: David Eppstein; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biedl@uwaterloo.ca
mailto:ahmad.biniaz@gmail.com
mailto:mderka@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 On the size of outer-string representations

the outer-face of the string representation. See some recent articles [2, 3] for some results
concerning outer-string graphs and some subclasses.

The class of outer-string graphs includes the circle graphs (i.e., graphs of intersections
of chords of a circle), so any decision problem that is NP-hard for circle-graphs is also
NP-hard for outer-string graphs. This includes, among others, the Coloring problem and the
Hamiltonian Cycle problem [11, 5]. However, it does not include the maximum independent
set problem, i.e., the problem where we are given a graph with vertex-weights (not necessarily
uniform), and we want to find the maximum-weight vertex-set I such that no two vertices in
I are adjacent.

The work in the current paper was inspired by a result from 2015 in which Keil, Mitchell,
Pradhan and Vatshelle presented a poly-time algorithm for maximum independent set in
outer-string graphs [14]. They assume that an outer-string representation R is given, and
“poly-time” means polynomial in the size of R (typically measured by assuming that R uses
only polygonal lines and counting the number of segments). Their algorithm runs in time
O(N3) where N is the size of R.

Since the algorithm of Keil et al. [14] requires the representation to be given, the following
question remains open: Given an outer-string graph G (but no outer-string representation),
can we find a maximum independent set of G in polynomial time? One natural approach to
this would be to try to find an outer-string representation of G. There are two obstacles
here though. First, no algorithm is known to find such a representation (but this problem is
also not known to be NP-hard). Second, even if such an algorithm were known, what would
be the size N of the resulting outer-string representation? There are string graphs for which
any string representation requires exponential size [16]. What can be said about the size of a
representation required for outer-string graphs? This is the main topic of this paper.

1.1 Related results

We provide here an overview of some algorithmic results on string graphs. Since planar
graphs are string graphs [7], all problems that are NP-hard for planar graphs remain NP-hard
for string graphs. The converse statement is not true because there are problems that are
polynomial for planar graphs (e.g. maximum clique) but NP-hard for string graphs [19].

String representations have been used to obtain better approximation algorithms, espe-
cially for independent set. Matoušek [18] showed that every string graph with m edges admits
a vertex separator (a set S such that all components of G − S have at most 2

3n vertices)
of size O(

√
m logm). Fox and Pach conjectured that every string graph has a separator

of size O(
√
m) [9]. This was proved, first for k-intersecting string graphs (any two strings

intersect at most k times) [8] and very recently for all string graphs [17]. One example of a
result based on separators is an nε-approximation algorithm for maximum independent set in
k-intersecting string graphs by Fox and Pach [10]. Har-Peled and Quanrund [13] showed that
separator theorems are applicable for approximation algorithms for all sparse string graphs.
However, none of these results seems to lead to approximation algorithms with factors better
than O(nε) for all string graphs.

A segment graph is a string graph that has a string representation in which all strings are
line segments. Agarwal and Mustafa [1] proved that if all these segments intersect a given
line, then an independent set of size

√
α can be computed in O(n3) time where α is the size

of a maximum independent set. They also showed that any segment graph can be split into
O(logn) subgraphs that are segment graphs for which all segments intersect one line. They
used this to obtain an independent set of size

√
α/ log(n/α) for all segment graphs.

T.Biedl, A.Biniaz, and M.Derka 10:3

1.2 Our contribution
In this paper we show that for some n-vertex outer-string graphs any outer-string representa-
tion requires Ω(2n/10) crossings, and consequently exponentially many segments. This result
implies that the independent set algorithm of Keil et al. [14] does not run in polynomial
time for all outer-string graphs, but only for those that have a polynomial-size outer-string
representation. Our result also motivates exploration of algorithms whose running times
have lower dependency on the size of representation.

We next explore graph classes that do have small string representations. We consider
a natural subclass of string graphs, the monotone string graphs, where every string is a
y-monotone curve, and argue that any such representation can be transformed into one
of polynomial size. Combining this with Keil et al.’s algorithm implies that for monotone
outer-string graphs, the maximum independent set is polynomial in n, however, the running
time is rather large. We also study a special case where every monotone string has one
endpoint on an enclosing strip. For this case we present a dynamic programming algorithm
that finds a maximum independent set in O(n6) time and a 2-approximation in O(n3) time.

1.3 Outer-string graphs and apices
For our proof that some outer-string graphs require large representations, it will help to have
a characterization of outer-string graphs. Although this characterization is simple (a similar
approach has been used by Middendorf and Pfeiffer to characterize so-called cylinder graphs
[20]), to our knowledge it has not been given before. Let G be a graph. The apex graph H

of G is the graph obtained from G by adding a new vertex a connected to all vertices in G.
The subdivided apex graph of G, denoted by G+, is obtained from H by subdividing every
edge incident to a. See Figure 1. One can easily show the following (see [6] for details):

I Lemma 1. Graph G is an outer-string graph if and only if its subdivided apex graph G+

is a string graph. Furthermore, any outer-string representation R of G can be turned into a
string representation of G+ without changing any curve of R.

a a

Figure 1 A graph G, its apex graph, and the subdivided apex graph G+.

We have two corollaries from this that should be interesting in their own right. First,
it is known that every string graph G with m edges has a string representation with 2O(m)

crossings per string. (This holds since string representations of G correspond to so-called
weak realizations of another graph H with O(m) edges [22], and weak realizations can be
assumed to have at most 2m crossings per string [23, 21].) Therefore, if G is outer-string,
then the subdivided apex-graph of G has a string representation with 2O(m) crossings per
string. Deleting the added vertices, we get the following corollary.

I Corollary 2. If G is an outer-string graph with m edges, then it has an outer-string
representation with 2O(m) crossings per string.

SWAT 2018

10:4 On the size of outer-string representations

Secondly, while it was long known that string graph recognition is NP-hard [15], proving
that it is in NP was a long-standing open question until proved by Schaefer et al. [22]. For
any graph G we can construct the subdivided apex graph G+ in polynomial time. Combining
this with Lemma 1 implies the following non-trivial result.

I Corollary 3. The problem of recognizing outer-string graphs is in NP.

Naturally one wonders whether recognizing outer-string graphs is also NP-hard. This
problem is open.

2 Exponential-sized Outer-string Representations

Now we construct a graph that requires exponentially many intersections in any string
representation. This re-proves a result of Kratochvíl and Matoušek [16], but our graph is
different (although inspired by their construction), and can be used to prove the same for
outer-string representations later.

For any integer k ≥ 1 construct graph Gk as follows. For 0 ≤ i ≤ k we add two vertices
xi, yi, and an edge (xi, yj) for every j ≥ i. We surround this graph with a gadget that forces
these vertices to appear in a certain order. This was done in [16] with a grid-like structure,
but we use a cycle C instead, in the same way that Cardinal et al. [3] used a cycle to
enforce order for their representations.4 Specifically, let C = c0, c1, . . . , cK−1 be a cycle with
K := 8k+ 8 vertices. We connect every 4th vertex of C to one of the vertices {xi, yi}i=0,...,n,
in order (along the cycle) x0, x1, y0, x2, y1, x3, y2, . . . , xi, yi−1, xi+1, yi, . . . , xk, yk−1, yk. Let
`(xi) [resp. `(yi)] be the index of the vertex of C that is adjacent to xi [resp. yi], thus
`(x0) = 0, `(x1) = 4, etc. See also Figure 2. This finishes the construction of Gk. As
before, let G+

k be the subdivided apex graph of Gk with apex vertex a. We use sj for the
subdivision-vertex incident to vertex cj ∈ C.

Figure 3 illustrates an outer-string representation of Gk, which can be converted into a
string representation of its subdivided apex graph G+

k (see Lemma 1). Note that yk and x0
intersect 2k−1 times. We now argue that this is required.

I Lemma 4. In any string representation of G+
k , curve yk intersects curve x0 at least 2k−1

times.

Proof. Fix a string representation R+
k of G+

k . Delete from it all strings of all subdivision
vertices s2i+1 for 0 ≤ i < K/2 (these won’t be needed). Also, we know that s2i has only
two neighbours (a and c2i), and we can hence shorten its string such that s2i has exactly
two intersections, one with a and one with c2i [15]. Likewise c2i+1 intersects only two
other strings (c2i and c2i+2) since we deleted s2i+1, and we may hence shorten it such that
|c2i ∩ c2i+1| = 1 = |c2i+1 ∩ c2i+2|.

So for any 0 ≤ j < K, we have a unique point in cj ∩ cj+1 (addition for all vertices in C
is mod K). We use cj[cj−1, cj+1] to denote the (unique) stretch of cj between cj−1 ∩ cj and
cj∩cj+1. Crucial for our argument will be a curve defined by following the strings of cycle C:
define C to be

⋃K−1
j=0 cj[cj−1, cj+1] and observe that it is a closed simple curve in the plane,

hence splits the plane into the inside and outside. We now make a sequence of observations:
Since the apex-vertex is not adjacent to any vertex of C, curve a is disjoint from C and
hence resides inside or outside. By symmetry, we may assume that a is outside C.

4 The correctness for their gadget was only argued for outer-1-string representations, and so we cannot
use it as a black box, but the idea is the same.

T.Biedl, A.Biniaz, and M.Derka 10:5

c`(y0)c`(y1)c`(y2) c`(x2)c`(y3) c`(x3)
c`(x1)

y0y1y2y3

x0x1x2x3

c`(x0)

Figure 2 The graph G+
3 . The apex vertex a is not shown. Subdivision vertices are squares.

c`(y0)c`(y1)c`(y2) c`(x2)c`(y3) c`(x3) c`(x1)

y0y1y2
y3

x0

x1x2x3

c`(x0)

Figure 3 An outer-string representation of G3. String y3 is red (dashed) for ease of legibility.

SWAT 2018

10:6 On the size of outer-string representations

x0

y0

x1

y1

(a) The base case.

xi+1
yi

xi
yi+1

(b) Two possible routes for yi.

Figure 4 In the base case, y1 must cross x0. In the induction step, a route for yi+1 gives two
possible routes for yi to xi.

For any 0 ≤ i ≤ k, curve xi has a point outside C. Namely, there exists a subdivision-
vertex sxi with unique neighbors a and xi. Since neither a nor sxi have a neighbor on C,
and a is outside C, therefore so is sxi , and so any point in sxi ∩ xi is outside C.
For any 0 ≤ i ≤ k, curve xi has a point inside C. Specifically, for any j ≥ i any point
in xi ∩ yj (which exists since there is an edge (xi, yj)) must be inside C for any j > i.
For otherwise we could use a point in xi ∩ yj outside C to find a drawing of K4 with all
vertices on one face, an impossibility. (Details are in [6].)
Thus for any 0 ≤ i ≤ k, curve xi has points both inside and outside C. So xi must
intersect C, which is possible only at c`(xi).
Similarly yj intersects at a point on C for all 0 ≤ j ≤ k, and this intersection must
happen on c`(yj).

We are now almost ready to argue the number of intersections of yk with x0, which will
happen by induction on k. However, to argue the induction step it helps to permit that some
curves do not intersect. We hence use the following type of representation:

IDefinition 5. A weak outer Gi-representation is a collectionR′i of curves C,x0,y0, . . . ,xi,yi
that satisfies the following:
1. C is a simple closed curve such that all other curves of R′i are on or inside C.
2. The curves xj and yj (for 0 ≤ j ≤ i) intersect each other.
3. Each of the curves xj and yj (for 0 ≤ j ≤ i) intersects C exactly once.
4. These intersections with C occur in order x0, x1, y0, x2, y1, x3, y2, . . . ,xi, yi−1, yi.
5. The curves xr and yj (for 0 ≤ r < j ≤ i) may or may not intersect each other.
6. No other curves are allowed to intersect each other.

It is easy to see ([6] has details) that for any 0 ≤ i ≤ k we can find a weak outer
Gi-representation for which all curves reside within the corresponding curves of R+

k . The
theorem hence holds once we have shown the following:

I Claim 1. In any weak outer Gi-representation, curve yi intersects x0 at least 2i−1 times.

We proceed by induction on i. Consider the base case i = 1 (see Figure 4(a); for legibility
we extend curves slightly beyond C). The order in which curves intersect C is x0,x1,y0,y1,
and the combined curve x0 ∪ y0 splits C into two parts. Curves x1 and y1 intersect C
in different parts. To create an intersection point x1 ∩ y1, one of them must cross paths
y0 ∪ x0. Such a crossing must be between y1 and x0 (no other crossings are allowed). So,
y1 intersects x0 at least once.

T.Biedl, A.Biniaz, and M.Derka 10:7

Assume now that the claim holds for some i, and study a weak outer Gi+1-representation.
Curve yi+1 is separated from curve xi+1 by xi ∪ yi . Thus, curve yi+1 has to intersect xi
on its way to xi+1. On the way to xi, it has to create at least 2i−1 intersections with x0,
otherwise we could re-route yi and use fewer crossings between yi and x0. More precisely
(refer to Figure 4(b)), yi could be re-routed to stay in the proximity of the cycle C until it
reaches yi+1∩C and then follow yi+1 until reaching xi. Along this new route (following yi+1)
curve yi might intersect neighbors of yi+1, but all those neighbors are allowed to be neighbors
of yi as well, so this is (after deleting yi+1 and xi+1) a weak outer Gi-representation with less
than 2i−1 points in yi ∩ x0. This contradicts the induction hypothesis. So, yi+1 intersects
x0 at least 2i−1 times on the way from C ∩ yi+1 to yi+1 ∩ xi.

On the way from xi to xi+1, curve yi+1 needs to create another 2i−1 crossings with x0,
otherwise we could re-route yi and use fewer crossings as follows: yi stays in the proximity of
the cycle curves until it reaches xi+1 ∩C and then follows xi+1 and yi+1. Thus yi+1 crosses
x0 at least 2i times as desired. J

In consequence, we have:

I Theorem 6. For any k ≥ 1, there exists a graph Gk with O(k) vertices that has an
outer-string representation, but any outer-string representation of Gk requires two strings to
intersect at least 2k−1 times.

Proof. We use graph Gk defined earlier; it has 10k + 10 vertices total. By Lemma 4, any
string representation of G+

k requires at least 2k−1 intersections between yk and x0. Since
any such representation can be obtained from an outer-string representation of Gk without
changing any string of Gk (see Lemma 1), any outer-string representation of Gk requires at
least 2k−1 intersections between yk and x0. J

Since line segments intersect at most once, any polygonal outer-string representation of
Gk hence must have a string with at least

√
2k−1 = 2(k−1)/2 ∈ 2Ω(n) segments.

3 Monotone string representations

In the previous section, we showed that outer-string graphs sometimes require an exponential
number of segments in any outer-string representation. Naturally, one wonders whether there
are any natural subclasses of string graphs that have polynomial-size representations.

In this section, we prove that there are string representations of polynomial size if the
graph is a monotone string graph. By this we mean that it has a string representation where
every curve is y-monotone, i.e., intersects any horizontal line at most once. Monotone string
graphs have been studied before (e.g. in the context of coloring [25]), but to our knowledge
the following is new:

I Theorem 7. Let G be an n-vertex m-edge graph with a monotone string-representation R.
Then G has a monotone string-representation R′ with at most 2n(n+m) segments.

Proof. We may assume that no two y-coordinates of crossings or endpoints in R coincide,
and no string has its endpoint on another string. Define a layer-set Y of y-coordinates as
follows: (1) For every vertex v, add to Y the y-coordinates of the bottom and top endpoints
of v. (2) For every edge e = (v, w), pick one point p in v∩w and add to Y the y-coordinates
y−e := y(p)−ε and y+

e := y(p)+ε, where ε is small enough such that no other intersections or
endpoints of curves happen within this range. See also Figure 5. Now create R′ by defining,
for each vertex v, the curve v′ as a poly-line that connects, from bottom to top, the points

SWAT 2018

10:8 On the size of outer-string representations

where v intersects a horizontal line with y-coordinate in Y . In the rest of the proof we verify
that this represents the same graph and satisfies all conditions.

For any y ∈ Y, define `Y to be the horizontal line with y-coordinate Y ; we call `Y a
layer. To define the new curve v′ for a vertex v, let y1 < · · · < yd be all those values yi ∈ Y
for which `yi intersects v. Now let v′ be the poly-line v ∩ `y1 ,v ∩ `y2 , . . . ,v ∩ `yd . (These
intersection points are unique since v is monotone.) Curve v′ is monotone and has at most
2m+ 2n− 1 segments.

It remains to argue that R′ represents the same graph as R did. If e = (v, w) is an edge,
then v′ crosses w′ between the two layers that were added just above and below a point in
v ∩w.

For the other direction, let us assume that curves v′ and w′ cross in R′, say at point c.
The crossing c cannot lie on a layer `, because both v′ and w′ cross ` at the same points as
v and w did, and Y was chosen so that no layer contains crossings of R.

So c lies between two consecutive layers, say ` and `′. After possible renaming, assume
that v′ ∩ ` lies to the left of w′ ∩ `. Since the curves use line segments between layers and
there is a crossing, we must have the reverse order on `′, i.e., v′ ∩ `′ lies to the right of w′ ∩ `′.

But recall that we chose v′ such that v′ ∩ ` = v∩ `, and similarly for w and `′. Therefore,
in R we also had v to the left of w on ` and to the right of w on `′. Curves v and w are
y-monotone in the stretch between ` and `′. It follows that the two curves v and w cross
somewhere within this stretch. Therefore (v, w) is an edge of the graph as required. J

1

2

3

4
5

1

2

3

4
5

1
2

3

4
5

Figure 5 A monotone string-representation of C5, an application of our algorithm, and re-assigning
coordinates to obtain an n× (2m+ 2n)-grid.

We note that R′ can be assumed to reside on an n× (2m+ n)-grid. Namely, each curve
consists of line segments that connect consecutive layers. We can re-assign y-coordinates in
{1, . . . , 2m+ 2n} to the layers, and re-assign x-coordinates in {1, . . . , n} to the points where
curves intersect layers, and the same line segments will cross between consecutive layers,
hence we obtain a string representation of the same graph. See Figure 5.

One drawback of our proof is that it needs an explicit representation R to create the
polynomial-sized representation R′. It remains open how to find such a representation R′,
given just the graph.

T.Biedl, A.Biniaz, and M.Derka 10:9

4 Independent set in monotone outer-string graphs

Keil et al. presented an algorithm for (weighted) independent set on outer-string graphs that
runs in time O(N3) (as before, N is the size of an outer-string representation) [14]. However,
due to Theorem 6, N may need to be in 2Ω(n). In this section we study the independent
set problem on monotone string graphs, which have a polynomial-size representation by
Theorem 7. Since planar graphs are segment graphs [4] (hence monotone string graphs),
and since maximum independent set is NP-hard for planar graphs [12], we have:

I Proposition 1. Maximum independent set is NP-hard even for monotone string graphs.

We therefore turn our attention to monotone outer-string graphs. Here, we know from
Keil et al.’s result that the maximum independent set problem is solvable in polynomial
time in the size of representation, and from Theorem 7 that there exists a representation
with size N ∈ O(nm) and at most O(m + n) line segments per string. Presuming such a
representation is given, we can hence solve the independent set problem in O(n3m3) time.
We now show that for two special cases of monotone outer-string graphs, a better run-time
can be achieved.

I Definition 8. Let G be a monotone outer-string graph. We say that G is strip-grounded if
there exists a monotone string representation of G with a bounding rectangle ρ such that all
strings have one end at the top or bottom side of ρ. We say that G is line-grounded if all
strings have one end on the bottom side of ρ.

Figures 6 and 7 illustrate line-grounded and strip-grounded graphs, respectively. We may,
after shortening some strings, assume that no string in such a representation touches both
the bottom and the top of ρ. For a string v, we use b(v) and t(v) to denote the y-coordinates
of the bottom and top endpoints of v, respectively. For ease of description, we add two
negative-weight dummy vertices with strings along the left and right sides of ρ (no optimal
solution will include these two vertices/strings). Enumerate the bottom-grounded vertices
(i.e., vertices whose strings attach at the bottom side of ρ) as v1, . . . , vb, from left to right by
bottom endpoint. Enumerate the top-ground vertices as u1, . . . , ut, from left to right by top
endpoint. Here, v1 = u1 and vb = ut are the dummy vertices.

4.1 Line-grounded monotone string graphs

We first show how to find the maximum independent set in a line-grounded monotone
string graph G; this will be a useful subroutine later. We only have vertices v1, . . . , vb (with
b = n+ 2 due to the dummy vertices). We proceed by dynamic programming, and define
sub-problems as follows (a similar technique has been used in [1] for computing approximate
maximum independent set of segments that cross a straight line). For any pair (i, j), with
1 ≤ i < j ≤ b and (vi, vj) 6∈ E, define S(i, j) to be the set of vertices vk ∈ {vi+1, . . . , vj−1}
that satisfy t(vk) ≤ min{t(vi), t(vj)}, (vk, vi) 6∈ E and (vk, vj) 6∈ E. Put differently, S(i, j)
contains every vertex vk for which vk is strictly within the region bounded by vi, the bottom
side of ρ, vj, and the horizontal line with y-coordinate min{t(vi), t(vj)} (see Figure 6). Due
to the dummy vertices, we have S(1, b) = V .

Let w(v) be the weight of vertex v, and set W (i, j) to be the weight of a maximum
independent set in S(i, j).

I Claim 2. W (i, j) =
{

0 if S(i, j) is empty
maxvk∈S(i,j)W (i, k) +W (k, j) + w(vk) otherwise.

SWAT 2018

10:10 On the size of outer-string representations

vi vj

t(vi)

t(vj)

vk

Figure 6 Line-grounded strings, and an illustration of the formula for W (i, j).

Proof. See Figure 6 for an illustration of this proof. Consider an optimal solution I∗ for
S(i, j). Let vk be the vertex that maximizes t(vk) among the vertices in I∗ (if there is no
such vk then S(i, j) = ∅ and the equality holds). Let v be some other vertex in I∗. Since I∗ is
an independent set, v does not intersect vk. It also intersects neither vi nor vj by definition
of S(i, j). Finally t(v) ≤ t(vk) by choice of vk. It follows that v ∈ S(i, k) or v ∈ S(k, j). So
I∗ − {vk} induces two independent sets for S(i, k) and S(k, j). So “≤” holds for this choice
of vk, and even more so for the maximum among all vk in S(i, j).

For the other direction, let k be the index where the maximum is achieved and fix
maximum independent sets Ii and Ij of S(i, k) and S(k, j). Observe that no string of Ii can
intersect one in Ij since they reside within disjoint regions, and neither of them can intersect
vk by definition of S(i, k) and S(k, j). So Ii ∪ Ij ∪ {vk} is an independent set of S(i, j) and
“≥” holds. J

By computing S(1, b) recursively with standard dynamic programming techniques, we
can hence find the maximum independent set of G. We briefly discuss the run time. To
find set S(i, j), we mark all neighbours of vi, all neighbours of vj , and all vertices v with
t(v) > min{t(vi), t(vj)}. Then we take all unmarked vertices in {vi+1, . . . , vj−1}; clearly this
takes O(n) time per set S(i, j). Evaluating the recursive formula takes O(n) time as well,
and since we have O(n2) subproblems, the overall run-time is O(n3). (Note that for this
algorithm, we do not even need an explicit line-grounded monotone string representation:
it suffices to have graph G, and the coordinates of the top and bottom endpoints, together
with the promise that they correspond to such a representation.)

I Theorem 9. Given a vertex-weighted graph G with a line-grounded monotone string
representation, we can compute the maximum-weight independent set of G in O(n3) time.

4.2 Strip-grounded monotone string graphs
Now we turn to strip-grounded monotone string graphs. First note that by applying the
algorithm for line-grounded monotone string graphs twice (once for the bottom-grounded
vertices and once for the top-grounded vertices), we immediately obtain a 2-approximation
algorithm, which runs in O(n3) time. At the price of an increased run-time, we show how to
solve this problem optimally. For this, we need a more complicated set of subproblems:

Let v be a bottom-grounded string and u be a top-grounded string such that (v, u) 6∈ E
and t(v) ≥ b(u). We say that a vertex x lies between v and u if there exists a horizontal line
` that intersects all of v,u,x, and for which the point `∩ x lies between the points `∩ v and
` ∩ u. Define the following sets (see also Figure 7):

Let 1 ≤ i ≤ j ≤ b and 1 ≤ α ≤ β ≤ t be indices such that {vi, uα, vj , uβ} is an
independent set, and further t(vi) ≥ b(uα) and t(vj) ≥ b(uβ). Define S(i, α; j, β) to be

T.Biedl, A.Biniaz, and M.Derka 10:11

all those vertices in {vi+1, . . . , vj−1} ∪ {uα+1, . . . , uβ−1} that are adjacent to none of
vi, vj , uα, uβ , and do not lie between vi and uα or between vj and uβ .
Let 1 ≤ i ≤ k ≤ b and 1 ≤ α ≤ t be indices such that {vi, uα, vk} is an independent set
and t(vi) ≥ b(uα). Define SSW (i, α; k) to be all those vertices v in {vi+1, . . . , vk−1} that
are adjacent to none of vi, vk, uα, do not lie between vi and uα, and for which t(v) ≤ t(vk).
We symmetrically define SSE(k; j, β), SNW (i, α; γ) and SSW (γ; j, β). See also Figure 7.
Finally we also need the set S(i, j) defined earlier (we denote it Sv(i, j) since it uses the
bottom-grounded vertices), and symmetrically set Su(α, β) for top-grounded vertices.

vi vj

uα uβuγ

SSW (i, α; k)
SSE(k; j, β)

SNW (i, α; γ) SNE(γ; j, β)

vk

(a)

vi vj

uα uβ

vk

uγ
S(i, α; k, γ)

S(k, γ; j, β)

(b)

vi

uα

SSW(i, α; r)

vk

vr

Sv(r, k)

(c)

Figure 7 A strip-grounded graph. Strings in S(i, α; j, β) must be in the striped region. We
illustrate recursive formulas (a) for W (i, α, j, k) for t(vk) < b(uγ), (b) for W (i, α, j, k) for t(vk) ≥
b(uγ), and (c) for WSW (i, α; k).

Let W (i, j;α, β) be the weight of a maximum independent set in subgraph induced by
vertex set S(i, α; j, β), and similarly for all other sets. We already had the formula for
Wv(i, j) (Claim 2), and a symmetric one holds for Wu(α, β). With much the same proof one
can show (see also Figure 7(c)):

I Claim 3. WSW (i, k;α) = 0 if SSW (i, k;α) is empty. Otherwise,

WSW (i, k;α) = max
vr∈SSW (i,k;α)

WSW (i, r;α) +Wv(r, k) + w(vk).

The formula for WSW , WNE and WNW are symmetric. As for W (i, j;α, β), based on
whether the maximum independent set contains bottom-grounded or top-grounded vertices,
and how they interact, one can show the following formula:

I Claim 4. W (i, j;α, β) = 0 if S(i, α; j, β) is empty. Otherwise, it is the maximum of

maxvk∈S(i,α;j,β) WSW (i, α; k) +WSE(k; j, β) + w(vk),
maxuγ∈S(i,α;j,β) WNW (i, α; γ) +WNE(γ; j, β) + w(uγ),

maxvk,uγ∈S(i,α;j,β),t(vk)<b(uγ) WSW (i, α; k) +WSE(k; j, β) + w(vk)
+WNW (i, α; γ) +WNE(γ; j, β) + w(uγ), and

maxvk,uγ∈S(i,α;j,β),t(vk)>b(uγ),(vk,uγ)6∈E W (i, k;α, γ) +W (k, j; γ, β) + w(vk) + w(uγ)

Proof. To show ‘≥’, observe that each term of the maximum on the right-hand side corre-
sponds to two or four independent sets in two or four regions defined by the parameters.
As one easily verifies, these regions are disjoint for all cases, and none of them contains vk
and/or uγ . We can hence combine these independent sets and add vk and/or uγ , and obtain
an independent set for S(i, α; j, β). The optimum independent set cannot be smaller.

SWAT 2018

10:12 On the size of outer-string representations

To prove ‘≤’, consider an optimal solution I∗ for S(i, α; j, β). We may assume that I∗ is
non-empty; else S(i, α; j, β) is empty and the equation holds. We distinguish cases:
Case 1: I∗ contains no top-grounded vertex. Since I∗ is non-empty, it therefore contains
some vk with i < k < j. Let vk be the vertex that maximizes t(vk). With this choice, any
other vertex in I∗ is bottom-grounded and belongs to SSW (i, α; k) or SSE(k; j, β), depending
on whether its index is before or after k. Therefore I∗ − {vk} splits into two independent
sets for SSW (i, α; k) and SSE(k; j, β), and w(I∗) + w(vk) ≤WSW (i, α; k) +WSE(k; j, β).
Case 2: I∗ contains no bottom-grounded vertex. Symmetrically then one shows that
w(I∗) ≤ WNW (i, α; γ) +WNE(γ; j, β) + w(uγ) where uγ is the top-grounded vertex in I∗
that minimizes b(uγ).
Case 3: I∗ contains a bottom-grounded vertex vk and a top-grounded vertex uγ , but for any
two such vertices we have t(vk) < b(uγ). Choose vk so that it maximizes t(vk) and uγ so that
it minimizes b(uγ). Then any other bottom-grounded vertex v in I∗ satisfies t(v) ≤ t(vk) and
so belongs to SSW (i, α; k) or SSE(k; j, β). Any other top-grounded vertex u in I∗ satisfies
b(u) ≥ b(uγ) and so belongs to SNE(i, α; γ) or SNE(γ; j, β). Thus I∗ − {vk, uγ} splits into
four independent sets for these four vertex sets, hence w(I∗) ≤WSW (i, α; k)+WSE(k; j, β)+
w(vk) +WNW (i, α; γ) +WNE(γ; j, β) + w(uγ).
Case 4: I∗ contains a bottom-grounded vertex vk and a top-grounded vertex uγ with
t(vk) ≥ b(uγ). Thus, any line ` with y-coordinate in [b(uγ), t(vk)] intersects both vk and uγ .
We may assume that any such line ` intersects no other string of I∗ in the range between
` ∩ vk and ` ∩ uγ , else we can replace either vk or uγ with the intersected string. Thus no
other vertex x in I∗ is between vk and uγ . Therefore any vertex x 6= vk, uγ in I∗ belongs
to either S(i, α; k, γ) or to S(k, γ; j, β). So I∗ − {vk, uγ} splits into two independent sets for
these two subsets. This proves that w(I∗) ≤W (i, α; k, γ)+W (k, γ; j, β)+w(vk)+w(uγ). J

Since S(1, a; 1, b) = V with our choice of dummy vertices, therefore we can compute the
maximum independent set in G with dynamic programming. To analyze its run-time, observe
that we have defined O(n4) sets. To compute each set, we need to test quickly whether x is
between vi and uα for some independent set {x, vi, uα}. We first test whether there exists
some Y with b(uα) ≤ Y ≤ t(vi) and b(x) ≤ Y ≤ t(x); otherwise x is surely not between
them. If there is such a Y , then next find the points pu, pv, px where the horizontal line with
y-coordinate Y intersects the three strings, and test their order. Recall that we assumed the
strings to have O(m+ n) segments, so finding these points (and hence testing whether x is
between vi and uα) can be done with binary search in O(logn) time.

With this, each set can be found in O(n2) time. For example, to find S(i, α; j, β), scan
the vertices vi+1, . . . , vj−1 and uα+1, . . . , uβ−1. For each, test in O(n) time whether it is
non-adjacent to vi, uα, vj , uβ , and test in O(logn) time that it is neither between vi and uα,
nor between vj and uβ . The computation for the other types of sets is similar.

Given all the sets, the evaluation of the formula can be done in O(n2) time per set, or
O(n6) total for all O(n4) sets. Therefore, we get the following theorem.

I Theorem 10. The maximum independent set in a vertex-weighted graph with a strip-
grounded monotone string representation can be computed in O(n6) time.

5 Conclusions

In this paper, we studied graphs that do or do not have string representations of polynomial
size. We argued that for some outer-string graphs any outer-string representation must have

T.Biedl, A.Biniaz, and M.Derka 10:13

exponential size. On the other hand, all monotone string graphs have a string representation
of polynomial size. Inspired by an algorithm of Keil et al. for maximum independent set
for outer-string graphs, we give an algorithm for maximum independent set for monotone
strip-grounded outer-string graphs, whose run-time is O(n6), presuming we are given such a
representation of polynomial size. We leave a number of open problems:

We have introduced some variants of string graphs (e.g., monotone string graphs, monotone
strip-grounded string graphs). What is the complexity of recognizing these graphs classes
and finding corresponding representations? Note that it is not even known whether
recognizing outer-string graphs is NP-hard (we proved that it is in NP).
What is the complexity of recognizing whether a graph has a string representation (or
outer-string representation) with at most k segments?
Is there an algorithm for independent set on outer-string graphs that is polynomial in
n? Our results show that this is not possible if we use an explicit description of a string
representation. But perhaps the string representation could be given implicitly in a
different way? Or perhaps it could be described (similarly as in [22]) with O(logN) bits,
by listing how it intersects a (suitably) chosen triangulation? Note that logN ∈ O(m),
so this would be polynomial.

References
1 P. K. Agarwal and N. H. Mustafa. Independent set of intersection graphs of convex objects

in 2D. Comput. Geom., 34(2):83–95, 2006.
2 S. Cabello and M. Jejčič. Refining the hierarchies of classes of geometric intersection graphs.

Electronic Notes in Discrete Mathematics, 54:223–228, 2016.
3 J. Cardinal, S. Felsner, T. Miltzow, C. Tompkins, and B. Vogtenhuber. Intersection graphs

of rays and grounded segments. In Graph-Theoretic Concepts in Computer Science (WG
2017), volume 10520 of Lecture Notes in Computer Science, pages 153–166. Springer, 2017.

4 J. Chalopin and D. Gonçalves. Every planar graph is the intersection graph of segments in
the plane: extended abstract. In ACM Symposium on Theory of Computing, STOC 2009,
pages 631–638. ACM, 2009.

5 P. Damaschke. The Hamiltonian circuit problem for circle graphs is NP-complete. Inf.
Process. Lett., 32(1):1–2, 1989.

6 M. Derka. Restricted String Representations. PhD thesis, David R. Cheriton School of
Computer Science, 2017.

7 G. Ehrlich, S. Even, and R. E. Tarjan. Intersection graphs of curves in the plane. J. Comb.
Theory, Ser. B, 21(1):8–20, 1976.

8 J. Fox and J. Pach. Separator theorems and Turán-type results for planar intersection
graphs. Adv. Math., 219:1070–1080, 2008.

9 J. Fox and J. Pach. A separator theorem for string graphs and its applications. Combina-
torics, Probability & Computing, 19(3):371–390, 2010.

10 J. Fox and J. Pach. Computing the independence number of intersection graphs. In ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, pages 1161–1165, 2011.

11 M. Garey, D. Johnson, G. Miller, and C. Papadimitriou. The complexity of coloring circular
arcs and chords. SIAM J. Matrix Analysis Applications, 1(2):216–227, 1980.

12 M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM Journal of Applied Mathematics, 32:826–834, 1977.

13 S. Har-Peled and K. Quanrud. Approximation algorithms for polynomial-expansion and
low-density graphs. In 23rd Annual European Symposium on Algorithms ESA 2015, volume
9294 of Lecture Notes in Computer Science, pages 717–728. Springer, 2015.

SWAT 2018

10:14 On the size of outer-string representations

14 J. M. Keil, J. S. B. Mitchell, D. Pradhan, and M. Vatshelle. An algorithm for the maximum
weight independent set problem on outerstring graphs. Comput. Geom., 60:19–25, 2017.
Appeared also in the Proceedings of CCCG 2015.

15 J. Kratochvíl. String graphs II. Recognizing string graphs is NP-hard. J. Comb. Theory,
Ser. B, 52(1):67–78, 1991.

16 J. Kratochvíl and J. Matoušek. String graphs requiring exponential representations. J.
Comb. Theory, Ser. B, 53(1):1–4, 1991.

17 J. R. Lee. Separators in region intersection graphs. In Innovations in Theoretical Computer
Science, ITCS’17, 2017.

18 J. Matoušek. Near-optimal separators in string graphs. CoRR, abs/1302.6482, 2013.
19 M. Middendorf and F. Pfeiffer. The max clique problem in classes of string-graphs. Discrete

Mathematics, 108(1-3):365–372, 1992.
20 M. Middendorf and F. Pfeiffer. Weakly transitive orientations, Hasse diagrams and string

graphs. Discrete Mathematics, 111(1-3):393–400, 1993.
21 J. Pach and G. Tóth. Recognizing string graphs is decidable. Discrete & Computational

Geometry, 28(4):593–606, 2002.
22 M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string graphs is in NP. Journal

of Computer and System Sciences, 67(2):365–380, 2003.
23 M. Schaefer and D. Stefankovic. Decidability of string graphs. In ACM Symposium on

Theory of Computing, pages 241–246. ACM, 2001.
24 F. W. Sinden. Topology of thin film rc-circuits. Bell System Technical Journal, 45:1639–

1662, 1966.
25 A. Suk. Coloring intersection graphs of x-monotone curves in the plane. Combinatorica,

34(4):487–505, 2014.

	Introduction
	Related results
	Our contribution
	Outer-string graphs and apices

	Exponential-sized Outer-string Representations
	Monotone string representations
	Independent set in monotone myredouter-string graphs
	Line-grounded monotone string graphs
	Strip-grounded monotone string graphs

	Conclusions

