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Abstract. Let P be a set of n points in general position in the plane
which is partitioned into color classes. The set P is said to be color-
balanced if the number of points of each color is at most bn/2c. Given
a color-balanced point set P , a balanced cut is a line which partitions
P into two color-balanced point sets, each of size at most 2n/3 + 1. A
colored matching of P is a perfect matching in which every edge connects
two points of distinct colors by a straight line segment. A plane colored
matching is a colored matching which is non-crossing. In this paper, we
present an algorithm which computes a balanced cut for P in linear time.
Consequently, we present an algorithm which computes a plane colored
matching of P optimally in Θ(n logn) time.

1 Introduction

Let P be a set of n points in general position (no three points on a line) in the
plane. Assume P is partitioned into color classes, i.e., each point in P is colored
by one of the given colors. P is said to be color-balanced if the number of points
of each color is at most bn/2c. In other words, P is color-balanced if no color is
in strict majority. For a color-balanced point set P , we define a feasible cut as a
line ` which partitions P into two point sets Q1 and Q2 such that both Q1 and
Q2 are color-balanced. In addition, if the number of points in each of Q1 and Q2

is at most 2n/3 + 1, then ` is said to be a balanced cut. We note that a feasible
cut may passes through one or two points of P . The well-known ham-sandwich
cut (see [11]) is a balanced cut: given a set of 2m red points and 2m blue points
in general position in the plane, a ham-sandwich cut is a line ` which partitions
the point set into two sets, each of them having m red points and m blue points.
Feasible cuts and balanced cuts are useful for convex partitioning of the plane
and for computing plane structures, e.g., plane matchings and plane spanning
trees.

Assume n is an even number. Let {R,B} be a partition of P such that
|R| = |B| = n/2. Let Kn(R,B) be the complete bipartite geometric graph on
P which connects every point in R to every point in B by a straight-line edge.
An RB-matching in P is a perfect matching in Kn(R,B). Assume the points
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in R are colored red and the points in B are colored blue. An RB-matching in
P is also referred to as a red-blue matching or a bichromatic matching. A plane
RB-matching is an RB-matching in which no two edges cross. Let {P1, . . . , Pk},
where k ≥ 2, be a partition of P . Let Kn(P1, . . . , Pk) be the complete multipar-
tite geometric graph on P which connects every point in Pi to every point in Pj
by a straight-line edge, for all 1 ≤ i < j ≤ k. Imagine the points in P to be col-
ored, such that all the points in Pi have the same color, and for i 6= j, the points
in Pi have a different color from the points in Pj . We say that P is a k-colored
point set. A colored matching of P is a perfect matching in Kn(P1, . . . , Pk). A
plane colored matching of P is a perfect matching in Kn(P1, . . . , Pk) in which no
two edges cross. See Figure 1(a).

In this paper we consider the problem of computing a balanced cut for a
given color-balanced point set in general position in the plane. We show how to
use balanced cuts to compute plane matchings in multipartite geometric graphs.

`

(a) (b)

Fig. 1. (a) A plane colored matching. (b) Recursive ham sandwich cuts.

1.1 Previous work on 2-colored point sets

Let P be a set of n = 2m points in general position in the plane. Let {R,B} be
a partition of P such that |R| = |B| = m. Assume the points in R are colored
red and the points in B are colored blue. It is well-known that Kn(R,B) has a
plane RB-matching [1]. In fact, a minimum weight RB-matching, i.e., a perfect
matching that minimizes the total Euclidean length of the edges, is plane. A
minimum weight RB-matching in Kn(R,B) can be computed in O(n2.5 log n)
time [15], or even in O(n2+ε) time [2]. Consequently, a plane RB-matching can
be computed in O(n2+ε) time. As a plane RB-matching is not necessarily a min-
imum weight RB-matching, one may compute a plane RB-matching faster than
computing a minimum weight RB-matching. Hershberger and Suri [8] presented
an O(n log n) time algorithm for computing a plane RB-matching. They also
proved a lower bound of Ω(n log n) time for computing a plane RB-matching,
by providing a reduction from sorting.

Alternatively, one can compute a plane RB-matching by recursively applying
the ham sandwich theorem; see Figure 1(b). We say that a line ` bisects a point
set R if both sides of ` have the same number of points of R. If |R| is odd, the
line ` contains one point of R, and if |R| is even, the line ` may contain zero or
two points of R.



Theorem 1 (Ham Sandwich Theorem; see [11]). For a point set P in
general position in the plane which is partitioned into sets R and B, there exists
a line that simultaneously bisects R and B.

A line ` that simultaneously bisects R and B can be computed in O(|R|+ |B|)
time, assuming R ∪ B is in general position in the plane [11]. By recursively
applying Theorem 1, we can compute a plane RB-matching in Θ(n log n) time.

1.2 Previous work on 3-colored point sets

Let P be a set of n = 3m points in general position in the plane. Let {R,G,B}
be a partition of P such that |R| = |G| = |B| = m. Assume the points in
R are colored red, the points in G are colored green, and the points in B are
colored blue. A lot of research has been done to generalize the ham sandwich
theorem to 3-colored point sets, see e.g. [4, 5, 10]. It is easy to see that there exist
configurations of P such that there exists no line which bisects R, G, and B,
simultaneously. Furthermore, for some point sets P , for any k ∈ {1, . . . ,m− 1},
there does not exist any line ` such that an open half-plane bounded by ` contains
k red, k green, and k blue points (see [5] for an example). For the special case,
where the points on the convex hull of P are monochromatic, Bereg and Kano [5]
proved that there exists an integer 1 ≤ k ≤ m − 1 and an open half-plane
containing exactly k points from each color.

Bereg et al. [4] proved that if the points of P are on any closed Jordan
curve γ, then for every integer k with 0 ≤ k ≤ m there exists a pair of disjoint
intervals on γ whose union contains exactly k points of each color. In addition,
they showed that if m is even, then there exists a double wedge that contains
exactly m/2 points of each color; a double wedge is the symmetric difference of
two half-planes whose boundaries are not parallel.

Now, let P be a 3-colored point set of size n in general position in the plane,
with n even. Assume the points in P are colored red, green, and blue such that P
is color-balanced. Let R, G, and B denote the set of red, green, and blue points,
respectively. Note that |R|, |G|, and |B| are at most bn/2c, but, they are not
necessarily equal. Kano et al. [10] proved the existence of a feasible cut, when
the points on the convex hull of P are monochromatic.

Theorem 2 (Kano et al. [10]). Let P be a 3-colored point set in general
position in the plane, such that P is color-balanced and |P | is even. If the points
on the convex hull of P are monochromatic, then there exists a line ` which
partitions P into Q1 and Q2 such that both Q1 and Q2 are color-balanced and
have an even number of points and 2 ≤ |Qi| ≤ |P | − 2, for i = 1, 2.

They also proved the existence of a plane perfect matching in Kn(R,G,B)
by recursively applying Theorem 2. Their proof is constructive. Although they
did not analyze the running time, it can be shown that their algorithm runs in
O(n2 log n) time as follows. If the size of the largest color class is exactly n/2,
then consider the points in the largest color class as R and the other points as B,
then compute a plane RB-matching; and we are done. If there are two adjacent



points of distinct colors on the convex hull, then match these two points and
recurse on the remaining points. Otherwise, if the convex hull is monochromatic,
pick a point p ∈ P on the convex hull and sort the points in P \ {p} around p. A
line `—partitioning the point set into two color-balanced point sets—is found by
scanning the sorted list. Then recurse on each of the partitions. To find ` they
spend O(n log n) time. Although they did not deal with the running time, their
algorithm takes in total O(n2 log n) time.

Based on the algorithm of Kano et al. [10], we can show that a plane perfect
matching in Kn(R,G,B) can be computed in O(n log3 n) time. We can prove
the existence of a feasible cut for P , even if the points on the convex hull of
P are not monochromatic (see Lemma 2). To find feasible cuts recursively, we
use the dynamic convex hull structure of Overmars and Leeuwen [13], which
uses O(log2 n) time for each insertion and deletion. Pick a point p ∈ P on the
convex hull of P and look for a point q ∈ P \ {p}, such that the line passing
through p and q is a feasible cut. Search for q, alternatively, in clockwise and
counterclockwise directions around p. To do this, we repeatedly check if the line
passing through p and its (clockwise and counterclockwise in turn) neighbor on
the convex hull, say r, is a feasible cut. If the line through p and r is not a feasible
cut, then we delete r from the data structure. At some point we find a feasible
cut ` which divides P into Q1 and Q2. Add the two points on ` to either Q1 or
Q2 such that they remain color-balanced. Let |Q1| = k and |Q2| ≥ k. In order to
compute the data structure for Q2, we use the current data structure and undo
the deletions on the side of ` which contains Q2. We rebuild the data structure
for Q1. Then, we recurse on Q1 and Q2. The running time can be expressed by
T (n) = T (n− k) + T (k) +O(k log2 n), where k ≤ n− k. This recurrence solves
to O(n log3 n). Notice that, because we undo the deletions on one side of ` and
rebuild the data structure for the points on the other side of `, any dynamic
data structure that performs insertions and deletions in faster but amortized
time may not be feasible.

1.3 Previous work on multicolored point sets

Let {P1, . . . , Pk}, where k ≥ 2, be a partition of P and Kn(P1, . . . , Pk) be the
complete multipartite geometric graph on P . A necessary and sufficient condi-
tion for the existence of a perfect matching in Kn(P1, . . . , Pk) follows from the
following result of Sitton [14].

Theorem 3 (Sitton [14]). The size of a maximum matching in any complete
multipartite graph Kn1,...,nk

, with n = n1+· · ·+nk vertices, where n1 ≥ · · · ≥ nk,
is

|Mmax| = min

{
k∑
i=2

ni,

⌊
1

2

k∑
i=1

ni

⌋}
.

Theorem 3 implies that if n is even and n1 ≤ n
2 , then Kn1,...,nk

has a perfect
matching. It is obvious that if n1 >

n
2 , then Kn1,...,nk

does not have any perfect
matching. Therefore,



Corollary 1. Let k ≥ 2 and consider a partition {P1, . . . , Pk} of a point set P ,
where |P | is even. Then, Kn(P1, . . . , Pk) has a colored matching if and only if
P is color-balanced.

Aichholzer et al. [3], and Kano et al. [10] show that the same condition as
in Corollary 1 is necessary and sufficient for the existence of a plane colored
matching in Kn(P1, . . . , Pk):

Theorem 4 (Aichholzer et al. [3], and Kano et al. [10]). Let k ≥ 2 and
consider a partition {P1, . . . , Pk} of a point set P , where |P | is even. Then,
Kn(P1, . . . , Pk) has a plane colored matching if and only if P is color-balanced.

In fact, they show something stronger. Aichholzer et al. [3] show that a
minimum weight colored matching in Kn(P1, . . . , Pk), which minimizes the total
Euclidean length of the edges, is plane. Gabow [7] gave an implementation of
Edmonds’ algorithm which computes a minimum weight matching in general
graphs in O(n(m + n log n)) time, where m is the number of edges in G. Since
P is color-balanced, Kn(P1, . . . , Pk) has Θ(n2) edges. Thus, a minimum weight
colored matching in Kn(P1, . . . , Pk), and hence a plane colored matching in
Kn(P1, . . . , Pk), can be computed in O(n3) time. Kano et al. [10] extended their
O(n2 log n)-time algorithm for the 3-colored point sets to the multicolored case.

Since the problem of computing a planeRB-matching inKn(R,B) is a special
case of the problem of computing a plane colored matching in Kn(P1, . . . , Pk),
the Ω(n log n) time lower bound for computing a plane RB-matching holds for
computing a plane colored matching.

1.4 Our contribution

Our main contribution, which is presented in Section 2, is the following: given
any color-balanced point set P in general position in the plane, there exists
a balanced cut for P . Further, we show that if n is even, then there exists
a balanced cut which partitions P into two point sets each of even size, and
such a balanced cut can be computed in linear time. In Section 3, we present
a divide-and-conquer algorithm which computes a plane colored matching in
Kn(P1, . . . , Pk) in Θ(n log n) time, by recursively finding balanced cuts in color-
balanced subsets of P . In case P is not color-balanced, then Kn(P1, . . . , Pk) does
not admit a perfect matching; we describe how to find a plane colored matching
with the maximum number of edges in Section 3.1. In addition, we show how
to compute a maximum matching in any complete multipartite graph in linear
time.

2 Balanced Cut Theorem

Given a color-balanced point set P with n ≥ 4 points in general position in the
plane, recall that a balanced cut is a line which partitions P into two point sets
Q1 and Q2, such that both Q1 and Q2 are color-balanced and max{|Q1|, |Q2|} ≤



2n
3 + 1. Let {P1, . . . , Pk} be a partition of P , where the points in Pi are colored
Ci. In this section we prove the existence of a balanced cut for P . Moreover, we
show how to find such a balanced cut in O(n) time.

If k = 2, the existence of a balanced cut follows from the ham sandwich cut
theorem. If k ≥ 4, we reduce the k-colored point set P to a three colored point
set. Afterwards, we prove the statement for k = 3. The result of the following
lemma also has been proved in [10]. However they did not consider the running
time. For the sake of completeness we prove the following lemma with a proof
of the running time.

Lemma 1. Let P be a color-balanced point set of size n in the plane with k ≥ 4
colors. In O(n) time P can be reduced to a color-balanced point set P ′ with 3
colors such that any balanced cut for P ′ is also a balanced cut for P .

Proof. We repeatedly merge the color families in P until we get a color-balanced
point set P ′ with three colors. Afterwards, we show that any balanced cut for
P ′ is also a balanced cut for P .

Without loss of generality assume that C1, . . . , Ck is a non-increasing order
of the color classes according to the number of points in each color class. That
is, b|P |/2c ≥ |P1| ≥ · · · ≥ |Pk| ≥ 1 (note that P is color-balanced). In order
to reduce the k-colored problem to a 3-colored problem, we repeatedly merge
the two color families of the smallest cardinality. In each iteration we merge the
two smallest color families, Ck−1 and Ck, to get a new color class, C ′k−1, where
P ′k−1 = Pk−1 ∪ Pk. In order to prove that P ′ = P1 ∪ · · · ∪ Pk−2 ∪ P ′k−1 is color-
balanced with respect to the coloring C1, . . . , Ck−2, C

′
k−1 we have to show that

|P ′k−1| ≤ b|P ′|/2c. Note that before the merge we have |P | = |P1|+ · · ·+ |Pk−2|+
|Pk−1|+ |Pk|, while after the merge we have |P ′| = |P1|+ · · ·+ |Pk−2|+ |P ′k−1|,
where |P ′k−1| = |Pk−1| + |Pk|. Since Pk−1 and Pk are the two smallest and
k ≥ 4, |P ′k−1| ≤ |P1| + · · · + |Pk−2|. This implies that after the merge we have
|P ′k−1| ≤ b|P ′|/2c. Thus P ′ is color-balanced. By repeatedly merging the points
of the two smallest color families, at some point we get a 3-colored point set P ′

which is color-balanced. Without loss of generality assume that P ′ is colored by
R, G, and B. Consider any balanced cut ` for P ′; ` partitions P ′ into two sets
Q1 and Q2, each of size at most 2

3n + 1, such that the number points of each
color in Qi is at most b|Qi|/2c, where i = 1, 2. Note that the set of points in
P colored Cj , for 1 ≤ j ≤ k, is a subset of points in P ′ colored either R, G,
or B. Thus, the number of points colored Cj in Qi is at most b|Qi|/2c, where
j = 1, . . . , k and i = 1, 2. Therefore, ` is a balanced cut for P .

In order to merge the color families, a monotone priority queue (see [6]) can
be used, where the priority of each color Cj is the number of points colored Cj .
The monotone priority queue offers insert and extract-min operations where the
priority of an inserted element is greater than the priority of the last element
extracted from the queue. We store the color families in a monotone priority
queue of size n

2 (because all elements are in the range of 1 up to n
2 ). Afterwards,

we perform a sequence of O(k) extract-min and insert operations. Since k ≤ n,
the total time to merge k color families is O(n). ut



According to Lemma 1, from now on we assume that P is a color-balanced
point set consisting of n points colored by three colors.

Lemma 2. Let P be a color-balanced point set of n ≥ 4 points in general position
in the plane with three colors. In O(n) time we can compute a line ` such that

1. ` does not contain any point of P .
2. ` partitions P into two point sets Q1 and Q2, where

(a) both Q1 and Q2 are color-balanced,
(b) both Q1 and Q2 contain at most 2

3n+ 1 points.

`

Q1

Q2

`Q1

Q2

r

x

(a) (b)

Fig. 2. Illustrating the balanced cut theorem. The blue points in X are surrounded by
circles. The line ` is a balanced cut where: (a) |R| is even, and (b) |R| is odd.

Proof. Assume that the points in P are colored red, green, and blue. Let R,
G, and B denote the set of red, green, and blue points, respectively. Without
loss of generality assume that 1 ≤ |B| ≤ |G| ≤ |R|. Since P is color-balanced,
|R| ≤ bn2 c. Let X be an arbitrary subset of B such that |X| = |R| − |G|; note
that X = ∅ when |R| = |G|, and X = B when |R| = n

2 (where n is even). Let
Y = B−X. Let ` be a ham sandwich cut for R and G∪X (pretending that the
points in G ∪X have the same color). Let Q1 and Q2 denote the set of points
on each side of `; see Figure 2(a). If |R| is odd, then |G ∪ X| is also odd, and
thus ` contains a point r ∈ R and a point x ∈ G ∪ X; see Figure 2(b). In this
case without loss of generality assume that the number of blue points in Q2 is
at least the number of blue points in Q1; slide ` slightly such that r and x lie in
the same side as Q2, i.e. Q2 is changed to Q2 ∪ {r, x}. We prove that ` satisfies
the statement of the theorem. The line ` does not contain any point of P and
by the ham sandwich cut theorem it can be computed in O(n) time.

Now we prove that both Q1 and Q2 are color-balanced. Let R1, G1, and B1

be the set of red, green, and blue points in Q1. Let X1 = X∩Q1 and Y1 = Y ∩Q1.
Note that B1 = X1 ∪ Y1. Similarly, define R2, G2, B2, X2, and Y2 as subsets of
Q2. Since |R| = |G∪X| and ` bisects both R and G∪X, we have |R1| = b|R|/2c
and |G1|+ |X1| = |R1|. In the case that |R| is odd, we add the points on ` to Q2

(assuming that |B2| ≥ |B1|). Thus, in either case (|R| is even or odd) we have
|R2| = d|R|/2e and |G2|+ |X2| = |R2|. Therefore,

|Q1| ≥ |R1|+ |G1|+ |X1| = 2b|R|/2c,
|Q2| ≥ |R2|+ |G2|+ |X2| = 2d|R|/2e. (1)



Let t1 and t2 be the total number of red and green points in Q1 and Q2, respec-
tively. Then, we have the following inequalities:

t1 = |R1|+ |G1|
= 2|R1| − |X1|
≥ 2|R1| − |X|
= 2b|R|/2c − (|R| − |G|)

=

{
|G| if |R| is even
|G| − 1 if |R| is odd,

t2 = |R2|+ |G2|
= 2|R2| − |X2|
≥ 2|R2| − |X|
= 2d|R|/2e − (|R| − |G|)

=

{
|G| if |R| is even
|G|+ 1 if |R| is odd.

(2)

In addition, we have the following equations:

|Q1| = t1 + |B1| and |Q2| = t2 + |B2|. (3)

Note that |R1| = b|R|/2c and |G1| ≤ |Q1∩ (G∪X)| = |R1|, thus, by Inequal-
ity (1) we have |R1| ≤ b|Q1|/2c and |G1| ≤ b|Q1|/2c. Similarly, |R2| ≤ b|Q2|/2c
and |G2| ≤ b|Q2|/2c. Therefore, in order to argue that Q1 and Q2 are color-
balanced, it only remains to show that |B1| ≤ b|Q1|/2c and |B2| ≤ b|Q2|/2c.
Note that |B1|, |B2| ≤ |B| and by initial assumption |B| ≤ |G|. We differentiate
between two cases where |R| is even and |R| is odd.

If |R| is even, by Inequalities (2) we have t1, t2 ≥ |G|. Therefore, by the fact
that max{|B1|, |B2|} ≤ |B| ≤ |G| and Equation (3), we have |B1| ≤ b|Q1|/2c
and |B2| ≤ b|Q2|/2c. Therefore, both Q1 and Q2 are color-balanced.

If |R| is odd, we slide ` towards Q1; assuming that |B2| ≥ |B1|. In addition,
since |B1| + |B2| = |B| and |B| ≥ 1, |B2| ≥ 1. Thus, |B1| ≤ |B| − 1 ≤ |G| − 1,
while by Inequality (2), t1 ≥ |G|−1. Therefore, Equality (3) implies that |B1| ≤
b|Q1|/2c. Similarly, by Inequality (2) we have t2 ≥ |G| + 1 while |B2| ≤ |G|.
Thus, Equality (3) implies that |B2| ≤ b|Q2|/2c. Therefore, both Q1 and Q2 are
color-balanced.

We complete the proof by providing the following upper bound on the size
of Q1 and Q2. Since we assume that R is the largest color class, |R| ≥ dn3 e. By
Inequality (1), min{|Q1|, |Q2|} ≥ 2b|R|/2c, which implies that

max{|Q1|, |Q2|} ≤ n− 2

⌊
|R|
2

⌋
≤ n− 2

(
|R| − 1

2

)
≤ n− n

3
+ 1 =

2n

3
+ 1.

ut

Therefore, by Lemma 1 and Lemma 2, we have proved the following theorem:

Theorem 5 (Balanced Cut Theorem). Let P be a color-balanced point set
of n ≥ 4 points in general position in the plane. In O(n) time we can compute a
line ` such that

1. ` does not contain any point of P .
2. ` partitions P into two point sets Q1 and Q2, where

(a) both Q1 and Q2 are color-balanced,



(b) both Q1 and Q2 contains at most 2
3n+ 1 points.

We note that a similar result to Theorem 5, on higher dimensions including
the plane, is obtained by Kano and Kynčl [9]. However, their proof uses Borsuk-
Ulam theorem [12, Theorem 2.1.1] and is different from that of this paper.

By Theorem 4, if P has an even number of points and no color is in strict
majority, then P admits a plane perfect matching. By Theorem 5, we partition
P into two sets Q1 and Q2 such that in each of them no point is in strict
majority. But, in order to apply the balanced cut theorem, recursively, to obtain
a perfect matching on each side of the cut, we need both Q1 and Q2 to have an
even number of points. Thus, we extend the result of Theorem 5 to a restricted
version of the problem where |P | is even and we are looking for a balanced cut
which partitions P into Q1 and Q2 such that both |Q1| and |Q2| are even. The
following theorem describes how to find such a balanced cut.

`

Q1

Q2

x `

Q1

Q2

x

y

(a) (b)

Fig. 3. Updating ` to make |Q1| and |Q2| even numbers, where: (a) ` passes over one
point, and (b) ` passes over two points.

Theorem 6. Let P be a color-balanced point set of n ≥ 4 points in general
position in the plane with n even and three colors. In O(n) time we can compute
a line ` such that

1. ` does not contain any point of P .
2. ` partitions P into two point sets Q1 and Q2, where

(a) both Q1 and Q2 are color-balanced,
(b) both Q1 and Q2 have even number of points,
(c) both Q1 and Q2 contain at most 2

3n+ 1 points.

Proof. Let ` be the balanced cut obtained in the proof of Lemma 2, which divides
P into Q1 and Q2. Note that ` does not contain any point of P . If |Q1| is even,
subsequently |Q2| is even, thus ` satisfies the statement of the theorem and we
are done. Assume that |Q1| and |Q2| are odd. Let R1, G1, and B1 be the set of
red, green, and blue points in Q1. Let X1 = X ∩ Q1 and Y1 = Y ∩ Q1. Note
that B1 = X1 ∪ Y1. Similarly, define R2, G2, B2, X2, and Y2 as subsets of Q2.
Note that |Q1| = |R1|+ |G1|+ |X1|+ |Y1| and |Q2| = |R2|+ |G2|+ |X2|+ |Y2|.
Recall that |R1| = |G1|+ |X1| = b|R|/2c and |R2| = |G2|+ |X2| = d|R|/2e. Thus,
|R1|+ |G1|+ |X1| and |R2|+ |G2|+ |X2| are even. In order to make |Q1| and |Q2|



to be odd numbers, both |Y1| and |Y2| have to be odd numbers. Thus, |Y1| ≥ 1
and |Y2| ≥ 1, which implies that

|Q1| = |R1|+ |G1|+ |X1|+ |Y1| ≥ 2b|R|/2c+ 1,

|Q2| = |R2|+ |G2|+ |X2|+ |Y2| ≥ 2d|R|/2e+ 1. (4)

In addition,

|B1| = |B| − (|X2|+ |Y2|) ≤ |B| − 1,

|B2| = |B| − (|X1|+ |Y1|) ≤ |B| − 1. (5)

Note that Q1 is color-balanced. That is, |R1|, |G1|, |B1| ≤ b|Q1|/2c, where
|Q1| is odd. Thus, by addition of one point (of any color) to Q1, it still remain
color-balanced. Therefore, we slide ` slightly towards Q2 and stop as soon as it
passes over a point x ∈ Q2; see Figure 3(a). If ` passes over two points x and y,
rotate ` slightly, such that x lies on the same side as Q1 and y remains on the
other side; see Figure 3(b). We prove that ` satisfies the statement of the theorem.
It is obvious that updating the position of ` takes O(n) time. Let Q′1 = Q1∪{x}
and Q′2 = Q2 − {x}. By the previous argument Q′1 is color-balanced. Now we
show that Q′2 is color-balanced as well. Note that |Q′2| = |Q2| − 1, thus, by
Inequality (4) we have

|Q′2| ≥ 2d|R|/2e.
Let R′2, G′2, and B′2 be the set of red, green, and blue points in Q′2, and let

t′2 be the total number of red and green points in Q′2. Then,

|Q′2| = t′2 + |B′2|. (6)

To prove that Q′2 is color-balanced we differentiate between three cases, where
x ∈ R2, x ∈ G2, or x ∈ B2:

• x ∈ R2. In this case: (i) |R′2| = |R2| − 1 = d|R|/2e − 1 ≤ b|Q′2|/2c. (ii) |G′2|
= |G2| ≤ |R2| = d|R|/2e ≤ b|Q′2|/2c. (iii) t′2 = t2 − 1 ≥ |G| − 1, while |B′2|
= |B2| ≤ |B| − 1 ≤ |G| − 1; Inequality (6) implies that |B′2| ≤ b|Q′2|/2c.
• x ∈ G2. In this case: (i) |R′2| = |R2| = d|R|/2e ≤ b|Q′2|/2c. (ii) |G′2| = |G2|−1
≤ |R2| − 1 = d|R|/2e − 1 ≤ b|Q′2|/2c. (iii) t′2 = t2 − 1 ≥ |G| − 1, while |B′2|
= |B2| ≤ |B| − 1 ≤ |G| − 1; Inequality (6) implies that |B′2| ≤ b|Q′2|/2c.
• x ∈ B2. In this case: (i) |R′2| = |R2| = d|R|/2e ≤ b|Q′2|/2c. (ii) |G′2| = |G2|
≤ |R2| = d|R|/2e ≤ b|Q′2|/2c. (iii) t′2 = t2 ≥ |G|, while |B′2| = |B2| − 1
≤ |B| − 2 ≤ |G| − 2; Inequality (6) implies that |B′2| ≤ b|Q′2|/2c.

In all cases |R′2|, |G′2|, |B′2| ≤ b|Q′2|/2c, which imply that Q′2 is color-balanced.
As for the size condition,

min{|Q′1|, |Q′2|} = min{|Q1|+ 1, |Q2| − 1} ≥ 2b|R|/2c,

where the last inequality resulted from Inequality (4). This implies that max{|Q′1|,
|Q′2|} ≤ 2n

3 + 1. Thus, ` satisfies the statement of the theorem, with Q1 = Q′1
and Q2 = Q′2. ut



Note that both Theorem 6 and Theorem 2 prove the existence of a line `
which partitions a color-balanced point set P into two color-balanced point sets
Q1 and Q2. But, there are two main differences: (i) Theorem 6 can be applied on
any color-balanced point set P in general position. Theorem 2 is only applicable
on color-balanced point sets in general position, where the points on the convex
hull are monochromatic. (ii) Theorem 6 proves the existence of a balanced cut
such that n

3 − 1 ≤ |Qi| ≤ 2n
3 + 1, while the cut computed by Theorem 2 is

not necessarily balanced, as 2 ≤ |Qi| ≤ n − 2, where i = 1, 2. In addition, the
balanced cut in Theorem 6 can be computed in O(n) time, while the cut in
Theorem 2 is computed in O(n log n) time.

3 Plane Colored Matching Algorithm

Let P be a color-balanced point set of n points in general position in the plane
with respect to a partition {P1, . . . , Pk}, where n is even and k ≥ 2. In this
section we present an algorithm which computes a plane colored matching in
Kn(P1, . . . , Pk) in Θ(n log n) time.

Let {C1, . . . , Ck} be a set of k colors. Imagine all the points in Pi are colored
Ci for all 1 ≤ i ≤ k. Without loss of generality, assume that |P1| ≥ |P2| ≥
· · · ≥ |Pk|. If k = 2, then we can compute an RB-matching in O(n log n) time
by recursively applying the ham sandwich theorem. If k ≥ 4, as in Lemma 1,
in O(n) time, we compute a color-balanced point set P with three colors. Any
plane colored matching for P with respect to the three colors, say (R,G,B), is
also a plane colored matching with respect to the coloring C1, . . . , Ck. Hereafter,
assume that P is a color-balanced point set which is colored by three colors.

By Theorem 6, in linear time we can find a line ` that partitions P into
two sets Q1 and Q2, where both Q1 and Q2 are color-balanced with an even
number of points, such that max{|Q1|, |Q2|} ≤ 2n

3 + 1. Since Q1 and Q2 are
color-balanced, by Corollary 1, both Q1 and Q2 admit plane colored matchings.
Let M(Q1) and M(Q2) be plane colored matchings in Q1 and Q2, respectively.
Since Q1 and Q2 are separated by `, M(Q1)∪M(Q2) is a plane colored matching
for P . Thus, in order to compute a plane colored matching in P , one can compute
plane colored matchings in Q1 and Q2 recursively, as described in Algorithm 1.
The RGB-matching function receives a colored point set P of n points, where n
is even and the points of P are colored by three colors, and computes a plane
colored matching in P . The BalancedCut function partitions P into Q1 and Q2

where both are color-balanced and have even number of points.

Now we analyze the running time of the algorithm. If k = 2, then inO(n log n)
time we can find a plane RB-matching for P . If k ≥ 4, then by Lemma 1, in O(n)
time we reduce the k-colored problem to a 3-colored problem. Then, the function
RGB-matching computes a plane colored matching in P . Let T (n) denote the
running time of RGB-matching on the 3-colored point set P , where |P | = n. As
described in Theorem 5 and Theorem 6, in linear time we can find a balanced
cut ` in line 4 in Algorithm 1. The recursive calls to RGB-matching function in
line 7 takes T (|Q1|) and T (|Q2|) time. Thus, the running time of RGB-matching



Algorithm 1 RGB-matching(P )

Input: a color-balanced point set P with respect to (R,G,B), where |P | is even.
Output: a plane colored matching in P .

1: if P is 2-colored then
2: return RB-matching(P )
3: else
4: `← BalancedCut(P )
5: Q1 ← points of P to the left of `
6: Q2 ← points of P to the right of `
7: return RGB-matching(Q1) ∪ RGB-matching(Q2)

can be expressed by the following recurrence:

T (n) = T (|Q1|) + T (|Q2|) +O(n).

Since |Q1|, |Q2| ≤ 2n
3 + 1 and |Q1| + |Q2| = n, this recurrence solves to

T (n) = O(n log n).

Theorem 7. Given a color-balanced point set P of size n in general position
in the plane with n even, a plane colored matching in P can be computed in
Θ(n log n) time.

3.1 Maximum matching

If P is not color-balanced, then Kn(P1, . . . , Pk) does not admit a perfect match-
ing. In this case we compute a maximum matching.

Theorem 8. Given a colored point set P of size n in general position in the
plane, a maximum plane colored matching M in P can be computed optimally
in Θ(n+ |M | log |M |) time.

Proof. Let {P1, . . . , Pk}, where k ≥ 2, be a partition of the points in P such
that the points in Pi colored Ci for 1 ≤ i ≤ k. Without loss of generality assume
that |P1| ≥ · · · ≥ |Pk|. If |P1| ≤ b|P |/2c, then P is color-balanced, and hence,
by Theorem 7 we can compute a plane colored matching in Θ(n log n) time.
Assume |P1| > b|P |/2c. Then P is not color-balanced, and hence, P does not
admit a perfect matching. In this case, by Theorem 3, the size of any maximum
matching, say M , is

|M | =
k∑
i=2

|Pi|.

Let P ′1 be any arbitrary subset of P1 such that |P ′1| = |P2|+· · ·+|Pk|. Imagine
the points in P2 ∪ · · · ∪Pk are colored red and the points in P ′1 are colored blue.
Let P ′ = P ′1 ∪P2 ∪ · · · ∪Pk. Any plane RB-matching in P ′ is a maximum plane
colored matching in P , and has |P1|+ · · ·+ |Pk| = |M | edges. An RB-matching
of size |M | can be computed in Θ(|M | log |M |) time. ut



Theorem 9. Given any complete multipartite graph Kn(V1, . . . , Vk) on n ver-
tices and k ≥ 2, a maximum matching in Kn(V1, . . . , Vk) can be computed opti-
mally in Θ(n) time.

Proof. If n is odd, then by Theorem 3, we can remove a vertex from the largest
vertex set, without changing the size of a maximum matching. Thus, assume
that n is even. Without loss of generality assume that |V1| ≥ |V2| ≥ · · · ≥ |Vk|. If
|V1| ≥ n/2, then let R be an arbitrary subset of V1 such that |R| = |V2|+· · ·+|Vk|,
and let B = V2 ∪ · · · ∪ Vk. Then, any maximal matching in Kn(R,B)—which is
also a perfect matching—is a maximum matching in Kn(V1, . . . , Vk).

If |V1| < n/2, then by a similar argument as in Lemma 1, in O(n) time we
merge V1, . . . , Vk to obtain a partition {R,G,B} of vertices, such that max{|R|,
|G|, |B|} ≤ n/2 and Kn(R,G,B) is a subgraph of Kn(V1, . . . , Vk). Now we de-
scribe how to compute a perfect matching in Kn(R,G,B). Without loss of gen-
erality assume that |R| ≥ |G| ≥ |B|. Let m = n − 2 · |R|; observe that m is an
even number. Since m = n − 2 · |R| ≤ n − (|R| + |G|), we have m ≤ |B|, and
subsequently m ≤ |G|. Let G′ (resp. B′) be an arbitrary subset of G (resp. B)
of size m/2. Thus, |B′| = |G′| = m/2. Let G′′ = G \G′ and B′′ = B \B′. Thus,

|G′′ ∪B′′| = n− |R| − |G′ ∪B′|
= n− |R| −m
= n− |R| − (n− 2|R|)
= |R|.

Thus, bothKm(G′, B′) andKn-m(R,G′′∪B′′) have perfect matchings. There-
fore, the union of any maximal matching in Km(G′, B′) and any maximal match-
ing in Kn-m(R,G′′∪B′′) is a perfect matching in Kn(R,G,B), and subsequently
in Kn(V1, . . . , Vk).

A maximal matching in a complete bipartite graph is also a maximum match-
ing, because, otherwise one can take an unmatched point from the smaller set
of the bipartition and connect it to an unmatched point of the larger set. Since
a maximal matching can be computed in linear time, the presented algorithm
takes O(n) time. ut
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F. Hurtado, and D. R. Wood. Edge-removal and non-crossing configurations in
geometric graphs. Disc. Math. & Theo. Comp. Sci., 12(1):75–86, 2010.

4. S. Bereg, F. Hurtado, M. Kano, M. Korman, D. Lara, C. Seara, R. I. Silveira,
J. Urrutia, and K. Verbeek. Balanced partitions of 3-colored geometric sets in the
plane. Discrete Applied Mathematics, 181:21–32, 2015.

5. S. Bereg and M. Kano. Balanced line for a 3-colored point set in the plane. Electr.
J. Comb., 19(1):P33, 2012.

6. B. V. Cherkassky, A. V. Goldberg, and C. Silverstein. Buckets, heaps, lists, and
monotone priority queues. SIAM J. Comput., 28(4):1326–1346, 1999.

7. H. N. Gabow. Data structures for weighted matching and nearest common ances-
tors with linking. In Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 434–443, 1990.

8. J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm.
BIT, 32(2):249–267, 1992.
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