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Abstract
A rollercoaster is a sequence of real numbers for which every maximal contiguous subsequence,
that is increasing or decreasing, has length at least three. By translating this sequence to a set of
points in the plane, a rollercoaster can be defined as a polygonal path for which every maximal sub-
path, with positive- or negative-slope edges, has at least three points. Given a sequence of distinct
real numbers, the rollercoaster problem asks for a maximum-length (not necessarily contiguous)
subsequence that is a rollercoaster. It was conjectured that every sequence of n distinct real
numbers contains a rollercoaster of length at least dn/2e for n > 7, while the best known lower
bound is Ω(n/ logn). In this paper we prove this conjecture. Our proof is constructive and implies
a linear-time algorithm for computing a rollercoaster of this length. Extending the O(n logn)-
time algorithm for computing a longest increasing subsequence, we show how to compute a
maximum-length rollercoaster within the same time bound. A maximum-length rollercoaster in
a permutation of {1, . . . , n} can be computed in O(n log logn) time.

The search for rollercoasters was motivated by orthogeodesic point-set embedding of cater-
pillars. A caterpillar is a tree such that deleting the leaves gives a path, called the spine. A
top-view caterpillar is one of degree 4 such that the two leaves adjacent to each vertex lie on
opposite sides of the spine. As an application of our result on rollercoasters, we are able to find a
planar drawing of every n-node top-view caterpillar on every set of 25

3 n points in the plane, such
that each edge is an orthogonal path with one bend. This improves the previous best known
upper bound on the number of required points, which is O(n logn). We also show that such a
drawing can be obtained in linear time, provided that the points are given in sorted order.

1 Introduction

A run in a sequence of real numbers is a maximal contiguous subsequence that is increasing
(an “ascent”) or decreasing (a “descent”). A rollercoaster is a sequence of real numbers such
that every run has length at least three. For example the sequence (8, 5, 1, 3, 4, 7, 6, 2) is a
rollercoaster with runs (8, 5, 1), (1, 3, 4, 7), (7, 6, 2), which have lengths 3, 4, 3, respectively.
The sequence (8, 5, 1, 7, 6, 2, 3, 4) is not a rollercoaster because its run (1, 7) has length 2.
Given a sequence S = (s1, s2, . . . , sn) of n distinct real numbers, the rollercoaster problem
is to find a maximum-size set of indices i1 < i2 < · · · < ik such that (si1 , si2 , . . . , sik

) is a
rollercoaster. In other words, this problem asks for a longest rollercoaster in S, i.e., a longest
subsequence of S that is a rollercoaster.

One can interpret S as a set P of points in the plane by translating each number si ∈ S
to a point pi = (i, si). With this translation, a rollercoaster in S translates to a “rollercoaster”
in P , which is a polygonal path whose vertices are points of P and such that every maximal
sub-path, with positive- or negative-slope edges, has at least three points. See Figure 1(a).
Conversely, for any point set in the plane, the y-coordinates of the points, ordered by their
x-coordinates, forms a sequence of numbers. Therefore, any rollercoaster in P translates to a
rollercoaster of the same length in S.
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Figure 1 (a) Translating the sequence (8, 5, 1, 3, 4, 7, 6, 2) to a set of points. (b) A planar L-shaped
drawing of a top-view caterpillar.

The best known lower bound on the length of a longest rollercoaster is Ω(n/ logn) due to
Biedl et al. [2]. They conjectured that
I Conjecture 1.1. Every sequence of n > 7 distinct real numbers contains a rollercoaster of
length at least dn/2e.

Conjecture 1.1 can be viewed as a statement about patterns in permutations, a topic
with a long history, and the subject of much current research. For example, the Eulerian
polynomials, introduced by Euler in 1749, are the generating function for the number of
descents in permutations. For surveys of recent work, see, for example, Linton et al. [7] and
Kitaev [6]. Specifically, Conjecture 1.1 is related to the following seminal result of Erdős
and Szekeres [3] in the sense that they prove the existence of an increasing or a decreasing
subsequence of length at least

√
n+ 1 for n = ab+ 1, which is essentially a rollercoaster with

one run.

I Theorem 1.2 (Erdős and Szekeres, 1935). Every sequence of ab+ 1 distinct real numbers
contains an increasing subsequence of length at least a+ 1 or a decreasing subsequence of
length at least b+ 1.

Hammersley [5] gave an elegant proof of the Erdős-Szekeres theorem that is short, simple,
and based on the pigeonhole principle. The Erdős-Szekeres theorem also follows from the
well-known decomposition of Dilworth (see [9]). The following is a restatement of Dilworth’s
decomposition for sequences of numbers.

I Theorem 1.3 (Dilworth, 1950). Any finite sequence S of distinct real numbers can be
partitioned into k ascending sequences where k is the maximum length of a descending
sequence in S.

Besides its inherent interest, the study of rollercoasters is motivated by point-set em-
bedding of caterpillars [2]. A caterpillar is a tree such that deleting the leaves gives a path,
called the spine. An ordered caterpillar is a caterpillar in which the cyclic order of edges
incident to each vertex is specified. A top-view caterpillar is an ordered caterpillar where all
vertices have degree 4 or 1 such that the two leaves adjacent to each vertex lie on opposite
sides of the spine. Planar orthogonal drawings of trees on a fixed set of points in the plane
have been explored recently, see e.g., [2, 4, 8]; in these drawings every edge is drawn as an
orthogonal path between two points, and the edges are non-intersecting. A planar L-shaped
drawing is a simple type of planar orthogonal drawing in which every edge is an orthogonal
path of exactly two segments. Such a path is called an L-shaped edge. For example see the
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top-view caterpillar in Figure 1(b) together with a planar L-shaped drawing on a given point
set. Biedl et al. [2] proved that every top-view caterpillar on n vertices has a planar L-shaped
drawing on every set of O(n logn) points in the plane that is in general orthogonal position,
meaning that no two points have the same x- or y-coordinate.

Due to space restrictions we cannot give all the proofs. We refer the interested reader to
the full version [1].

2 Rollercoasters

Our main result is to show that Conjecture 1.1 holds. In fact we prove something stronger:
every sequence of n distinct numbers contains two rollercoasters of total length n. Our proof
is constructive and yields a linear-time algorithm for computing such rollercoasters. The
length 4 sequence (3, 4, 1, 2) has no rollercoaster, and it can be shown that for n = 5, 6, 7 the
longest rollercoaster has length 3. Therefore, we only consider n ≥ 8.

I Theorem 2.1. Every sequence of n > 8 distinct real numbers contains a rollercoaster of
length at least dn/2e; such a rollercoaster can be computed in linear time. The lower bound
of dn/2e is tight in the worst case.

Proof. Consider a sequence with n > 8 distinct real numbers, and let P be its point-set
translation with points p1, . . . , pn that are ordered from left to right. We define a pseudo-
rollercoaster as a sequence in which every run is a 3-ascent (an ascent of length at least 3)
or a 3-descent, except possibly the first run. We present an algorithm that computes two
pseudo-rollercoasters R1 and R2 in P such that |R1| + |R2| > n; the length of the longer
one is at least dn/2e. Then with a more involved proof we show how to extend this longer
pseudo-rollercoaster to obtain a rollercoaster of length at least dn/2e; this will prove the
lower bound.

First we provide a high-level description of our algorithm as depicted in Figure 2. Our
algorithm is iterative, and proceeds by sweeping the plane by a vertical line ` from left to
right. We maintain the following invariant: At the beginning of every iteration we have two
pseudo-rollercoasters whose union is the set of all points to the left of ` and such that the last
run of one of them is an ascent and the last run of the other one is a descent. Furthermore,
these two last runs have a point in common.

`

RA

RD

d

a

Figure 2 One iteration of algorithm: Constructing two pseudo-rollercoasters.

During every iteration we move ` forward and try to extend the current pseudo-rollercoas-
ters. If this is not immediately possible with the next point, then we move ` farther and
stop as soon as we are able to split all the new points into two chains that can be appended
to the current pseudo-rollercoasters to obtain two new pseudo-rollercoasters that satisfy the
invariant. See Figure 2. Now we present our iterative algorithm in detail.
The First Iteration: We take the leftmost point p1, and initialize each of the two pseudo-
rollercoasters by p1 alone. We may consider one of the pseudo-rollercoasters to end in an
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ascent and the other pseudo-rollercoaster to end in a descent. The two runs have a point in
common.
An Intermediate Iteration: By the above invariant we have two pseudo-rollercoasters RA

and RD whose union is the set of all points to the left of ` and such that the last run of one
of them, say RA, is an ascent and the last run of RD is a descent. Furthermore, the last
run of RA and the last run of RD have a point in common. During the current iteration
we make sure that every swept point will be added to RA or RD or both. We also make
sure that at the end of this iteration the invariant will hold for the next iteration. Let a
and d denote the rightmost points of RA and RD, respectively; see Figure 2. Let pi be the
first point to the right of `. If pi is above a, we add pi to RA to complete this iteration.
Similarly, if pi is below d, we add pi to RD to complete this iteration. In either case we
get two pseudo-rollercoasters that satisfy the invariant for the next iteration. Thus we may
assume that pi lies below a and above d. In particular, this means that a lies above d.

Consider the next point pi+1. (If there is no such point, go to the last iteration.) Suppose
without loss of generality that pi+1 lies above pi as depicted in Figure 3. Then d, pi, pi+1
forms a 3-ascent. Continue considering points pi+2, . . . , pk until for the first time, there is
a 3-descent in a, pi, . . . , pk. In other words, k is the smallest index for which a, pi, . . . , pk

contains a descending chain of length 3. (If we run out of points before finding a 3-descent,
then go to the last iteration.)

pk′
pi+1

pi
RA

RD

a

d

pred(pk′ , A1)

A′
1

A2

A′′
1pk′′

pi+2

pk

Figure 3 Illustration of an intermediate iteration of the algorithm.

Without pk there is no descending chain of length 3. Thus the longest descending chain
has two points, and by Theorem 1.3, the sequence P ′ = a, pi, pi+1, . . . , pk−1 is the union of
two ascending chains. We give an algorithm to find two such chains A1 and A2 with A1
starting at a and A2 starting at pi. The algorithm also finds the 3-descent ending with pk.
For every point q ∈ A2 we define its A1-predecessor to be the rightmost point of A1 that is
to the left of q. We denote the A1-predecessor of q by pred(q, A1).

The algorithm is as follows: While moving ` forward, we denote by r1 and r2 the rightmost
points of A1 and A2, respectively; at the beginning r1 = a, r2 = pi, and pred(pi, A1) = a.
Let p be the next point to be considered. If p is above r1 then we add p to A1. If p is
below r1 and above r2, then we add p to A2 and set pred(p,A1) = r1. If p is below r2, then
we find our desired first 3-descent formed by (in backwards order) pk = p, pk′ = r2, and
pk′′ = pred(r2, A1). See Figure 3. This algorithm runs in time O(k− i), which is proportional
to the number of swept points.

We add point d to the start of chain A2. The resulting chains A1 and A2 are shaded in
Figure 3. Observe that A2 ends at pk′ . Also, all points of P ′ that are to the right of pk′ (if
there are any) belong to A1, and lie to the right of pk′′ , and form an ascending chain. Let
A′′1 be this ascending chain. Let A′1 be the sub-chain of A1 up to pk′′ ; see Figure 3. Now we
form one pseudo-rollercoaster (shown in red/dashed) consisting of RA followed by A′1 and
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then by the descending chain pk′′ , pk′ , pk. We form another pseudo-rollercoaster (shown in
blue/solid) consisting of RD followed by A2 and then by A′′1 . We need to verify that the
ascending chain added after d has length at least 3. This chain contains d, pi and pk′ . This
gives a chain of length at least 3 unless k′ = i, but in this case pk′′ = a, so pi+1 is part of
A′′1 and consequently part of this ascending chain. Thus we have constructed two longer
pseudo-rollercoasters whose union is the set of all points up to point pk, one ending with
a 3-ascent and one with a 3-descent and such that the last two runs share the point pk′ .
Figure 4(a) shows an intermediate iteration.
The Last Iteration: If there are no points left, then we terminate the algorithm. Otherwise,
let pi be the first point to the right of `. Let a and d be the endpoints of the two pseudo-
rollercoasters obtained so far, such that a is the endpoint of an ascent and d is the endpoint
of a descent. Notice that pi is below a and above d, because otherwise this iteration would
be an intermediate one. For the same reason, the remaining points pi, . . . , pn do not contain
a 3-ascent together with a 3-descent. If pi is the last point, i.e., i = n, then we discard this
point and terminate this iteration. Assume that i 6= n, and suppose without loss of generality
that the next point pi+1 lies above pi. In this setting, by Theorem 1.3 and as described in
an intermediate iteration, with the remaining points, we can get two ascending chains A1
and A2 such that A2 contains at least two points. By connecting A1 to a and A2 to d we get
two pseudo-rollercoasters whose union is all the points (in this iteration we do not need to
maintain the invariant).

p1

d

a = pk′′

pi

pi+1 = pk′

pk

p1 pn

R1

R2

(a) (b)

Figure 4 (a) An intermediate iteration. (b) A point set for which any rollercoaster of length at
least n/4 + 3 does not contain p1 and pn. The green (dashed) rollercoaster, which contains p1, has
length n/4 + 2. The red (solid) and blue (dash-dotted) chains are the two rollercoasters returned by
our algorithm.

Final Refinement: At the end of the algorithm, we obtain two pseudo-rollercoasters R1
and R2 that share p1, and their union contains all points of P , except possibly pn. Thus,
|R1|+ |R2| > n, and the length of the longer one is at least

⌈
n
2

⌉
.

This ends the presentation of our algorithm. It is not hard to see that the algorithm runs
in O(n) time.

To obtain rollercoasters (not just pseudo-rollercoasters), we remove p1 from R1 and/or
R2 if the first run only contains two points. This gives two rollercoasters R1 and R2 whose
union contains all points, except possibly p1 and pn. The length of the longer one is at least⌈

n−2
2

⌉
. We can improve this bound to

⌈
n
2

⌉
by revisiting the first and last iterations of our

algorithm with some case analysis.
We note that there are point sets, with n points, for which every rollercoaster of length

at least n/4 + 3 does not contain any of p1 and pn; see e.g., the point set in Figure 4(b). To
verify the tightness of the dn/2e lower bound, consider a set of n points in the plane where
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dn/2e of which lie on a positive-slope line segment in the (−,+)-quadrant and the other
bn/2c points lie on a positive-slope lines segment in the (+,−)-quadrant. J

3 Further Results

Our result can be extended to k-rollercoasters, i.e., sequences of real numbers in which every
run is either a k-ascent or a k-descent. Namely, for k > 4, every sequence of n > (k− 1)2 + 1
distinct real numbers contains a k-rollercoaster of length at least n

2(k−1) −
3k
2 .

The algorithm presented in the proof of Theorem 2.1 does not necessarily compute the
longest rollercoaster in a sequence. This can be done in O(n logn)-time by an algorithm
extending the classical algorithm for computing a longest increasing subsequence. This
algorithm can be implemented in O(n log logn) time if each number in the input sequence is
an integer that fits in a constant number of memory words. Connected to this last result, we
give an estimate on the number of permutations of {1, . . . , n} that are rollercoasters. Namely,
let r(n) be the number of permutations of {1, 2, . . . , n} that are rollercoasters. We show that
r(n) ∼ c′ · n! · λn−3 where c′ is a constant, approximately 0.204.

Finally, we study the problem of drawing a top-view caterpillar, with L-shaped edges, on
a set of points in the plane that is in general orthogonal position. Recall that a top-view
caterpillar is an ordered caterpillar of degree 4 such that the two leaves adjacent to each
vertex lie on opposite sides of the spine; see Figure 1(b) for an example. The best known
upper bound on the number of required points for a planar L-shaped drawing of every
n-vertex top-view caterpillar is O(n logn); this bound is due to Biedl et al. [2]. We use
Theorem 2.1 and improve this bound to 25

3 n+O(1).

I Theorem 3.1. Any top-view caterpillar of n vertices has a planar L-shaped drawing on
any set of 25

3 n+O(1) points in the plane that is in general orthogonal position.
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