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Abstract

Let S be a set of n points in the plane that is in convex position. For a real number
t > 1, we say that a point p in S is t-good if for every point ¢ of S, the shortest-path distance
between p and ¢ along the boundary of the convex hull of S is at most ¢ times the Euclidean
distance between p and q. We prove that any point that is part of (an approximation to)
the diameter of S is 1.88-good. Using this, we show how to compute a plane 1.88-spanner of
S in O(n) time, assuming that the points of S are given in sorted order along their convex
hull. Previously, the best known stretch factor for plane spanners was 1.998 (which, in fact,
holds for any point set, i.e., even if it is not in convex position).

1 Introduction

Let S be a set of n points in the plane. A geometric graph is a graph G = (S, F) with vertex
set S and edge set E consisting of line segments connecting pairs of vertices. The length (or
weight) of any edge (p,q) in E is defined to be the Euclidean distance |pg| between p and q.
The length of any path in G is defined to be the sum of the lengths of the edges on this path.
For any two vertices p and ¢ of S, their shortest-path in G, denoted by 0, (p, q), is a path in G
between p and ¢ that has the minimum length. We denote the length of ¢6%(p, q) by |65 (p, q)|.
For a real number ¢ > 1, the graph G is a t-spanner of S if for any two points p and ¢ in S,
10&(p, @)| < tlpg|. The smallest value of t for which G is a t-spanner is called the stretch factor
of G. A large number of algorithms have been proposed for constructing t-spanners for any
given point set; see the book by Narasimhan and Smid [12].

In this paper, we consider plane spanners, i.e., spanners whose edges do not cross each other.
Chew [3] was the first to prove that plane spanners exist; in fact, this was the first publication
on geometric spanners. Chew proved that the Li-Delaunay triangulation of a finite point set
has stretch factor at most /10 ~ 3.16 (we note that lengths in this graph are measured in
the Euclidean metric). In the journal version [4], Chew proves that the Delaunay triangulation
based on a convex distance function defined by an equilateral triangle is a 2-spanner.

Dobkin et al. [6] proved that the Ly-Delaunay triangulation is a t-spanner for t = 7(1++/5)/2
~ 5.08. Keil and Gutwin [10] improved the upper bound on the stretch factor to ¢t = #&/6) ~
2.42. This was subsequently improved by Cui et al. [5] to t = 2.33 for the case when the point
set is in convex position. Currently, the best result is due to Xia [13], who proved that ¢ is less
than 1.998.
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Thus, the current best upper bound on the stretch factor of plane spanners is 1.998. Re-
garding lower bounds, by considering the four vertices of a square, it is obvious that a plane
t-spanner with ¢ < /2 does not exist. Mulzer [11] has shown that every plane spanning graph
of the vertices of a regular 21-gon has stretch factor at least 1.41611. Recently, Dumitrescu and
Ghosh [7] improved the lower bound to 1.4308 for the vertices of a regular 23-gon.

1.1 Our Results

In this paper, we consider plane spanners for point sets that are in convex position. Currently,
it is known that the stretch factor of any such spanner is less than 1.998. Moreover, the best
lower bound is 1.4308. We improve the upper bound to 1.88. Our approach is as follows.

Let S be a finite and non-empty set of points in the plane and assume that S is in convex
position. We denote the boundary of the convex hull of S by CH(S). For any two points p
and ¢ in S, let 623"]{( s) (p,q) and 52?;”[( 9) (p, q) denote the clockwise and counter-clockwise paths
from p to ¢ along CH(S), respectively, and let 5(*JH(S) (p,q) be the shorter one. Let t > 1
be a real number, and let p and ¢ be two points of S. We say that p is t-good for ¢ in S if
\58H(S) (p,q)| < t|pg|. Observe that if p is t-good for g, then ¢ is t-good for p. We say that the
point p € S is t-good for S if p is t-good for all points of S. Define

t* = inf{t :each finite and non-empty set of points in the plane
that is in convex position has at least one t-good point}.

Theorem 1. Let S be a finite and non-empty set of points in the plane that is in convex position,
and let t > t* be a real number. Then, there exists a plane t-spanner of S.

Proof. Consider algorithm PLANESPANNER(S,t) and the graph G = (S, E) that is returned by
this algorithm. Initially, B = S. This graph G is obtained by iteratively cutting an ear of
CH(B). Therefore, G is a plane triangulation of CH(S).

If |B] < 3, then E is the set of edges -
of the convex hull of S. Thus, G is 1- Algorithm 1 PLANESPANNER(S, t)

Input: A finite set S of points in the plane in convex
position, and a real number ¢ > ¢*.

Output: A plane t-spanner of S.

: E « the set of edges of CH(S)
: B+ S

spanner. Assume |B| > 3. Consider one
iteration of the while loop. Since t > t*,
there exists a t-good point in B; let p
be such a point that is chosen in line 4 1
of algorithm PLANESPANNER(S,t). Let 2
g and r be the two neighbors of p on 3: while |B| >4 do

CH(B). We add the edge (¢,r) to F, 4 p < a t-good point in B

and remove the point p from B. See Fig- 5 q,7 < the two neighbors of p on CH(B)
ure 1(a). Since E contains the convex 6 E <+~ FEU{(¢gr)}

hull of B, it follows that for any point p’ 7 B« B\ {p}

in B the shortest-path distance between 8. return G = (S, E)

p and p’ in G is at most |(53H(B)(p,p’)],

which is at most t|pp/|. Therefore, the graph G is a t-spanner of S. O

In order to apply this result, we need an estimate on the value of ¢*:
Problem. Is the value of t* finite? If it is, determine upper and lower bounds on t*.

Our main result is a proof that v/3 < t* < 1.88. In Section 2, we provide some preliminaries.
In Section 3, we prove that any point of S that is an endpoint of diameter is 1.88-good. In
Section 4, we consider an approximate diametral pair of S and prove that both points in this
pair are 1.88-good. Based on this, in Section 5, we show how to construct a plane 1.88-spanner



t-good point,

N, CH(B\ {p})

(a)

Figure 1: (a) The point p is t-good. The bold edges belong to G. (b) we(a) in direction a.

for S in O(n) time, assuming that the points of S are given in sorted order along C H(S). Some
further results are given in Section 6. Concluding remarks and open problems are given in
Section 7.

2 Preliminaries

For any two points p and ¢ in the plane let pq denote the line segment between p and ¢, and
let R(p—q) denote the ray emanating from p and passing through ¢. For a point p and a real
number p > 0, let C(p, p) be the closed disk of radius p that is centered at p. For any two
points p and ¢ in the plane let L(p, q) denote the lune of p and ¢, which is the intersection of
C(p, |pal) and C(q, [pql).

Let S be a finite and non-empty set of points in the plane. The diameter of S is the largest
distance among the distances between all pairs of points of S. Any pair of points whose distance
is equal to the diameter is called a diametral pair. Any point of any diametral pair of S is called
a diametral point.

Observation 1. Let S be a finite set of at least two points in the plane, and let {p,q} be any
diametral pair of S. Then, the points of S lie in L(p,q).

The following theorem is a restatement of Theorem 7.11 in [1].

Theorem 2 (See [1]). If C; and Co are convex polygonal regions with Cy C Co, then the length
of the boundary of Cy is at most the length of the boundary of Cs.

We also restate the following two-dimensional version of Cauchy’s surface-area formula. For
a closed convex curve C' in the plane let we () be the width of C' in direction «; see Figure 1(b).

Theorem 3 (Cauchy [2]). The length |C| of the boundary of a closed convex curve C in the
plane is given by

|IC| = /07r we(a) da.

Lemma 1. Let S be a finite set of at least two points in the plane that is in convex position,
and whose diameter is D. Then, for any two points p and q in S, |(5>5H(S) (p,q)| < BE.

Proof. Since C'H(S) is a closed convex polygonal curve and the width of C' H(S) in any direction
is at most the diameter of S, i.e. D, we have, by Theorem 3,

|CH(S)|:/ wCH(S)(a)dag/ Dda = Dr.
0 0
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Since p and ¢ belong to CH(S), there are two edge-disjoint paths between p and g along C H (S).
The length of the shorter one, i.e. (5’5H(s) (p,q), is at most %. O

Lemma 2. Lett > 1 be a real number and let S be a finite set of at least two points in the
plane that is in convexr position and whose diameter is D. Let p and s be any pair of distinct
points of S such that |ps| > %. Then t > 5 and p is t-good for s.

Proof. Since the diameter of S is D, we have |ps| < D. Thus 27 < |ps| < D, which implies

s
2
t > 5. By Lemma 1, we have |6¢,5(g)(p, 5)| < Dr Thus,

’(SEH(S)(ES)‘ < Dm /2 _
|ps| = Drj2t 7

which implies that p is t-good for s. O

Lemma 3. Let a, b, and c be three points in the plane, let 8 = Zabc, and let t > 1 be a real
number. If 8 > 2arcsin(%), then % <t

Proof. Refer to Figure 2(a). Consider the triangle Aabe. Let ¢ be the bisector of 3, and let
d be the intersection point of £ and ac. Let a’ (resp. ) be the point on ¢ that is closest to a
(resp. ¢). We have |ab| = |ad’|/sin(5/2) and |bc| = |ec’|/sin(5/2). Thus,

jabl + fbe| _ |ad'| +|ec| _ lad| +|de| _ 1 _ 1 -
|ac| |lac| sin (%) h |ac| sin (g) sin (g) = sin (2&rcsin(%)/2>
O
T/
p q
q o
T

Figure 2: (a) Proof of Lemma 3. (b) Proof of Theorem 4.

Theorem 4. t* > /3.

Proof. Let S = {p,q,r,p',¢,7"} be the set of six points in the plane and in convex position
as shown in Figure 2(b). The points p, ¢, and r are the vertices of an equilateral triangle of
side-length 1. The point p’ is placed in the middle of qr; ¢’ and r’ are placed analogously. The
two paths between p and p’ along CH(S) have lengths equal to 3/2. Moreover, |pp| = v/3/2.
Thus,
|5EH(S)(pap/)| _ 3/2 _ 3
pp/| V3/2 '

Therefore, for any ¢ > 0, p is not (v/3 — €)-good for p, and vice versa. This implies that none
of p, p, and similarly, none of ¢, ¢, r, r’ is (v/3 — &)-good for S. O]




3 Diametral Points are Good

In this section we will prove the following theorem.

Theorem 5. Let S be a finite set of at least two points in the plane that is in convex position.
Then any diametral point of S is 1.88-good for S.

Throughout the rest of this section, let t = 1.88. Let D be the diameter of S, and let {p, ¢}
be any diametral pair of S, that is, [pg| = D. We are going to show that both p and ¢ are
t-good for S. Because of symmetry, it suffices to show that p is t-good. By Observation 1, all
points of S are in the intersection of C'(p, D) and C(q, D); see Figure 3.

q
q q
(0%

D
S /
sin (%) p

P \

p r

(a) (b) (c)

Figure 3: Ilustration of the proof of Theorem 5.

Let s be any point of S\ {p}. We are going to show that p is t-good for s. If s = ¢, then
as a consequence of Lemma 1, p is §-good for s and, thus, p is t-good for s. Assume s # gq.
Depending on |ps| we differentiate between the following three cases:

o |ps| > 2. By Lemma 2, p is t-good for s; see Figure 3(a).

e [ps| < Dsin(%). Without loss of generality assume s is to the right of R(p—¢). See
Figure 3(b). Let r be the intersection point of R(¢—s) with the line that is perpendicular
to pq and passes through p. Consider the path 5‘306}_}’(5) (p,s). Because of convexity, this
path is to the right of R(¢—s) and to the right of R(p—s). By Theorem 2, we have

|5E‘C}§(S) (p,s)| < |pr|+|rs|. Let « = Zpgs and B = ZLprs = Zprq. Let p’ be the orthogonal

projection of p onto R(q—s). Then sina = “’;Zl' < % ‘ps‘ < sin (9) and, thus, o < 7.
This implies that 8 = § —«a > 5. Since t = 1.88, we have B> 2arcs1n( ). Thus

using Lemma 3, we have

0C11(5) (P 5)] _ |0¢ H () (P> 5)] o lpr| + Irs]

~ X g t,
[ps| |ps| |ps|
which implies that p is t-good for s.
e Dsin (§) < [ps| < 5. Refer to Figure 3(c). Observe that if s is on pg, then p is 1-good for

s. Without loss of generahty assume s is to the right of R(p—¢q). Let r be the intersection
point of R(q—s) and the boundary of C(q, D). Consider the path E?}_’}(S) (p, s). Because
of convexity, this path is to the right of R(¢—s) and to the right of R(p—s). Note that

ccw ( 5CC’U)

|6(*JH(S)(pv s)| < Chs) (P s)|, and by Theorem 2 we have | CH(S)( p, s)| < |rs|+|pr|, where



|pr| denotes the length of the counter-clockwise arc on C(g, D) from p to r. In order to
prove that p is t-good for s it is sufficient to prove that

sl + 177 _
|ps|
which is equivalent to
tlps| — Irs| — 57| > 0. )

Let z = |ps|, y = |¢s|, and o = Zpgs. Notice that Dsin (§) < = < %, y < D, and

0 < a < §. By the law of cosines we have 22 = D? + y? — 2Dy cos a, which implies that

y = Dcosa =+ \/x2 + D?(cos? v — 1).

For a fixed value of «, z is minimum when R(g¢—s) is tangent to C'(p,z). This implies
that > Dsin a, and consequently o < arcsin (7). Note that |rs| = D—y and |pr| = Do
Thus, in view of Inequality (1) we have to show that

tr — |rs| — |pr| = tx — (D - (Dcosa + \/x2 + D?(cos? o — 1))) —Da>0, (2
for all Dsin (§) < = < % and 0 < a < arcsin (). Without loss of generality assume
that D = 1. Observe that in the range for  and «, the radicand in vz2 + cos?a — 1 is
non-negative. Also, it is sufficient to show that Inequality (2) holds for the minus sign in
the £. That is, it is sufficient to show that

tr —a—1+cosa—vVz2+cosla—12>0, (3)

for all sin (§) < < ; and 0 < a < arcsin(z).

In Appendix A we prove that Inequality (3) holds for ¢t ~ 1.879534 and ¢ < 1.88. This
implies that p is 1.879534-good, and consequently 1.88-good for s. This completes the
proof of Theorem 5. In fact, in Appendix A we will prove a slightly stronger result:

tr—a—(1+3%107%) +cosa — Va2 +cos2a—1>0
holds for ¢ = 1.879534 and all sin (§) < z < % and 0 < a < arcsin(x).

We can show that Inequality (3) holds for ¢ = 1.879534 and 0 < x < Z;. However, we considered
z = |ps| < Dsin (§) as a different case in order to unify the proof for Inequality (3) with the
proof for Inequality (4) that we will see in Section 4.

4 Approximate-Diametral Points are Good

Let S be a finite set of at least two points in the plane that is in convex position. In Section 3 we
proved that any diametral point of S is 1.88-good. In this section, we first present an algorithm
that computes an approximate diametral pair of S; this algorithm is due to Janardan [8]. Then
we show that the two points obtained by this algorithm are 1.88-good for S. In Section 5, we
use this algorithm to compute a plane 1.88-spanner in linear time.

Let ¢ > 2 be an integer-valued parameter. We use a family of coordinate systems, C;, 1 <
1 < ¢, with orthogonal axes X; and Y;, respectively, where X; is horizontal and for i = 2, ..., ¢,
X; makes an angle of /¢ with X;_;. For each i we refer to the pair of points with minimum
and maximum X;-coordinates as the extreme pairin C;. To find an approximate diametral pair,
we determine the FEuclidean distance of the extreme pair in each C; and report the pair that
is farthest apart. The following lower bound on the distance of the reported extreme pair has
been established by Janardan [8].



Lemma 4 (see Janardan [8]). Let S be a finite set of at least two points in the plane that is in
convex position, and whose diameter is D. Let p and q be the pair of points obtained by running

the above algorithm on S. Then |pq| > sin (%%) D.

In the rest of this section we will prove the following theorem.

Theorem 6. Let S be a finite set of at least two points in the plane that is in convex position.
Let p and q be the pair of points obtained by running the above algorithm on S with ¢ = 112.
Then both p and q are 1.88-good for S.

Throughout the rest of this section, let ¢ = 1.88. Because of symmetry, we prove Theorem 6
only for p. For each i € {1,...,112} and for each point s € S, let X;(s) be the X;-coordinate of
s in the coordinate system C;. Moreover, let [;(s) be the line passing through s that is parallel
to Y;.

Let Cpq be the set of all coordinate systems in which p and ¢ are the extreme pair. Note
that Cpq is not empty, because p and ¢ are the pair of points reported by the algorithm, and
hence they are extreme pairs in at least one of the coordinate systems. Let Cpy = {Ciy,...,Ci,, }s
where 1 < m < 112. Note that for each j € {i1,...,im} the points of S lie in the slab between
the two parallel lines [;(p) and [;(q). For each C;, where j € {i1,...,iy}, let r; be the point on
lj(q) such that Zprjq = 7, and let oi; = Zgpr;; observe that o; < 5. See Figure 4.

lq lq

L (q) lw(q)
I ~ 4 T ~ 4

lk(Q) m lk(q) m oS

l 7 l Y

P e P QU

I (p) lw(p)
- /
l P 112 I » I5]
k(p) n #(p) n
(a) (b)
Figure 4: Proof of Lemma 5.
Let k be an element of {i1, ..., 4y} for which oy is minimum. Recall that all points of S are

in the slab between I (p) and lx(q).

Lemma 5. o < {J5-

Proof. The proof is by contradiction; thus, we assume that oy, > 175. Without loss of generality,

assume [;(p), and consequently [;(q), are horizontal, p is below ¢, and ¢ is to the right of

R(p—ry); see Figure 4. Let [, and [, be the lines that are perpendicular to pg and pass through

p and ¢, respectively. Observe that each of [, and l, makes angle oy, with each of I (p) and l;(q).

Since a > 175, there is a coordinate system Cps € {C1,...,Cy12} that is different from Cj and
s

for which [ (p) (resp. l(q)) makes angle {5 with lx(p) (vesp. lx(¢)) and angle ap — 175 > 0
with [, (resp. ly). See Figure 4. We consider the following two cases.

o All points of S\ {p, q} are between lys(p) and lx/(q). Then all points of S lie in the shaded
area in Figure 4(a). In this case p and ¢ are the extreme pair in C. Thus Cy € Cpy with
ayr = ap — 175+ This contradicts our choice of k.
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e There is a point of S\ {p,q} below li(p) or above l(q). Without loss of generality
assume there is a point of S\ {p,q} that is above l;(¢q). See Figure 4(b). In this case
one of the extreme points of Cy/, say s, is above l;(q) and its other extreme point, say
', is on or below I/ (p). Note that s is different from ¢ while s’ can be p. Observe that
|ss’| = |sp| > |pg|. This contradicts the algorithm’s choice of p and ¢ as the farthest pair
among the extreme pairs of all coordinate systems Cy,...,C112.

O]

Let D be the diameter of S. Recall that p and ¢ are the pair of points that are returned by
Janardan’s algorithm. Let |pg| = d. By Lemma 4, we have

1117

d> sin( 1 ) D > 0.999901D,
and thus,
D < 1.0001d.

Note that all points of S are in the intersection of the two disks C'(p, D) and C(q, D). See
Figure 5. Let s be any point of S. We are going to show that p is t-good for s. Depending on
|ps| we consider the following three cases:

o |ps| > %. By Lemma 2, p is t-good for s.

e |ps| < dsin (%) Consider the coordinate system Cj. Recall that C; belongs to Cp4, and
by Lemma 5 we have oy, = Zgpry < 175. Thus, ¢ belongs to an interval [q1, ¢2] on Ix(q)
such that Zqipry = Zgapry = {j5 and for each point ¢’ € [q1, q2] we have Zq¢'pry < 3.
Without loss of generality assume s is to the right of R(p—¢). See Figure 5(a). Let r be
the intersection point of R(qg—s) with [x(p). Consider the path OCH (S) (p,s). Because of
convexity, this path is to the right of R(¢—s) and to the right of R(p—s). By Theorem 2,
we have |5gc}§(s) (p,s)| < |pr|+|rs|. Let « = £pgs and 8 = ZLprs = Zprq. Asin the proof of
Theorem 5, we have sina < 22 = % < sin (§) and, thus, a < §. Since Zgpr < § + {f5,

= pgl T
it follows that § =7 —a — Zgpr > 7 — 5 — (5 + 5) = %. Since t = 1.88, we have

B > 2arcsin(7). Thus, using Lemma 3, we have

0C11(5) (P> 5)] . 08 (5) (P> 5)] o lpr| + |rs|

<t
|ps| h |ps| S ps] T

which implies that p is t-good for s.



le(p)

Figure 5: Proof of Theorem 6: (a) |ps| < dsin (%), and (b) dsin (%) < |ps| < B2,

e dsin (%) < |ps| < 4F. In this case s is in the shaded region of Figure 5(b). Consider
C(q ,d) and C(g, D); note that all points of S are in C(gq, D). Without loss of generality
assume s is to the right of R(p—¢q). Let r and r/ be the intersection points of R(g—s)
with the boundaries of C(q,d) and C(q, D), respectively. Let p’ be the intersection point
of R(¢—p) with the boundary of C(q, D). Consider the path 58?}”1(5) (p,s). Because of
convexity, this path is to the right of R(¢—s) and to the right of R(p—s). See Figure 5(b).
Thus, Theorem 2 implies that |0¢7; g, (p,s)| < pp!| + |7 + ['r| + |rs|, where |[p/r|
denotes the length of the counter- clockwise arc on C(q,D) from p’ to . Note that
lpp’| = |rr’| = D —d < 0.0001d. Let o = Zpgs. Note that o is maximum when R(g—s)
is tangent to C' (p, Sr ) This implies that « < arcsin (gg) < arcsin (1 0001“) < 1. Thus,

[P/r’| = Da < 1.0001da = dev 4 0.0001dex < |p7| + 0.0001d,

where |pr| denotes the length of the counter-clockwise arc on C(q,d) from p to r. There-
fore, we have

10615y, )| < 108 () (s )| < [pP| + [P0 + |r'r| + |rs| < |rs| + [pr| + 0.0003d.
In order to prove that p is t-good for s, it is sufficient to prove that

|rs| + |pr| + 0.0003d <t
[ps|

or equivalently
t|ps| — |rs| — |pr| — 0.0003d > 0

for all dsin (§) < |ps| < %. Without loss of generality assume that d = 1, and thus,
D < 1.0001. Let z = |ps| and a = Zpgs. In view of the proof of Theorem 5 it turns out

that we have to prove that

tr—a—(14+3%107%) +cosa — Va2 + cos2a — 1 > 0, (4)

for all sin (§) <z < % and 0 < a < arcsin(z).

In Appendix A we prove that Inequality (4) holds for ¢t ~ 1.879534 and ¢ < 1.88. This
implies that p is 1.879534-good, and consequently 1.88-good for s. This completes the
proof of Theorem 6.



5 Algorithms

Let S be a set of n points in the plane that is in convex position. We assume that the points of
S are given in sorted order along C'H(.S). In this section, we describe how to construct a plane
1.88-spanner on S in O(n) time.

By Theorem 5, any diametral point of S is 1.88-good for S. As discussed in the proof
of Theorem 1, by running algorithm PLANESPANNER(S,1.88), a plane 1.88-spanner for S is
obtained. Specifically, we obtain this spanner by choosing, in line 4 of the algorithm, a diametral
point of S. Since the diameter of n points in convex position can be computed in O(n) time,
the algorithm runs in O(n?) time.

Note that in each iteration of the while loop in algorithm PLANESPANNER, we remove
one point from S. Thus, any deletion-only data structure that maintains the diameter of S
can be used here. Kaplan et al. [9] showed that the diameter of a fully dynamic point set in
the plane can be maintained in O(log” n) expected amortized time. Based on that, algorithm
PLANESPANNER can be implemented to run in O(nlog’ n) expected time.

Recall that in Section 4, we presented an algorithm that computes an approximate diametral
pair of S. By Theorem 6, these diametral points are 1.88-good (assuming ¢ = 112). Based
on this algorithm, we present a deletion-only data structure that maintains an approximate
diametral pair of S. For each i, 1 < i < ¢, we store the points of C; in a doubly connected
linked list, L;, in increasing order of their Xj;-coordinates. The list L; can be constructed in
O(n) time by merging the two convex chains of the points between the extreme pair in C;. The
list L; allows access to the extreme pair in C; in O(1) time, via explicitly-maintained pointers
to the leftmost and rightmost nodes. For ¢ = 1,...,¢c— 1 and for each point p in L;, we store a
cross pointer to the occurrence of p in L;;1. Moreover, for any point p in L. we store a cross
pointer to the occurrence of p in Li. To delete a point p from S, we delete p from each L;,
1 <4 < e If we are given a pointer to p’s occurrence in one list L;, then p can be deleted in O(c)
time by following the cross pointers. To answer a diameter query, we determine the Euclidean
distance of the extreme pair in each L; and report the pair that is farthest apart; this takes
O(c) time. We use this data structure, with ¢ = 112, in line 4 of algorithm PLANESPANNER.
Thus, each query takes O(1) time and gives two pointers to the approximated diametral points.
Using the cross pointers, the approximated diametral points can be deleted in O(1) time. Thus,
algorithm PLANESPANNER can be implemented to run in O(n) time. Therefore, we have proved
the following theorem.

Theorem 7. Let S be a set of n points in the plane that is in convex position. Assume that the
points of S are given in sorted order along the boundary of the convexr hull of S. Then a plane
1.88-spanner for S can be computed in O(n) time.
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6 Remarks

1. There exists a point set in the plane and in convex position such
that some of its diametral points are not 1.868-good.
The figure to the right shows a point set S that contains
the points p,q,r, s,p’ and many points that are uniformly dis-
tributed on each of the arcs g7 and 7s. The points ¢, r, and s
are the vertices of an equilateral triangle of side length 1. The
arc qr (resp. rs) has radius 1 and is centered at s (resp. ¢). The
point p’ is placed on ¢s and at distance x from ¢. The point p
is placed on 75 such that Zp’gp = a. Note that 0 < z < 1 and
0 < a < m/3. We will compute the exact values of z and « later. Note that all points of
S, except p/, are diametral points. Moreover |[CH(S)| ~ 1+ %” We are going to place p
and p’ (or equivalently, choosing o and x) such that p is not 1.868-good for p’, and hence
it is not 1.868-good for S.
We place p and p’ such that the lengths of the two paths between p and p’ on CH(S) are
equal to |55H(S) (p,p')| = 1/24+7/3 and |pp/| is minimized. In this way, |(5>5H(S) (p, P)|/1pP’|
is maximized. The length of the path (%H(S) (p,p’) that is to the left of R(p—p') is a+1—=x.
Thus, a4+ 1—x = 1/2+ /3, which implies that z = a4+ 1/2 — 7/3. By the law of cosines
we have

lpp'| = V1 + 22 — 2z cos av.
The value of « that minimizes |pp/| is the solution of the equation
(6ac+3 —2m)(1 +sina) —6cosa =0,

which is o ~ 0.897287. Thus, we choose a = 0.897287 and x = a+ 1/2 — w/3. For these
values of « and z we have |pp’| &~ 0.828153 and hence,

|52‘H(S) (pap/)‘

pp/|

Thus, the diametral point p is not 1.868-good for p’, and hence is not 1.868-good for S.

~ 1.868.

2. There exists a point set in the plane and in convex position such
that none of its diametral points is 1.75-good.
The figure to the right shows a point set S that contains the
points p,q,r,p’,q, and many points that are uniformly dis-
tributed on the arc pg. The points p, g, and ' are the vertices
of an equilateral triangle of side-length 1; note that r’ does not
belong to S. The arc pq is centered at v’ and has radius 1.
The point r is placed at distance € > 0 vertically above 7.
Thus, p and g are the only diametral points in S. Moreover,

™

|CH(S)| =~ 2+ %. The point p' (resp. ¢') is placed on rq (resp. rp) and at distance §
from r. Thus [67 ) (P, )] = 1005 (5)(a,d)| & 1+ §. By the law of cosines we have

lpp'| = |aq'| ~ V36 + 72 — 6m. Thus,

‘5*0}[(5) (p, )| B ‘5(*1}1(5) (4,4

— ~ 1.758.
lpp'| laq’|

This implies that p is not 1.75-good for p’, and ¢ is not 1.75-good for ¢’. Therefore, none
of the diametral points of S is 1.75-good for S.
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3. Intuitively, it seems that the point on the convex hull q P '

T
that has the smallest internal angle with its neighboring
points is a suitable candidate to be a good point. But this g pa
is not true; the figure to the right shows a point set S that D

contains the points p, q,7,p’,¢,r’, and many points that

are uniformly distributed on each of the arcs @ and 77/, the point p is placed vertically
below the midpoint of ¢r, and p’ is placed on the midpoint of ¢r’. Depending on the
lengths of pr and pq, and on the distance between p and the midpoint of ¢r, the value of
|(5(*JH(S) (p,P')|/|pp’| can be arbitrary large. Thus, for any ¢ > 1, we can select S such that
p is not t-good for p’, and hence it is not t-good for S.

4. There are point sets in the plane and in convex position for which the plane graph that
is computed by algorithm PLANESPANNER has smaller stretch factor than the Delaunay
triangulation of the same point set. Consider the set S = {a,b,c,d,e, f} of six points
in Figure 6. Figure 6(a) shows the Delaunay triangulation of S whose stretch factor is
(|bc| + |ed| + |de| + |ef])/|bf| ~ 1.284. Figure 6(b) shows the plane graph G obtained
by algorithm PLANESPANNER when it removes both points of a diametral pair in each
iteration. The points b and f are the only diametral pair in S, thus, in the first iteration ae
and ac are added to G. In the next iteration a and d are the only diametral pairs, thus, the
edge ec is added to G. The stretch factor of G is (|ae|+|ed|)/|ad| = (|bc|+|ce|+|ef])/|bf| =
1.244. Note that there are point sets for which the Delaunay triangulation has a smaller
stretch factor than the graph that is computed by algorithm PLANESPANNER.

5. The implementation of algorithm PLANESPANNER in Theorem 1 gives a simple (and sur-
prising) O(n)-time algorithm for computing the closest pair in a set of n points in convex
position: As discussed in Section 5, this algorithm computes a 1.88-spanner G in O(n)
time. It is well known that in any t-spanner, for any ¢t < 2, the closest pair is connected
by an edge. Thus, given G, the closest pair can be computed in O(n) time.

Figure 6: (a) Delaunay triangulation. (b) The graph computed by algorithm PLANESPANNER
when it removes both points of a diametral pair in each iteration.

7 Conclusions and Future Work

For a point set S in the plane and in convex position, we have shown that any approximate
diametral point of S is 1.88-good. Based on this, we obtained a plane 1.88-spanner for S in
O(n) time. We have proved that v/3 < t* < 1.88. By solving Inequality (3) directly, or by
considering more coordinate systems in the approximate-diameter algorithm, we can show that
any (approximate) diametral point of S is 1.8792-good. This implies that t* < 1.8792. A

12



natural problem is to improve any of the provided bounds. Another natural problem is to
extend algorithm PLANESPANNER to point sets that are not in convex position.
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A Proof of Inequality (4)
In this section, let ¢ = 107%. We are going to find the smallest value of ¢ such that

tr —a—(14+3e)+cosa—vVaz+cos2a—120,

for all sin (§) <z < (1+€) , 0 < a < arcsin(z). Note that in this range 22 + cos? a > 1.
(1

2
Since x < t‘g) we do this for 0 < o < arcsin <(1J§f)“> = arccos (\/ ( L ) Let

u = cos a. This problem is equivalent to finding the smallest value of ¢ for which

te — arccos(u) — (1 +3e) +u— Va2 +u2—-12>0, (5)

2
for all sin (§) < = < UZ?W, 1— ((1;)”) <wu <1, and 22 +u? > 1. Thus we verify the

validity of Inequality (5) in the shaded region of the following figure.

u
A

anfp) !

By Theorem 4 we know that ¢t > /3. Let ¢ be the solution to ¢.(¢) = 0 in the interval

[vV/3,2], where

1+e)m
o)) = LI (14 39) 400
(1

- 8:}; V1682 — (1 +2)m)% — (1 4+ 2)m/322 + (1 + £))°

— arccos (7:(t))
and

e(t) = 8\[ /12881 — 16 (1 + )m) 2 — (L + e)m)* — )3 /3262 + (1 + ¢)2n2,
Then ¢ ~ 1.879534 and ¢ < 1.88. We will show that
f(z,u) = tx —arccos(u) — (14+3e) +u— Va2 +u>—-120 (6)

2
for all sin (§) < = < (lgf)”, 1— ((lg?ﬂ) <wu<1and 22+ cos?a > 1. We first find the
critical points that cancel the derivatives with respect to x and with respect to u. Then we

study the function at the boundary conditions.
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We have

8f(:c u) = R

O o VaZru? -1

0 1 u
—1+ - .

ou g @) V1i—u?2 V242 -1

If we solve the system - O f(x,u) = 8‘1]“(:2, u) = 0, we find

(z,u) = <i1 7( r \/7527>

t\ 2 —

Since t > /2, z > sin (§) and u > 0, we get

t2—-2 2
(zu) = ———, 5V 1.
ty/(#2—1) t
2 _
f i’ﬁ t2—1|~0.14>0.
t/(2—1)

We now look at the boundary conditions. There are five of them: (1) z = sin (§), (2)

2
x = %, B)z=v1—u? (4) u=1/1- (%) and (5) w = 1. We will consider these

separately.

We have

2
1. We need to show that f (sin (§),u) > 0 for all 1/1 — (%) < u < 1. We have

f (sin (g) ,u) = tsin (g) —arccos(u) — (1 +3¢) +u — \/sin2 (g) +u2 -1,

from which

if(silr1<z> u)*l—l— ! — “
du 9/ Vi—u? o\ fsin? (5) +ut -1

The root of the this function is equal to

U = f\/90—|—4()cos(9)+§—2$1n<18)

where ¢ ~ —1.82 is the root of 26 — 2250z* + 32570122 — 1058481 = 0 in the interval
[—2,—1]. We have

f (sin (g) 723\1@\/90+40COS(29 ) + (¢ — 28111(17;3)) ~0.12 > 0.

It remains to study f (sin (§) ,u) at the boundary conditions, namely at (a) u = /1 — (
and (b) u = 1.

(1+e€
2t
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2
(a) The function f (sin (§),u) is not defined at u = /1 — (M) since

2

1 2
sin? (g) 4 \/1 — <(J;t€)7r> ~ 042 < 1.

The smallest value of u for which f (sin (), u) is defined is u = /1 —sin? (%) =

cos (g). We have
f (sin (g) , COS (g)) ~ 0.23 > 0.

f (sin (g) ,1) ~ 0.30 > 0.

2
. We need to show that f ((lgf)ﬁ,u> >0 forall \/1 — (%) < u < 1. We have

f <(1J;:)7T,u> _a +2€)7r —arccos(u) — (1 +3¢) +u — \/<(1;t€)ﬂ)2+u2 1,

(b) We have

from which

d (14+e)m 1 u
f( ,u):1+ — .
du 2t \/1_u2 - 2

S

The two roots of this function are

u =

8\/@ ; \/128154 —16((1+e)m)% 82 — (1 +&)m)* + (1 + e)m) /3262 + (1 4 £)272

‘We have

f ((1 ;te) T 2\/128754 —16((1+&)m)* 82 — (1 +&)m)* + (1 4 &)m)® /322 + (1 + ¢) 27r2>

~ 0.30
>0

and

f((lgte) 8\[2\/128t4—16((1+6)) 2 (14 o))t — (14 o)) /3262 + 1+52W2)

()

= ¢s(t)
= 0.

(I4e)m

T ) at the boundary conditions, namely at (a) u = /1 — (

It remains to study f (
and (b) u = 1.

2t
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(a) We have

(b) We have

2
3. We need to show that f (\/1 — u2,u> >0 for all /1 — (%) < u < 1. We have
f (\/ 1- u2,u> =tV 1 —wu? — arccos(u) — (1 + 3¢) + u,

from which

if(\/m,u) :1+1—7tu

du V1—uZ
The root of this function is o
U= Er
and hence )
t-—1
V1—u?= .
b 241
We have )
t“—1 2t
— —— ] =029 >0.
f<t2+1’t2+1)

2
It remains to study f <\/ 1 —u?, u) at the boundary conditions, namely at (a) u = /1 — (%)
and (b) u=1.

2
(a) fu=1/1- ((1;7?”) , then V1 —u? = % Therefore, we have

; HV (4527 ) <oz

2t 2t

(b) The function f (\/1 — u2,u) is not defined at u = 1 since V1 —u? = 0 < sin (§).
The smallest possible value for V1 —u? is sin (5). Therefore, the largest possible

value for u is /1 — sin? (g) = cos (g) We have

f (sin (g) , COS (g)) ~ 0.23 > 0.

2
4. We need to show that f <:1:, 1-— ((H;)W) ) > 0 for all sin () <z < (1-;)”_ The only

value of z for which this function is defined is

2
B (1+e)m)? _ (I+e)rm
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‘We have

)<z < (+2)™  We have

5. We need to show that f (z,1) > 0 for all sin ( S

jus
9

f(a;,l):(t—1)x—3g>(t—l)sin(g)—smo.swo.
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