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Abstract

A set D of disks in the plane is said to be pierced by a
point set P if each disk in D contains a point of P . Any
set of pairwise intersecting unit disks can be pierced by
3 points (H. Hadwiger and H. Debrunner, Ausgewählte
Einzelprobleme der kombinatorischen Geometrie in der
Ebene, Enseignement Math, 1955) and Danzer estab-
lished that any set of pairwise intersecting arbitrary
disks can be pierced by 4 points (L. Danzer, Zur Lösung
des Gallaischen Problems über Kreisscheiben in der Eu-
klidischen Ebene, Studia Scientiarum Mathematicarum
Hungarica, 1986). Existing linear-time algorithms for
finding a set of 4 or 5 points that pierce pairwise inter-
secting disks of arbitrary radius use the LP-type prob-
lem as a subroutine. We present simple linear-time al-
gorithms for finding 3 points for piercing pairwise in-
tersecting unit disks, and 5 points for piercing pairwise
intersecting disks of arbitrary radius. Our algorithms
use simple geometric transformations and avoid heavy
machinery. We also show that 3 points are sometimes
necessary for piercing pairwise intersecting unit disks.

1 Introduction

Let D be a set of pairwise intersecting disks in the plane.
Helly’s theorem states that if every set of 3 disks in
D has a non-empty intersection, then all disks in D
can be pierced by 1 point, in other words, ∩D is non-
empty [7, 8]. Finding a piercing point set is more dif-
ficult if the disks in D only intersect pairwise and D
contains groups of 3 disks that have no common in-
tersection. Danzer [3] and Stachó [11] independently
showed that such a set D can be pierced by at most 4
points. Danzer’s proof is based on his first unpublished
proof in 1956, while Stachó’s proof uses similar ideas
that were used in his previous construction of 5 pierc-
ing points in 1965 [10]. Even though Danzer proved that
4 points are sufficient, the proof is not constructive [3].
Stachó’s construction is simpler, but it is still not sim-
ple enough to be turned into an easy subquadratic al-
gorithm [10, 11]. Har-Peled et al. [6] presented the first
deterministic linear-time algorithm for finding 5 pierc-
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ing points of a set D by formulating the piercing prob-
lem as an LP-type problem. An LP-type problem is
an abstract generalization of a low-dimensional linear
program. Chazelle and Matoušek showed that LP-type
problems can be solved in deterministic linear time if we
have a constant-time violation test and the range space
has bounded VC-dimension [2]. More recently, Carmi
et al. [1] presented a linear time algorithm for finding
4 piercing points. Their algorithm requires the compu-
tation of the smallest disk that intersects every disk in
D, which they formulated as an LP-type problem [2, 9].
They pose as an open problem to find the piercing set
without using linear programming.

As for lower bounds on this problem, Grünbaum [4]
provides a set of 21 pairwise intersecting disks that can-
not be pierced by 3 points. Later, Danzer [3] reduced
the number of disks to 10. This is close to optimal since
every set of 8 pairwise intersecting disks can be pierced
by 3 points [10]. However, Danzer’s construction is dif-
ficult to verify since the positions of the disks cannot
be visualized easily. Har-Peled et al. [6] gave a simpler
construction with 13 disks.

Hadwiger and Debrunner [5] showed that if all the
disks in D have the same radius, then 3 points are suffi-
cient to pierce D. Their algorithm computes the small-
est regular hexagon enclosing the centers of all disks
in D. It is not clear how one can simply find such a
hexagon in linear time.

1.1 Our Contributions

We present a deterministic linear time algorithm for
finding 3 points that pierce a set of pairwise intersect-
ing unit disks (disks of radii one), and a deterministic
linear time algorithm for finding 5 points that pierce a
set of pairwise intersecting arbitrary disks (disks of ar-
bitrary radii). Our algorithms employ simple geometric
transformations, and do not require solving any LP-type
problem. We also present a set of 9 pairwise intersect-
ing unit disks that cannot be pierced by 2 points. This
shows that 3 points are sometimes necessary and always
sufficient to pierce pairwise intersecting unit disks.

We denote the Euclidean distance between points a
and b by |ab|.
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2 Piercing Pairwise Intersecting Unit Disks

In this section, we first present our deterministic linear-
time algorithm for piercing pairwise intersecting unit
disks by 3 points. Then we introduce a set of 9 pair-
wise intersecting unit disks that cannot be pierced by 2
points.

2.1 Algorithm For Computing Three Piercing Points

Let D be a set of pairwise intersecting unit disks, each
disk Di is centered at ci = (xi, yi).

Theorem 1 Let D be a set of pairwise intersecting unit
disks. In O(|D|) time, we can compute 3 points that
pierce D.

D
′

2

D2

D1

D0

D
′

0

Figure 1: Configuration of Theorem 1.

Proof. Let D1 be an arbitrary disk in D. We reduce its
radius while keeping c1 fixed until D1 becomes tangent
to another disk D2 ∈ D. This can be completed in
O(|D|) time by computing the distance from c1 to all
other disks in D. Notice that the disks in D are still
pairwise intersecting and any set of points that pierces
the new set of disks also pierces the original set of disks.
Let r1 be the radius of D1. After this transformation,
r1 ≤ 1, and D1 is tangent to D2. By a translation and
rotation, we move c1 to the origin and c2 to a point that
lies on the positive y-axis with coordinate (0, r1 + 1).
Let D0 be a unit disk (not necessarily in D) with center
c0 = (0, r1 − 1). Since r1 ≤ 1, D1 ⊆ D0. Any disk that
intersects D1 also intersects D0. Let D′

0 and D′
2 be two

disks with radius 2 and centers c0 and c2, respectively.
See Figure 1. If a unit disk Di intersects D0 and D2,
then |c0ci| ≤ 2, |c2ci| ≤ 2 and ci ∈ D′

0 ∩D′
2.

Let D3 be the disk in D with the maximum x-
coordinate. Since D3 belongs to D, it must intersect

x = x3 − 2 x = x3

β

Figure 2: Area that we need to cover.

D1 and D2, we note that 0 ≤ x3 ≤
√

3. x3 ≥ 0 since
x3 ≥ x1 = 0. The boundaries of D′

0 and D′
2 intersect at

the point (
√

3, r1), so c3 must either fall on or the left of
the line x =

√
3. We conclude that x3 ≤

√
3. The disk

D3 can be found in O(|D|) time. For every disk Di ∈ D,
|cic3| ≤ 2 since Di and D3 intersect. We have that
|xix3| ≤ 2 since both Di and D3 are unit disks. There-
fore, in addition to being in D′

0 ∩D′
2, the x-coordinate

of all the centers lie in the interval [x3 − 2, x3]. Let β
represent the region where all the centers of disks in D
must lie as illustrated in red in Fig 2. We say an area is
covered by a point set P if every point in the area has
distance at most 1 to at least 1 point in P . Therefore,
if we can find 3 points that cover β, then those three
points pierce every disk in D. As noted above, we have
that 0 ≤ x3 ≤

√
3. We consider two cases, namely when

1 ≤ x3 ≤
√

3 and 0 ≤ x3 < 1.

l1

A

B

M

C

D

P1

C1

Figure 3: Location of P1.

Case 1: 1 ≤ x3 ≤
√

3. Let A (resp. B) be the
rightmost point of β on the boundary of D′

0 (resp. D′
2).

The first point P1 is chosen be a point that falls in β
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and has distance 1 to both A and B. Let C1 be a circle
of radius 1 centered at P1; See Figure 3.

Let l1 be the vertical line x = x3 − 1
2 . First we prove

that P1 always lies to the left of l1. Let the midpoint
of line segment AB be M . |AB| decreases as x3 in-
creases and it is maximized when x3 = 1. When x = 1,

|AB| = 2
√

3− 2 <
√

3. So |AB| <
√

3 and |AM | <
√
3
2 .

Since 4P1AM is a right triangle and |AP1| = 1, by
the Pythagorean theorem, |P1M | > 1

2 . Therefore, P1

always lies to the left of l1. Let the intersection point
of circle C1 and D′

0 different from A be labelled C, and
the intersection point of circle C1 and D′

2 different from
B be labelled D. P1 lies on the bisector of the line seg-
ment AB, so P1 lies on the line y = r1, therefore, C1 is
tangent to both lines y = r1 + 1 and y = r1 − 1. Since
the circle C1 is tangent to these two lines, both C and
D lie to the left of P1. See Figure 3. Since the radius of
C1 is 1, the radius of D′

0 is 2, and C lies to the left of
l1, we have that the clockwise arc from C to A on the
boundary of D′

0 and the clockwise arc from B to D on
the boundary of D′

2 are both contained in C1. There-
fore, the center of any unit disk of D that lies on or to
the right of l1 is contained in the disk C1. We now show
how to compute points P2 and P3 to pierce all the disks
that do not contain P1, namely the disks in D whose
centers are in β but outside disk C1. The coordinates
of A, B, P1, P2, and P3 are given in Appendix A.

E

F

G

H

Figure 4: Remaining area to be covered.

Consider the rectangle formed by the following 4
points: E = (x3 − 1

2 , r1 + 1), F = (x3 − 1
2 , r1 − 1), G =

(x3−2, r1 +1), H = (x3−2, r1−1). See Figure 4. Since
D′

0 is tangent to the line y = r1 + 1 at (0, r + 1), and
D′

2 is tangent to the line y = r1 − 1 at (0, r − 1), the
area β ∩ {x < x3 − 1

2} as shown in Fig 4 is contained
completely within the rectangle EFHG. If the points
P2 and P3 cover this rectangle, then we are done. Let
N be the midpoint of line segment EF and let O be the
midpoint of line segment GH. See Figure 5. We choose
P2 to be the center of the rectangle ENOG. |EN | = 1

and |NO| = 3
2 , by Pythagorean theorem, P2’s distance

to all four vertices of the rectangle is
√
13
4 . Therefore, if

a unit disk’s center falls in the rectangle ENOG, then
the disk is pierced by P2. Symmetrically pick P3 to be
the center of the rectangle NFHO. Then any unit disk
in D whose center falls to the left of l2 is pierced by one
of P2 and P3.

E

F

G

H

NO

P2

P3

Figure 5: Location of P2 and P3.

Case 2: 0 ≤ x3 < 1. Let q be the maximum of x3 and
2−
√

3. By the definition, we know that q ≥ 2−
√

3. We
also know that the rightmost point on the lens formed
by D′

0 and D′
2 is (−

√
3, 0), so the line x = x3− 2 lies to

the left of the point when x3− 2 < −
√

3. Therefore, we
can safely say that the x-coordinate of all the centers lie
in the interval [−

√
3,−
√

3+2] when x3 < 2−
√

3. Since q
is the maximum of x3 and 2−

√
3, the x-coordinate of all

the centers lie in the interval [q− 2, q] when 0 ≤ x3 < 1.
q ≥ 2 −

√
3, so q − 2 ≥ −

√
3. q < 1, so q − 2 < −1.

Therefore, we have that −
√

3 ≤ q−2 < −1. If we reflect
all the disks in D about the y-axis, then all the centers
lie in the interval [−q, |q − 2|]. Let q′ = |q − 2|, and we
compute the piercing points using x = q′ and x = q′−2
as in Case 1. Then the three computed points pierce D.

�

2.2 A Lower Bound

We now present a set of 9 pairwise intersecting unit
disks that cannot be pierced by 2 points. See Figure 6
for an illustration of these disks in a nutshell; details are
given in Theorem 2.

Theorem 2 There exists a set of 9 pairwise intersect-
ing unit disks that cannot be pierced by 2 points.

Proof. Follow Figure 7. We begin the construc-
tion by placing 3 unit disks D1, D2, D3 centered at
(0, 0), (2, 0), (1,

√
3) respectively. These points are the
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Figure 6: Nine unit disks that cannot be pierced by 2
points.
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c′′2
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c′3
c3

c′′3

p1

Figure 7: Illustration of the construction of a set of 9
pairwise intersecting unit disks that cannot be pierced
by 2 points.

vertices of an equilateral triangle with side length 2.
Notice that these disks are pairwise tangent. We de-
note the center of Di by ci. Let Ci be the circle of
radius 2 centered at ci. The intersection of C1, C2, and
C3 is a reuleaux triangle, which is illustrated in red in
Figure 7. The center of any unit disk, that intersects
Di, lies in Ci. Therefore the center of any unit disk,
that intersects the three disks D1, D2, and D3, lies in
the reuleaux triangle. We then introduce 6 more unit
disks as follows where ε = 0.01:

• D′
1 with center c′1 = (2−

√
4− ε2, ε) on C2.

• D′′
1 with center c′′1 = (ε,

√
3−

√
4− (ε− 1)2) on C3.

• D′
2 with center c′2 = (2− ε,

√
3−

√
4− (ε− 1)2) on

C3.

• D′′
2 with center c′′2 = (

√
4− ε2, ε) on C1.

• D′
3 with center c′3 = (1 + ε,

√
4− (1 + ε)2) on C1.

• D′′
3 with center c′′3 = (1− ε,

√
4− (1 + ε)2) on C2.

We show that D = {D1, D
′
1, D

′′
1 , D2, D

′
2, D

′′
2 , D3, D

′
3,

D′′
3} is a desired set. Given the above coordinates of the

centers of the disks in D, one can simply verify that the
distance between any two centers is at most 2 and thus
the disks are pairwise intersecting.

Now we show that D cannot be pierced by two points.
For the sake of contradiction, suppose that {p1, p2}
pierces all disks in D. Then one of these points pierces
at least two of the disks D1, D2 and D3. Due to sym-
metry assume that p1 pierces D1 and D2 (as in Fig-
ure 7), and thus p1 = (1, 0) since |c1c2| = 2. By our
construction, p1 does not pierces D′

1, D′′
2 , D3, D′

3 and
D′′

3 . Thus, these disks are pierced by p2, and in partic-
ular p2 ∈ D′

1 ∩ D′′
2 ∩ D3. The circumscribed circle of

the triangle c′1c
′′
2c3 has radius 1.15, which implies that

the intersection of D′
1, D′′

2 , and D3 is empty, which is a
contradiction. This finishes our proof. �

3 Piercing Pairwise Intersecting Arbitrary Disks

We now consider a set D of pairwise intersecting disks
of arbitrary sizes. Each disk Di ∈ D is described by
its center ci and its radius ri. Let D1 be the smallest
disk in D. We shrink D1 while fixing its center at c1
until D1 becomes tangent to another disk, say D2. This
can be done in linear time by computing the distance
of c1 to all ci’s and subtract the distances by the radius
of the disks. In this new setting, disks in D are still
pairwise intersecting and any set of points that pierces
the new set of disks also pierces the original set of disks.
After scaling, rotation and translation, assume that D1

has radius 1 and is centered at the origin and D2 is
centered on the positive y-axis; these transformations
can be performed in linear time.

D2

D1

t1t2

Figure 8: Configuration of Lemma 3.
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Before showing our algorithm for finding the pierc-
ing set, we first present 2 geometric lemmas that will
be proved later. See Figure 8 for the configuration out-
lined in the statement of Lemma 3 and Figure 9 for
the configuration of Lemma 4. In the lemmas, we let

P1 = (0, 0), P2 = (
√

3, 0), P3 = (
√
3
2 ,

3
2 ), P4 = (−

√
3
2 ,

3
2 ),

P5 = (−
√

3, 0) and let P = {P1, P2, P3, P4, P5}. Points

{P2, P3, P4, P5, (−
√
3
2 ,−

3
2 ), (

√
3
2 ,−

3
2 )} are the vertices of

a regular hexagon with sides of length
√

3 centered at
the origin. Specifically points P2 to P5 are the top 4
vertices of the regular hexagon; see Figure 10.

D2

D1 t1t2

D3

Figure 9: Configuration of Lemma 4.

Lemma 3 If the radius of D1 is 1 and the radius of D2

is at most 5 + 2
√

6, then P pierces D.

Lemma 4 If the radius of D1 is 1, the radius of D2 is
larger than 5 + 2

√
6 and there exists at least one disk in

D that misses all the points in P , then we can find in
constant time a different set of 5 points that pierces D.

These two lemmas are sufficient for proving the exis-
tence of 5 piercing points for arbitrary disks.

3.1 Algorithm

1. Find the smallest disk D1 ∈ D

2. Reduce the radius of D1 until D1 is tangent to a
disk in D, say D2

3. By scaling, rotation and translation of D, let the
center of D1 be the origin and the radius of D1 be
1. Let D2 be centered on the y-axis above D1

4. If r2 ≤ 5 + 2
√

6, then P pierces D

5. If r2 > 5+2
√

6 and there exist at least one disk in D
that misses all the 5 points in P , then by Lemma 4,
we find another set of 5 points that pierces D in
constant time.

Theorem 5 Given a set of pairwise intersecting arbi-
trary disks in the plane, in deterministic linear time, we
can find 5 points that pierce the set.

D2

D1

t2

t1

P1 P2

P3P4

P5

Figure 10: The first candidate set of 5 points.

Proof. Let D be a set of pairwise intersecting arbitrary
disks. If we apply algorithm as depicted in Section 3.1
on D, it will return 5 points. If r2 ≤ 5 + 2

√
6, by

Lemma 3, P pierces D. If r2 > 5+2
√

6 and there exists
at least one disk in D that is not pierced by any of the
5 points in P , then by Lemma 4 we can find 5 points
that pierce D.

The correctness of the algorithm comes from
Lemma 3 and Lemma 4, which we prove in Section 3.2
and Section 3.3, respectively. Step 1 of the algorithm
clearly takes linear time. Step 2 can also be completed
in linear time by computing the distance from c1 to all
other centers in D. Step 3 takes linear time. The points
P1 to P5 can be obtained in constant time after the
transformation. Then checking whether these 5 points
are sufficient takes linear time. If these 5 points are not
sufficient, then by Step 5, we can compute a new set of
5 points that pierce D in constant time. �

We now present a definition that will be used in Sec-
tion 3.2 and Section 3.3.

Definition 1 (Between) Let A and B be two inter-
secting disks, and let p and q be two points in the plane.
Let the center of A (resp. B) be a (resp. b). We say
that A intersects B between p and q if the following
two conditions hold:

• Line segment ab intersects line segment pq.

• Both p and q lie outside A.

3.2 Proof for Lemma 3

Proof. Recall points P1 to P5 where P1 = (0, 0), P2 =

(
√

3, 0), P3 = (
√
3
2 ,

3
2 ), P4 = (−

√
3
2 ,

3
2 ), P5 = (−

√
3, 0);

see Figure 10. We now argue that these 5 points pierce
D when r2 ≤ 5 + 2

√
6. Let t1 be the line with a positive

slope that is tangent to D1 and passing through P2.

The equation of t1 is t1 =
√
2
2 x−

√
6
2 . Let t2 be the line

with a negative slope that is tangent to D1 and passing
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a

b
c

p
q

A

B

C

Figure 11: {A,B,C} are three pairwise intersecting
disks. A intersects B between p and q. C intersects
B, but not between p and q since pq and bc do not cross.

through P5. The equation of t2 is t2 = −
√
2
2 x −

√
6
2 .

SinceD2 is centered on the positive y-axis, D2 is tangent
to both t1 and t2 when r2 = 5 + 2

√
6. Therefore, when

r2 ≤ 5 + 2
√

6, D2 falls above t1 and t2.

We first prove that any disk whose center falls in the
first or the second quadrant is pierced by P . Let Di ∈ D
be a disk with center ci and radius ri where ci falls
in the first or the second quadrant. Since D1 is the
smallest disk in D, we have that ri ≥ 1. Since points
P2, P3, P4, P5 are the vertices of a regular hexagon, there
must exist a j ∈ {2, 3, 4, 5} such that ∠PjP1ci ≤ π

6 . Let
θ = ∠PjP1ci. By the law of cosines,

|ciPj |2 = |ciP1|2 + |P1Pj |2 − 2|ciP1||P1Pj | cos(θ) (1)

|P1Pj | =
√

3 since these points all have distance
√

3 to
the origin. |ciP1| ≤ ri + 1 since Di and D1 intersect.
We have that cos(θ) ≥ cos(π6 ) since θ ≤ π

6 . Therefore,
−2|ciP1||P1Pj | cos(θ) ≤ −2|ciP1||P1Pj | cos(π6 ). By re-
placing terms in equation 1, we get

|ciPj |2 ≤ |ciP1|2 + (
√

3)2 − 2
√

3|ciP1| cos(
π

6
)

≤ |ciP1|2 + 3− 3|ciP1|
≤ (|ciP1| − 1)2 − |ciP1|+ 2

(2)

When |ciP1| ≥ 2, (|ciP1| − 1)2 − |ciP1|+ 2 ≤ r2i + 2−
|ciP1| ≤ r2i . Therefore, |ciPj | ≤ ri and Di contains Pj .
If |ciP1| ≤ 1, ci falls in D1. Then Di is pierced by P1

since ri ≥ 1.

Now let us consider the case when 1 < |ciP1| < 2. Let
f(x) be the parabola x2 − 3x + 3. The vertex of f(x)
is ( 3

2 ,
3
4 ). Therefore, when 1 < x ≤ 3

2 , 3
4 ≤ f(x) < 1.

Similarly, when 3
2 ≤ x < 2, 3

4 ≤ f(x) < 1. Combining
these results together, we have that f(x) < 1 when 1 <
x < 2. Let |ciP1| = x, then we have that |ciPj |2 ≤
f(x) < 1. Therefore, |ciPj | < 1 and Pj pierces Di since
ri ≥ 1.

We now show that any disk in D whose center falls in
the third or fourth quadrant is pierced by at least one
of {P1, P2, P5}. If all disks are pierced by at least one
of these points, then we are done. So we assume that
there exists at least one disk, say D3, that is not pierced
by any of these three points. Since D2 lies completely
above t1 and t2, D3 must intersect D2 between P1 and
P2 or between P1 and P5. D3’s radius is at least 1
since otherwise it contradicts the assumption that D1

is the smallest disk in D. Then D3 does not cross the
y = 1 line. D2 lies completely above the y = 1 line, so
D3 does not intersect D2 and we have a contradiction.
Therefore, any disk in D whose center falls in the third
or fourth quadrant is pierced by one of {P1, P2, P5}. �

3.3 Proof for Lemma 4

Proof. Recall the lines t1, t2, and the point set P from
the proof of Lemma 3. Since r2 > 5 + 2

√
6, D2 inter-

sects both t1 and t2. We assumed that there exists at
least one disk, say D3 ∈ D that is not pierced by P . D3

intersects both D1 and D2. The center c3 of D3 can-
not lie in the first or second quadrant since otherwise it
must contain one point of P as was shown Section 3.2.
Up to symmetry we may assume that the center c3 lies
in the fourth quadrant, and thus it intersects D2 to the
right side of the y-axis. This setting is depicted in Fig-
ure 12(a).

Since the interior of D1 lies completely below the line
y = 1 and the interior of D2 lies completely above this
line, any disk in D \ {D1, D2} must cross this line in
order to intersect both D1 and D2. Since D3 misses P ,
then D3 must lie completely below the polygonal line

` :

{
y = 0, x ≤

√
3

t1, x >
√

3

as shown in Figure 12(a). If D3 crosses ` when x ≤
√

3,
then either D3 contains one of {P1, P2, P5} or it does
not intersect with D2. If D3 crosses ` when x >

√
3,

then either D3 contains P2 or it does not intersect with
D1. Therefore, any disk in D whose center falls above `
must cross ` in order to intersect with D3.

We are going to construct a point set P ′ =
{P6, P7, P8, P9, P10} that pierces D. Set P6 = (0,−3).
In the rest of the proof we describe how to obtain P7,
P8, P9, and P10; the coordinates of these points are
given in Appendix B. Let C1 (resp. C2) be the circle
passing through P6 that is tangent to disk D1 and line
y = 1 in the left side (resp. right side) of the y-axis, as
in Figure 12(b). Let C3 be the circle that is centered
above y = 1 and that is tangent to the disk D1, the line
t1 and to the x-axis. The disks C1 and C3 intersect at
two points, where we pick the intersection point that is
closer to the origin as the point P7; see Figure 12(c).
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D2

t1
D1

y = 1

y = 0
D3

C1 C2

P6

ℓ

(a) Boundaries that disks in D must cross. (b) Location of P6.

C3

C2C1

P6

P7

ℓ

t1

C4

C5

P7 P8

P6

ℓ

(c) Location of P7. (d) Location of P8.

C2
C6

P9
P8P7

P6

ℓ

C7

P10

P9P8P7

P6

C3

ℓ

(e) Location of P9. (f) Location of P10.

Figure 12: Illustration of the proof for Lemma 4.

Now let C4 be a circle of radius 1 that passes though
P7 and that is tangent to the x-axis, and let C5 be a
circle of radius 1 that passes through P7 and that is
tangent to the the line y = 1. The point P8 is the
intersection point between C4 and C5 that is different
from P7. See Figure 12(d) for an illustration.

To obtain P9, let C6 be a circle of radius 1 that passes
through P8 and that is tangent to the line y = 1. The
intersection point of C2 and C6 that falls in the first
quadrant is P9, as depicted in Figure 12(e). To obtain
P10, we draw a circle C7 of radius 1 through P9 and
tangent to D1. The point P10 is the intersection point of
C3 and C7 that is closer to the origin, as in Figure 12(f).

Now that all five points in P ′ have been introduced,
we are going to show that these five points pierce all
disks D. Consider the convex quadrilateral formed by

P6, P7, P9, and P10, as in Figure 13. These four points
pierce any disk of D whose center lies outside the quadri-
lateral, because any such disk must intersect D1.

• C3 is tangent to ` and D1, and both P7 and P10

lie on C3. If a disk D4 in D intersects D1 between
P7 and P10, D4 cannot cross `. Since D3 lies com-
pletely below `, D4 does not intersect D3 and it
violates the pairwise intersecting property of D.

• Both P6 and P7 lie on C1, and C1 is tangent to the
y = 1 line. If a disk D4 intersects D1 between P6

and P7, then D4 does not intersect D2 and again
contradicts our assumption that the disks in D are
pairwise intersecting. Using a similar argument, we
can also prove that there cannot exist a disk in D
that intersects D1 between P6 and P9.
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• Any disk that intersects with D1 between P9 and
P10 must contain one of these two points. Other-
wise, its radius is smaller than 1, contradicting the
fact that D1 is the smallest disk.

P10

P9

P6

P7

P8

ℓ

Figure 13: The points P6, P7, P9, P10 form a quadrilat-
eral that contains D1.

Now we show how the disks of D centered inside the
quadrilateral are pierced by points in P ′. We divide the
quadrilateral into four triangles, as in Figure 13.

• P7 and P8 both lie on C5 and the radius of C5 is 1.
Therefore, any disk whose center lies in 4P6P7P8

must contain one of P7 or P8 in order to intersect
with D2, otherwise its radius is smaller than 1.

• Similarly, P7 and P8 both lie on C4 and the radius
of C4 is also 1. Therefore, any disk whose center
lies in 4P7P8P10 must contain one of P7 and P8 in
order to intersect with D3.

• Any disk whose center lies in 4P8P9P10 must con-
tain one of these three vertices because the diame-
ter of this triangle is at most 2.

• Any disk whose center falls in 4P6P8P9 must con-
tain one of P8 and P9 in order to intersect D2, oth-
erwise its radius is smaller than 1 since C6 has ra-
dius 1 and both P8 and P9 lie on C6.

Given D1, D2, t1, and t2, the point set P ′ can be
found in constant time. �

4 Conclusion

In this paper, we gave two simple linear time algorithms
for finding 3 piercing points and 5 piercing points for
pairwise intersecting unit disks and pairwise intersect-
ing arbitrary disks, respectively. However, it is still not
known whether we can find an algorithm for finding a
piercing point set of size 4 for any set of pairwise in-
tersecting arbitrary disks without solving an LP-type
problem. For the lower bound, the remaining open ques-
tion is whether any set of 9 pairwise intersecting disks

can be pierced by 3 points or not, as it is known that
any set of 8 pairwise intersecting disks can be pierced
by 3 points [10]. Another interesting open question is
whether we can find an efficient algorithm that decides
the optimal number of piercing points for any set of
pairwise intersecting arbitrary disks.
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A Coordinates of points in Theorem 1

Here are the coordinates of points in the proof of Theorem 1:

A =

(
x3,
√

4− x2
3 + r1 − 1

)
B =

(
x3,−

√
4− x2

3 + r1 + 1

)

P1 =

(
x3 −

√
2
√

4− x2
3 + x2

3 − 4, r1

)

P2 =

(
x3 −

5

4
, r1 +

1

2

)
P3 =

(
x3 −

5

4
, r1 −

1

2

)

B Coordinates of points in Lemma 4

For each point Pi, let xi be its x-coordinate and yi be its
y-coordinate, and for each circle Ci, let (x′

i, y
′
i) be its center

and r′i be its radius. Here are the coordinates of points Pi

and equations of circles Ci:

P6 = (0,−3)

C1 : (x + 4)2 + (y + 3)2 = 16

C2 : (x− 4)2 + (y + 3)2 = 16

C3 : (x− x′
3)2 + (y − y′

3)2 = (r′3)2

x′
3 = −

√
1 + 2r′3, y

′
3 = r′3

r′3 =
16− 4

√
6 +

√
(16− 4

√
6)2 − 16(

√
6− 2)2

2(
√

6− 2)2

P7 =

(
(−2r′3 − 6)y7 + (x′

3)2 − 9

2x′
3 + 8

,
−b7 +

√
b27 − 4a7c7

2a7

)

a7 = (−2r′3 − 6)2 + (2x′
3 + 8)2

b7 = 2(−2r′3−6)
(
(x′

3)2 − 9
)
+8(2x′

3+8)(−2r′3−6)+6(2x′
3+8)2

c7 =
(
(x′

3)2 − 9
)2

+ 8(2x′
3 + 8)

(
(x′

3)2 − 9
)

+ 9
(
2x′

3 + 8
)2

C4 :

(
x−

√
2y7 − y2

7 − x7

)2

+ (y − 1)2 = 1

C5 :

(
x−

√
1− y2

7 − x7

)2

+ y2 = 1

P8 =

(
2y8 + q1

q2
,
−b8 −

√
b28 − 4a8c8

2a8

)

q1 =

(√
1− y2

7 + x7

)2

−
(
−
√

2y7 − y2
7 − x7

)2

− 1

q2 = 2

(√
1− y2

7 + x7

)
− 2

(√
2y7 − y2

7 + x7

)

a8 = 4 + q22

b8 = 4q1 − 4q2

(√
1− y2

7 + x7

)
c8 = q21 +q22

(√
1− y2

7 + x7

)2

−2q1q2

(√
1− y2

7 + x7

)
−q22

C6 :

(
x−

√
1− y2

8 − x8

)2

+ y2 = 1

P9 =

(
−b9 +

√
b29 − 4a9c9

2a9
,
q3x9 + q4

6

)

q3 = 8− 2

(√
1− y2

8 + x8

)
q4 =

(√
1− y2

8 + x8

)2

− 10

a9 = 36 + q23

b9 = 2q3q4 + 36q3 − 288

c9 = q24 + 36q4 + 324

C7 is centered at(√
4− (y′

7)2,
−b10 +

√
b210 − 4a10c10

2a10

)

a10 = 4x2
9 + 4y2

9

b10 = −4y9(x2
9 + y2

9 + 3)

c10 =
(
x2
9 + y2

9 + 3
)2 − 16x2

9

P10 =

(
x′
7 −

√
1− (y10 − y′

7)2,
−b11 −

√
b211 − 4a11c11

2a11

)

q5 = (x′
7)2 + (y′

7)2− (x′
3)2− (y′

3)2 + (r′3)2−1− (2x′
7−2x′

3)x′
7

a11 = (2y′
3 − 2y′

7)2 + (2x′
7 − 2x′

3)2

b11 = 2q5(2y′
3 − 2y′

7)− 2y′
7(2x′

7 − 2x′
3)2

c11 = q25 +
(
(y′

7)2 − 1
) (

2x′
7 − 2x′

3

)2


