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Abstract

Let P be a set of n points in general position in the plane. Given a convex geometric
shape S, a geometric graph GS(P ) on P is defined to have an edge between two points if and
only if there exists a homothet of S having the two points on its boundary and whose interior
is empty of points of P . A matching in GS(P ) is said to be strong, if the homothets of S
representing the edges of the matching are pairwise disjoint, i.e., they do not share any point
in the plane. We consider the problem of computing a strong matching in GS(P ), where
S is a diametral disk, an equilateral triangle, or a square. We present an algorithm that
computes a strong matching in GS(P ); if S is a diametral-disk, then it computes a strong
matching of size at least dn−1

17 e, and if S is an equilateral-triangle, then it computes a strong
matching of size at least dn−1

9 e. If S can be a downward or an upward equilateral-triangle,
we compute a strong matching of size at least dn−1

4 e in GS(P ). When S is an axis-aligned
square, we compute a strong matching of size at least dn−1

4 e in GS(P ), that improves the
previous lower bound of dn5 e.

1 Introduction

Let S be a compact and convex set in the plane that contains the origin in its interior. A
homothet of S is obtained by scaling S with respect to the origin by some factor µ ≥ 0, followed
by a translation to a point b in the plane: b + µS = {b + µa : a ∈ S}. For a point set P in
the plane, we define GS(P ) as the geometric graph on P that has a straight-line edge between
two points p and q if and only if there exists a homothet of S having p and q on its boundary
and whose interior does not contain any point of P . If P is in “general position”, i.e., no four
points of P lie on the boundary of any homothet of S, then GS(P ) is plane [9]. Hereafter, we
assume that P is a set of n points in the plane that is in general position with respect to S (see
Definition 1 for a formal definition). If S is a disk # whose center is the origin, then G#(P )
is the Delaunay triangulation of P . If S is an equilateral triangle 5 whose barycenter is the
origin, then G5(P ) is the triangular-distance Delaunay graph of P , which has been introduced
by Chew [10].

A matching in a graph G is a set of edges that do not share any vertices. A maximum
matching is a matching of maximum cardinality. A perfect matching is a matching that matches
all the vertices of G. Let M be a matching in GS(P ). The matching M is referred to as a
matching of points with shape S, e.g., a matching in G#(P ) is a matching of points with disks.

∗Research supported by NSERC.
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Let SM be a set of homothets of S representing the edges of M. The matching M is called a
strong matching if there exists a set SM whose elements are pairwise disjoint, i.e., the objects in
SM do not share any point in the plane. Otherwise,M is a weak matching. See Figure 1. To be
consistent with the definition of the matching in the graph theory, we use the term “matching”
to refer to a weak matching. Given a point set P in the plane and a shape S, the (strong)
matching problem is to compute a (strong) matching of maximum cardinality in GS(P ).

(a) (b) (c)

Figure 1: Point set P and (a) a perfect weak matching in G5(P ), (b) a perfect strong matching
in G54(P ), and (c) a perfect strong matching in G2(P ).

Let # denote a closed disk whose center is the origin. Let 2 denote a closed axis-aligned
square whose center is the origin. Let 5 denote a closed downward equilateral triangle whose
barycenter is the origin and whose lowest vertex is on the negative y-axis. For two points p
and q, the closed disk that has the line segment pq as its diameter is called the diametral-disk
between p and q. Let 	 denote a diametral-disk between two points.

Let P be a set of points in the plane. G#(P ) is the graph that has an edge between two
points p, q ∈ P if there exists a homothet of # that has p and q on its boundary and does not
contain any point of P in its interior. Similarly, G2(P ) is the graph that has an edge between
two points p, q ∈ P if there exists a homothet of 2 that has p and q on its boundary and does
not contain any point of P in its interior. G	(P ) is the graph that has an edge between two
points p, q ∈ P if the diametral-disk between p and q and does not contain any point of P in
its interior. G5(P ) is the graph that has an edge between two points p, q ∈ P if there exists
a homothet of 5 that has p and q on its boundary and does not contain any point of P in
its interior. If we consider an upward triangle 4, then G4(P ) is defined similarly. The graph
G54(P ) is defined as the union of G5(P ) and G4(P ).

Definition 1. Given a point set P and a shape S ∈ {#,	,5,2}, we say that P is in “general
position” with respect to S if

S = #: no four points of P lie on the boundary of any homothet of #.

S = 	: no four points of P lie on the boundary of any 	 between any two points of P .

S = 5: the line passing through any two points of P does not make angles 0◦, 60◦, or 120◦ with
the horizontal. This implies that no four points of P are on the boundary of any homothet
of 5.

S = 2: (i) no two points in P have the same x-coordinate or the same y-coordinate, and (ii)
no four points of P lie on the boundary of any homothet of 2.

In this paper we consider the strong matching problem of points in general position in the
plane with respect to a given shape. Let P be a set of points in the plane that is in general
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Table 1: Lower bounds on the size of weak and strong matchings in GS(P ).
S weak matching reference strong matching reference

# bn2 c [11] dn−18 e [1]
	 dn−14 e [7] dn−117 e Theorem 2
5 dn−13 e [3] dn−19 e Theorem 3

5 or 4 dn−13 e [3] dn−14 e Theorem 5

2 bn2 c [1, 2]
dn5 e [1, 2]
dn−14 e Theorem 4

position with respect to S ∈ {#,	,5,2}. If S = #, then G#(P ) is the Delaunay triangulation
of P , DT (P ). If S = 2, then G2(P ) is the L∞-Delaunay graph of P . If S = 	, then G	(P )
is the Gabriel graph of P , GG(P ). If S = 5, then G5(P ) is the half-theta six graph of P ,
1
2Θ6(P ) [8], that is in turn the triangular-distance Delaunay graph of P , which was introduced
by Chew [10]. Moreover, G54(P ) is the theta six graph of P , Θ6(P ) [8].

1.1 Previous Work

Let P be a set of n points in the plane that is in general position with respect to a given shape
S ∈ {#,	,5,2}. The problem of computing a maximum (strong) matching in GS(P ) is one
of the fundamental problems in computational geometry and graph theory [1, 2, 3, 5, 7, 6, 11].

Dillencourt [11] and Ábrego et al. [1] considered the problem of matching points with disks.
Dillencourt [11] proved that G#(P ) contains a perfect matching. Ábrego et al. [1] proved that
G#(P ) has a strong matching of size at least d(n− 1)/8e. They also showed that for arbitrarily
large n, there exists a set P of n points in the plane such that G#(P ) does not contain a strong
matching of size more than 36

73n. As for diametral disks, Biniaz et al. [7] proved that G	(P )
has a matching of size at least d(n− 1)/4e, and that this bound is tight.

The problem of matching of points with equilateral triangles has been considered by Babu
et al. [3]. They proved that G5(P ) has a matching of size at least d(n − 1)/3e, and that this
bound is tight. Since G5(P ) is a subgraph of G54(P ), the lower bound of d(n − 1)/3e on the
size of a maximum matching in G5(P ) holds also for G54(P ).

The problem of strong matching of points with axis-aligned rectangles is trivial. An obvious
algorithm is to repeatedly match the two leftmost points. The problem of matching points with
axis-aligned squares was considered by Ábrego et al. [1, 2]. They proved that G2(P ) has a
perfect matching and a strong matching of size at least dn/5e. Further, they showed that there
exists a set P of n points in the plane with arbitrarily large n, such that G2(P ) does not contain
a strong matching of size more than 5

11n. Table 1 summarizes the results.
Bereg et al. [5] concentrated on matching points of P with axis-aligned rectangles and

squares, where P is not necessarily in general position. They proved that any set of n points in
the plane has a strong rectangle matching of size at least bn3 c, and that such a matching can
be computed in O(n log n) time. As for squares, they presented a Θ(n log n)-time algorithm
that decides whether a given matching has a weak square realization, and an O(n2 log n)-time
algorithm for the strong square matching realization. They also proved that it is NP-hard to
decide whether a given point set has a perfect strong square matching.

1.2 Our results

In this paper we consider the problem of computing a strong matching in GS(P ), where S ∈
{	,5,2}. In Section 2, we provide some observations and prove necessary lemmas. Given a
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point set P in general position with respect to a given shape S, in Section 3, we present an
algorithm that computes a strong matching in GS(P ). In Section 4, we prove that if S is a
diametral disk, then the algorithm of Section 3 computes a strong matching of size at least
d(n − 1)/17e in G	(P ). In Section 5, we prove that if S is an equilateral triangle, then the
algorithm of Section 3 computes a strong matching of size at least d(n − 1)/9e in G5(P ). In
Section 6, we compute a strong matching of size at least d(n − 1)/4e in G2(P ); this improves
the previous lower bound of dn/5e. In Section 7, we compute a strong matching of size at least
d(n − 1)/4e in G54(P ). A summary of the results is given in Table 1. In Section 8 we discuss
a possible way to further improve upon the result obtained for diametral-disks in Section 4.
Concluding remarks and open problems are given in Section 9.

2 Preliminaries

Let S ∈ {	,5}, and let S1 and S2 be two homothets of S. We say that S1 is smaller than
S2 if the area of S1 is smaller than the area of S2. For two points p, q ∈ P , let S(p, q) be a
smallest homothet of S having p and q on its boundary. If S is a diametral-disk or a downward
equilateral-triangle, then we denote S(p, q) by D(p, q) or t(p, q), respectively. If S is a diametral-
disk, then D(p, q) is uniquely defined by p and q. If S is an equilateral-triangle, then S has
the shrinkability property: if there exists a homothet S′ of S that contains two points p and q,
then there exists a homothet S′′ of S such that S′′ ⊆ S′, and p and q are on the boundary of
S′′. Moreover, we can shrink S′′ further, such that each side of S′′ contains either p or q. Then,
t(p, q) is uniquely defined by p and q. Thus, we have the following observation:

Observation 1. For two points p, q ∈ P ,

• D(p, q) is uniquely defined by p and q, and it has the line segment pq as a diameter.

• t(p, q) is uniquely defined by p and q, and it has one of p and q on a corner and the other
point is on the side opposite to that corner.

p

D(p, q)

q

r

D(p, r)

D(q, r)

p

t(p, q)q

r
t(p, r)

t(q, r)

Figure 2: Illustration of Observation 2.

Given a shape S ∈ {	,5}, we define an order on the homothets of S. Let S1 and S2 be two
homothets of S. We say that S1 ≺ S2 if the area of S1 is less than the area of S2. Similarly,
S1 � S2 if the area of S1 is less than or equal to the area of S2. We denote the homothet with
the larger area by max{S1, S2}. As illustrated in Figure 2, if S(p, q) contains a point r, then
both S(p, r) and S(q, r) have smaller area than S(p, q). Thus, we have the following observation:

Observation 2. If S(p, q) contains a point r in its interior, then max{S(p, r), S(q, r)} ≺
S(p, q).

Given a point set P in general position with respect to a given shape S ∈ {	,5}, let KS(P )
be a complete edge-weighted geometric graph on P . For each edge e = (p, q) in KS(P ), we define
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S(e) to be the shape S(p, q), i.e., a smallest homothet of S having p and q on its boundary. We
say that S(e) represents e, and vice versa. Furthermore, let the weight w(e) (resp. w(p, q)) of
e be equal to the area of S(e). Thus,

w(p, q) < w(r, s) if and only if S(p, q) ≺ S(r, s).

Note that GS(P ) is a subgraph of KS(P ), and has an edge (p, q) if and only if S(p, q) does not
contain any point of P \ {p, q}.

Lemma 1. Let P be a set of n points in the plane that is in general position with respect to a
given shape S ∈ {	,5}. Then, any minimum spanning tree of KS(P ) is a subgraph of GS(P ).

Proof. The proof is by contradiction. Assume there exists an edge e = (p, q) in a minimum
spanning tree T of KS(P ) such that e /∈ GS(P ). Since (p, q) is not an edge in GS(P ), S(p, q)
contains a point r ∈ P \ {p, q}. By Observation 2, max{S(p, r), S(q, r)} ≺ S(p, q). Thus,
w(p, r) < w(p, q) and w(q, r) < w(p, q). By replacing the edge (p, q) in T with either (p, r)
or (q, r), we obtain a spanning tree in KS(P ) that is shorter than T . This contradicts the
minimality of T .

Lemma 2. Let G be an edge-weighted graph with edge set E and edge-weight function w : E →
R+. For any cycle C in G, if the maximum-weight edge in C is unique, then that edge is not
in any minimum spanning tree of G.

Proof. The proof is by contradiction. Let e = (u, v) be the unique maximum-weight edge in a
cycle C in G such that e is in a minimum spanning tree T of G. Let Tu and Tv be the two trees
obtained by removing e from T . Let e′ = (x, y) be an edge in C that connects a vertex x ∈ Tu
to a vertex y ∈ Tv. By assumption, w(e′) < w(e). Thus, by replacing e with e′ in T , we obtain
a tree T ′ = Tu ∪ Tv ∪ {(x, y)} in G such that w(T ′) < w(T ). This contradicts the minimality of
T .

Recall that t(p, q) is the smallest homothet of 5 that has p and q on its boundary. Similarly,
let t′(p, q) denote the smallest upward equilateral-triangle 4 having p and q on its boundary.
Note that t′(p, q) is uniquely defined by p and q, and it has one of p and q on a corner and the
other point is on the side opposite to that corner. In addition the area of t′(p, q) is equal to the
area of t(p, q).

p

q

C1
p

C2
p

C3
p

C4
p

C5
p

C6
p

t(p, q)

l60p

l0p

l120p

Figure 3: The construction of
G5(P ).

Note that G5(P ) is the triangular-distance Delaunay
graph TD-DG(P ), that is in turn a half theta-six graph
1
2Θ6(P ) [8]. A half theta-six graph on P , and equivalently
G5(P ), can be constructed in the following way. For each
point p in P , let lp be the horizontal line through p. Define
lγp as the line obtained by rotating lp by γ degrees in counter-
clockwise direction around p. Thus, l0p = lp. Consider the
three lines l0p, l

60
p , and l120p , which partition the plane into

six disjoint cones with apex p. Let C1
p , . . . , C

6
p be the cones

in counter-clockwise order around p as shown in Figure 3.
C1
p , C

3
p , C

5
p will be referred to as odd cones, and C2

p , C
4
p , C

6
p

will be referred to as even cones. For each even cone Cip,
connect p to the “nearest” point q in Cip. The distance be-
tween p and q, is defined as the Euclidean distance between
p and the orthogonal projection of q onto the bisector of Cip. See Figure 3. In other words,
the nearest point to p in Cip is a point q in Cip that minimizes the area of t(p, q). The resulting
graph is the half theta-six graph, which is defined by even cones [8]. Moreover, the resulting
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graph is G5(P ) that is defined with respect to the homothets of 5. By considering the odd
cones, G4(P ) is obtained. By considering the odd cones and the even cones, G54(P )—that is
equal to Θ6(P )—is obtained. Note that G54(P ) is the union of G5(P ) and G4(P ).

Let X(p, q) be the regular hexagon centered at p that has q on its boundary, and its sides
are parallel to l0p, l

60
p , and l120p . Then, we have the following observation:

Observation 3. If X(p, q) contains a point r in its interior, then t(p, r) ≺ t(p, q).

3 Strong Matching in GS(P )

Given a point set P in general position with respect to a given shape S ∈ {	,5}, in this section
we present an algorithm that computes a strong matching in GS(P ). Recall that KS(P ) is the
complete edge-weighted graph on P with the weight of each edge e is equal to the area of S(e),
where S(e) is a smallest homothet of S representing e. Let T be a minimum spanning tree of
KS(P ). By Lemma 1, T is a subgraph of GS(P ). For each edge e ∈ T we denote by T (e+) the
set of all edges in T whose weight is at least w(e). Moreover, we define the influence set of e as
the set of all edges in T (e+) whose representing shapes overlap with S(e), i.e.,

Inf(e) = {e′ : e′ ∈ T (e+), S(e′) ∩ S(e) 6= ∅}.

Note that Inf(e) is not empty, as e ∈ Inf(e). Consequently, we define the influence number
of T to be the maximum size of a set among the influence sets of edges in T , i.e.,

Inf(T ) = max{|Inf(e)| : e ∈ T}.

Algorithm 1 receives P and S as input and computes a strong matching in P with respect
to S as follows. The algorithm starts by computing GS(P ), where the weight of each edge is
equal to the area of its representing shape. Then it computes a minimum spanning tree T of
GS(P ). Then it initializes a forest F by T , and a matching M by an empty set. Afterwards,
as long as F is not empty, the algorithm adds the smallest edge e in F to M, and removes the
influence set of e from F . Finally, it returns M.

Algorithm 1 StrongMatching(P, S)

1: compute GS(P )
2: T ← MST(GS(P ))
3: F ← T
4: M← ∅
5: while F 6= ∅ do
6: e← smallest edge in F
7: M←M∪ {e}
8: F ← F − Inf(e)

9: return M

Theorem 1. Given a set P of n points in the plane and a shape S ∈ {	,5}, Algorithm 1
computes a strong matching of size at least d n−1Inf(T )e in GS(P ), where T is a minimum spanning

tree of GS(P ).

Proof. Let M be the matching returned by Algorithm 1. First we show that M is a strong
matching. If M contains one edge, then trivially, M is a strong matching. Consider any two
edges e1 and e2 in M. Without loss of generality assume that e1 is considered before e2 in the
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while loop. At the time e1 is added to M, the algorithm removes the edges in Inf(e1) from F ,
i.e., all the edges whose representing shapes intersect S(e1). Since e2 remains in F after the
removal of Inf(e1), we know that e2 /∈ Inf(e1). This implies that S(e1) ∩ S(e2) = ∅, and hence
M is a strong matching.

In each iteration of the while loop we select e as the smallest edge in F , where F is a subgraph
of T . Then, all edges in F have weight at least w(e). Thus, F ⊆ T (e+); that implies that the
set of edges in F whose representing shapes intersect S(e) is a subset of Inf(e). Therefore, in
each iteration of the while loop, out of at most |Inf(e)| many edges of T , we add one edge to
M. Since |Inf(e)| ≤ Inf(T ) and T has n− 1 edges, we conclude that |M| ≥ d n−1Inf(T )e.

Remark Let T be the minimum spanning tree computed by Algorithm 1. Let e = (u, v) be
an edge in T . Recall that T (e+) contains all the edges of T whose weight is at least w(e). We
define the degree of e as deg(e) =deg(u)+deg(v)− 1, where deg(u) and deg(v) are the numbers
of edges incident to u and v in T (e+), respectively. Note that all the edges incident to u or v
in T (e+) are in the influence set of e. Thus, |Inf(e)| ≥deg(e), and consequently Inf(T ) ≥deg(e).

4 Strong Matching in G	(P )

In this section we consider the case where S is a diametral-disk 	. Recall that G	(P ) is an
edge-weighted geometric graph, where the weight of an edge (p, q) is equal to the area of D(p, q).
G	(P ) is equal to the Gabriel graph, GG(P ). We prove that G	(P ), and consequently GG(P ),
has a strong diametral-disk matching of size at least dn−117 e.

We run Algorithm 1 on G	(P ) to compute a matching M. By Theorem 1, M is a strong
matching of size at least d n−1Inf(T )e, where T is a minimum spanning tree in G	(P ). By Lemma 1,

T is a minimum spanning tree of the complete graph K	(P ). Observe that T is a Euclidean
minimum spanning tree for P as well. In order to prove the desired lower bound, we show that
Inf(T ) ≤ 17. Since Inf(T ) is the maximum size of a set among the influence sets of edges in T ,
it suffices to show that for every edge e in T , the influence set of e contains at most 17 edges.

Lemma 3. Let T be a minimum spanning tree of G	(P ), and let e be any edge in T . Then,
|Inf(e)| ≤ 17.

We will prove this lemma in the rest of this section. Recall that, for each two points p, q ∈ P ,
D(p, q) is the closed diametral-disk with diameter pq. Let D denote the set of diametral-disks
representing the edges in T . Since T is a subgraph of G	(P ), we have the following observation:

Observation 4. Each disk in D does not contain any point of P in its interior.

Lemma 4. For each pair Di and Dj of disks in D, Di does not contain the center of Dj.

Proof. Let (ai, bi) and (aj , bj) be the edges of T that correspond to Di and Dj , respectively. Let
ci and cj be the centers of Di and Dj , respectively. Let Ci and Cj be the circles representing
the boundaries of Di and Dj , respectively. Without loss of generality assume that Cj is the
bigger circle, i.e., |aibi| < |ajbj |. By contradiction, suppose that Cj contains the center ci of
Ci. Let x and y denote the intersections of Ci and Cj . Let xi (resp. xj) be the intersection
of Ci (resp. Cj) with the line through y and ci (resp. cj). Similarly, let yi (resp. yj) be the
intersection of Ci (resp. Cj) with the line through x and ci (resp. cj).

As illustrated in Figure 4, the arcs x̂ix, ŷiy, x̂jx, and ŷjy are the potential positions for the
points ai, bi, aj , and bj , respectively. First we will show that the line segment xixj passes through
x and |aiaj | ≤ |xixj |. The angles ∠xixy and ∠xjxy are right angles, thus the line segment xixj
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ai

bi

aj

bj

Ci ci Cj
cj

x

y

xi

yi

xj

yj

Figure 4: Illustration of Lemma 4: Ci and Cj intersect, and Cj contains the center of Ci.

goes through x. Since x̂ix < π (resp. x̂jx < π), for any point ai ∈ x̂ix, |aix| ≤ |xix| (resp.
aj ∈ x̂jx, |ajx| ≤ |xjx|). Therefore,

|aiaj | ≤ |aix|+ |xaj | ≤ |xix|+ |xxj | = |xixj |.

Consider triangle 4xixjy, which is partitioned by segment cixj into t1 = 4xixjci and t2 =
4cixjy. It is easy to see that |xici| in t1 is equal to |ciy| in t2, and the segment cixj is shared by
t1 and t2. Since ci is inside Cj and ŷxj = π, the angle ∠ycixj is greater than π

2 . Thus, ∠xicixj
in t1 is smaller than π

2 (and hence smaller than ∠ycixj in t2). That is, |xixj | in t1 is smaller
than |xjy| in t2. Therefore,

|aiaj | ≤ |xixj | < |xjy| = |ajbj |.
By symmetry |bibj | < |ajbj |. Therefore max{|aiaj |, |bibj |} < max{|aibi|, |ajbj |}. Therefore,

the cycle ai, aj , bj , bi, ai contradicts Lemma 2, that is, not both (ai, bi) and (aj , bj) can be edges
of T .

Let e = (u, v) be an edge in T . Without loss of generality, we suppose that D(u, v) has
radius 1 and is centered at the origin o = (0, 0) such that u = (−1, 0) and v = (1, 0). For any
point p in the plane, let ‖p‖ denote the distance of p from o. Let D(e+) be the disks in D
representing the edges of T (e+). Recall that T (e+) contains the edges of T whose weight is at
least w(e), where w(e) is equal to the area of D(u, v). Since the area of any circle is directly
related to its radius, we have the following observation:

Observation 5. The disks in D(e+) have radius at least 1.

Let C(x, r) (resp. D(x, r)) be the circle (resp. closed disk) of radius r centered at point x
in the plane. Let I(e+) = {D1, . . . , Dk} be the set of disks in D(e+) \ {D(u, v)} intersecting
D(u, v). We show that I(e+) contains at most sixteen disks, i.e., k ≤ 16.

For i ∈ {1, . . . , k}, let ci denote the center of the disk Di. In addition, let c′i be the
intersection point between C(o, 2) and the ray that starts in o and passes through ci. Let the
point pi be ci, if ‖ci‖ < 2, and c′i, otherwise. See Figure 5. Finally, let P ′ = {o, u, v, p1, . . . , pk}.

Observation 6. Let cj be the center of a disk Dj in I(e+), where ‖cj‖ ≥ 2. Then, D(pj , 1) ⊆
D(cj , ‖cj‖ − 1) ⊆ Dj. See Figure 5.

8



o
u v
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Dj
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pi

pj

cj

C(o, 2)

‖cj‖-1

ck

c′k
pk

α

1

Figure 5: Proof of Lemma 5; pi = c′i, pj = c′j , and pk = ck.

Lemma 5. The distance between any pair of points in P ′ is at least 1.

Proof. Let x and y be two points in P ′. We are going to prove that |xy| ≥ 1. We distinguish
between the following three cases.

• x, y ∈ {o, u, v}. In this case the claim is trivial.

• x ∈ {o, u, v}, y ∈ {p1, . . . , pk}. If ‖y‖ = 2, then y is on C(o, 2), and hence |xy| ≥ 1. If
‖y‖ < 2, then y is the center of a disk Di in I(e+). By Observation 4, Di does not contain
u and v, and by Lemma 4, Di does not contain o. Since Di has radius at least 1, we
conclude that |xy| ≥ 1.

• x, y ∈ {p1, . . . , pk}. Without loss of generality assume x = pi and y = pj , where 1 ≤ i <
j ≤ k. We differentiate between three subcases:

– ‖pi‖ < 2 and ‖pj‖ < 2. In this case pi and pj are the centers of Di and Dj ,
respectively. By Lemma 4 and Observation 5, we conclude that |pipj | ≥ 1.

– ‖pi‖ < 2 and ‖pj‖ = 2. By Observation 6 the disk D(pj , 1) is contained in the disk
Dj . By Lemma 4, pi is not in the interior of Dj , and consequently, it is not in the
interior of D(pj , 1). Therefore, |pipj | ≥ 1.

– ‖pi‖ = 2 and ‖pj‖ = 2. Recall that ci and cj are the centers ofDi andDj , respectively,
and that ‖ci‖ ≥ 2 and ‖cj‖ ≥ 2. Without loss of generality, assume that ‖ci‖ ≤ ‖cj‖.
For the sake of contradiction assume that |pipj | < 1. Then, for the angle α = ∠ciocj
we have sin(α/2) < 1

4 . Then, cos(α) > 1− 2 sin2(α/2) = 7
8 . By the law of cosines in

the triangle 4ciocj , we have

|cicj |2 < ‖ci‖2 + ‖cj‖2 −
14

8
‖ci‖‖cj‖. (1)

By Observation 6, the disk D(cj , ‖cj‖ − 1) is contained in Dj ; see Figure 5. By
Lemma 4, ci is not in the interior of Dj , and consequently, ci is not in the interior
of D(cj , ‖cj‖ − 1). Thus, |cicj | ≥ ‖cj‖ − 1. In combination with Inequality (1), this
gives

‖cj‖
(

14

8
‖ci‖ − 2

)
< ‖ci‖2 − 1. (2)

9



In combination with the assumption that ‖ci‖ ≤ ‖cj‖, Inequality (2) gives

3

4
‖ci‖2 − 2‖ci‖+ 1 < 0.

To satisfy this inequality, we should have ‖ci‖ < 2, contradicting the fact that ‖ci‖ ≥
2. This completes the proof.

By Lemma 5, the points in P ′ have mutual distance 1. Moreover, the points in P ′ lie in
D(o, 2). Bateman and Erdős [4] proved that it is impossible to have 20 points in a closed disk of
radius 2 such that one of the points is at the center and all of the mutual distances are at least
1. Therefore, P ′ contains at most 19 points, including o, u, and v. This implies that k ≤ 16,
and hence I(e+) contains at most sixteen edges. This completes the proof of Lemma 3.

Theorem 2. Algorithm 1 computes a strong matching of size at least dn−117 e in G	(P ).

5 Strong Matching in G5(P )

In this section we consider the case where S is a downward equilateral triangle5 whose barycen-
ter is the origin and one of its vertices is on the negative y-axis. In this section we assume that
P is in general position, i.e., for each point p ∈ P , there is no point of P \ {p} on l0p, l

60
p , and

l120p . In combination with Observation 1, this implies that for two points p, q ∈ P , no point
of P \ {p, q} is on the boundary of t(p, q) (resp. t′(p, q)). Recall that t(p, q) is the smallest
homothet of 5 having one of p and q on a corner and the other point on the side opposite to
that corner. We prove that G5(P ), and consequently 1

2Θ6(P ), has a strong triangle matching
of size at least dn−19 e.

We run Algorithm 1 on G5(P ) to compute a matching M. Recall that G5(P ) is an edge-
weighted graph where the weight of each edge (p, q) is equal to the area of t(p, q). By Theorem 1,
M is a strong matching of size at least d n−1Inf(T )e, where T is a minimum spanning tree in G5(P ).

In order to prove the desired lower bound, we show that Inf(T ) ≤ 9. Since Inf(T ) is the
maximum size of a set among the influence sets of edges in T , it suffices to show that for every
edge e in T , the influence set of e has at most nine edges.

Lemma 6. Let T be a minimum spanning tree of G5(P ), and let e be any edge in T . Then,
|Inf(e)| ≤ 9.

t

s1

s3s2

v1v2

v3

t′
s1

s3

s2

v1

v2

v3

t2

t1(s3)

t2(v2)t1

(a) (b) (c)

Figure 6: (a) Labeling the vertices and the sides of a downward triangle. (b) Labeling the
vertices and the sides of an upward triangle. (c) Two intersecting triangles.

We will prove this lemma in the rest of this section. We label the vertices and the sides
of a downward equilateral-triangle, t, and an upward equilateral-triangle, t′, as depicted in

10



Figures 6(a) and 6(b). We refer to a vertex vi and a side si of a triangle t by t(vi) and t(si),
respectively.

Recall that F is a subgraph of the minimum spanning tree T in G5(P ). In each iteration
of the while loop in Algorithm 1, let T denote the set of triangles representing the edges in F .
By Lemma 1 and the general position assumption we have

Observation 7. Let t(p, q) be a triangle in T . Then t(p, q) does not contain any point of
P \ {p, q} in its interior or on its boundary.

Consider two intersecting triangles t1(p1, q1) and t2(p2, q2) in T . By Observation 1, each side
of t1 contains either p1 or q1, and each side of t2 contains either p2 or q2. Thus, by Observation 7,
we argue that no side of t1 is completely in the interior of t2, and vice versa. Therefore, either
exactly one vertex (corner) of t1 is in the interior of t2, or exactly one vertex of t2 is in the
interior of t1. Without loss of generality assume that a corner of t2 is in the interior of t1, as
shown in Figure 6(c). In this case we say that t1 intersects t2 through the vertex t2(v2), or
symmetrically, t2 intersects t1 through the side t1(s3).

The following two lemmas have been proved by Biniaz et al. [6] (see Figure 7(a)):

Lemma 7 (Biniaz et al. [6]). Let t1 be a downward triangle that intersects a downward triangle
t2 through t2(s1), and let a horizontal line ` intersect both t1 and t2. Let p1 and q1 be two points
on t1(s2) and t1(s3), respectively, that are above t2(s1). Let p2 and q2 be two points on t2(s2)
and t2(s3), respectively, that are above `. Then, max{t(p1, p2), t(q1, q2)} ≺ max{t1, t2}.

Lemma 8 (Biniaz et al. [6]). For every four triangles t1, t2, t3, t4 ∈ T , t1 ∩ t2 ∩ t3 ∩ t4 = ∅.

As a consequence of Lemma 7, we have the following corollary (see Figure 7(a)):

Corollary 1. Let t1, t2, t3 be three triangles in T . Then t1, t2, and t3 cannot make a chain
configuration such that t2 intersects t3 through t3(s1), and t1 intersects both t2 and t3 through
t2(s1) and t3(s1).

`

t1

t2

p1

p2

q1

q2

t3

t1 t2

t′
p

qt1(s
′
3)

t1(s
′
2)

(a) (b)

Figure 7: (a) Illustration of Lemma 7. (b) Illustration of Lemma 9.

For the following lemma refer to Figure 7(b).

Lemma 9. Let t1 be a downward triangle that intersects a downward triangle t2 through t2(v2).
Let p be a point on t1(s3) and to the left of t2(s2), and let q be a point on t2(s2) and to the right
of t1(s3). Then, t(p, q) ≺ max{t1, t2}.

Proof. Let t1(s
′
3) be the part of the line segment t1(s3) that is to the left of t2(s2), and let t2(s

′
2)

be the part of the line segment t2(s2) that is to the right of t1(s3). Without loss of generality
assume that t1(s

′
3) is larger than t2(s

′
2). Let t′ be an upward triangle having t1(s

′
3) as its left
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side. Then, t′ ≺ t1, which implies that t′ ≺ max{t1, t2}. Since t′ has both p and q on its
boundary, the area of the downward triangle t(p, q) is smaller than the area of t′. Therefore,
t(p, q) � t′; which completes the proof.

Because of symmetry, the statement of Lemma 9 holds even if p is above t2(s1) and q is on
t2(s1). Consider the six cones with apex at p, as shown in Figure 3.

Lemma 10. Let T be a minimum spanning tree in G5(P ). Then, in T , every point p is
adjacent to at most one point in each cone Cip, where 1 ≤ i ≤ 6.

Proof. If i is even, then by the construction of G5(P ), which is given in Section 2, p is adjacent
to at most one point in Cip. So, assume that i is odd. For the sake of contradiction, assume that
in T , the point p is adjacent to two points q and r in the same cone Cip. Then, t(p, q) has q on
a corner, and t(p, r) has r on a corner. Without loss of generality, assume that t(p, r) ≺ t(p, q).
Then, the hexagon X(q, p) has r in its interior. Thus, t(q, r) ≺ t(p, q). Then the cycle r, p, q, r
contradicts Lemma 2. Therefore, p is adjacent to at most one point in each of the six cones.

In Algorithm 1, in each iteration of the while loop, let T (e+) be the set of triangles repre-
senting the edges of F . Recall that e is the smallest edge in F , and hence, t(e) is a smallest
triangle in T (e+). Let e = (p, q) and let I(e+) be the set of triangles in T (e+) (excluding
t(e)) that intersect t(e). We show that I(e+) contains at most eight triangles. We partition
the triangles in I(e+) into I1 ∪ I2 such that every triangle τ ∈ I1 shares only p or q with
t = t(e) = t(p, q), i.e., I1 = {τ : τ ∈ I(e+), τ ∩ t ∈ {p, q}}, and every triangle τ ∈ I2 intersects t
either through a side or through a corner that is neither p nor q.

p

C1
p

C2
p

C4
q

C6
p

t(p, q)
t(s′′2 )

t(s′2)

q

t(s1)

t(s3)

Figure 8: Illustration of the triangles
in I1.

By Observation 1, for each triangle t(p, q), one of p
and q is a corner of t(p, q) and the other one is on the
side opposite to that corner. Without loss of generality,
assume that p is on the corner t(v1), and hence, q is on
the side t(s2). See Figure 8. Note that the other cases,
where p is on t(v2) or on t(v3), are similar. Let τ ∈ I1
represents an edge e′ in T . Since the intersection of t
with any triangle in I1 is either p or q, τ has either p or
q on its boundary. In combination with Observation 7,
this implies that, either p or q is an endpoint of e′.
As illustrated in Figure 8, the other endpoint of e′ can
be either in C1

p , C2
p , C6

p , or in C4
q , because otherwise

τ∩t * {p, q}. By Lemma 10, p has at most one neighbor
in each of C1

p , C2
p , C6

p , and q has at most one neighbor in C4
q . Therefore, I1 contains at most

four triangles. We are going to show that I2 also contains at most four triangles.
The point q divides t(s2) into two parts. Let t(s′2) and t(s′′2) be the parts of t(s2) that are

below and above q, respectively; see Figure 8. The triangles in I2 intersect t either through
t(s1)∪t(s′′2) or through t(s3)∪t(s′2); the two sets are shown by red and blue polylines in Figure 8.
We show that at most two triangles in I2 intersect t through each of t(s1)∪ t(s′′2) or t(s3)∪ t(s′2).
Because of symmetry, we only prove this for t(s3)∪t(s′2). When a triangle t′ intersects t through
both t(s3) and t(s′2), we say t′ intersects t through t(v3). In the next lemma, we prove that at
most one triangle in I2 intersects t through each of t(s3), t(s

′
2). Again, because of symmetry,

we only prove this for t(s3).

Lemma 11. At most one triangle in I2 intersects t through t(s3).

Proof. The proof is by contradiction. Assume that two triangles t1(p1, q1) and t2(p2, q2) in I2
intersect t through t(s3). Without loss of generality, assume that pi is on ti(s1) and qi is on
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p

q

p1
p2

q2
q1

t1

t2

t

t1(v2)

p

q
t1

t2

p1

p2

q1

t

t2(v2)

t1(v2)

t2(v1)

t2(v3) = q2
(a) (b)

Figure 9: Illustration of Lemma 11: (a) t1(v2) ∈ t2. (b) t1(v2) /∈ t2 and t2(v2) /∈ t1.

ti(s2) for i = 1, 2. Recall that t � t1 and t � t2. If t1(v2) is in the interior of t2 (as shown in
Figure 9(a)) or t2(v2) is in the interior of t1, then we get a contradiction to Corollary 1. Thus,
we assume that t1(v2) /∈ t2 and t2(v2) /∈ t1.

Without loss of generality, assume that t1(s1) is above t2(s1); see Figure 9(b). By Lemma 9,
we have t(p, p1) ≺ max{t, t1} � t1. If q1 is in X(p, q), then by Observation 3, t(p, q1) ≺ t. Then,
the cycle p, p1, q1, p contradicts Lemma 2. Thus, assume that q1 /∈ X(p, q,). In this case t2(s3) is
to the left of t1(s3), because otherwise q1 lies in t2 which contradicts Observation 7. Since both
t1 and t2 are larger than t, t2 intersects t1 through t1(s2), and hence t2(v1) is in the interior of
t1. This implies that q2 = t2(v3). In addition, p2 is on the part of t2(s1) that lies in the interior
of X(p, q). By Observation 3 and Lemma 9, we have t(p, p2) ≺ t and t(q1, q2) ≺ max{t1, t2},
respectively. Thus, the cycle p, p1, q1, q2, p2, p contradicts Lemma 2.

Lemma 12. At most two triangles in I2 intersect t through t(v3).

Proof. For the sake of contradiction assume three triangles t1, t2, t3 ∈ I2 intersect t through
t(v3). This implies that t(v3) belongs to four triangles t, t1, t2, t3, which contradicts Lemma 8.

Lemma 13. If two triangles in I2 intersect t through t(v3), then no other triangle in I2 inter-
sects t through t(s3) or through t(s′2).

Proof. The proof is by contradiction. Assume that two triangles t1(p1, q1) and t2(p2, q2) in I2
intersect t through t(v3), and a triangle t3(p3, q3) in I2 intersects t through t(s3) or t(s′2). Let
pi be the input point that lies on ti(s1) for i = 1, 2, 3. By Lemma 12, t3 cannot intersect both
t(s3) and t(s′2). Thus, t3 intersects t either through t(s3) or through t(s′2). We prove the former
case; the proof for the latter case is similar. Assume that t3 intersects t through t(s3). By
Lemma 9, t(p, p3) ≺ t3. See Figure 10. In addition, both t1(s3) and t2(s3) are to the left of
t3(s3), because otherwise q3 lies in t1 ∪ t2 ∪ X(p, q). If q3 ∈ t1 ∪ t2, we get a contradiction to
Observation 7. If q3 ∈ X(p, q) then by Observation 3, we have t(p, q3) ≺ t, and hence, the cycle
p, p3, q3, p contradicts Lemma 2.

Without loss of generality, assume that t1(s1) is above t2(s1); see Figure 10. If t1(v3) ∈ t2
or t2(v3) ∈ t1, then we get a contradiction to Corollary 1. Thus, assume that t1(v3) /∈ t2 and
t2(v3) /∈ t1. This implies that either (i) t2(s3) is to the right of t1(s3) or (ii) t2(s2) is to the left
of t1(s2). We show that both cases lead to a contradiction.

In case (i), p2 lies in the interior of X(p, q,), and then by Observation 3, we have t(p, p2) ≺ t;
see Figure 10(a). In addition, Lemma 9 implies that t(p2, q3) ≺ max{t, t3} � t3. Thus, the cycle
p, p3, q3, p2, p contradicts Lemma 2.
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p
q

t1
t2

t3

p3

q3

p2

p
q

t2
t1

t3

p3

q3

p1p2

q2
q1

c

(a) (b)

p
q

t2
t1

t3

p3

q3

p1p2

q2

q1

τ

p
q

t2
t1

t3

p3

q3

p1p2

q2

q1

(c) (d)

Figure 10: Illustration for the proof of Lemma 13: (a) p2 is to the right of t1(s3), (b) q1 ∈ C5
t(v3)

,

(c) q1 ∈ C6
t(v3)

, and (d) q1 ∈ C1
t(v3)

.

Now consider case (ii) where t1(s1) is above t2(s1) and t2(s2) is to the left of t1(s2). If p1 is to
the right of t, then as in case (i), the cycle p, p3, q3, p1, p contradicts Lemma 2. Thus, assume that
p1 is to the left of t, as shown in Figure 10(b). By Lemma 9, we have t(q, p1) ≺ max{t, t1} � t1.
Each side of t1 contains either p1 or q1, while p1 is on the part of t1(s1) that is to the left of
t, thus, q1 is on t1(s3). Consider the six cones around t(v3); see Figure 10(b). We have three
cases: (a) q1 ∈ C5

t(v3)
, (b) q1 ∈ C6

t(v3)
or (c) q1 ∈ C1

t(v3)
.

In case (a), which is shown in Figure 10(b), by Lemma 7, we have max{t(p1, p2), t(q1, q2)} ≺
max{t1, t2}. Thus, the cycle p1, p2, q2, q1, p1 contradicts Lemma 2. In Case (b), which is shown
in Figure 10(c), we have t(q1, q3) ≺ t3, because if we map t3 to a downward triangle τ—of area
equal to the area of t3—that has τ(v2) on t(v3), then τ contains both q1 and q3. Therefore, the
cycle p, p3, q3, q1, p1, q, p contradicts Lemma 2. In Case (c), which is shown in Figure 10(d), by
Observation 3, t(p, q1) ≺ t, and then, the cycle p, q1, p1, q, p contradicts Lemma 2.

Lemma 14. If three triangles intersect t through t(s′2), t(v3) and t(s3), then at least one of the
three triangles is not in I2.

Proof. The proof is by contradiction. Assume that three triangles t1(p1, q1), t2(p2, q2), t3(p3, q3)
in I2 intersect t through t(s′2), t(v3), t(s3), respectively. Let pi be the point that lies on ti(s1) for
i = 1, 2, 3. See Figure 11(a). By Lemma 9, we have t(p, p3) ≺ t3 and t(q, p1) ≺ t1. If q3 is in the
interior of X(p, q), then by Observation 3, t(p, q3) ≺ t, and hence, the cycle p, p3, q3, p contradicts
Lemma 2. If q1 is in X(q, p), then by Observation 3, t(q, q1) ≺ t, and hence, the cycle q, q1, p1, q
contradicts Lemma 2; see Figure 11(b). Thus, assume that q3 /∈ X(p, q) and q1 /∈ X(q, p). Let

14



p
q

t1

t2

t3

p3

q3

p2

p1

q1
t2(s

′′
1) t2(s

′
1)

p
q

t1

t2

t3

p3

q3

p2

p1

q1

(a) (b)

Figure 11: Illustration for the proof of Lemma 14: (a) p2 ∈ t2(s′1), and (b) p2 ∈ t2(s′′1).

t2(s
′
1) and t2(s

′′
1) be the parts of t2(s1) that are to the right of t(s3) and to the left of t(s2),

respectively. Consider the point p2 that lies on t2(s1). If p2 ∈ t2(s′1), then p2 ∈ X(p, q) and by
Observation 3, t(p, p2) ≺ t. In addition, Lemma 9 implies that t(p2, q3) ≺ t3. Thus, the cycle
p, p3, q3, p2, p contradicts Lemma 2; see Figure 11(a). If p2 ∈ t2(s′′1), then p2 ∈ X(q, p) and by
Observation 3, t(q, p2) ≺ t. In addition, Lemma 9 implies that t(p2, q1) ≺ t2. Thus, the cycle
q, p2, q1, p1, q contradicts Lemma 2; see Figure 11(b).

Putting Lemmas 11, 12, 13, and 14 together, implies that at most two triangles in I2
intersect t through t(s3)∪t(s′2), and consequently, at most two triangles in I2 intersect t through
t(s1) ∪ t(s′′2). Thus, I2 contains at most four triangles. Recall that I1 contains at most four
triangles. Then, I(e+) contains at most eight triangles. Therefore, the influence set of e contains
at most 9 edges (including e itself). This completes the proof of Lemma 6.

Theorem 3. Algorithm 1 computes a strong matching of size at least dn−19 e in G5(P ).

p

q
1

1

1+2ε

1+ε

1+2ε

1+2ε

1+2ε

1+ε

1+ε

Figure 12: Four triangles in I1 (in red) and four triangles in I2 (in blue) intersect with t(p, q).

The bound obtained by Lemma 6 is tight. Figure 12 shows a configuration of 10 points in
general position such that the influence set of a minimal edge is 9. In Figure 12, t = t(p, q)
represents a smallest edge of weight 1; the minimum spanning tree is shown in bold-green line
segments. The weight of all edges—the area of the triangles representing these edges—is at
least 1. The red triangles are in I1 and share either p or q with t. The blue triangles are in
I2 and intersect t through t(s1) ∪ t(s′′2) or through t(s3) ∪ t(s′2); as shown in Figure 12, two of
them share only the points t(v2) and t(v3).
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6 Strong Matching in G2(P )

In this section we consider the problem of computing a strong matching in G2(P ), where 2 is
an axis-aligned square whose center is the origin. We assume that P is in general position, i.e.,
(i) no two points have the same x-coordinate or the same y-coordinate, and (ii) no four points
are on the boundary of any homothet of 2. Recall that G2(P ) is equal to the L∞-Delaunay
graph on P . Ábrego et al. [1, 2] proved that G2(P ) has a strong matching of size at least dn/5e.
Using a similar approach as Ábrego et al. [1, 2], we prove that G2(P ) has a strong matching of
size at least dn−14 e.

Theorem 4. Let P be a set of n points in general position in the plane. Let S be an axis-parallel
square that contains P . Then, it is possible to find a strong matching of size at least dn−14 e for
G2(P ) such that for each edge e in this matching, the square corresponding to e is in S.

Proof. The proof is by induction. Assume that any point set of size n′ ≤ n − 1 in an axis-
parallel square S′ has a strong matching of size at least dn′−14 e in S′. If n is 0 or 1, then
there is no matching in S, and if n ∈ {2, 3, 4, 5}, then by shrinking S, it is possible to find a
strongly matched pair. Now suppose that n ≥ 6, and n = 4m + r, where r ∈ {0, 1, 2, 3}. If

r ∈ {0, 1, 3}, then dn−14 e = d (n−1)−14 e, and by induction we are done. So we may assume that
that n = 4m + 2, for some m ≥ 1. We prove that there are dn−14 e = m + 1 disjoint squares
in S, each of them matching a pair of points in P . To this end we partition S into four equal
area squares S1, S2, S3, S4 that contain n1, n2, n3, n4 points, respectively; see Figure 13(a). Let
ni = 4mi + ri for 1 ≤ i ≤ 4, where ri ∈ {0, 1, 2, 3}. Let R be the multiset {r1, r2, r3, r4}. By
induction, in S1 ∪ S2 ∪ S3 ∪ S4, we have a strong matching of size at least

A =

⌈
n1 − 1

4

⌉
+

⌈
n2 − 1

4

⌉
+

⌈
n3 − 1

4

⌉
+

⌈
n4 − 1

4

⌉
. (3)

Claim 1: A ≥ m.

Proof. By Equation (3), we have

A =

4∑
i=1

⌈
ni − 1

4

⌉
≥

4∑
i=1

ni − 1

4
=
n

4
− 1 =

4m+ 2

4
− 1 = m− 1

2
.

Since A and m are integers, we argue that A ≥ m.

If A > m, then we are done. Assume that A = m; in fact, by the induction hypothesis we
have a strong matching of size at least m for P . In order to complete the proof, we have to get
one more strongly matched pair. Let R be the multiset {r1, r2, r3, r4}.

Claim 2: If A = m, then either (i) R = {1, 1, 1, 3} or (ii) R = {0, 0, 1, 1}.
Proof. Let α = r1 + r2 + r3 + r4, where 0 ≤ ri ≤ 3. Then n = 4(m1 +m2 +m3 +m4) +α. Since
n = 4m+2, α = 4k+2, for some 0 ≤ k ≤ 2. Thus, n = 4m+2, where m = m1+m2+m3+m4+k.

By induction, in Si, we get a matching of size at least d (4mi+ri)−1
4 e = mi + d ri−14 e. Hence,

in S1 ∪ S2 ∪ S3 ∪ S4, we get a matching of size at least

A = m1 +m2 +m3 +m4 +

⌈
r1 − 1

4

⌉
+

⌈
r2 − 1

4

⌉
+

⌈
r3 − 1

4

⌉
+

⌈
r4 − 1

4

⌉
.

Since A = m and m = m1 +m2 +m3 +m4 + k, we have

k =

⌈
r1 − 1

4

⌉
+

⌈
r2 − 1

4

⌉
+

⌈
r3 − 1

4

⌉
+

⌈
r4 − 1

4

⌉
. (4)
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Note that 0 ≤ k ≤ 2. We go through some case analysis: (i) k = 0, (ii) k = 1, (iii) k = 2. In
case (i), we have α = 4k+2 = r1+r2+r3+r4 = 2. In order to have k equal to 0 in Equation (4),
no element in R can be greater than 1; this happens only if two elements in R are equal to 0
and the other two elements are equal to 1. In case (ii), we have α = r1 + r2 + r3 + r4 = 6. In
order to have k equal to 1 in Equation (4), at most one element in R should be greater than 1;
this happens only if three elements in R are equal to 1 and the remaining element is equal to 3
(note that all elements in R are less than 4). In case (iii), we have α = r1 + r2 + r3 + r4 = 10.
In order to have k equal to 2 in Equation (4), at most two elements in R should be greater than
1; which is not possible.

In both cases of Claim 2 we show how to augment a strong matching of size m by one more
pair such that the resulting matching is strong and has size m+ 1.

We define S-x
1 as the smallest axis-parallel square contained in S1 and anchored at the top-

left corner of S1, that contains all the points in S1 except x points. If S1 contains less than
x points, then the area of S-x

1 is zero. We also define S+x
1 as the smallest axis-parallel square

that contains S1 and anchored at the top-left corner of S1, that has all the points in S1 plus
x other points of P . See Figure 13(a). Similarly we define the squares S-x

2 , S+x
2 , S-x

3 , S+x
3 , and

S-x
4 , S+x

4 that are anchored at the top-right corner of S2, the bottom-left corner of S3, and the
bottom-right corner of S4, respectively.

Case (i): R = {1, 1, 1, 3}.
In this case, we have m = m1 +m2 +m3 +m4 + 1. Without loss of generality, assume that

r1 = 3 and r2 = r3 = r4 = 1. Consider the squares S-1
1 , S-3

2 , S-3
3 , and S-3

4 . Note that the area of
some of these squares—but not all—may be equal to zero. See Figure 13(b). By induction, we
get matchings of sizes at least m1 + 1, m2, m3, and m4, in S-1

1 , S-3
2 , S-3

3 , and S-3
4 , respectively.

Now consider the largest square among S-1
1 , S-3

2 , S-3
3 , and S-3

4 . Because of symmetry, we have
only three cases: (i) S-1

1 is the largest, (ii) S-3
2 is the largest, and (iii) S-3

4 is the largest.

S2

S3 S4

S-3
1

S+2
1

S-1
1

S-3
3

S-3
4

S-3
2

S+1
2

l1

l2

l′1

l′2

S-1
1

S-3
3

S-3
4

S-3
2

S+3
1

l1

l2

(a) (b) (c)

Figure 13: (a) Split S into four equal area squares. (b) S-1
1 is larger than S-3

2 , S-3
3 , and S-3

4 . (c)
S-3

2 is larger than S-1
1 , S-3

3 , and S-3
4 .

• S-1
1 is the largest square. Consider the lines l1 and l2 that contain the bottom side and

right side of S-1
1 , respectively; see the dashed lines in Figure 13(b). Note that l1 and l2

and their mirrored versions l′1 and l′2 do not intersect any of S-3
2 , S-3

3 , and S-3
4 . If any

point of S1 is to the right of l2, then by induction, we get a matching of size at least
(m1 + 1) + (m2 + 1) +m3 +m4 in S-1

1 ∪ S+1
2 ∪ S-3

3 ∪ S-3
4 . Note that S+1

2 is separated from
S-3

3 by l2 and from S-3
4 by l′1 (since we assume that S-1

1 is the largest of the four squares).
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Otherwise, by induction, we get a matching of size at least (m1 + 1) +m2 + (m3 + 1) +m4

in S-1
1 ∪S-3

2 ∪S+1
3 ∪S-3

4 , which, again, is a disjoint union. In both cases we get a matching
of size at least m+ 1 in S.

• S-3
2 is the largest square. Consider the lines l1 and l2 that contain the bottom side and

left side of S-3
2 , respectively; the dashed lines in Figure 13(c). Note that l1 and l2 do not

intersect any of S-1
1 , S-3

3 , and S-3
4 . If any point of S2 is below l1, then by induction, we

get a matching of size at least (m1 + 1) + m2 + m3 + (m4 + 1) in S-1
1 ∪ S-3

2 ∪ S-3
3 ∪ S+1

4 .
Otherwise, by induction, we get a matching of size at least (m1 + 2) +m2 +m3 +m4 in
S+3

1 ∪S-3
2 ∪S-3

3 ∪S-3
4 ; see Figure 13(c). In all cases we get a matching of size at least m+ 1

in S.

• S-3
4 is the largest square. Consider the lines l1 and l2 that contain the top side and left side

of S-3
4 , respectively. If any point of S4 is above l1, then by induction, we get a matching of

size at least (m1+1)+(m2+1)+m3+m4 in S-1
1 ∪S+1

2 ∪S-3
3 ∪S-3

4 . Otherwise, by induction,
we get a matching of size at least (m1 + 1) +m2 + (m3 + 1) +m4 in S-1

1 ∪ S-3
2 ∪ S+1

3 ∪ S-3
4 .

In all cases we get a matching of size at least m+ 1 in S.

Case (ii): R = {0, 0, 1, 1}.
In this case, we have m = m1 + m2 + m3 + m4. Due to symmetry, only the following two

cases may arise:

• r1 = r2 = 1 and r3 = r4 = 0. Consider the squares S-3
1 , S-3

2 , S-2
3 , and S-2

4 . By induction, we
get matchings of sizes at least m1, m2, m3, and m4, in S-3

1 , S-3
2 , S-2

3 , and S-2
4 , respectively.

Now consider the largest square among S-3
1 , S-3

2 , S-2
3 , and S-2

4 . Because of symmetry, we
have only two cases: (a) S-3

1 is the largest, (b) S-2
3 is the largest. In case (a) we get one

more matched pair either in S+1
2 or in S+2

3 . In case (b) we get one more matched pair
either in S+1

1 or in S+2
4 .

• r1 = r4 = 1 and r2 = r3 = 0. Consider the squares S-3
1 , S-2

2 , S-2
3 , and S-3

4 . By induction, we
get matchings of sizes at least m1, m2, m3, and m4, in S-3

1 , S-2
2 , S-2

3 , and S-3
4 , respectively.

Now consider the largest square among S-3
1 , S-2

2 , S-2
3 , and S-3

4 . Because of symmetry, we
have only two cases: (a) S-3

1 is the largest, (b) S-2
2 is the largest. In case (a) we get one

more matched pair either in S+2
2 or in S+2

3 . In case (b) we get one more matched pair
either in S+1

1 or in S+1
4 .

7 Strong Matching in G54(P )

In this section we consider the problem of computing a strong matching in G54(P ). Recall that
G54(P ) is the union of G5(P ) and G4(P ), and is equal to the graph Θ6(P ). We assume that
P is in general position, i.e., for each point p ∈ P , there is no point of P \ {p} on l0p, l

60
p , and

l120p . A matchingM in G54(P ) is a strong matching if for each edge e inM there is a homothet
of 5 or a homothet of 4 representing e such that these homothets are pairwise disjoint. See
Figure 1(b). Using a similar approach as in Section 6, we prove the following theorem:

Theorem 5. Let P be a set of n points in general position in the plane. Let S be an upward
or a downward equilateral-triangle that contains P . Then, it is possible to find a strong match-
ing of size at least dn−14 e for G54(P ) such that for each edge e in this matching, the triangle
corresponding to e is in S.
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Proof. The proof is by induction. Assume that any point set of size n′ ≤ n−1 in a triangle S′ has
a strong matching of size at least dn′−14 e in S′. Without loss of generality, assume that S is an
upward equilateral-triangle. If n is 0 or 1, then there is no matching in S, and if n ∈ {2, 3, 4, 5},
then by shrinking S, it is possible to find a strongly matched pair; the statement of the theorem
holds. Now suppose that n ≥ 6, and n = 4m + r, where r ∈ {0, 1, 2, 3}. If r ∈ {0, 1, 3}, then

dn−14 e = d (n−1)−14 e, and by induction we are done. So we may assume that n = 4m + 2, for
some m ≥ 1. We prove that there are dn−14 e = m + 1 disjoint equilateral-triangles (upward or
downward) in S, each of them matching a pair of points in P . To this end we partition S into
four equal area equilateral triangles S1, S2, S3, S4 containing n1, n2, n3, n4 points, respectively;
see Figure 14(a). Let ni = 4mi + ri, where ri ∈ {0, 1, 2, 3}. By induction, in S1 ∪ S2 ∪ S3 ∪ S4,
we have a strong matching of size at least

A =

⌈
n1 − 1

4

⌉
+

⌈
n2 − 1

4

⌉
+

⌈
n3 − 1

4

⌉
+

⌈
n4 − 1

4

⌉
.

In the proof of Theorem 4, we have shown the following two claims:

Claim 1: A ≥ m.

Claim 2: If A = m, then either (i) R = {1, 1, 1, 3} or (ii) R = {0, 0, 1, 1}.

If A > m, then we are done. Assume that A = m; in fact, by the induction hypothesis we
have an strong matching of size at least m in S. By Claim 2 we have two cases. In both cases
of Claim 2 we show how to augment a strong matching of size m by one more pair such that
the resulting matching is strong and has size m + 1. We show how to find one more strongly
matched pair in each case of Claim 2.

We define S-x
1 as the smallest upward equilateral-triangle contained in S1 and anchored at

the top corner of S1, that contains all the points in S1 except x points. If S1 contains less than
x points, then the area of S-x

1 is zero. We also define S+x
1 as the smallest upward equilateral-

triangle that contains S1 and anchored at the top corner of S1, that has all the points in S1
plus x other points of P . Similarly we define upward triangles S-x

2 and S+x
2 that are anchored

at the left corner of S2. Moreover, we define upward triangles S-x
4 and S+x

4 that are anchored
at the right corner of S4. We define downward triangles S-x

3l , S
-x
3r , S

-x
3b that are anchored at the

top-left corner, top-right corner, and bottom corner of S3, respectively. See Figure 14(a).

Case (i): R = {1, 1, 1, 3}.
In this case, we have m = m1 +m2 +m3 +m4 + 1. Because of symmetry, we have two cases:

(i) r3 = 3, (ii) rj = 3 for some j ∈ {1, 2, 4}.

• r3 = 3.

In this case n3 = 4m3 + 3. We differentiate between two cases: the case that all the
elements of the multiset {m1,m2,m4} are equal to zero, and the case that some of them
are greater than zero.

– All elements of {m1,m2,m4} are equal zero. In this case, we have m = m3 + 1.
Consider the triangles S+1

2 and S-1
3r . See Figure 14(a). Note that S+1

2 and S-1
3r are

disjoint, S+1
2 contains two points, and S-1

3r contains 4m3 + 2 points. By induction, we
get a matched pair in S+1

2 and a matching of size at least m3 + 1 in S-1
3r . Thus, in

total, we get a matching of size at least 1 + (m3 + 1) = m+ 1 in S.
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S1

S2 S4S+1
2

S-1
3r

l1

l2
S ′2

S-3
2

(a) (b)

Figure 14: (a) Split S into four equal-area triangles. (b) S-3
2 is larger than S-3

1 and S-3
4 .

– Some elements of {m1,m2,m4} are greater than zero. Consider the triangles S-3
1 ,

S-3
2 , and S-3

4 . Note that the area of some of these triangles—but not all—may be
equal to zero. See Figure 14(b). By induction, we get matchings of sizes at least
m1, m2, and m4 in S-3

1 , S-3
2 , and S-3

4 , respectively. Without loss of generality, assume
that S-3

2 is larger than S-3
1 and S-3

4 . Consider the half-lines l1 and l2 that are parallel
to the l0 and l60 axes, and have their endpoints at the top corner and right corner
of S-3

2 , respectively. We define S′2 as the downward equilateral-triangle bounded by
l1, l2, and the right side of S-3

2 ; see the dashed triangle in Figure 14(b). Note that
l1 and l2 do not intersect S-3

1 and S-3
4 . In addition, S-3

1 , S-3
2 , S-3

4 , and S′2 are pairwise
disjoint. If any point of S1 ∪ S2 ∪ S3 is to the right of l2, then consider S+1

4 and S-1
3l .

By induction, we get a matching of size at least m1 + m2 + (m3 + 1) + (m4 + 1) in
S-3

1 ∪S-3
2 ∪S-1

3l ∪S+1
4 , and hence a matching of size at least m+ 1 in S. If any point of

S2 ∪S3 ∪S4 is above l1, then consider S+1
1 and S-1

3b. By induction, we get a matching
of size at least (m1 + 1) +m2 + (m3 + 1) +m4 in S+1

1 ∪ S-3
2 ∪ S-1

3b ∪ S-3
4 , and hence a

matching of size at least m+ 1 in S. Otherwise, S′2 contains n3 + 3 = 4(m3 + 1) + 2
points. Thus, by induction, we get a matching of size at least m1+m2+(m3+2)+m4

in S1 ∪ S-3
2 ∪ S′2 ∪ S4, and hence a matching of size at least m+ 1 in S.

• rj = 3, for some j ∈ {1, 2, 4}.
Without loss of generality, assume that rj = r2. Then, n2 = 4m2 + 3. Consider the
triangles S-3

1 , S-1
2 , and S-3

4 . See Figure 15(a). By induction, we get matchings of size at
least m1, m2 + 1, and m4 in S-3

1 , S-1
2 , and S-3

4 , respectively. Now we consider the largest
triangle among S-3

1 , S-1
2 , and S-3

4 . Because of the symmetry, we have two cases: (i) S-1
2 is

the largest, or (ii) S-3
4 is the largest.

– S-1
2 is larger than S-3

1 and S-3
4 . Define the half-lines l1, l2, and the triangle S′2 as

in the previous case. See Figure 15(a). If any point of S1 ∪ S2 ∪ S3 is to the right
of l2, then consider S+1

4 and S-1
3l . By induction, we get a matching of size at least

m1 + (m2 + 1) +m3 + (m4 + 1) in S-3
1 ∪ S-1

2 ∪ S-1
3l ∪ S+1

4 . If any point of S2 ∪ S3 ∪ S4
is above l1, then consider S+1

1 and S-1
3b. By induction, we get a matching of size at

least (m1 + 1) + (m2 + 1) +m3 +m4 in S+1
1 ∪ S-1

2 ∪ S-1
3b ∪ S-3

4 . Otherwise, S′2 contains
n3 + 1 = 4m3 + 2 points. Thus, by induction, we get a matching of size at least
m1 + (m2 + 1) + (m3 + 1) +m4 in S1 ∪ S-1

2 ∪ S′2 ∪ S4. As a result, in all cases we get
a matching of size at least m+ 1 in S.
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l1

l2

l1

l2

S ′4

(a) (b)

Figure 15: (a) S-1
2 is larger than S-3

1 and S-3
4 . (b) S-3

4 is larger than S-3
1 and S-1

2 .

– S-3
4 is larger than S-3

1 and S-1
2 . Define the half-lines l1, l2, and the triangle S′4 as in

Figure 15(b). If any point of S1 ∪ S3 ∪ S4 is above l1, then by induction, we get a
matching of size at least (m1 + 1) + (m2 + 1) + m3 + m4 in S+1

1 ∪ S-1
2 ∪ S-1

3b ∪ S+3
4 .

If at least three points of S1 ∪ S3 ∪ S4 are to the left of l2, then consider S+3
2 and

S-3
3r . Note that S+3

2 contains n2 + 3 = 4(m2 + 1) + 2 points. By induction, we get a
matching of size at least m1 + (m2 + 2) +m3 +m4 in S-3

1 ∪S+3
2 ∪S-3

3r ∪S-3
4 . Otherwise,

S′4 contains at least n3 + 1 = 4m3 + 2 points. Thus, by induction, we get a matching
of size at least m1 + (m2 + 1) + (m3 + 1) +m4 in S1 ∪ S2 ∪ S′4 ∪ S-3

4 . As a result, in
all cases we get a matching of size at least m+ 1 in S.

Case (ii): R = {0, 0, 1, 1}.
In this case, we have m = m1 + m2 + m3 + m4. Again, because of symmetry, we have two

cases: (i) r3 = 0, (ii) r3 6= 0.

• r3 = 0.

Without loss of generality assume that r2 = 0 and r1 = r4 = 1. Thus, n1 = 4m1 + 1,
n2 = 4m2, n3 = 4m3, and n4 = 4m4 + 1. If all elements of {m1,m2,m4} are equal to
zero, then we have m = m3, where m3 ≥ 1. Consider the triangles S+1

4 and S-1
3l , that are

disjoint. By induction, we get a matched pair in S+1
4 and a matching of size at least m3

in S-1
3l . Thus, in total, we get a matching of size at least 1 + m3 = m + 1 in S. Assume

some elements in {m1,m2,m4} are greater than zero. Consider the triangles S-3
1 , S-2

2 , and
S-3

4 . See Figure 16(a). By induction, we get a matching of size at least m1, m2, and m4 in
S-3

1 , S-2
2 , and S-3

4 , respectively. Now we consider the largest triangle among S-3
1 , S-2

2 , and
S-3

4 . Because of the symmetry, we have two cases: (i) S-2
2 is the largest, or (ii) S-3

4 is the
largest.

– S-2
2 is larger than S-3

1 and S-3
4 . Define l1, l2, S

′
2 as in Figure 16(a). If any point of

S1∪S2∪S3 is to the right of l2, then by induction, we get a matching of size at least
m1 +m2 +m3 + (m4 + 1) in S-3

1 ∪S-2
2 ∪S-1

3l ∪S+1
4 . If any point of S2∪S3∪S4 is above

l1, then by induction, we get a matching of size at least (m1 + 1) + m2 + m3 + m4

in S+1
1 ∪ S-2

2 ∪ S-1
3b ∪ S-3

4 . Otherwise, S′2 contains n3 + 2 = 4m3 + 2 points. Thus, by
induction, we get a matching of size at leastm1+m2+(m3+1)+m4 in S1∪S-2

2 ∪S′2∪S4.
In all cases we get a matching of size at least m+ 1 in S.
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l2

l1

l2

(a) (b)

Figure 16: (a) S-2
2 is larger than S-3

1 and S-3
4 . (b) S-3

4 is larger than S-3
1 and S-2

2 .

– S-3
4 is larger than S-3

1 and S-2
2 . Define l1, l2, S

′
4 as in Figure 16(b). If any point

of S1 ∪ S3 ∪ S4 is above l1, then by induction, we get a matching of size at least
(m1 + 1) + m2 + m3 + m4 in S+1

1 ∪ S-2
2 ∪ S-1

3b ∪ S+3
4 . If at least two points of S1 ∪

S3 ∪ S4 are to the left of l2, then by induction, we get a matching of size at least
m1 + (m2 + 1) + m3 + m4 in S-3

1 ∪ S+2
2 ∪ S-2

3r ∪ S-3
4 . Otherwise, S′4 contains at least

n3 + 2 = 4m3 + 2 points. Thus, by induction, we get a matching of size at least
m1 +m2 + (m3 + 1) +m4 in S1 ∪S2 ∪S′4 ∪S-3

4 . In all cases we get a matching of size
at least m+ 1 in S.

• r3 6= 0.

In this case r3 = 1, and without loss of generality, assume that r2 = 1; that means
r1 = r4 = 0. Thus, n1 = 4m1, n2 = 4m2 + 1, n3 = 4m3 + 1, and n4 = 4m4. If all elements
of {m1,m2,m4} are equal to zero, then we have m = m3, where m3 ≥ 1. Consider the
triangles S+1

2 and S-1
3r , that are disjoint. By induction, we get a matched pair in S+1

2

and a matching of size at least m3 in S-1
3r . Thus, in total, we get a matching of size at

least 1 +m3 = m+ 1 in S. Assume some elements in {m1,m2,m4} are greater than zero.
Consider the triangles S-2

1 , S-3
2 , and S-2

4 . See Figure 17(a). By induction, we get matchings
of size at least m1, m2, and m4 in S-2

1 , S-3
2 , and S-2

4 , respectively. Now we consider the
largest triangle among S-2

1 , S-3
2 , and S-2

4 . Because of symmetry, we have two cases: (i) S-3
2

is the largest, or (ii) S-2
4 is the largest.

– S-3
2 is larger than S-2

1 and S-2
4 . Define l1, l2, S

′
2 as in Figure 17(a). If at least two

points of S1 ∪ S2 ∪ S3 are to the right of l2, then by induction, we get a matching
of size at least m1 + m2 + m3 + (m4 + 1) in S-2

1 ∪ S-3
2 ∪ S-2

3l ∪ S+2
4 . If at least two

points of S2 ∪ S3 ∪ S4 are above l1, then by induction, we get a matching of size
at least (m1 + 1) + m2 + m3 + m4 in S+2

1 ∪ S-3
2 ∪ S-2

3b ∪ S-2
4 . Otherwise, S′2 contains

n3+1 = 4m3+2 points, and we get a matching of size at least m1+m2+(m3+1)+m4

in S1 ∪ S-3
2 ∪ S′2 ∪ S4. In all cases we get a matching of size at least m+ 1 in S.

– S-2
4 is larger than S-2

1 and S-3
2 . Define l1, l2, S

′
4 as in Figure 17(b). If at least two

points of S2∪S3∪S4 are above l1, then by induction, we get a matching of size at least
(m1+1)+m2+m3+m4 in S+2

1 ∪S-3
2 ∪S-2

3b∪S-2
4 . If any point of S1∪S3∪S4 is to the left

of l2, then by induction, we get a matching of size at least m1 + (m2 + 1) +m3 +m4

in S-2
1 ∪S+1

2 ∪S-1
3r ∪S-2

4 . Otherwise, S′4 contains at least n3 + 1 = 4m3 + 2 points, and
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l2
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Figure 17: (a) S-3
2 is larger than S-2

1 and S-2
4 . (b) S-2

4 is larger than S-2
1 and S-3

2 .

we get a matching of size at least m1 +m2 + (m3 + 1) +m4 in S1 ∪ S2 ∪ S′4 ∪ S-2
4 . In

all cases we get a matching of size at least m+ 1 in S.

8 A Conjecture on Strong Matchings in G	(P )

In this section, we discuss a possible way to further improve upon Theorem 2, which says that
Algorithm 1 computes a strong matching of size at least dn−117 e in G	(P ). We also discuss a
construction leading to the conjecture that Algorithm 1 computes a strong matching of size at
least dn−18 e in G	(P ); unfortunately we are not able to prove this.

In Section 4 we proved that I(e+) contains at most 16 edges. In order to achieve this upper
bound we used the fact that the centers of the disks in I(e+) are far apart. We did not consider
the endpoints of the edges representing these disks. By Observation 4, the disks representing
the edges in I(e+) cannot contain any of the endpoints. We applied this observation only on
u and v. Unfortunately, our attempts to apply this observation on the endpoints of edges in
I(e+) have been so far unsuccessful.

Recall that T is a Euclidean minimum spanning tree of P , and for every edge e = (u, v)
in T , deg(e) is the degree of e in T (e+), where T (e+) is the set of all edges of T with weight
at least w(e). Note that w(e) is directly related to the Euclidean distance between u and v.
Observe that the discs representing the edges adjacent to e intersect D(u, v). Thus, these edges
are in Inf(e). We call an edge e in T a minimal edge if e is not longer than any of its adjacent
edges. We observed that:

Conjecture 1. Inf(T ) is at most the maximum degree of a minimal edge.

Monma and Suri [12] showed that for every point set P there exists a Euclidean minimum
spanning tree, MST (P ), of maximum vertex degree five. Thus, the maximum edge degree in
MST (P ) is 9. We show that for every point set P , there exists a Euclidean minimum spanning
tree, MST (P ), such that the degree of each node is at most five and the degree of each minimal
edge is at most eight. This would imply the conjecture that Inf(MST (P )) ≤ 8. That is,
Algorithm 1 would return a strong matching of size at least dn−18 e.

Lemma 15. If uv and uw are two adjacent edges in MST (P ), then the triangle 4uvw has no
point of P \ {u, v, w} in its interior or on its boundary.
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Figure 18: In MST (P ), the triangle 4uvw formed by two adjacent edges uv and uw, is empty.

Proof. If the angle between uv and uw is equal to π, then there is no other point of P on uv
and uw. Assume that ∠vuw < π. Refer to Figure 18. Since MST (P ) is a subgraph of the
Gabriel graph, the circles C1 and C2 with diameters uv and uw are empty. Since ∠vuw < π,
C1 and C2 intersect each other at two points, say u and p. Connect u, v and w to p. Since
uv and uw are the diameters of C1 and C2, ∠upv = ∠wpu = π/2. This means that vw is
a straight line segment. Since C1 and C2 are empty and 4uvw ⊂ C1 ∪ C2, it follows that
4uvw ∩ P = {u, v, w}.

α2
α1

β2

β1

γ2
γ1

δ2

a b

c

d
`

δ1

Figure 19: Illustration of Lemma 16: |ab| ≤ |bc| ≤ |ad|, ∠abc ≥ π/3, ∠bad ≥ π/3, and
∠abc+ ∠bad ≤ π.

Lemma 16. Follow Figure 19. For a convex-quadrilateral Q = a, b, c, d with |ab| ≤ |bc| ≤ |ad|,
if min{∠abc,∠bad} ≥ π/3 and ∠abc+ ∠bad ≤ π, then |cd| ≤ |ad|.

Proof. Let α1 = ∠cad, α2 = ∠bac, β1 = ∠cbd, β2 = ∠abd, γ1 = ∠acd, γ2 = ∠acb, δ1 = ∠bdc,
and δ2 = ∠adb; see Figure 19. Since |ab| ≤ |bc| ≤ |ad|,

γ2 ≤ α2 and δ2 ≤ β2.

Let ` be a line passing through c that is parallel to ad. Since ∠abc+∠bad ≤ π, ` intersects the
line segment ab. This implies that α1 ≤ γ2. If β1 < δ1, then |cd| < |bc|, and hence |cd| < |ad|
and we are done. Assume that δ1 ≤ β1. In this case, δ ≤ β. Now consider the two triangles
4abc and 4acd. Since δ ≤ β and α1 ≤ γ2, α2 ≤ γ1. Then we have

α1 ≤ γ2 ≤ α2 ≤ γ1.
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Since α1 ≤ γ1, |cd| ≤ |ad|, where the equality holds only if α1 = γ2 = α2 = γ1, i.e., Q is a
diamond. This completes the proof.

u v

v1 v2

v3

v4

u1

u2

u3 u4

w1w2

w3

π/3 2π/3

x

Figure 20: Solid segments represent the edges of MST (P ). Dashed segments represent the
swapped edges. Dotted segments represent the edges that cannot exist.

Lemma 17. Every finite set of points P in the plane admits a minimum spanning tree whose
node degree is at most five and whose minimal-edge degree is at most eight.

Proof. Consider a minimum spanning tree, MST (P ), of maximum vertex degree 5. The max-
imum edge degree in MST (P ) is 9. Consider any minimal edge, uv. If the degree of uv is 8,
then MST (P ) satisfies the statement of the lemma. Assume that the degree of uv is 9. Let
u1, u2, u3, u4 and v1, v2, v3, v4 be the the neighbors of u and v in clockwise and counterclockwise
orders, respectively. See Figure 20. In MST (P ), the angles between two adjacent edges are at
least π/3. Since ∠uiuui+1 ≥ π/3 and ∠vivvi+1 ≥ π/3 for i = 1, 2, 3, either ∠vuu1 + ∠uvv1 ≤ π
or ∠vuu4+∠uvv4 ≤ π. Without loss of generality assume that ∠vuu1+∠uvv1 ≤ ∠vuu4+∠uvv4
and ∠vuu1 + ∠uvv1 ≤ π. We prove that the spanning tree obtained by swapping the edge uv
with u1v1 is also a minimum spanning tree, and it has one fewer minimal-edge of degree 9. By
repeating this procedure at each minimal-edge of degree 9, we obtain a minimum spanning tree
that satisfies the statement of the lemma. Let Q = u, v, v1, u1. By Lemma 15, v1 is outside
the triangle 4u1uv, and u1 is outside the triangle 4uvv1. In addition, u1 and v1 are on the
same side of the line subtended from uv. Thus, Q is a convex quadrilateral. Without loss
of generality assume that |vv1| ≤ |uu1|. By Lemma 16, |u1v1| ≤ |uu1|. If |u1v1| < |uu1|, we
get a contradiction to Lemma 2. Thus, assume that |u1v1| = |uu1|. As shown in the proof of
Lemma 16, this case happens only when Q is a diamond. This implies that ∠vuu1 +∠uvv1 = π,
and consequently ∠vuu4 + ∠uvv4 = π. In addition, ∠uiuui+1 = π/3 and ∠vivvi+1 = π/3 for
i = 1, 2, 3. To establish the validity of our edge-swap, observe that the nine edges incident to u
and v are all equal in length. Therefore, swapping uv with u1v1 does not change the cost of the
spanning tree and, furthermore, the resulting tree is a valid spanning tree since u1v1 is not an
edge of the original spanning tree MST (P ); otherwise u, v, v1, and u1 would form a cycle. We
have removed a minimal edge uv of degree 9, but it remains to show that the degree of u1 and
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v1 does not increase to six and new minimal edge of degree 9 is not generated. Note that u1u2
and v1v2 are not the edges of MST (P ), and hence, deg(u1) and deg(v1) are still less than six.
In order to show that no new minimal edge is generated, we differentiate between two cases:

• min{∠vv1u1,∠v1u1u} > π/3. Since ∠v1u1u > π/3 and ∠uu1u2 = π/3, u1 can be adjacent
to at most two vertices other than u and v1, and hence deg(u1) ≤ 4; similarly deg(v1) ≤ 4.
Thus, u, v, u1, and v1 are of degree at most four, and hence no new minimal edge of
degree 9 is generated.

• min{∠vv1u1,∠v1u1u} = π/3. Without loss of generality assume that ∠v1u1u = π/3. This
implies that ∠vv1u1 = 2π/3. Since ∠v1u1u = π/3 and ∠uu1u2 = π/3, u1 is adjacent to
at most three vertices other than u and v1. Let u, v1, w1, w2, w3 be the neighbors of u1 in
clockwise order. Note that v1 is not adjacent to u, v2 nor w1. But v1 can be connected
to another vertex, say x, which implies that deg(v1) ≤ 3. We prove that the spanning
tree obtained by swapping the edge u1v1 with v1w1 is also a minimum spanning tree of
node degree at most five, that has one fewer minimal edge of degree 9. The new tree is
a legal minimum spanning tree for P , because |v1w1| = |v1u1|. In addition, deg(u1) ≤ 4
and deg(v1) ≤ 4. Since w1w2 and w1x are illegal edges, deg(w1) ≤ 4. Thus, u, v, u1, v1,
and w1 are of degree at most four and no new minimal edge of degree 9 is generated. This
completes the proof that our edge swap reduces the number of minimal edges of degree
nine by one.

9 Conclusion

Given a set of n points in general position in the plane, we considered the problem of strong
matching of points with convex geometric shapes. A matching is strong if the objects repre-
senting whose edges are pairwise disjoint. In this paper we presented algorithms that compute
strong matchings of points with diametral disks, equilateral triangles, and squares. Specifically
we showed that:

• There exists a strong matching of points with diametral-disks of size at least dn−117 e.

• There exists a strong matching of points with downward equilateral-triangles of size at
least dn−19 e.

• There exists a strong matching of points with downward/upward equilateral-triangles of
size at least dn−14 e.

• There exists a strong matching of points with axis-parallel squares of size at least dn−14 e.

The existence of a downward/upward equilateral-triangle matching of size at least dn−14 e,
implies the existence of either a downward equilateral-triangle matching of size at least dn−18 e
or an upward equilateral-triangle matching of size at least dn−18 e. This does not, however,
imply a lower bound better than dn−19 e for downward equilateral-triangle matching (or any
fixed oriented equilateral-triangle).

A natural open problem is to improve any of the provided lower bounds, or extend these
results for other convex shapes. A specific open problem is to prove that Algorithm 1 computes
a strong matching of points with diametral-disks of size at least dn−18 e as discussed in Section 8.
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