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Abstract

Let P be a set of n points in general position in the plane. Given a convex geometric
shape S, a geometric graph Gg(P) on P is defined to have an edge between two points if and
only if there exists a homothet of .S having the two points on its boundary and whose interior
is empty of points of P. A matching in Gg(P) is said to be strong, if the homothets of S
representing the edges of the matching are pairwise disjoint, i.e., they do not share any point
in the plane. We consider the problem of computing a strong matching in Gg(P), where
S is a diametral disk, an equilateral triangle, or a square. We present an algorithm that
computes a strong matching in Gg(P); if S is a diametral-disk, then it computes a strong

matching of size at least f”l—;ll, and if S is an equilateral-triangle, then it computes a strong
1

matching of size at least ["g=]. If S can be a downward or an upward equilateral-triangle,

we compute a strong matching of size at least [271] in Gg(P). When S is an axis-aligned

square, we compute a strong matching of size at least [271] in Gg(P), that improves the

1
previous lower bound of [£].

1 Introduction

Let S be a compact and convex set in the plane that contains the origin in its interior. A
homothet of S is obtained by scaling S with respect to the origin by some factor u > 0, followed
by a translation to a point b in the plane: b+ uS = {b+ pa : a € S}. For a point set P in
the plane, we define Gg(P) as the geometric graph on P that has a straight-line edge between
two points p and ¢ if and only if there exists a homothet of S having p and ¢ on its boundary
and whose interior does not contain any point of P. If P is in “general position”, i.e., no four
points of P lie on the boundary of any homothet of S, then Gg(P) is plane [9]. Hereafter, we
assume that P is a set of n points in the plane that is in general position with respect to S (see
Definition 1 for a formal definition). If S is a disk O whose center is the origin, then G (P)
is the Delaunay triangulation of P. If S is an equilateral triangle 57 whose barycenter is the
origin, then G, (P) is the triangular-distance Delaunay graph of P, which has been introduced
by Chew [10].

A matching in a graph G is a set of edges that do not share any vertices. A mazimum
matching is a matching of maximum cardinality. A perfect matching is a matching that matches
all the vertices of G. Let M be a matching in Gg(P). The matching M is referred to as a
matching of points with shape S, e.g., a matching in Go(P) is a matching of points with disks.
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Let Spq be a set of homothets of S representing the edges of M. The matching M is called a
strong matching if there exists a set Sy whose elements are pairwise disjoint, i.e., the objects in
S do not share any point in the plane. Otherwise, M is a weak matching. See Figure 1. To be
consistent with the definition of the matching in the graph theory, we use the term “matching”
to refer to a weak matching. Given a point set P in the plane and a shape S, the (strong)
matching problem is to compute a (strong) matching of maximum cardinality in Gg(P).
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Figure 1: Point set P and (a) a perfect weak matching in G (P), (b) a perfect strong matching
in Gg(P), and (c) a perfect strong matching in G (P).

Let O denote a closed disk whose center is the origin. Let O denote a closed axis-aligned
square whose center is the origin. Let 7 denote a closed downward equilateral triangle whose
barycenter is the origin and whose lowest vertex is on the negative y-axis. For two points p
and ¢, the closed disk that has the line segment pq as its diameter is called the diametral-disk
between p and q. Let © denote a diametral-disk between two points.

Let P be a set of points in the plane. G(P) is the graph that has an edge between two
points p, ¢ € P if there exists a homothet of O that has p and ¢ on its boundary and does not
contain any point of P in its interior. Similarly, G5(P) is the graph that has an edge between
two points p, q € P if there exists a homothet of O that has p and ¢ on its boundary and does
not contain any point of P in its interior. Gg(P) is the graph that has an edge between two
points p,q € P if the diametral-disk between p and ¢ and does not contain any point of P in
its interior. G/(P) is the graph that has an edge between two points p,q € P if there exists
a homothet of 57 that has p and ¢ on its boundary and does not contain any point of P in
its interior. If we consider an upward triangle A\, then G (P) is defined similarly. The graph
Gy (P) is defined as the union of G (P) and G (P).

Definition 1. Given a point set P and a shape S € {O,©,</,0}, we say that P is in “general
position” with respect to S if

S = Ot no four points of P lie on the boundary of any homothet of O.
S = 6: no four points of P lie on the boundary of any & between any two points of P.

S = <y: the line passing through any two points of P does not make angles 0°, 60°, or 120° with
the horizontal. This implies that no four points of P are on the boundary of any homothet

of /-

S =0: (i) no two points in P have the same x-coordinate or the same y-coordinate, and (ii)
no four points of P lie on the boundary of any homothet of O.

In this paper we consider the strong matching problem of points in general position in the
plane with respect to a given shape. Let P be a set of points in the plane that is in general



Table 1: Lower bounds on the size of weak and strong matchings in Gg(P).

S ‘ weak matching ‘ reference H strong matching ‘ reference ‘
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position with respect to S € {0, 6,v,0}. If S = O, then Go(P) is the Delaunay triangulation
of P, DT(P). If S = O, then Gg(P) is the Lo-Delaunay graph of P. If S = &, then Gg(P)
is the Gabriel graph of P, GG(P). If S = v/, then G (P) is the half-theta six graph of P,
%@6 (P) [8], that is in turn the triangular-distance Delaunay graph of P, which was introduced
by Chew [10]. Moreover, G (P) is the theta six graph of P, ©¢(P) [8].

1.1 Previous Work

Let P be a set of n points in the plane that is in general position with respect to a given shape
S € {O0,6,v,0}. The problem of computing a maximum (strong) matching in Gg(P) is one
of the fundamental problems in computational geometry and graph theory [1, 2, 3, 5, 7, 6, 11].

Dillencourt [11] and Abrego et al. [1] considered the problem of matching points with disks.
Dillencourt [11] proved that G (P) contains a perfect matching. Abrego et al. [1] proved that
Go(P) has a strong matching of size at least [(n —1)/8]. They also showed that for arbitrarily
large n, there exists a set P of n points in the plane such that Go(P) does not contain a strong
matching of size more than 25n. As for diametral disks, Biniaz et al. [7] proved that Ge(P)
has a matching of size at least [(n — 1)/4], and that this bound is tight.

The problem of matching of points with equilateral triangles has been considered by Babu
et al. [3]. They proved that G, (P) has a matching of size at least [(n — 1)/3], and that this
bound is tight. Since G, (P) is a subgraph of Gg(P), the lower bound of [(n —1)/3] on the
size of a maximum matching in G, (P) holds also for G (P).

The problem of strong matching of points with axis-aligned rectangles is trivial. An obvious
algorithm is to repeatedly match the two leftmost points. The problem of matching points with
axis-aligned squares was considered by Abrego et al. [1, 2]. They proved that Gg(P) has a
perfect matching and a strong matching of size at least [n/5]. Further, they showed that there
exists a set P of n points in the plane with arbitrarily large n, such that Gg(P) does not contain
a strong matching of size more than %n Table 1 summarizes the results.

Bereg et al. [5] concentrated on matching points of P with axis-aligned rectangles and
squares, where P is not necessarily in general position. They proved that any set of n points in
the plane has a strong rectangle matching of size at least |% |, and that such a matching can
be computed in O(nlogn) time. As for squares, they presented a ©(nlogn)-time algorithm
that decides whether a given matching has a weak square realization, and an O(n?logn)-time
algorithm for the strong square matching realization. They also proved that it is NP-hard to
decide whether a given point set has a perfect strong square matching.

1.2 Our results

In this paper we consider the problem of computing a strong matching in Gg(P), where S €
{6,v,0}. In Section 2, we provide some observations and prove necessary lemmas. Given a



point set P in general position with respect to a given shape S, in Section 3, we present an
algorithm that computes a strong matching in Gg(P). In Section 4, we prove that if S is a
diametral disk, then the algorithm of Section 3 computes a strong matching of size at least
[(n —1)/17] in Gg(P). In Section 5, we prove that if S is an equilateral triangle, then the
algorithm of Section 3 computes a strong matching of size at least [(n —1)/9] in Gy (P). In
Section 6, we compute a strong matching of size at least [(n —1)/4] in Gg(P); this improves
the previous lower bound of [n/5]. In Section 7, we compute a strong matching of size at least
[(n —1)/4] in Gx(P). A summary of the results is given in Table 1. In Section 8 we discuss
a possible way to further improve upon the result obtained for diametral-disks in Section 4.
Concluding remarks and open problems are given in Section 9.

2 Preliminaries

Let S € {6,v}, and let S; and Sy be two homothets of S. We say that Sy is smaller than
Sy if the area of S; is smaller than the area of Sy. For two points p,q € P, let S(p,q) be a
smallest homothet of S having p and ¢ on its boundary. If S is a diametral-disk or a downward
equilateral-triangle, then we denote S(p, ¢) by D(p, q) or t(p, q), respectively. If S is a diametral-
disk, then D(p,q) is uniquely defined by p and ¢. If S is an equilateral-triangle, then S has
the shrinkability property: if there exists a homothet S’ of S that contains two points p and g,
then there exists a homothet S” of S such that S” C S/, and p and ¢ are on the boundary of
S”. Moreover, we can shrink S” further, such that each side of S” contains either p or q. Then,
t(p, q) is uniquely defined by p and ¢. Thus, we have the following observation:

Observation 1. For two points p,q € P,
e D(p,q) is uniquely defined by p and q, and it has the line segment pq as a diameter.

e t(p,q) is uniquely defined by p and q, and it has one of p and q on a corner and the other
point is on the side opposite to that corner.

P q tp.q)
7l X,
p q

p

Figure 2: Illustration of Observation 2.

Given a shape S € {©, v}, we define an order on the homothets of S. Let S; and Sa be two
homothets of S. We say that S; < Sy if the area of S; is less than the area of Ss. Similarly,
S1 = 59 if the area of Sy is less than or equal to the area of So. We denote the homothet with
the larger area by max{Si, Sa}. As illustrated in Figure 2, if S(p,q) contains a point r, then
both S(p,r) and S(q,r) have smaller area than S(p, q). Thus, we have the following observation:

Observation 2. If S(p,q) contains a point r in its interior, then max{S(p,r),S(q,r)} <
S(p,q)-

Given a point set P in general position with respect to a given shape S € {©, v/}, let Kg(P)
be a complete edge-weighted geometric graph on P. For each edge e = (p, q) in Kg(P), we define



S(e) to be the shape S(p, q), i.e., a smallest homothet of S having p and ¢ on its boundary. We
say that S(e) represents e, and vice versa. Furthermore, let the weight w(e) (resp. w(p,q)) of
e be equal to the area of S(e). Thus,

w(p,q) < w(r,s) if and only if S(p,q) < S(r,s).

Note that Gg(P) is a subgraph of Kg(P), and has an edge (p, ¢) if and only if S(p, ¢) does not
contain any point of P\ {p, ¢}.

Lemma 1. Let P be a set of n points in the plane that is in general position with respect to a
given shape S € {©,57}. Then, any minimum spanning tree of Kg(P) is a subgraph of Gs(P).

Proof. The proof is by contradiction. Assume there exists an edge e = (p,¢) in a minimum
spanning tree T of Kg(P) such that e ¢ Gg(P). Since (p,q) is not an edge in Gg(P), S(p,q)
contains a point r € P\ {p,q}. By Observation 2, max{S(p,r),S(q,r)} < S(p,q). Thus,
w(p,r) < w(p,q) and w(q,r) < w(p,q). By replacing the edge (p,q) in T with either (p,r)
or (q,r), we obtain a spanning tree in Kg(P) that is shorter than 7. This contradicts the
minimality of T O

Lemma 2. Let G be an edge-weighted graph with edge set E and edge-weight function w : E —
R*. For any cycle C in G, if the maximum-weight edge in C is unique, then that edge is not
in any minimum spanning tree of G.

Proof. The proof is by contradiction. Let e = (u,v) be the unique maximum-weight edge in a
cycle C' in G such that e is in a minimum spanning tree 1" of G. Let T, and T be the two trees
obtained by removing e from T'. Let ¢’ = (x,y) be an edge in C' that connects a vertex z € T,
to a vertex y € T;,. By assumption, w(e’) < w(e). Thus, by replacing e with €’ in T, we obtain
atree 7' =T,UT,U{(x,y)} in G such that w(T") < w(T'). This contradicts the minimality of
T. O

Recall that ¢(p, ¢) is the smallest homothet of 7 that has p and ¢ on its boundary. Similarly,
let ¢'(p,q) denote the smallest upward equilateral-triangle A having p and ¢ on its boundary.
Note that #(p, q) is uniquely defined by p and ¢, and it has one of p and ¢ on a corner and the
other point is on the side opposite to that corner. In addition the area of ¢'(p, ¢) is equal to the
area of t(p, q).

Note that Gy (P) is the triangular-distance Delaunay
graph TD-DG(P), that is in turn a half theta-six graph
%QG(P) [8]. A half theta-six graph on P, and equivalently
G /(P), can be constructed in the following way. For each
point p in P, let [, be the horizontal line through p. Define
[y as the line obtained by rotating I, by v degrees in counter-
clockwise direction around p. Thus, lg = l,. Consider the
three lines lg, lgo, and Z;ZO, which partition the plane into
six disjoint cones with apex p. Let C’;, ceey C’g be the cones
in counter-clockwise order around p as shown in Figure 3.
C;, Cg, CS will be referred to as odd cones, and C’g, C;f, C’S
will be referred to as even cones. For each even cone C}, Figure 3: The construction of
connect p to the “nearest” point ¢ in Cj,. The distance be- Go(P).
tween p and ¢, is defined as the Euclidean distance between
p and the orthogonal projection of ¢ onto the bisector of C’Z. See Figure 3. In other words,
the nearest point to p in C), is a point ¢ in C}, that minimizes the area of ¢(p, ¢). The resulting
graph is the half theta-six graph, which is defined by even cones [8]. Moreover, the resulting




graph is G (P) that is defined with respect to the homothets of 7. By considering the odd
cones, G A (P) is obtained. By considering the odd cones and the even cones, Gy (FP)—that is
equal to ©g(P)—is obtained. Note that G (P) is the union of G (P) and GA(P).

Let X (p,q) be the regular hexagon centered at p that has ¢ on its boundary, and its sides

are parallel to lg, lgo, and ZIIJQO. Then, we have the following observation:

Observation 3. If X(p,q) contains a point r in its interior, then t(p,r) < t(p,q).

3 Strong Matching in Gg(P)

Given a point set P in general position with respect to a given shape S € {©, T/}, in this section
we present an algorithm that computes a strong matching in Gg(P). Recall that Kg(P) is the
complete edge-weighted graph on P with the weight of each edge e is equal to the area of S(e),
where S(e) is a smallest homothet of S representing e. Let T be a minimum spanning tree of
Kg(P). By Lemma 1, T is a subgraph of Gg(P). For each edge e € T' we denote by T'(e™) the
set of all edges in T" whose weight is at least w(e). Moreover, we define the influence set of e as
the set of all edges in T'(e*) whose representing shapes overlap with S(e), i.e.,

Inf(e) = {e’: ¢ € T(e™),S(e) N S(e) # 0}.

Note that Inf(e) is not empty, as e € Inf(e). Consequently, we define the influence number
of T' to be the maximum size of a set among the influence sets of edges in T, i.e.,

Inf(7") = max{|Inf(e)|: e € T'}.

Algorithm 1 receives P and S as input and computes a strong matching in P with respect
to S as follows. The algorithm starts by computing Gg(P), where the weight of each edge is
equal to the area of its representing shape. Then it computes a minimum spanning tree T of
Gg(P). Then it initializes a forest F' by T, and a matching M by an empty set. Afterwards,
as long as F' is not empty, the algorithm adds the smallest edge e in F' to M, and removes the
influence set of e from F'. Finally, it returns M.

Algorithm 1 StrongMatching(P,S)
compute Gg(P)
T + MST(Gs(P))
F<T
M0
while F # () do
e < smallest edge in F
M — MU {e}
F + F —Inf(e)

return M

Theorem 1. Given a set P of n points in the plane and a shape S € {©,v/}, Algorithm 1
computes a strong matching of size at least (%} in Gg(P), where T is a minimum spanning

tree of Gg(P).

Proof. Let M be the matching returned by Algorithm 1. First we show that M is a strong
matching. If M contains one edge, then trivially, M is a strong matching. Consider any two
edges e; and ey in M. Without loss of generality assume that e; is considered before e in the



while loop. At the time e; is added to M, the algorithm removes the edges in Inf(e;) from F,
i.e., all the edges whose representing shapes intersect S(e1). Since ey remains in F' after the
removal of Inf(e;), we know that ey ¢ Inf(ep). This implies that S(e;) N S(ez) = 0, and hence
M is a strong matching.

In each iteration of the while loop we select e as the smallest edge in F', where F'is a subgraph
of T. Then, all edges in F have weight at least w(e). Thus, F' C T'(e™); that implies that the
set of edges in F' whose representing shapes intersect S(e) is a subset of Inf(e). Therefore, in
each iteration of the while loop, out of at most |Inf(e)| many edges of T', we add one edge to

M. Since |Inf(e)| < Inf(T") and T has n — 1 edges, we conclude that |M| > (%} O

Remark Let T be the minimum spanning tree computed by Algorithm 1. Let e = (u,v) be
an edge in T. Recall that T'(e™) contains all the edges of T' whose weight is at least w(e). We
define the degree of e as deg(e) =deg(u)+deg(v) — 1, where deg(u) and deg(v) are the numbers
of edges incident to v and v in T'(e™), respectively. Note that all the edges incident to u or v
in T'(e*) are in the influence set of e. Thus, |Inf(e)| >deg(e), and consequently Inf(T) >deg(e).

4 Strong Matching in Go(P)

In this section we consider the case where S is a diametral-disk &. Recall that G5 (P) is an
edge-weighted geometric graph, where the weight of an edge (p, q) is equal to the area of D(p, q).
Go(P) is equal to the Gabriel graph, GG(P). We prove that G5(P), and consequently GG(P),
has a strong diametral-disk matching of size at least {"1—771 .

We run Algorithm 1 on Gg(P) to compute a matching M. By Theorem 1, M is a strong
matching of size at least (%L where T is a minimum spanning tree in Go(P). By Lemma 1,
T is a minimum spanning tree of the complete graph Kg(P). Observe that T is a Euclidean
minimum spanning tree for P as well. In order to prove the desired lower bound, we show that
Inf(7T") < 17. Since Inf(T') is the maximum size of a set among the influence sets of edges in T,

it suffices to show that for every edge e in T, the influence set of e contains at most 17 edges.

Lemma 3. Let T be a minimum spanning tree of Go(P), and let e be any edge in T. Then,
[Inf(e)| < 17.

We will prove this lemma in the rest of this section. Recall that, for each two points p,q € P,
D(p, q) is the closed diametral-disk with diameter pg. Let D denote the set of diametral-disks
representing the edges in T'. Since T is a subgraph of Gg(P), we have the following observation:

Observation 4. Fach disk in D does not contain any point of P in its interior.
Lemma 4. For each pair D; and D; of disks in D, D; does not contain the center of D;.

Proof. Let (a;,b;) and (a;,bj) be the edges of T' that correspond to D; and Dj, respectively. Let
¢; and c¢; be the centers of D; and Dj, respectively. Let C; and C; be the circles representing
the boundaries of D; and Dj, respectively. Without loss of generality assume that Cj is the
bigger circle, i.e., |a;b;| < |ajb;j|. By contradiction, suppose that C; contains the center ¢; of
C;. Let x and y denote the intersections of C; and Cj. Let x; (resp. x;) be the intersection
of Cj (resp. C;) with the line through y and ¢; (resp. ¢;). Similarly, let y; (resp. y;) be the
intersection of C; (resp. C;) with the line through z and ¢; (resp. ¢;j).

As illustrated in Figure 4, the arcs z;7, y;y, ;Z, and y;y are the potential positions for the
points a;, b;, a;, and b;, respectively. First we will show that the line segment x;x; passes through
x and |a;a;| < |z;x;]. The angles Zx;xy and Zxjxy are right angles, thus the line segment x;z;



Figure 4: Illustration of Lemma 4: C; and C; intersect, and C} contains the center of C;.

goes through z. Since z;x < 7 (resp. z;z < ), for any point a; € 7;7, |a;z| < |z;x| (resp.
aj € 7;, lajx| < |zjz|). Therefore,

laiaj| < lagz| + |vaj| < |@ix| + |vws] = |z,

Consider triangle Az;z;y, which is partitioned by segment c;x; into ¢t; = Ax;xjc; and tp =
Acizjy. It is easy to see that |z;c;| in t1 is equal to |c;y| in to, and the segment ¢;x; is shared by
t1 and 3. Since ¢; is inside C; and yz; = m, the angle Zyc;z; is greater than 5. Thus, Zzicix;
in ¢; is smaller than 7 (and hence smaller than Zyc;r; in t2). That is, |z;x;| in ¢; is smaller

than |z;y| in t2. Therefore,

laia;| < |ziw;| < |zjy] = |ajbjl.

By symmetry |b;b;| < |a;b;|. Therefore max{|a;a;|, |b;ibj|} < max{|a;b;|,|a;bj|}. Therefore,
the cycle a;, aj,b;, b;, a; contradicts Lemma 2, that is, not both (a;,b;) and (a;, b;) can be edges
of T. O

Let e = (u,v) be an edge in 7. Without loss of generality, we suppose that D(u,v) has
radius 1 and is centered at the origin o = (0,0) such that v = (—1,0) and v = (1,0). For any
point p in the plane, let ||p|| denote the distance of p from o. Let D(e™) be the disks in D
representing the edges of T'(et). Recall that T'(e*) contains the edges of T whose weight is at
least w(e), where w(e) is equal to the area of D(u,v). Since the area of any circle is directly
related to its radius, we have the following observation:

Observation 5. The disks in D(e™) have radius at least 1.

Let C(x,r) (resp. D(z,r)) be the circle (resp. closed disk) of radius r centered at point x
in the plane. Let Z(e™) = {D,..., Dg} be the set of disks in D(e*) \ {D(u,v)} intersecting
D(u,v). We show that Z(e™) contains at most sixteen disks, i.e., k < 16.

For ¢ € {1,...,k}, let ¢; denote the center of the disk D;. In addition, let ¢, be the
intersection point between C'(0,2) and the ray that starts in o and passes through ¢;. Let the
point p; be ¢;, if ||¢;|| < 2, and ¢}, otherwise. See Figure 5. Finally, let P’ = {o,u,v,p1,...,pk}-

Observation 6. Let ¢; be the center of a disk D;j in Z(e™), where ||cj|| > 2. Then, D(p;,1) C
D(cj, |lcj|| = 1) € Dj. See Figure 5.



Figure 5: Proof of Lemma 5; p; = ¢}, pj = ¢}, and py = ¢

Lemma 5. The distance between any pair of points in P’ is at least 1.

Proof. Let x and y be two points in P’. We are going to prove that |zy| > 1. We distinguish
between the following three cases.

e z,y € {o,u,v}. In this case the claim is trivial.

o z € {o,u,v},y € {p1,...,pk}. If |ly|| = 2, then y is on C(0,2), and hence |zy| > 1. If
ly|l < 2, then y is the center of a disk D; in Z(e™). By Observation 4, D; does not contain
u and v, and by Lemma 4, D; does not contain o. Since D; has radius at least 1, we
conclude that |zy| > 1.

e 2,y € {p1,...,pr}. Without loss of generality assume = = p; and y = p;, where 1 < i <
j < k. We differentiate between three subcases:

— |lpsll < 2 and ||pj|| < 2. In this case p; and p; are the centers of D; and Dj,
respectively. By Lemma 4 and Observation 5, we conclude that |p;p;| > 1.

— ||pil] < 2 and ||p;|| = 2. By Observation 6 the disk D(p;, 1) is contained in the disk
D;. By Lemma 4, p; is not in the interior of D;, and consequently, it is not in the
interior of D(pj;,1). Therefore, |p;p;| > 1.

— |lpi|| = 2 and ||p;|| = 2. Recall that ¢; and ¢; are the centers of D; and Dj, respectively,
and that ||¢;|| > 2 and ||¢;|| > 2. Without loss of generality, assume that ||c;|| < ||¢;|.
For the sake of contradiction assume that |p;p;| < 1. Then, for the angle o = Zc;oc;
we have sin(a/2) < 1. Then, cos(a) > 1 — 2sin?(a/2) = %. By the law of cosines in
the triangle Ac;oc;, we have

14
leic* < llesll® + lles I = - llealllles (1)

By Observation 6, the disk D(cj, ||c;|| — 1) is contained in Dj; see Figure 5. By
Lemma 4, ¢; is not in the interior of D;, and consequently, ¢; is not in the interior
of D(cj, |lcj|| —1). Thus, |cicj| > |l¢j|| — 1. In combination with Inequality (1), this
gives

14
lle;l <8||CiH - 2) < lei))® = 1. (2)

9



In combination with the assumption that ||¢;|| < ||¢;||, Inequality (2) gives
3
Z||01H2 —2|lei|| +1 <0.

To satisfy this inequality, we should have ||¢;|| < 2, contradicting the fact that ||¢;|| >
2. This completes the proof.

O]

By Lemma 5, the points in P’ have mutual distance 1. Moreover, the points in P’ lie in
D(0,2). Bateman and Erdés [4] proved that it is impossible to have 20 points in a closed disk of
radius 2 such that one of the points is at the center and all of the mutual distances are at least
1. Therefore, P’ contains at most 19 points, including o, u, and v. This implies that k < 16,
and hence Z(e™) contains at most sixteen edges. This completes the proof of Lemma 3.

Theorem 2. Algorithm 1 computes a strong matching of size at least ("1—_711 in Gg(P).

5 Strong Matching in G, (P)

In this section we consider the case where S is a downward equilateral triangle 57 whose barycen-
ter is the origin and one of its vertices is on the negative y-axis. In this section we assume that
P is in general position, i.e., for each point p € P, there is no point of P\ {p} on lg, lgo, and
1120 In combination with Observation 1, this implies that for two points p,q € P, no point
of P\ {p,q} is on the boundary of t(p,q) (resp. ¢(p,q)). Recall that ¢(p,q) is the smallest
homothet of sy having one of p and ¢ on a corner and the other point on the side opposite to
that corner. We prove that G (P), and consequently 106(P), has a strong triangle matching
of size at least [251].

We run Algorithm 1 on G',(P) to compute a matching M. Recall that G (P) is an edge-
weighted graph where the weight of each edge (p, ) is equal to the area of t(p, q¢). By Theorem 1,
M is a strong matching of size at least (%], where 7' is a minimum spanning tree in G, (P).
In order to prove the desired lower bound, we show that Inf(7") < 9. Since Inf(T) is the
maximum size of a set among the influence sets of edges in T, it suffices to show that for every
edge e in T, the influence set of e has at most nine edges.

Lemma 6. Let T' be a minimum spanning tree of G (P), and let e be any edge in T. Then,
[Inf(e)] < 9.

) Vo

S1

t/

U3 S3 U1
(b)

Figure 6: (a) Labeling the vertices and the sides of a downward triangle. (b) Labeling the
vertices and the sides of an upward triangle. (¢) Two intersecting triangles.

We will prove this lemma in the rest of this section. We label the vertices and the sides
of a downward equilateral-triangle, ¢, and an upward equilateral-triangle, ¢/, as depicted in

10



Figures 6(a) and 6(b). We refer to a vertex v; and a side s; of a triangle ¢ by t(v;) and £(s;),
respectively.

Recall that F' is a subgraph of the minimum spanning tree 7" in G, (P). In each iteration
of the while loop in Algorithm 1, let 7 denote the set of triangles representing the edges in F'.
By Lemma 1 and the general position assumption we have

Observation 7. Let t(p,q) be a triangle in T. Then t(p,q) does not contain any point of
P\ {p,q} in its interior or on its boundary.

Consider two intersecting triangles t1(p1, 1) and t2(p2, g2) in 7. By Observation 1, each side
of t1 contains either p; or ¢, and each side of to contains either ps or go. Thus, by Observation 7,
we argue that no side of t; is completely in the interior of to, and vice versa. Therefore, either
exactly one vertex (corner) of ¢; is in the interior of to, or exactly one vertex of ¢s is in the
interior of ¢;. Without loss of generality assume that a corner of t5 is in the interior of ¢1, as
shown in Figure 6(c). In this case we say that t; intersects ta through the vertex ta(va), or
symmetrically, 2 intersects ¢; through the side t1(s3).

The following two lemmas have been proved by Biniaz et al. [6] (see Figure 7(a)):

Lemma 7 (Biniaz et al. [6]). Let t1 be a downward triangle that intersects a downward triangle
ta through ta(s1), and let a horizontal line £ intersect both t1 and ty. Let py and g1 be two points
on t1(s2) and ti(s3), respectively, that are above to(s1). Let pa and ga be two points on ta(s2)
and to(s3), respectively, that are above £. Then, max{t(p1,p2),t(q1,q2)} < max{ti,ta}.

Lemma 8 (Biniaz et al. [6]). For every four triangles t1,to,t3,t4 € T, t1 Nta Nt Nty = 0.
As a consequence of Lemma 7, we have the following corollary (see Figure 7(a)):

Corollary 1. Let ty,ts,t3 be three triangles in T. Then t1, ta, and ts cannot make a chain
configuration such that ta intersects t3 through ts(s1), and ty intersects both to and ts3 through
t2($1) and t3($1).

i1

(b)

Figure 7: (a) Illustration of Lemma 7. (b) Illustration of Lemma 9.

For the following lemma refer to Figure 7(b).

Lemma 9. Let t1 be a downward triangle that intersects a downward triangle to through ta(va).
Let p be a point on t1(s3) and to the left of ta(s2), and let q be a point on ta(s2) and to the right
of ti(s3). Then, t(p,q) < max{ti,ta}.

Proof. Let t1(s5) be the part of the line segment ¢; (s3) that is to the left of ¢3(s2), and let to(s))
be the part of the line segment t3(s2) that is to the right of #1(s3). Without loss of generality
assume that t;(s}) is larger than to(s)). Let ¢’ be an upward triangle having ¢1(s%) as its left
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side. Then, ¢’ < t¢;, which implies that ¢/ < max{ti,t2}. Since ¢’ has both p and ¢ on its
boundary, the area of the downward triangle ¢(p, q) is smaller than the area of t'. Therefore,
t(p,q) < t'; which completes the proof. O

Because of symmetry, the statement of Lemma 9 holds even if p is above t3(s1) and ¢ is on
ta(s1). Consider the six cones with apex at p, as shown in Figure 3.

Lemma 10. Let T be a minimum spanning tree in G (P). Then, in T, every point p is
adjacent to at most one point in each cone C,, where 1 <1i < 6.

Proof. 1f i is even, then by the construction of G, (P), which is given in Section 2, p is adjacent
to at most one point in C;;. So, assume that ¢ is odd. For the sake of contradiction, assume that
in 7', the point p is adjacent to two points ¢ and  in the same cone C}. Then, t(p, q) has q on
a corner, and t(p,r) has r on a corner. Without loss of generality, assume that ¢(p,r) < t(p, q).
Then, the hexagon X (g, p) has r in its interior. Thus, t(q,r) < t(p,q). Then the cycle r,p, q,r
contradicts Lemma 2. Therefore, p is adjacent to at most one point in each of the six cones. [

In Algorithm 1, in each iteration of the while loop, let 7 (e™) be the set of triangles repre-
senting the edges of F. Recall that e is the smallest edge in F', and hence, t(e) is a smallest
triangle in T (e™). Let e = (p,q) and let Z(e™) be the set of triangles in T (e*) (excluding
t(e)) that intersect t(e). We show that Z(e') contains at most eight triangles. We partition
the triangles in Z(e™) into Z; U Zy such that every triangle 7 € Z; shares only p or ¢ with
t=t(e) =t(p,q), e,y ={r:7€Z(e"), 7Nt € {p,q}}, and every triangle T € T, intersects t
either through a side or through a corner that is neither p nor q.

By Observation 1, for each triangle t(p, ¢q), one of p
and ¢ is a corner of ¢(p,q) and the other one is on the P
side opposite to that corner. Without loss of generality,
assume that p is on the corner ¢(v;), and hence, ¢ is on
the side #(s2). See Figure 8. Note that the other cases,
where p is on t(vg) or on t(v3), are similar. Let 7 € Z;
represents an edge €’ in T. Since the intersection of ¢
with any triangle in Z; is either p or ¢, 7 has either p or
g on its boundary. In combination with Observation 7,
this implies that, either p or ¢ is an endpoint of €.
As illustrated in Figure 8, the other endpoint of €’ can
be either in C]},, Cg, C’g , Or in C;l, because otherwise Figure 8: Illustration of the triangles
Nt ¢ {p, ¢}. By Lemma 10, p has at most one neighbor in Z;.
in each of C’;, C’g, C’g, and ¢ has at most one neighbor in C;l. Therefore, Z; contains at most
four triangles. We are going to show that Z, also contains at most four triangles.

The point ¢ divides ¢(s2) into two parts. Let t(s}) and t(s5) be the parts of ¢(s2) that are
below and above g, respectively; see Figure 8. The triangles in 7y intersect ¢ either through
t(s1)Ut(sh) or through t(s3)Ut(sh); the two sets are shown by red and blue polylines in Figure 8.
We show that at most two triangles in Zy intersect ¢ through each of ¢(s1)Ut(s5) or ¢(s3) Ut(s)).
Because of symmetry, we only prove this for ¢(s3) Ut(s,). When a triangle ¢’ intersects ¢ through
both t(s3) and t(s}), we say ¢’ intersects ¢ through t(vs). In the next lemma, we prove that at
most one triangle in Zy intersects ¢ through each of ¢(s3), t(s5). Again, because of symmetry,
we only prove this for t(s3).

Lemma 11. At most one triangle in Iy intersects t through t(ss).

Proof. The proof is by contradiction. Assume that two triangles t1(p1, q1) and t2(p2,q2) in Zy
intersect t through ¢(s3). Without loss of generality, assume that p; is on t;(s1) and ¢; is on
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Figure 9: Illustration of Lemma 11: (a) ¢1(v2) € ta. (b) t1(ve) ¢ t2 and ta(v2) & t1.

ti(s2) for © = 1,2. Recall that ¢t < ¢; and t < t9. If t1(v2) is in the interior of ¢y (as shown in
Figure 9(a)) or t2(ve2) is in the interior of ¢;, then we get a contradiction to Corollary 1. Thus,
we assume that ¢1(vo) € to and ta(va) ¢ t;.

Without loss of generality, assume that ¢;(s;) is above t2(s1); see Figure 9(b). By Lemma 9,
we have t(p,p1) < max{t,t1} <t;. If g1 is in X (p, ¢), then by Observation 3, t(p,q1) < t. Then,
the cycle p, p1, q1, p contradicts Lemma 2. Thus, assume that ¢1 ¢ X (p, ¢,). In this case ta(s3) is
to the left of ¢;(s3), because otherwise g; lies in t5 which contradicts Observation 7. Since both
t1 and to are larger than ¢, to intersects ¢; through t1(s2), and hence t2(v1) is in the interior of
t1. This implies that ga = ta(v3). In addition, ps is on the part of t3(s1) that lies in the interior
of X(p,q). By Observation 3 and Lemma 9, we have t(p,p2) < t and t(q1,q2) < max{t,t2},
respectively. Thus, the cycle p, p1,q1, g2, p2, p contradicts Lemma 2. ]

Lemma 12. At most two triangles in Iy intersect t through t(vs).

Proof. For the sake of contradiction assume three triangles t1,ts,t3 € Zo intersect ¢ through
t(v3). This implies that ¢(vs) belongs to four triangles t,t1,ta,t3, which contradicts Lemma 8.
O

Lemma 13. If two triangles in Zy intersect t through t(vs), then no other triangle in Iy inter-
sects t through t(s3) or through t(sh).

Proof. The proof is by contradiction. Assume that two triangles ¢1(p1,q1) and t2(p2, g2) in Zy
intersect ¢ through ¢(vs), and a triangle t3(ps, q3) in Zs intersects ¢ through ¢(s3) or t(sh). Let
pi be the input point that lies on ¢;(s1) for ¢ = 1,2,3. By Lemma 12, ¢3 cannot intersect both
t(s3) and t(s5). Thus, t3 intersects t either through #(s3) or through ¢(s5). We prove the former
case; the proof for the latter case is similar. Assume that ¢3 intersects ¢ through t(s3). By
Lemma 9, t(p,p3) < t3. See Figure 10. In addition, both #;(s3) and t2(s3) are to the left of
t3(s3), because otherwise g lies in ¢ U ta U X(p,q). If g3 € t1 U ta, we get a contradiction to
Observation 7. If g3 € X (p, q) then by Observation 3, we have t(p, q3) < t, and hence, the cycle
P, P3, q3, p contradicts Lemma 2.

Without loss of generality, assume that ¢(s1) is above t2(s1); see Figure 10. If ¢1(v3) € to
or ta(vs) € t1, then we get a contradiction to Corollary 1. Thus, assume that t1(vs) ¢ to and
to(vs) ¢ t1. This implies that either (i) t2(s3) is to the right of ¢1(s3) or (ii) t2(s2) is to the left
of t1(s2). We show that both cases lead to a contradiction.

In case (i), p2 lies in the interior of X (p, ¢,), and then by Observation 3, we have t(p, p2) < t;
see Figure 10(a). In addition, Lemma 9 implies that t(p2, g3) < max{t,t3} < t3. Thus, the cycle
D, D3, q3, P2, p contradicts Lemma 2.
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Figure 10: Illustration for the proof of Lemma 13: (a) ps is to the right of ¢1(s3), (b) ¢1 € Ct5( )

3
(c) g € C’f(%), and (d) ¢; € C’tl(%).

Now consider case (ii) where ¢;(s1) is above to(s1) and t2(s2) is to the left of ¢1(s2). If p; is to
the right of ¢, then as in case (i), the cycle p, ps, g3, p1, p contradicts Lemma 2. Thus, assume that
p1 is to the left of ¢, as shown in Figure 10(b). By Lemma 9, we have t(q, p1) < max{t,t;} < t.
Each side of t; contains either p; or g1, while p; is on the part of ¢1(s;) that is to the left of
t, thus, ¢ is on t1(s3). Consider the six cones around t(vs); see Figure 10(b). We have three
cases: (a) q1 € Cf(vg), (b) ¢1 € C’f(vg) or (¢c) q1 € C’tl(US).

In case (a), which is shown in Figure 10(b), by Lemma 7, we have max{t(p1,p2),t(q1,q2)} <
max{t1,t2}. Thus, the cycle p1,p2, g2, q1,p1 contradicts Lemma 2. In Case (b), which is shown
in Figure 10(c), we have t(q1, q3) < t3, because if we map t3 to a downward triangle 7—of area
equal to the area of t3—that has 7(v3) on t(v3), then 7 contains both ¢; and ¢3. Therefore, the
cycle p,ps,qs,q1,p1,q,p contradicts Lemma 2. In Case (c), which is shown in Figure 10(d), by
Observation 3, t(p,q1) < t, and then, the cycle p, g1, p1, q, p contradicts Lemma 2. ]

Lemma 14. If three triangles intersect t through t(s}),t(vs) and t(s3), then at least one of the
three triangles is not in L.

Proof. The proof is by contradiction. Assume that three triangles t1(p1, q1), t2(p2, ¢2), t3(ps3, q3)
in Zy intersect ¢ through t(s5), t(vs), t(s3), respectively. Let p; be the point that lies on ¢;(s1) for
i =1,2,3. See Figure 11(a). By Lemma 9, we have t(p, p3) < t3 and t(q,p1) < t1. If g3 is in the
interior of X (p, q), then by Observation 3, ¢(p, g3) < t, and hence, the cycle p, ps, g3, p contradicts
Lemma 2. If ¢; is in X (g, p), then by Observation 3, t(q,q1) < t, and hence, the cycle ¢, q1,p1,q
contradicts Lemma 2; see Figure 11(b). Thus, assume that g3 ¢ X (p,q) and ¢1 ¢ X(q,p). Let

14



Figure 11: Illustration for the proof of Lemma 14: (a) pa € to(s)), and (b) p2 € ta(s]).

ta(s}) and ta(s]) be the parts of t3(s;) that are to the right of ¢(s3) and to the left of ¢(s2),
respectively. Consider the point py that lies on ta(s1). If pa € ta(s]), then ps € X(p,q) and by
Observation 3, t(p,p2) < t. In addition, Lemma 9 implies that ¢(p2,q3) < t3. Thus, the cycle
D, D3, q3,p2, p contradicts Lemma 2; see Figure 11(a). If po € ta(sY), then ps € X(q,p) and by
Observation 3, t(q,p2) < t. In addition, Lemma 9 implies that ¢(p2,q1) < t2. Thus, the cycle
q,p2, q1,P1, q contradicts Lemma 2; see Figure 11(b). O

Putting Lemmas 11, 12, 13, and 14 together, implies that at most two triangles in Zo
intersect ¢t through ¢(s3)Ut(s}), and consequently, at most two triangles in Zy intersect ¢ through
t(s1) Ut(sh). Thus, Zy contains at most four triangles. Recall that Z; contains at most four
triangles. Then, Z(e™) contains at most eight triangles. Therefore, the influence set of e contains
at most 9 edges (including e itself). This completes the proof of Lemma 6.

Theorem 3. Algorithm 1 computes a strong matching of size at least (”T_W in G (P).

14+2¢

1+e

Figure 12: Four triangles in Z; (in red) and four triangles in Z5 (in blue) intersect with ¢(p, q).

The bound obtained by Lemma 6 is tight. Figure 12 shows a configuration of 10 points in
general position such that the influence set of a minimal edge is 9. In Figure 12, t = t(p, q)
represents a smallest edge of weight 1; the minimum spanning tree is shown in bold-green line
segments. The weight of all edges—the area of the triangles representing these edges—is at
least 1. The red triangles are in Z; and share either p or ¢ with ¢. The blue triangles are in
T and intersect ¢t through ¢(s1) U t(s}) or through t(s3) Ut(s5); as shown in Figure 12, two of
them share only the points t(v2) and t(v3).
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6 Strong Matching in G(P)

In this section we consider the problem of computing a strong matching in G(P), where O is
an axis-aligned square whose center is the origin. We assume that P is in general position, i.e.,
(i) no two points have the same x-coordinate or the same y-coordinate, and (ii) no four points
are on the boundary of any homothet of 0. Recall that G(P) is equal to the L.,-Delaunay
graph on P. Abrego et al. [1, 2] proved that G (P) has a strong matching of size at least [n/5].
Using a similar approach as Abrego et al. [1, 2], we prove that G5(P) has a strong matching of
size at least [22].

Theorem 4. Let P be a set of n points in general position in the plane. Let S be an azis-parallel
square that contains P. Then, it is possible to find a strong matching of size at least ("T_ll for
Go(P) such that for each edge e in this matching, the square corresponding to e is in S.

Proof. The proof is by induction. Assume that any point set of size n’ < n — 1 in an axis-
parallel square S’ has a strong matching of size at least [%] in §’. If nis 0 or 1, then
there is no matching in S, and if n € {2,3,4,5}, then by shrinking .S, it is possible to find a
strongly matched pair. Now suppose that n > 6, and n = 4m + r, where r € {0,1,2,3}. If
r € {0,1,3}, then [2] = [%], and by induction we are done. So we may assume that
that n = 4m + 2, for some m > 1. We prove that there are ("T_lw = m + 1 disjoint squares
in S, each of them matching a pair of points in P. To this end we partition S into four equal
area squares S, So,S3,.S4 that contain ny,ng, ng, ng points, respectively; see Figure 13(a). Let
n; = 4m; +r; for 1 < i < 4, where r; € {0,1,2,3}. Let R be the multiset {ry,r,7r3,74}. By
induction, in S; U S U S3U Sy, we have a strong matching of size at least

_{ni—1 ng — 1 ng — 1 ng — 1
e R bl e R | @
Claim 1: A > m.

Proof. By Equation (3), we have

4 4
n; — 1 n; — 1 n dm + 2 1
A= i > v =— 1= — 1= N
Zizj 4 W—Zizl 4 4 4 Ty

Since A and m are integers, we argue that A > m. O

If A > m, then we are done. Assume that A = m; in fact, by the induction hypothesis we
have a strong matching of size at least m for P. In order to complete the proof, we have to get
one more strongly matched pair. Let R be the multiset {r1,r2,73,74}.

Claim 2: If A =m, then either (i) R ={1,1,1,3} or (i5) R = {0,0,1,1}.
Proof. Let o = ry 419+ 1r3+1ry, where 0 < r; < 3. Then n = 4(mq + mg + mg+my) + . Since
n =4m+2, a = 4k+2, for some 0 < k < 2. Thus, n = 4m+2, where m = m1+mao+msz+my+Ek.
By induction, in S;, we get a matching of size at least [W} =m; + [%] Hence,
in S1 U Sy U S3U .Sy, we get a matching of size at least
A=my +my+my+my+ W14 1} + W24 1} + W34 1} + [”4 1} .

Since A = m and m = my + ms + mg + my + k, we have

il o R b B e B 2
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Note that 0 < k < 2. We go through some case analysis: (i) k=0, (ii) k=1, (iii) k= 2. In
case (i), we have o = 4k+2 = r{ +ro+r3+r4 = 2. In order to have k equal to 0 in Equation (4),
no element in R can be greater than 1; this happens only if two elements in R are equal to 0
and the other two elements are equal to 1. In case (ii), we have « = ry +r9 +r3+r4 = 6. In
order to have k equal to 1 in Equation (4), at most one element in R should be greater than 1;
this happens only if three elements in R are equal to 1 and the remaining element is equal to 3
(note that all elements in R are less than 4). In case (iii), we have o = r1 + o + r3 + 14 = 10.
In order to have k equal to 2 in Equation (4), at most two elements in R should be greater than
1; which is not possible. O

In both cases of Claim 2 we show how to augment a strong matching of size m by one more
pair such that the resulting matching is strong and has size m + 1.

We define S;* as the smallest axis-parallel square contained in S; and anchored at the top-
left corner of S, that contains all the points in S; except x points. If S7 contains less than
x points, then the area of S} is zero. We also define S as the smallest axis-parallel square
that contains S7 and anchored at the top-left corner of Sy, that has all the points in Sy plus
x other points of P. See Figure 13(a). Similarly we define the squares S;*, S5°, S;”, S&*, and
S5*, S;i* that are anchored at the top-right corner of Sy, the bottom-left corner of S3, and the
bottom-right corner of Sy, respectively.

Case (i): R=1{1,1,1,3}.

In this case, we have m = mq + mg + mg + my + 1. Without loss of generality, assume that
r1 = 3 and ry = r3 = rq = 1. Consider the squares S7', S;*, S;*, and S;*. Note that the area of
some of these squares—but not all—may be equal to zero. See Figure 13(b). By induction, we
get matchings of sizes at least m; + 1, ma, ms, and my, in S;', S;?, S;*, and S}, respectively.
Now consider the largest square among S7', S;*, S3%, and S;°>. Because of symmetry, we have
only three cases: (i) S;' is the largest, (ii) S;® is the largest, and (iii) S;® is the largest.

1 N S»sl‘ 1 25

S, | ; S; . S5

. e o ¢ .

o O ® o
® S o ,,,,,:,,,,,ll LE———— - - L _* ~
[ [ ° I
° o s [ [ I
T T S+1 3 T
S+2 R o ! I 2 S I
1 I I I I
77777 ---F--+----[9 . |
S3 S4 o : . : o o . * :
S";S 'y : ° : Sj 4 533 q . : Sf d
la ly ly
(a) (b) (c)

Figure 13: (a) Split S into four equal area squares. (b) S7' is larger than S;?, S;%, and S;%. (c)
S;? is larger than S7*, S5°, and S7°.

e S;' is the largest square. Consider the lines [; and ls that contain the bottom side and
right side of S;', respectively; see the dashed lines in Figure 13(b). Note that I; and [y
and their mirrored versions [ and I} do not intersect any of S;*, S;°, and S;*. If any
point of S is to the right of ls, then by induction, we get a matching of size at least
(m1+ 1)+ (m2+ 1) +ms +my in S UST US?US? Note that SJ' is separated from

532 by Iy and from S;® by I} (since we assume that S7' is the largest of the four squares).
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Otherwise, by induction, we get a matching of size at least (m; +1) +ma+ (ms+1) +my
in S7'US;? U ST US?, which, again, is a disjoint union. In both cases we get a matching
of size at least m + 1 in S.

o S;7 is the largest square. Consider the lines [; and [y that contain the bottom side and
left side of S;?, respectively; the dashed lines in Figure 13(c). Note that I; and ls do not
intersect any of S;', S5°, and S;®. If any point of Sy is below I, then by induction, we
get a matching of size at least (mj + 1) + mg + m3 + (my + 1) in 57" U S;* US> U SF.
Otherwise, by induction, we get a matching of size at least (mq + 2) + mg + m3 + my in
S US;?USUS?; see Figure 13(c). In all cases we get a matching of size at least m + 1
in S.

e S’ is the largest square. Consider the lines 1 and [3 that contain the top side and left side
of 3%, respectively. If any point of Sy is above /1, then by induction, we get a matching of
size at least (m1+1)+(ma+1)+ms+myq in S;'USTUS?US?. Otherwise, by induction,
we get a matching of size at least (my + 1) +ma + (mg+ 1) + my in S;' U S U ST U S
In all cases we get a matching of size at least m 4+ 1 in S.

Case (ii): R ={0,0,1,1}.

In this case, we have m = my + mo + ms + my. Due to symmetry, only the following two
cases may arise:

o 11 =79 =1andrz =ry =0. Consider the squares S;*, 57°, S;?, and S;°>. By induction, we
get matchings of sizes at least my, ma, ms, and my, in S7?, S;?, S;?, and S;?, respectively.
Now consider the largest square among S;%, S;°, S5°, and S;>. Because of symmetry, we
have only two cases: (a) S; is the largest, (b) S;? is the largest. In case (a) we get one
more matched pair either in S;' or in S;?. In case (b) we get one more matched pair
either in S{™ or in S},

e 11 =74 =1andry =r3 =0. Consider the squares S;*, 57°, S;?, and S;*>. By induction, we
get matchings of sizes at least mi, ma, ms, and my, in S7?, S;?, S;%, and S;?, respectively.
Now consider the largest square among S;°, S;?, S5°, and S;°. Because of symmetry, we
have only two cases: (a) S;° is the largest, (b) S;? is the largest. In case (a) we get one
more matched pair either in S;? or in S;?. In case (b) we get one more matched pair
either in S;™* or in S;}*.

O]

7 Strong Matching in Gg(P)

In this section we consider the problem of computing a strong matching in G (P). Recall that
Gy (P) is the union of G (P) and G (P), and is equal to the graph ©¢(FP). We assume that
P is in general position, i.e., for each point p € P, there is no point of P\ {p} on lg, lgo, and
l11,20. A matching M in Gg(P) is a strong matching if for each edge e in M there is a homothet
of 7 or a homothet of A representing e such that these homothets are pairwise disjoint. See
Figure 1(b). Using a similar approach as in Section 6, we prove the following theorem:

Theorem 5. Let P be a set of n points in general position in the plane. Let S be an upward
or a downward equilateral-triangle that contains P. Then, it is possible to find a strong match-
ing of size at least [”T_l] for Gg(P) such that for each edge e in this matching, the triangle
corresponding to e is in S.
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Proof. The proof is by induction. Assume that any point set of size n’ < n—1 in a triangle S’ has
a strong matching of size at least [%] in S’. Without loss of generality, assume that S is an
upward equilateral-triangle. If n is 0 or 1, then there is no matching in S, and if n € {2, 3,4, 5},
then by shrinking S, it is possible to find a strongly matched pair; the statement of the theorem

holds. Now suppose that n > 6, and n = 4m + r, where r € {0,1,2,3}. If r € {0,1, 3}, then

e = [%L and by induction we are done. So we may assume that n = 4m + 2, for
n—1

some m > 1. We prove that there are [";=] = m + 1 disjoint equilateral-triangles (upward or
downward) in S, each of them matching a pair of points in P. To this end we partition S into
four equal area equilateral triangles S1,S2, 53,54 containing ni, ns, ns, ng points, respectively;
see Figure 14(a). Let n; = 4m; + r;, where r; € {0,1,2,3}. By induction, in S; U Sy U S3U Sy,

we have a strong matching of size at least

S e K i K bl K el

In the proof of Theorem 4, we have shown the following two claims:

Claim 1: A > m.
Claim 2: If A =m, then either (i) R ={1,1,1,3} or (ii)) R = {0,0,1,1}.

If A > m, then we are done. Assume that A = m; in fact, by the induction hypothesis we
have an strong matching of size at least m in S. By Claim 2 we have two cases. In both cases
of Claim 2 we show how to augment a strong matching of size m by one more pair such that
the resulting matching is strong and has size m + 1. We show how to find one more strongly
matched pair in each case of Claim 2.

We define S;* as the smallest upward equilateral-triangle contained in S; and anchored at
the top corner of Sp, that contains all the points in S7 except x points. If S; contains less than
x points, then the area of S;* is zero. We also define S as the smallest upward equilateral-
triangle that contains S7 and anchored at the top corner of Sj, that has all the points in S
plus x other points of P. Similarly we define upward triangles S;* and S;* that are anchored
at the left corner of Sp. Moreover, we define upward triangles S;* and S;* that are anchored
at the right corner of S;. We define downward triangles 537, 557, S;¢ that are anchored at the
top-left corner, top-right corner, and bottom corner of Ss, respectively. See Figure 14(a).

Case (i): R=1{1,1,1,3}.

In this case, we have m = my + ms+ms+my4+ 1. Because of symmetry, we have two cases:
(i) r3 =3, (ii) r; = 3 for some j € {1,2,4}.

o r3=3J.

In this case ng = 4mg + 3. We differentiate between two cases: the case that all the
elements of the multiset {my,mga, m4} are equal to zero, and the case that some of them
are greater than zero.

— All elements of {mi,mo, my} are equal zero. In this case, we have m = mg + 1.
Consider the triangles S;' and S;!. See Figure 14(a). Note that S;' and S are
disjoint, S;* contains two points, and S;! contains 4ms3 + 2 points. By induction, we
get a matched pair in S and a matching of size at least ms + 1 in S;!. Thus, in
total, we get a matching of size at least 1 + (m3+1) =m+1in S.
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Figure 14: (a) Split S into four equal-area triangles. (b) S;* is larger than S;* and S;°.

— Some elements of {m1,ma,m4} are greater than zero. Consider the triangles S},
S;?, and S;®. Note that the area of some of these triangles—but not all—may be
equal to zero. See Figure 14(b). By induction, we get matchings of sizes at least
my, ma, and my in S, S;?, and S;?, respectively. Without loss of generality, assume
that S;? is larger than S;* and S;*. Consider the half-lines [; and Iy that are parallel
to the {° and 1% axes, and have their endpoints at the top corner and right corner
of S3?, respectively. We define S} as the downward equilateral-triangle bounded by
l1, l2, and the right side of S;?; see the dashed triangle in Figure 14(b). Note that
l; and lo do not intersect S;* and S;°. In addition, S;*, S;*, S;*, and S} are pairwise
disjoint. If any point of S; U Sp U S3 is to the right of ls, then consider S;* and Sj/.
By induction, we get a matching of size at least my + ma + (m3 + 1) + (mq4 + 1) in
SPPUSF?US; USH, and hence a matching of size at least m+1 in S. If any point of
So U S3U Sy is above [y, then consider S and 5. By induction, we get a matching
of size at least (my + 1) + mg + (mg + 1) + my in S U S;* U S5 U S;?, and hence a
matching of size at least m + 1 in S. Otherwise, S contains ng + 3 = 4(ms3 + 1) + 2
points. Thus, by induction, we get a matching of size at least my +mao+ (m3+2)+my
in S; U S;*U S, U Sy, and hence a matching of size at least m + 1 in S.

o 1; =3, for some j € {1,2,4}.

Without loss of generality, assume that r; = 72. Then, ng = 4mo + 3. Consider the
triangles S;?, S;', and S;*. See Figure 15(a). By induction, we get matchings of size at
least my, mo + 1, and my4 in S7?, S', and S;?, respectively. Now we consider the largest
triangle among S;%, S;', and S;*. Because of the symmetry, we have two cases: (i) S;" is
the largest, or (ii) S;* is the largest.

— S;' is larger than S7° and S;. Define the half-lines Iy, [, and the triangle Sy as
in the previous case. See Figure 15(a). If any point of S; U Ss U S3 is to the right
of Iz, then consider S;' and S;/. By induction, we get a matching of size at least
mi+ (ma+1)+mg+ (mg+1) in SPUS;US; USH. If any point of So U S5 U Sy
is above l1, then consider S| and S;;. By induction, we get a matching of size at
least (m1+ 1)+ (m2+ 1) +mg+my in S US;'US;E USE. Otherwise, S5 contains
ng + 1 = 4mg + 2 points. Thus, by induction, we get a matching of size at least
mi1+ (ma+ 1)+ (m3+1) +my in S1US; US,US,. As a result, in all cases we get
a matching of size at least m + 1 in S.
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Figure 15: (a) S;' is larger than S;* and S;*. (b) S;? is larger than S;* and S;'.

— 8% is larger than S;° and S;'. Define the half-lines Iy, I3, and the triangle S} as in
Figure 15(b). If any point of S; U S3 U Sy is above [;, then by induction, we get a
matching of size at least (my + 1) + (ma + 1) + mg + my in S U S;' U S5 U S
If at least three points of S U S3 U Sy are to the left of lp, then consider S} and
S;%. Note that S;® contains ny + 3 = 4(mg + 1) + 2 points. By induction, we get a
matching of size at least my + (mg +2) +mg+my in SPPUS?US?US?. Otherwise,
S} contains at least ng + 1 = 4mg + 2 points. Thus, by induction, we get a matching
of size at least my + (ma + 1) + (m3 + 1) + myq in S; U Sy U Sy U S;®. As a result, in
all cases we get a matching of size at least m 4+ 1 in S.

Case (ii): R ={0,0,1,1}.

In this case, we have m = mj 4+ mq + ms + my4. Again, because of symmetry, we have two
cases: (i) rg3 =0, (ii) r3 # 0.

o r3=0.

Without loss of generality assume that 7o = 0 and vy = r4 = 1. Thus, n; = 4my + 1,
ny = 4mg, n3 = 4mg, and ng = 4my + 1. If all elements of {my, mg, my} are equal to
zero, then we have m = mg, where mgz > 1. Consider the triangles S;' and S;], that are
disjoint. By induction, we get a matched pair in S} and a matching of size at least ms
in S;/. Thus, in total, we get a matching of size at least 1 +m3 =m + 1 in S. Assume
some elements in {m,ma, m4} are greater than zero. Consider the triangles S;?, S;?, and
S;3. See Figure 16(a). By induction, we get a matching of size at least mq, mo, and my in
S73, 552, and S3®, respectively. Now we consider the largest triangle among S7°, S;°, and
S;3. Because of the symmetry, we have two cases: (i) S;? is the largest, or (ii) S;* is the
largest.

— S;% is larger than S’ and S}°. Define Iy, I, S5 as in Figure 16(a). If any point of
S1U S92 U S5 is to the right of ls, then by induction, we get a matching of size at least
mi+ma+m3+(mg+1)in SPUSFUS; US!. If any point of SoUS3U Sy is above
l1, then by induction, we get a matching of size at least (mj + 1) + ma + ms + my
in S US;?US; USSP Otherwise, S, contains ng + 2 = 4mg + 2 points. Thus, by
induction, we get a matching of size at least mi+ma+(mg—+1)+my in S1US;?US,US;.
In all cases we get a matching of size at least m + 1 in S.
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Figure 16: (a) S;? is larger than S;* and S;*. (b) S;? is larger than S;* and S;2.

— S8;% is larger than S;° and S;°. Define Iy, lo, S} as in Figure 16(b). If any point
of S1 U S3U .Sy is above [y, then by induction, we get a matching of size at least
(m1 4+ 1) +ma + m3 +my in S US> US; US™. If at least two points of S; U
S3 U Sy are to the left of Iy, then by induction, we get a matching of size at least
m1 + (ma + 1) + m3 + my in SP* U SF? U S;2US;%. Otherwise, S contains at least
ns + 2 = 4mg + 2 points. Thus, by induction, we get a matching of size at least
mi1+ma+ (m3+1)+myg in S;US,US;USE. In all cases we get a matching of size
at least m+1in S.

° T‘37é0.

In this case r3 = 1, and without loss of generality, assume that ro = 1; that means
r1 =14 = 0. Thus, n1 = 4mq, ng = 4mo +1, ng = 4mgz +1, and ny = 4my. If all elements
of {m1, ma, my} are equal to zero, then we have m = mg, where ms > 1. Consider the
triangles S;' and S;!, that are disjoint. By induction, we get a matched pair in S;*
and a matching of size at least mg in S;!. Thus, in total, we get a matching of size at
least 1 4+m3 =m+ 1 in S. Assume some elements in {m1, ma, m4} are greater than zero.
Consider the triangles S;?, S;?, and S;*. See Figure 17(a). By induction, we get matchings
of size at least mi, mg, and my in S;?, 5%, and S}, respectively. Now we consider the
largest triangle among S;?, S;°, and S;>. Because of symmetry, we have two cases: (i) S7°

is the largest, or (ii) S;? is the largest.

— 877 is larger than S}* and S;°. Define Iy, I3, S5 as in Figure 17(a). If at least two
points of S7 U .Se U S3 are to the right of ls, then by induction, we get a matching
of size at least my + ma +mg + (mg + 1) in S;2 U S;? U S;7 U S2. If at least two
points of Sy U S3 U Sy are above [1, then by induction, we get a matching of size
at least (mq + 1) + ma + m3 + my in S;2 U S;° U S;2 U S;%2. Otherwise, S contains
n3+1 = 4ms+2 points, and we get a matching of size at least mj +mo+(mg+1)+my
in S; US;*US,USy. In all cases we get a matching of size at least m + 1 in S.

— S;% is larger than S}* and S;’. Define Iy, Iz, S} as in Figure 17(b). If at least two
points of SoUS3USy are above [1, then by induction, we get a matching of size at least
(m14+1)+ma+ms+my in SFPUSFUSEUSE. If any point of S1US3USy is to the left
of I, then by induction, we get a matching of size at least mi + (mg + 1) +ms3 +my
in SPPUS;TUS; US2. Otherwise, S contains at least ng + 1 = 4mg + 2 points, and
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Figure 17: (a) S;® is larger than S;*> and S;>. (b) S;? is larger than S;? and S3°.

we get a matching of size at least my +ma + (m3 + 1) + myg in S;US2 US; USE. In
all cases we get a matching of size at least m + 1 in S.

O]

8 A Conjecture on Strong Matchings in G (P)

In this section, we discuss a possible way to further improve upon Theorem 2, which says that
Algorithm 1 computes a strong matching of size at least [%2] in G5(P). We also discuss a
construction leading to the conjecture that Algorithm 1 computes a strong matching of size at
least [251] in G (P); unfortunately we are not able to prove this.

In Section 4 we proved that Z(e™) contains at most 16 edges. In order to achieve this upper
bound we used the fact that the centers of the disks in Z(e™) are far apart. We did not consider
the endpoints of the edges representing these disks. By Observation 4, the disks representing
the edges in Z(e™) cannot contain any of the endpoints. We applied this observation only on
u and v. Unfortunately, our attempts to apply this observation on the endpoints of edges in
Z(e™) have been so far unsuccessful.

Recall that T is a Euclidean minimum spanning tree of P, and for every edge e = (u,v)
in T, deg(e) is the degree of e in T'(e™), where T'(e™) is the set of all edges of T with weight
at least w(e). Note that w(e) is directly related to the Euclidean distance between u and wv.
Observe that the discs representing the edges adjacent to e intersect D(u,v). Thus, these edges
are in Inf(e). We call an edge e in T a minimal edge if e is not longer than any of its adjacent
edges. We observed that:

Conjecture 1. Inf(T) is at most the mazimum degree of a minimal edge.

Monma and Suri [12] showed that for every point set P there exists a Euclidean minimum
spanning tree, M ST (P), of maximum vertex degree five. Thus, the maximum edge degree in
MST(P) is 9. We show that for every point set P, there exists a Euclidean minimum spanning
tree, M ST (P), such that the degree of each node is at most five and the degree of each minimal
edge is at most eight. This would imply the conjecture that Inf(MST(P)) < 8. That is,
Algorithm 1 would return a strong matching of size at least [%]

Lemma 15. If uv and uw are two adjacent edges in M ST (P), then the triangle Auvw has no
point of P\ {u,v,w} in its interior or on its boundary.
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Figure 18: In M ST (P), the triangle Auvw formed by two adjacent edges uv and uw, is empty.

Proof. If the angle between uv and uw is equal to 7, then there is no other point of P on uv
and uw. Assume that Zvuw < 7. Refer to Figure 18. Since M ST(P) is a subgraph of the
Gabriel graph, the circles C7 and Cs with diameters uv and uw are empty. Since Jvuw < T,
(4 and (5 intersect each other at two points, say v and p. Connect u, v and w to p. Since
wv and ww are the diameters of C; and Co, Zupv = Zwpu = /2. This means that vw is
a straight line segment. Since Cy and Cy are empty and Auvw C Cy U Cy, it follows that
Auvw N P = {u,v,w}. O

Figure 19: Ilustration of Lemma 16: |ab] < |be| < |ad|, Zabc > 7/3, Zbad > m/3, and
Zabe + Zbad < 7.

Lemma 16. Follow Figure 19. For a convez-quadrilateral Q) = a,b, c,d with |ab| < |bc| < |ad|,
if min{Zabc, Zbad} > 7/3 and Labc + Zbad < w, then |cd| < |ad|.

Proof. Let oy = Zcad, as = Zbac, p1 = Zcbd, fo = Zabd, v, = Zacd, 9 = Zach, §1 = Zbdc,
and do = Zadb; see Figure 19. Since |ab| < |be| < |ad],

72 < ag and do < Po.

Let ¢ be a line passing through ¢ that is parallel to ad. Since Zabe + Zbad < 7, ¢ intersects the
line segment ab. This implies that a1 < 2. If 81 < d1, then |ed| < |be|, and hence |ed| < |ad|
and we are done. Assume that §; < 1. In this case, § < 8. Now consider the two triangles
Aabe and Aacd. Since § < 8 and a1 < 2, as < ;. Then we have

a1 <y < ag <71
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Since a; < 71, |ed| < |ad|, where the equality holds only if a3 = v2 = ag = 71, i.e., Q is a
diamond. This completes the proof. O

U3 Uyq V4

U3

w3

Wy w1 x

Figure 20: Solid segments represent the edges of M ST (P). Dashed segments represent the
swapped edges. Dotted segments represent the edges that cannot exist.

Lemma 17. Every finite set of points P in the plane admits a minimum spanning tree whose
node degree is at most five and whose minimal-edge degree is at most eight.

Proof. Consider a minimum spanning tree, M ST (P), of maximum vertex degree 5. The max-
imum edge degree in M ST (P) is 9. Consider any minimal edge, uv. If the degree of wv is 8,
then M ST (P) satisfies the statement of the lemma. Assume that the degree of uv is 9. Let
u1, U2, u3, ug and vi,va, v3, vg4 be the the neighbors of 4 and v in clockwise and counterclockwise
orders, respectively. See Figure 20. In M ST(P), the angles between two adjacent edges are at
least /3. Since Zu;uu;tq > w/3 and Lvjvvipq > w/3 for i = 1,2, 3, either Zvuug + Luvvy <7
or Zvuugs+ Zuvvy < w. Without loss of generality assume that Zvuu; + Zuvvy < Zvuug+ Luvvy
and Zvuuy + Zuvvy < w. We prove that the spanning tree obtained by swapping the edge uv
with ujv; is also a minimum spanning tree, and it has one fewer minimal-edge of degree 9. By
repeating this procedure at each minimal-edge of degree 9, we obtain a minimum spanning tree
that satisfies the statement of the lemma. Let Q) = u,v,v1,u;. By Lemma 15, vy is outside
the triangle Aujuwv, and u; is outside the triangle Auvwvy. In addition, u; and v; are on the
same side of the line subtended from ww. Thus, ) is a convex quadrilateral. Without loss
of generality assume that |vv1| < |uui|. By Lemma 16, |ujv1| < |uug|. If |ugvi| < |uuq], we
get a contradiction to Lemma 2. Thus, assume that |ujv;| = |uu;|. As shown in the proof of
Lemma 16, this case happens only when @) is a diamond. This implies that Zvuu; + Zuvv, = 7,
and consequently Zvuuy + Zuvvy = 7. In addition, Zu;uuisq = 7/3 and Lv;ovip; = 7/3 for
i =1,2,3. To establish the validity of our edge-swap, observe that the nine edges incident to u
and v are all equal in length. Therefore, swapping uv with uyv1 does not change the cost of the
spanning tree and, furthermore, the resulting tree is a valid spanning tree since ujv; is not an
edge of the original spanning tree M ST(P); otherwise u,v,v1, and u; would form a cycle. We
have removed a minimal edge uv of degree 9, but it remains to show that the degree of u; and
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v1 does not increase to six and new minimal edge of degree 9 is not generated. Note that wjus
and vjve are not the edges of M ST(P), and hence, deg(u;) and deg(vy) are still less than six.
In order to show that no new minimal edge is generated, we differentiate between two cases:

e min{Zvvjuy, Zvjuju} > w/3. Since Lvjuiu > w/3 and Zuujug = /3, u can be adjacent
to at most two vertices other than u and vy, and hence deg(u;) < 4; similarly deg(v;) < 4.
Thus, u, v, u1, and v; are of degree at most four, and hence no new minimal edge of
degree 9 is generated.

e min{/vvjuy, Zviugu} = 7/3. Without loss of generality assume that Zvjuju = 7/3. This
implies that Zvviu; = 27/3. Since Zvjuyu = 7/3 and Zuujug = 7/3, uy is adjacent to
at most three vertices other than v and v1. Let u, vy, w1, ws, w3 be the neighbors of u; in
clockwise order. Note that v; is not adjacent to u, vg nor w;. But v; can be connected
to another vertex, say z, which implies that deg(v;) < 3. We prove that the spanning
tree obtained by swapping the edge uiv; with viw; is also a minimum spanning tree of
node degree at most five, that has one fewer minimal edge of degree 9. The new tree is
a legal minimum spanning tree for P, because |vjw;| = |vju1|. In addition, deg(u;) < 4
and deg(v1) < 4. Since wijwe and wix are illegal edges, deg(w;) < 4. Thus, u, v, uj, v,
and w; are of degree at most four and no new minimal edge of degree 9 is generated. This
completes the proof that our edge swap reduces the number of minimal edges of degree
nine by one.

9 Conclusion

Given a set of n points in general position in the plane, we considered the problem of strong
matching of points with convex geometric shapes. A matching is strong if the objects repre-
senting whose edges are pairwise disjoint. In this paper we presented algorithms that compute
strong matchings of points with diametral disks, equilateral triangles, and squares. Specifically
we showed that:

e There exists a strong matching of points with diametral-disks of size at least [”1—;11

e There exists a strong matching of points with downward equilateral-triangles of size at
least [251].
9

e There exists a strong matching of points with downward/upward equilateral-triangles of
size at least [21].

e There exists a strong matching of points with axis-parallel squares of size at least [”T_l]

The existence of a downward/upward equilateral-triangle matching of size at least [%1,
implies the existence of either a downward equilateral-triangle matching of size at least [HT_l—‘
or an upward equilateral-triangle matching of size at least [%1 This does not, however,
imply a lower bound better than [”T_I] for downward equilateral-triangle matching (or any
fixed oriented equilateral-triangle).

A natural open problem is to improve any of the provided lower bounds, or extend these
results for other convex shapes. A specific open problem is to prove that Algorithm 1 computes

a strong matching of points with diametral-disks of size at least ["T_l] as discussed in Section 8.
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