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Abstract

The input to the token swapping problem is a graph with vertices v1, v2, . . . , vn, and
n tokens with labels 1, 2, . . . , n, one on each vertex. The goal is to get token i to vertex
vi for all i = 1, . . . , n using a minimum number of swaps, where a swap exchanges the
tokens on the endpoints of an edge.

Token swapping on a tree, also known as “sorting with a transposition tree,” is not
known to be in P nor NP-complete. We present some partial results:

1. An optimum swap sequence may need to perform a swap on a leaf vertex that
has the correct token (a “happy leaf”), disproving a conjecture of Vaughan.

2. Any algorithm that fixes happy leaves—as all known approximation algorithms
for the problem do—has approximation factor at least 4/3. Furthermore, the two
best-known 2-approximation algorithms have approximation factor exactly 2.

3. A generalized problem—weighted coloured token swapping—is NP-complete on
trees, but solvable in polynomial time on paths and stars. In this version, tokens
and vertices have colours, and colours have weights. The goal is to get every
token to a vertex of the same colour, and the cost of a swap is the sum of the
weights of the two tokens involved.

∗This work was partially supported by NSERC.
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1 Introduction

Suppose we wish to sort a list of numbers and the only allowable operation is to swap two
adjacent elements of the list. It is well known that the number of swaps required is equal to
the number of inversions in the list, i.e., the number of pairs that are out of order. Many
other problems of sorting with a restricted set of operations have been studied, for example,
pancake sorting, where the elementary operation is to flip a prefix of the list; finding the
minimum number of pancake flips for a given list was recently proved NP-complete [8].

A much more general problem arises when we are given a set of generators of a permutation
group, and asked to express a given permutation π in terms of those generators. Although
there is a polynomial time algorithm to test if a permutation can be generated, finding a
minimum length generating sequence was proved PSPACE-complete in 1985 [21].

This paper is about a problem, known recently in the computer science community as
token swapping, that is intermediate between sorting a list by swaps and general permutation
generation. The input is a graph with n vertices v1, . . . , vn. There are n tokens, labelled
1, 2, . . . , n, and one token is placed on each vertex. The goal is to “sort” the tokens, which
means getting token i on vertex vi, for all i = 1, . . . , n. The only allowable operation is to
swap the tokens at the endpoints of an edge, i.e., if e = (vi, vj) is an edge of the graph and
token k is at vi and token l is at vj, then we can move token k to vj and token l to vi. See
Figure 1. The token swapping problem is to find the minimum number of swaps to sort the
tokens. In terms of permutation groups, the generators are the transpositions determined
by the graph edges, and the permutation is π(i) = j if token j is initially at vertex vi; we
want a minimum length generating sequence for the permutation.
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Figure 1: An example of the token swapping problem. Left: a tree of 6 vertices and an
initial placement of tokens (in circles) on the vertices. Blue dashed arrows indicate where
each token should go. Token 4 is home. The corresponding permutation is (1 5 3)(2 6)(4).
Right: the effect of swapping tokens 4 and 6. Now token 6 is closer to its destination but
token 4 is further from its destination. One swap sequence that sorts the tokens to their
destinations is (4 6), (6 2), (2 4), (3 4), (3 2), (3 1), (1 5), (5 2), (5 4). This sequence has 9
swaps, but there is a swap sequence of length 7.

Our emphasis is on computing the number of swaps, and the actual swap sequence,
needed for a given placement of tokens on a graph. Another interesting problem is to bound
the worst-case number of swaps for a given graph, where the worst case is taken over all
possible token placements. This can be formulated in terms of the Cayley graph, which has
a vertex for each possible assignment of tokens to vertices, and an edge when the two token

3



assignments differ by one swap. The worst case number of swaps is equal to the diameter
of the Cayley graph. The Cayley graph applies more generally for any permutation group
given by a set of generators, where the generators define the edges of the Cayley graph. This
is discussed in more detail in Section 2.2.

In the special case when the graph is a path, the token swapping problem is precisely the
classic problem of sorting a list using adjacent swaps, see Knuth [25]. Our paper is about
token swapping on a tree. This problem is also known as “sorting with a transposition tree,”
and is of great interest in the area of sorting networks because the Cayley graph of a star (a
tree with one non-leaf) is a good alternative to a hypercube. Akers and Krishnamurthy [1]
first introduced this idea in 1989, and their paper has been cited more than 1400 times
according to Google scholar.

Token swapping on general graphs has been studied by different research communities in
math, computer science, and engineering, often unaware of each others’ work. We survey all
the results we know of in Section 2 below.

The problem of token swapping on graphs was proved NP-complete [3], and even APX-
hard [28], in 2016, and further hardness results have appeared since then [7]. There are
polynomial time algorithms for paths, cliques [10], cycles [21], and stars [1, 33, 31], and some
other special cases, as discussed in more detail below.

Token swapping on a tree is not known to be in P or NP-complete. Several papers have
given polynomial time 2-approximation algorithms for trees [1, 42, 46, 28] (details below).

The token swapping problem has been generalized in several ways. In weighted token
swapping each token i has a positive weight w(i) and the cost of swapping token k and token
l is w(k) + w(l). The goal is to sort the tokens while minimizing the sum of the costs of
the swaps. In coloured token swapping [19, 47] the tokens have colours, and we are given
an initial and final assignment of coloured tokens to the vertices. Tokens of the same colour
are indistinguishable. The goal is to move from the initial to the final token arrangement
using the fewest swaps. The original problem is the case where each token has a distinct
colour. Coloured token swapping on graphs is NP-hard for 3 colours [47] but solvable in
polynomial time for 2 colours. In weighted coloured token swapping we have coloured tokens
and each colour has a weight. Such a weighted colored version has been studied for string
rearrangements under various cost models, which allows swapping non-adjacent elements [2].

1.1 Our results

A leaf in a tree that already has the correct token is called a happy leaf. One feature of all
the algorithms for token swapping on trees—both the poly-time algorithms for special cases
and the approximation algorithms for the general case—is that they never swap a happy
leaf. In 1991 Vaughan [40] conjectured that an optimal swap sequence never needs to swap a
token at a happy leaf. We give a 10-vertex counterexample to this “Happy Leaf Conjecture”
in Section 3.

Furthermore, we show in Section 4 that any algorithm that fixes the happy leaves has
approximation factor at least 4/3, and we show that the two best-known 2-approximation
algorithms have approximation factor exactly 2.
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These results provide new insight that the difficult aspect of token swapping on trees
is knowing when and how to swap happy leaves. Next, we explore whether this difficult
aspect can be used to prove NP-hardness. We show in Section 5 that the generalized version
of weighted coloured token swapping is NP-complete for trees. Furthermore, we show in
Section 6 that this generalized version remains poly-time on paths and stars, which gives
further evidence that trees really are harder than paths and stars.

Finally, in an attempt to expand the set of “easy” cases, we devised a polynomial time
algorithm for token swapping on a broom—a star with an attached path—only to discover
that this had been done by Vaughan [41] in 1999, and by Kawahara et al. [22] in 2016. Our
simpler proof is in Section 7.

1.2 Preliminaries

We say that a token is home if it is at its destination. In a tree, homing a token means
swapping it along the (unique) path from its current position to its destination.

We defined the token swapping problem as: move token i from its initial vertex to
vertex vi, with associated permutation π(i) = j if token j is initially at vi. An alternative
formulation is in terms of an initial and final token assignment. Suppose s is an initial
assignment of tokens to vertices, and f is a final assignment of tokens to vertices. The goal
then is to move each token i from its initial vertex s(i) to its final vertex f(i). The associated
permutation is π(i) = s−1(f(i)). (Our first formulation just eases notation by assuming that
f(i) = vi.)

A solution to a token swapping problem is a sequence of swaps, σ1, σ2, . . . , σk. Our
convention is that, starting with the initial token assignment, we perform the swaps starting
with σ1 and ending with σk to get the tokens to their final positions. Equivalently, performing
the transpositions starting with σk and ending with σ1 generates the associated permutation.

2 Background

This section contains a thorough summary of results on token swapping and related problems.

2.1 Reconfiguration

Problems of turning one configuration into another using a limited repertoire of steps have a
long history, for example in the study of puzzles and permutation groups [10]. Recently, the
name “reconfiguration” has been applied to these problems—see the recent surveys by van
den Heuvel [39] and Nishimura [29]. Reconfiguration problems can be formulated in terms
of a “reconfiguration graph” that has a vertex for each configuration and an edge for each
possible reconfiguration step. As discussed below, when the set of moves form a permutation
group the reconfiguration graph is the Cayley graph.

The general questions that are considered in reconfiguration problems are: can any
configuration be reconfigured to any other (connectivity); what is the worst case number of
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steps required (diameter); and what is the complexity of computing the minimum number of
steps required to get from one given configuration to another given configuration (distance).
In this paper, we concentrate on distance questions, although we will mention some previous
work on deciding reconfigurability and on diameter. We return to more general reconfiguration
problems in the final subsection.

2.2 Permutation groups and Cayley graphs

Given a group (F, ∗), a subset S is a generator of F , if every element of F can be expressed
as the product of finitely many elements of S and their inverses. Given a group F and a
generator S of F , the Cayley graph Γ(F, S) has the elements of F as vertices and any two
vertices v, w are adjacent, if there exists an element s ∈ S such that v ∗ s = w. In our
context, we are interested in the Cayley graph of the symmetric group Sn that consists of
all permutations of the n element set {1, . . . , n}. Given an graph G = (V,E) on n vertices,
we define the generating set SG as the set of all transpositions corresponding to edges of E.
The Token Swapping problem corresponds to finding the shortest path in the Cayley graph
Γ(Sn, SG) from a given permutation π to the identity permutation. Note that this shortest
path corresponds to the minimum length generating sequence of π by elements of SG. The
worst case number of swaps corresponds to the diameter of the Cayley graph.

2.3 Token swapping on graphs

Token swapping on a connected graph of n vertices takes at most O(n2) swaps—take a
rooted spanning tree and, for vertices in leaf-first order, successively home the token that
goes to that vertex, where homing a token means swapping it along the unique path to
its final location. This bound is tight for a path with tokens in reverse order. The token
swapping problem on graphs (to compute the minimum number of swaps between two given
labellings of the graph) is NP-complete, and in fact, APX-complete, as proved by Miltzow et
al. [28]. They complemented these hardness results with a polynomial-time 4-approximation
algorithm, and an exact exponential time algorithm that is best possible assuming ETH.
These results extend to coloured token swapping. Bonnet at al. [7] showed that token
swapping is W[1]-hard parameterized by number of swaps, but fixed parameter tractable for
nowhere dense graphs. This result extends to coloured token swapping and even to a further
generalization called “subset token swapping”.

There are many special classes of graphs on which token swapping can be solved via exact
polynomial time algorithms. These include (in historical order): cliques [10], paths [25],
cycles [21], stars [1, 33, 31], brooms [41, 23], complete bipartite graphs [46], and complete
split graphs [50]. See the survey by Kim [24].

2.4 Token swapping on trees

Various efficient but non-optimal algorithms for token swapping on a tree have been presented
in the literature. Most of them are 2-approximations—i.e., they use at most twice the
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optimum number of swaps—although this was not always noted. Several of the algorithms
are expressed in terms of the paths that tokens should take. For any token i, there is a
unique path p(i) from its initial vertex to its final vertex vi. Let d(i) be the length (the
number of edges) of the path p(i), and let D =

∑
i d(i).

Happy swap algorithm. The earliest algorithm we are aware of is due to Akers and
Krishnamurthy in 1989 [1]. Their algorithm involves two operations that we will call a
“happy swap” and a “shove.” Let (u, v) be an edge with token i on u and token j on v.
A happy swap exchanges i and j if p(i) includes v and p(j) includes u, i.e., the two tokens
want to travel in opposite directions across the edge e as the first steps in their paths. A
shove exchanges i and j if p(i) includes v and j is home. Akers and Krishnamurthy show
that: (1) one of these operations can always be applied; and (2) both operations decrease
M = D − (n − c) where n is the number of vertices and c is the number of cycles in the
permutation π defined by π(i) = j if token i is initially at vj. Note that if π(i) = i (i.e., i
is home) this forms a trivial cycle which counts in c. Both aspects (1) and (2) of the proof
are fairly straightforward. For (2) they prove that a shove does not change D but decreases
c, whereas a happy swap decreases D by 2 and changes c by at most 1. Their proof implies
that M is an upper bound on the minimum number of swaps. They do not claim that M
is at most twice the minimum, but this follows from the easy observation that M ≤ D and
D/2 is a lower bound on the minimum number of swaps, since a single swap decreases D by
at most 2.

Miltzow et al. [28] gave a 4-approximation algorithm for [coloured] token swapping on
general graphs. In case the graph is a tree, their algorithm is the same as the one of Akers
and Krishnamurthy and they prove that it is a 2-approximation.

Vaughan’s algorithm. Independently of the work by Akers and Krishnamuthy, Vaughan [42]
in 1995 gave an algorithm for token swapping on a tree that uses a number of swaps between
D/2 and D (in her notation D is called “PL”). Her algorithm involves three operations: A,
a happy swap; B, a version of a happy swap that alters the final token assignment; and C,
a variant of a shove. Her operations construct the swap sequence by adding swaps at the
beginning and the end of the sequence, whereas the other algorithms construct the sequence
from the start only.

Operation B applies when there is an edge (u, v) and tokens i and j such that the
destination of i is u and the destination of j is v and p(i) includes v and p(j) includes u, i.e.,
the two tokens want to travel in opposite directions across the edge e as the last steps in their
paths. The operation exchanges the final destinations of i and j, computes a swap sequence
for this subproblem, and then the adds the swap of i and j at the end of the sequence.

Operation C applies in the following situation. Suppose there is an edge (u, v) with token
i on u and token j on v, where p(i) includes v and token j is home. Suppose furthermore
that there is a token k whose destination is u and whose path p(k) includes v. (Note that
this is a more restrictive condition than for a shove.) The operation exchanges tokens i and
j and exchanges the final destinations of j and k. Recursively solve this subproblem. The
swap sequence consists of the swap of i and j, followed by the sequence computed for the
subproblem, followed by the swap of j and k.
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Vaughan proves that if operations A and B do not apply, then operation C does, and
she proves that each operation decreases the sum of the distances by 2.

Cycle algorithm. The first explicit description of a 2-approximation algorithm for token
swapping on trees was given by Yamanaka et al. [46], who gave an algorithm that sorts
the cycles of the permutation one-by-one. Consider a cycle of tokens (t1t2 · · · tq) in the
permutation π. For i = 1, . . . , q − 1 their algorithm swaps token ti along the path from
its current vertex to the vertex currently containing token ti+1—but stops one short of the
destination. Finally, token tq is swapped from its current vertex to its (original) destination.

We now outline their proof of correctness and the bound on the number of swaps. Suppose
that token t1 is currently at vertex x and that the first edge it wishes to travel along is
e = (x, y). Let j be the minimum index, 2 ≤ j ≤ q such that tj wishes to travel in
the opposite direction along e (and observe that j exists). Then the cycle is equivalent to
(t1 · · · tj) followed by (tj · · · tq), where the second cycle is empty if j = q. Also, the algorithm
performs the same swaps on these two cycles as on the original. Thus it suffices to prove
that their algorithm correctly solves the cycle (t1 · · · tj). This cycle has the special feature
that no tokens besides t1 and tj wish to traverse edge e. Yamamoto et al. prove that their
algorithm “almost” achieves the property that just before step i (the step in which ti moves)
tokens t1, . . . , ti−1 are at their final destinations and all other tokens, including the non-cycle
tokens, are at their initial positions. “Almost” means that there is the following exception.
Let z be the vertex containing ti, and let z′ be the next vertex on the path from z to a. All
the tokens on the path from z′ to a are one vertex away from their desired positions—–they
should all be one vertex closer to z. With this exception, the property is obvious for i = 1
and i = 2 and can be proved by induction, which implies that the algorithm is correct.
Because tokens are only “off-by-one” it can be argued that the number of swaps performed
in step i of the algorithm is bounded by the original distance from ti to its destination. This
implies that the total number of swaps is at most the sum of the distances of labels in the
cycle, which gives the factor 2 approximation.

Comparisons. None of the algorithms will swap a token at a happy leaf, so there is an
instance (see Section 3) where the algorithms are not optimal. The three algorithms differ
in how far they allow a token i to stray from its path p(i). In the Happy Swap algorithm no
token leaves the set of vertices consisting of its path together with the vertices at distance 1
from its destination. In the Cycle algorithm, no token moves more than distance 1 from its
path. In Vaughan’s algorithm, a vertex may go further away from its path.

2.5 Token swapping on paths

Token swapping on a path is the classic problem of sorting a list by transposing adjacent
pairs. See Knuth [25, Section 5.2.2]. The minimum number of swaps is the number of
inversions in the list. Curiously, a swap that decreases the number of inversions need not be
a happy swap or a shove (as described above) and, on the other hand, there does not seem to
be any measure analogous to the number of inversions that applies to trees more generally,
or even to stars.
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The diameter of the Cayley graph for token swapping on a path is Θ(n2). Researchers
have also studied the number of permutations with a given number of inversions [25], and
the relationship between the number of inversions and the number of cycles [13, 6].

2.6 Token swapping on stars

A star is a tree with one non-leaf vertex, called the center vertex. We will need the following
known result about token swapping on a star, which expresses the number of swaps as a
function of the number of cycles in the permutation π. The formula is often written with a
delta term whose value depends on whether the center vertex is happy or not, but we will
express it more compactly.

Lemma 1 ([1, 33, 31]). The optimum number of swaps to sort an initial placement of tokens
on a star is nU + `, where nU is the number of unhappy leaves and ` is the number of cycles
in the permutation that have length at least 2 and do not involve the center vertex.

Proof sketch. Consider a cycle C of length at least 2 in the permutation of tokens and
consider the corresponding vertices of the star. If the center vertex is not in C then the
number of swaps to sort C is its number of leaves plus one. If the center vertex is in C then
the number of swaps is the number of leaves in C. Because the cycles are independent, we
can sum over all non-trivial cycles, which yields the stated formula.

It follows that the diameter of the Cayley graph for a star is 3
2
n+O(1), which arises when

all cycles have length 2. Further properties of Cayley graphs of stars were explored by Qiu
et al. [34]. Portier and Vaughan [33] analyzed the number of vertices of the Cayley graph at
each distance from the distinguished “sorted” source vertex (see also [43]). Pak [31] gave a
formula for the number of shortest paths between two vertices of the Cayley graph.

2.7 Transposition trees and interconnection networks

The network community’s interest in token swapping on trees (“transposition trees”) stems
from the use of the corresponding Cayley graphs as interconnection networks, an idea first
explored by Akers and Krishnamurthy [1]. Cayley graphs of transposition trees have the
following desirable properties: they are large graphs (n! vertices) that are vertex symmetric,
with small degree (n−1), large connectivity (the same as the degree), and small diameter. In
particular, the diameter is 3

2
n+O(1) when the tree is a star. The commonly used hypercube

has 2n vertices and diameter n, so the diameter is logarithmic in the size. By contrast, the
Cayley graph of a star has sublogarithmic diameter.

Akers and Krishnamurthy proved a bound on the diameter of the Cayley graph of a
transposition tree, specifically, the maximum over all permutations of the bound D− (n− c)
which was discussed above. This bound cannot be computed efficiently since it involves the
maximum over n! permutations. Vaughan [40] also gave upper and lower bounds on the
diameter of the Cayley graph, though neither easy to state nor to prove.
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Follow-up papers by Ganesan [16], Chitturi [11] and Kraft [27] have lowered the diameter
bound and/or the time required to compute the bound. To give a flavour of the results, we
mention a polynomial-time computable upper bound, γ, due to Chitturi [11] that is defined
recursively as follows: if the tree is a star, use the known diameter bound; otherwise choose
a vertex v that maximizes the sum of the distances to the other vertices, increase γ by
the maximum distance from v to another vertex and recurse on the smaller tree formed by
removing the leaf v.

2.8 Happy leaves

As mentioned in the introduction above, Vaughan [40] conjectured that a happy leaf in a tree
need not be swapped in an optimal swap sequence. In fact she made a stronger conjecture [40,
Conjecture 1] that if a tree has an edge (a, b) such that no token wishes to cross (a, b) (i.e.,
no path from a token to its destination includes edge (a, b)) then there is an optimal swap
sequence in which no token swaps across (a, b). The Happy Leaf Conjecture is the special
case where b is a leaf.

Smith [37, Theorem 9] claimed something stronger than the happy leaf conjecture: that
no optimal swap sequence would ever swap a happy leaf. But later he found an error in the
proof [38], and gave an example of a small tree where there is an optimal swap sequence that
performs a swap on a happy leaf. In his example, there is also an optimal swap sequence
that does not swap the happy leaf so he did not disprove the happy leaf conjecture.

2.9 Coloured token swapping

Many natural reconfiguration problems involve “coloured” elements, where two elements of
the same colour are indistinguishable. Token swapping for coloured tokens was considered by
Yamanaka et al. [48] (journal version [47]). They proved that the coloured token swapping
problem is NP-complete for c ≥ 3 colours even for planar bipartite graphs of max degree 3,
but for c = 2 the problem is solvable in polynomial time, and in linear time for trees. On
complete graphs, coloured token swapping is NP-complete [7] but fixed parameter tractable
in the number of colours [47]. The complexity of coloured token swapping on trees is open.

2.10 More general token and pebble games

There are many problems similar to token swapping, some of which were studied long ago.
We mention some results but do not attempt a complete survey.

The classic 15-puzzle (see [12, 39] for surveys) is a version of token swapping on a 4×4 grid
graph where only one special token (the “hole”) can be swapped. As a consequence, only half
the token configurations (the alternating group) can be reached. Generalizing beyond the
4× 4 grid to general graphs, Wilson [44] in 1974 gave a complete characterization of which
token configurations on which graphs can be reached via this more limited set of moves.
Minimizing the number of moves is NP-complete [18] even for grid graphs [35]. Recently, a
version with coloured tokens has also been considered [45].
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Several papers explore generalizations where there is more than one “hole”. As in the
15-puzzle, a swap must involve a hole. The tokens may be labelled or unlabelled. For
labelled tokens, Kornhauser et al. [26] in 1984 gave a polynomial time algorithm to decide if
reconfiguration between two label placements is possible, and proved a tight bound of O(n3)
on the diameter of the associated Cayley graph.

For unlabelled tokens and holes Auletta et al. [4] gave a linear time algorithm to decide
reconfigurability on any tree, and this was generalized to linear time for any graph (even
for coloured tokens) by Goraly and Hassin [19]. Călinescu et al. [9] gave a polynomial time
algorithm to minimize the number of swaps for any graph, but showed that the problem
becomes APX-hard if the objective is to minimize the number of times a token moves along
a path of holes. Fabila-Monroy et al. [14] showed that the diameter of the Cayley graph
(which they call the “token graph”) is at most k times the diameter of the original graph.

Papadimitriou et al. [32] considered a “motion planning” version where all the tokens
are unlabelled “obstacles” except for one labelled “robot” token which must move from a
start vertex to a destination vertex; as before, a swap must involve a hole. They showed that
minimizing the number of swaps is NP-complete for planar graphs but solvable in polynomial
time for trees. The run time for trees was improved in [5].

A unifying framework is to replace holes by labelled or coloured tokens that are “privileged,”
and to require that every swap must involve a privileged token.

In another variant, token movement must be carried out by a single robot walking along
the graph edges and carrying at most one token at a time. Graf [20] includes a good summary.

Rather than token swapping across an edge, an alternative motion is rotation of tokens
around a simple cycle in the graph. This is of interest in the robotics community since it
models movement of robots with the restriction that no two robots can travel along the
same edge at the same time. When all cycles in a graph may be used, there are polynomial
time algorithms to decide if reconfiguration is possible [53, 15]. See also [51] for hardness of
optimization and [52] for practical approaches. If rotation is only allowed around the cycles
of a cycle basis (e.g., the faces of a planar graph) Scherphuis [36] provided a characterization
(similar to Wilson’s for the 15-puzzle generalization) of which graph/cycle-basis/token-
placement combinations permit reconfiguration (see also Yang [49], who showed that Wilson’s
result reduces to this result).

Although the term “pebbling” is sometimes used for token swapping, the more standard
distinction is that pebbling games are played on directed acyclic graphs and involve rules
to add and remove pebbles, modelling memory usages or dependencies in computation.
Nordström [30] wrote a thorough survey of pebbling games and their relevance to complexity
theory.

3 Counterexample to the Happy Leaf Conjecture

In this section we disprove the Happy Leaf Conjecture by giving a tree with initial and final
token placements such that any optimal swap sequence must swap a token on a happy leaf
(recall that a happy leaf is one that has the correct token). Our counterexample has n = 10
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Figure 2: A counter-example to the happy leaf conjecture where an optimum swap sequence
involves moving the happy token 10. (a) The initial tokens (in circles). (b) Three swaps
move token 10 to v1. (Dashed blue arrows show the upcoming moves.) (c) The result of
homing tokens 9 and 8. (d) The result of homing tokens 9 through 4. Four additional swaps
will sort the tokens.

vertices and is shown in Figure 2(a). This is the smallest possible counterexample—we have
verified by computer search that all trees on less than 10 vertices satisfy the Happy Leaf
Conjecture. Our counterexample can easily be generalized to larger n, and we give more
counterexamples in the next section. Our tree consists of a path v1, . . . , v9 and one extra
leaf v10 joined by an edge to vertex v3. The initial token placement has token 10 at v10 (so
v10 is a happy leaf) and tokens 9, 8, . . . , 1 in that order along the path v1, v2, . . . , v9.

If token 10 does not leave vertex v10 (i.e., we fix the happy leaf), then we must reverse
the order of the tokens on a path of length 9, which takes

(
9
2

)
= 36 swaps. However, as we

now show, there is a swap sequence of length 34.
Initially, we perform 3 swaps to move token 10 to v1 giving the configuration shown in

Figure 2(b). Next, we ignore leaf v1 and perform the sequence of swaps that homes tokens
9, 8, . . . , 4. The result of homing tokens 9 and 8 is shown in Figure 2(c), and the result of
homing all of them is shown in Figure 2(d). It is easy to verify that this takes 7 swaps for
token 9, 6 for token 8, . . . , 2 for token 4, which adds up to 7 + 6 + · · ·+ 2 = 27 swaps.

Finally, we perform the following swaps to complete the sort: home token 10 in 3 swaps,
then home token 1 in 1 swap. In total, this uses 3 + 27 + 4 = 34 swaps.

The idea of why this saves swaps is as follows. To reverse the order of edges on a path,
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every token must swap with every other token. By contrast, the above approach saves swaps
whenever two tokens occupy vertices v2 and v10. For example, tokens 8 and 7 never swap
with each other, nor do 7 and 6, etc. We need n ≥ 10 so that this saving exceeds the cost of
the initial set-up and final clean-up.

4 Lower Bounds on Approximation

In this section we prove that if an algorithm for token swapping on a tree never swaps a token
on a happy leaf, then it has worst case approximation factor at least 4

3
. In Section 2.4 we

described three 2-approximation algorithms for token swapping on a tree: the Happy Swap
algorithm, Vaughan’s algorithm, and the Cycle algorithm. All three algorithms fix the happy
leaves, so the lower bound applies. For the Happy Swap algorithm and the Cycle algorithm
we improve the approximation lower bound to 2. To do this we use further properties of
those algorithms, in particular, constraints on how far a token may stray from the path
between its initial and final positions. It is an open question whether Vaughan’s algorithm
has an approximation factor better than 2.

Theorem 2. Any algorithm that does not move tokens at happy leaves has an approximation
factor of at least 4

3
.

Proof. Define a tree Tk to have a path of 2k+1 vertices, pk, pk−1, . . . , p1, p0, p
′
1, . . . , p

′
k together

with a set L of k leaves adjacent to the center vertex, c = p0, of the path. The tokens at c
and the vertices of L are already home, i.e., they have the same initial and final positions.
The tokens on the path should be reversed, i.e., the token initially at vertex pi of the path
has final position p′i and vice versa. See Figure 3 for an illustration.

Any algorithm that fixes happy leaves must reverse the path which takes
(
2k+1
2

)
= 2k2+k

swaps.
We now describe a better swap sequence S. Let tc denote the token at vertex c, let

A = {a1, a2, . . . , ak} denote the tokens initially at p1, . . . , pk, let X = {x1, . . . xk} denote
the tokens initially at vertices `1, . . . , `k of L, and let A′ = {a′1, . . . , a′k} denote the tokens
initially at p′1, . . . , p

′
k. The plan is to perform the following 4 steps: (1) exchange the tokens

A with the tokens X; (2) exchange A with A′; (3) exchange A′ with X; and (4) adjust the
order of tokens X.

For clarity of explanation, we will implement each step in a way that is suboptimal but
efficient enough for our purposes. For step (1), we implement the exchange of the two token
sets as follows: first move token tc to pk using k swaps, then for i = k, . . . 1 move token xi to
vertex pi−1 using i swaps, and finally, move token tc from pk back to c using k swaps. This
places tokens X on the first half of the path in the correct order (xi on pi), and tokens A on
vertices L in reversed order (ai on `k+1−i). The total number of swaps is 2k+

(
k+1
2

)
= 1

2
k2+ 5

2
k.

Step (2) acts similarly on A and A′, after which tokens A are home, and tokens A′ are
on vertices L in the correct order (a′i on `i). Finally, after step (3), tokens of A and A′ are
home, and tokens X are on L but in reverse order. For step (4) we must sort the tokens on
X which means solving a tree swapping problem on a star of k leaves, where the permutation
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Figure 3: Illustration for Theorem 2. (a) The tree Tk with initial token placement. Notation←−
A indicates the order of the labels (in this case right to left). The blue dashed arrow indicates
the first move on tokens X in step (1) of swap sequence S. (b) After step (1) A and X are
exchanged. Note that A is reversed. (c) After step (2). (d) After step (3). It remains to
reverse the tokens X.

consists of k/2 cycles each of length 2 (xi must be exchanged with xk+1−i). Each cycle takes
3 swaps for a total of 3

2
k swaps.

The total number of swaps used is 3
2
k2 + 9k. This is an upper bound on the optimum

number of swaps. The ratio of number of swaps used by the algorithm to optimum number
of swaps is at least (2k2 + k)/(3

2
k2 + 9k) = 4

3
− o(1).

Theorem 3. The Happy Swap and the Cycle algorithms do not have an approximation factor
less than 2.

Proof. Our example generalizes the one in the preceding proof to have b paths of k vertices
rather than two paths. For every k and every odd b we define a tree Tk,b together with initial
and final token placements. The tree Tk,b consists of b paths of k vertices all joined to a
center vertex c. Additionally, there is a set L of k leaf vertices adjacent to c. See Figure 4
for an illustration.

We denote the paths of k vertices by P1, . . . , Pb respectively. Let Ai be the tokens initially
on path Pi, let X be the tokens initially on L, and let tc be the token on c.

In the final token placement the tokens Ai are on path Pi+1, indices modulo b. Each
token in Ai should have the same distance to c in the initial and final token placements. The
tokens X and tc should stay where they are.

Idea of the proof. Any solution for token swapping on this input has to accomplish two
tasks. Each set of tokens Ai has to be moved from its initial path Pi to its final path Pi+1.
This takes roughly k2 swaps, as k tokens have to move k steps. But each those swaps could
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Figure 4: Left: The tree T4,3 with initial token placement. Notation
←−
A indicates the order of

the labels. Middle: The tree with its target token placement. Right: The tree with arrows
that indicate for each token the initial and target placement.

accomplish something else for another token, so only half of those swaps should be charged
to this task. The other task is to reverse the order of each set Ai. Now, we know that this
takes

(
k
2

)
≈ k2/2 swaps on a path. But if we can use the happy leaves, this can be done with

O(k) swaps and thus is asymptotically free.
More precisely, we will first give a clever solution using happy leaves to show that the

optimum numer of swaps, SOPT , satisfies SOPT ≤ (b + 1)(
(
k+1
2

)
+ 2k). Then we will argue

that the number of swaps, SA, used by either algorithm is at least k2b.
To complete the proof, observe that for k = b, SOPT ≤ 1

2
k3 + o(k3) and SA ≥ k3. Then

for every ε > 0 there is a k such that SA/SOPT > 2− ε. This shows that the algorithms do
not have an approximation factor better than 2.

We now fill in the details of the clever solution, and the analyses of the algorithms.

A Clever Solution. We describe a procedure to swap every token to its target position
using only (b+1)(

(
k+1
2

)
+2k) swaps. See Figure 5 for an illustration. As a first step, exchange

the tokens A1 with the tokens X. The exchange is implemented as described in the proof
of Theorem 2 and takes

(
k+1
2

)
+ 2k swaps. In the second step, exchange the tokens A1 with

the tokens A2. This places the tokens of A1 on path P2 in the correct order, and again
takes

(
k+1
2

)
+ 2k swaps. In general, the ith step exchanges tokens Ai−1 (currently on the

vertex set L) with the tokens Ai, moving Ai−1 onto the path Pi in the correct order. In the
(b+ 1)st step, tokens Ab are exchanged with tokens X, moving Ab onto the path P1. If b is
odd, the tokens X will end up in the correct order on L, and the total number of swaps is
(b+ 1)(

(
k+1
2

)
+ 2k).

Behavior of the Happy Swap algorithm. We will prove that the Happy Swap algorithm
uses at least k2b swaps. The tokens of Ai must move from path Pi to path Pi+1. Suppose Pi

has vertices p1, . . . , pk where p1 is adjacent to c. Suppose Pi+1 has vertices p′1, . . . , p
′
k where

p′1 is adjacent to c. Let aj be the token whose initial vertex is pj and whose final vertex is
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Figure 5: A clever way of swapping all the tokens.

p′j. The path from initial to final vertex is pj, pj−1, . . . , p1, c, p
′
1, . . . , p

′
j, and its length is 2j.

We note the following properties:

(*) Until aj reaches p′j, happy swaps and shoves can only move aj along its path. Once aj
reaches p′j, a shove can move aj to p′j−1 or to p′j+1, after which it must move back to p′j.

This implies, in particular, that aj cannot leave Pi ∪ Pi+1.
On the long path Pi ∪Pi+1 the tokens aj must reverse their order. Because none of these

tokens leave the long path, the algorithm must perform a swap for each of the
(
k
2

)
inversions.

The algorithm must also perform some swaps to move tokens from Pi to Pi+1. We need a
way to count these separately because a single swap can make progress towards both goals.
We will use a charging argument.

Each swap involves two tokens, and pays 1
2

to each of those two tokens. The number of
swaps is the sum, over all tokens, of the payments to that token. Now we will charge the
work performed to the tokens. Each of the 2j edges of aj’s path charges 1

2
to token aj. Each

inversion aj, ah, h > j charges 1 to aj. The amount charged to aj is j + (k − j) = k.
We will prove below that for every token aj, the payment is at least the charge. This

implies that the total number of swaps is at least bk2 since there are bk tokens.

Claim 4. The payments to aj are at least the charges to aj.

Proof. The first time aj reaches its destination, it has been paid 1
2

for each edge on its path.
This balances the charges for the path.

It remains to account for the inversions charged to aj. Consider an inversion aj, ah, j < h.
Some swap must change the order of these tokens in the path Pi∪Pi+1, and, in this swap, aj
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moves in a direction opposite to the direction of its path from initial to final vertex. Thus, by
property (*), this swap can only happen after aj has reached its destination. In particular,
there are two possibilities for this swap: (1) token aj is home at p′j and token ah is at p′j−1
and a shove exchanges them; or (2) token aj is at p′j+1 and token ah is at p′j and a happy
swap exchanges them. In case (1), there must be a subsequent swap where aj returns to its
home. In case (2) there must have been a previous swap where aj was shoved from its home
to p′j+1. In both cases the extra swap moves aj in the direction of its path, and cannot fix
an inversion. Thus in both cases, there are two swaps to pay for the inversion.

Behavior of the Cycle algorithm. We will prove that the Cycle algorithm uses at least
k2b swaps. The Cycle algorithm solves the cycles independently. Each non-trivial cycle has
b tokens, one on each path. Consider the action of the algorithm on the cycle of tokens at
distance i from c. Let tj be the token on path Pj at distance i from c. Suppose without loss
of generality that the algorithm moves t1 first. It swaps t1 along P1 to the center vertex c,
which takes i swaps, and then along P2 from the center vertex to the vertex just before the
one containing t2, which takes i − 1 swaps. The positions of the other tokens on the cycle
have not changed. Thus, each tj takes 2i− 1 swaps, and finally, tb takes 2i swaps. The total

over all cycles is
∑k

i=1(b(2i− 1) + 1) = 2b
(
k+1
2

)
− bk + k = bk2 + k.

5 Weighted Coloured Token Swapping is NP-complete

In the coloured token swapping problem, we have coloured tokens, one on each vertex of the
graph, and each vertex has a colour. The goal is to perform a minimum number of swaps to
get each token to a vertex that matches its colour. We assume that the number of tokens of
each colour is equal to the number of vertices of that colour. The standard token swapping
problem is the special case when all colours are distinct.

For general graphs the coloured token swapping problem can be solved in polynomial
time for 2 colours, but becomes NP-complete for k ≥ 3 colours [47]. See Section 2.9 for
further background.

In the weighted coloured token swapping problem, each colour c has a weight w(c), and
the cost of swapping tokens of colours c and c′ is w(c)+w(c′). The goal is to reach the target
configuration with minimum total cost.

In this section we prove that weighted coloured token swapping is NP-complete. We
reduce from Vertex Cover by constructing a long path with some ‘green’ tokens initially at
the right end of the path. The final configuration has green tokens at the left end of the
path. We can save the cost of moving all those green tokens the whole length of the path by
dislodging some happy green tokens from a subtree that dangles off the path; we construct
this dangling subtree from the vertex cover instance in such a way that there is a cost savings
if and only if there is a small vertex cover.

Theorem 5. Weighted coloured token swapping on trees is NP-complete.
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Proof. We will reduce the NP-complete problem vertex cover [17] to weighted coloured token
swapping on trees. Let the input to vertex cover be a graph G with n vertices, and a number
q. The problem is whether G has a vertex cover of size at most q.

We first construct a tree T with root r and n children of the root corresponding to the
vertices of V , e.g., see Figures 6(a)-(b). We will refer to these as the V -vertices of T . For
each edge (x, y) of G, we create two vertices in T . We add one of them as a child of the
V -vertex corresponding to x and the other as a child of the V -vertex corresponding to y.
We will refer to these new leaf vertices as the E-vertices of T .

We place tokens on T as follows. We place a darkgray token on each V -vertex. We set
the weight of the darkgray tokens to be n5. On the root of T we place a blue token with
weight 1. We assign each of the two E-vertices (x, y) the colour xy, and set the weight to
1. In the schematic representation (see Figure 6(c)) the tokens of E-vertices are shown in
green, but note that they are in fact a collection of |E| different colours. We will refer to
these colours as edge-colours.

We then construct a path P of length (Lr + |E|+ (Lr − 1) + |E|) such that

- the first Lr vertices have red tokens of weight 1,

- the next |E|+ (Lr − 1) vertices have blue tokens,

- the next |E| vertices have tokens of edge-colours,

Let Lr = n7, and identify the root of T with the (Lr + |E|)th vertex of the path. Let T ′

be the resulting tree (see Figure 6(d)).
We now define the initial and final token configurations on T ′ as illustrated in Figures 6(d)

and (g), respectively (ignore the intermediate figures for now). Note that the vertices that
originally belonged to T are ‘happy’ vertices.

Let β = Lr(2|E|+ (Lr − 1)) and β′ = (|E|2 + 3|E| − 2n). In the following we show that
G has a vertex cover of size q if and only if the weighted coloured token swapping problem
on T ′ has a solution of cost at most β + 2β′ + 2q(1 + n5).

From Vertex cover to Weighted coloured Token Swapping: Assume that G has a
vertex cover of size q. We reach the target configuration as follows:

Fig. 6(d)–(e): Move the darkgray tokens from those V -vertices that correspond to the
vertex cover to some adjacent leaves. Since each edge of G is incident to a vertex in the
vertex cover, we can swap |E| distinct edge-coloured tokens with |E| blue tokens on the
path. This costs q(1 +n5) for moving the darkgray tokens, and β′ = (|E|2 + 3|E|− 2n)
for swapping the edge-coloured tokens with the blue tokens.

Fig. 6(e)–(f): Move the red tokens all the way to the right end of P . This costs β =
Lr(2|E|+ (Lr − 1)).

Fig. 6(f)–(g): Swap the edge-coloured tokens with the blue tokens that are on the V - and
E-vertices, which costs β′ = (|E|2 + 3|E| − 2n). Finally, move the darkgray tokens
back to the V -vertices, which costs q(1 + n5).
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Figure 6: Illustration for the NP-hardness proof: (a) input graph for vertex cover; (b) tree
T ; (c) initial configuration of coloured tokens on T ; (d) tree T ′ with initial configuration of
coloured tokens; (e)–(f) swapping from initial to final configuration of T ′; (g) T ′ with final
configuration of coloured tokens. Note that, rather than drawing tokens alongside the vertices
as in the other figures, we are simply colouring the vertices by their initial/final/current token
colours.
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From Weighted coloured Token Swapping to Vertex cover: Assume that the weighted
coloured token swapping problem on T ′ has a solution S of cost at most β + 2q(1 + n5) +
(|E|2 + 3|E| − 2|V |). We now show how to find a vertex cover of size at most q.

Observe first that we need to pay at least a cost of β for moving the red tokens to the
right end of P .

If S does not move the tokens of V - and E-vertices, then we still need to move the green
tokens, i.e., the edge-coloured tokens, to the left end of P . If we move any such green token
to one of the leftmost |E| positions of P , then S would require at least a cost of β + Lr.
Since Lr = n7 > 2q(1 +n5) + 2β′ (for every n ≥ 2), we have (β+Lr) > β+ 2β′+ 2q(1 +n5).
Consequently, all the green tokens that are to the left of P in the final configuration must
come from the E-vertices. Since the darkgray tokens are ‘blocking’ the E-vertices, S must
have moved some of these darkgray tokens.

We now claim that S cannot move more than q darkgray tokens. If S moves (q+1) or more
darkgray tokens, then the cost would be at least β+2(q+1)(1+n5) = β+2q(1+n5)+2(1+n5).
Since 2(1+n5) > 2β′ (for every n ≥ 2), we will have a cost of more than β+2β′+2q(1+n5).

Let C be vertices of G that correspond to the darkgray tokens that have been moved by
S. It now suffices to show that C is a vertex cover. Suppose for a contradiction that there is
an edge (x, y) that has not been covered. Then no edge-coloured token with colour xy can
move from an E-vertex to the left of P in the final configuration. Thus this edge-coloured
token must come from the green block that was initially on P , which implies a cost of at least
(β +Lr), which is strictly larger than β + 2β′+ 2q(1 +n5). This completes the NP-hardness
proof.

6 Weighted Coloured Token Swapping

In this section we give polynomial-time algorithms for weighted coloured token swapping
on paths and stars. Recall from the previous section our convention that we have coloured
tokens and coloured vertices, with one token at each vertex, and with the number of tokens
of each colour equal to the number of vertices of that colour. The goal is to perform swaps
to get each token to a vertex that matches its colour. Each colour c has a weight w(c) and
the cost (or weight) of performing a swap on two tokens of colour c and c′ is w(c) + w(c′).
The objective is to minimize the total cost (weight) of the swaps. Note that standard token
swapping is the special case where all the colours are distinct and all the weights are 1

2
, since

each swap moves two tokens.
The main issue in [weighted] coloured token swapping is to decide which token should

go to which vertex. After fixing such a “token-vertex assignmen” the problem becomes
[weighted] token swapping without colours. In some situations—including for paths and
stars—it turns out that the optimum token-vertex assignment does not depend on the
weights. In these situations we can combine an algorithm for coloured token swapping
and an algorithm for weighted token swapping to obtain an algorithm for weighted coloured
token swapping.

Such a separation of colours and weights does not hold for trees in general, as the
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NP-hardness proof in the previous section shows. However, when the number of colours
is 2, the weights and colours do separate—we should never swap two tokens of the same
colour, and therefore every swap costs w(c1) + w(c2) where c1 and c2 are the two colours.
This means that, for 2 colours, weighted coloured token swapping is no harder than coloured
token swapping. Yamanaka et al. [47] gave a polynomial-time algorithm for 2-coloured token
swapping on general graphs. Thus, weighted 2-coloured token swapping can also be solved
in polynomial time.

Our main result in this section is an algorithm for weighted coloured token swapping on
stars. Before that, we give a brief solution for paths.

6.1 Weighted coloured token swapping on paths

As mentioned above, we should never swap two tokens of the same colour. As noted by
Yamanaka et al. [47], for the case of paths, this constraint imposes a unique assignment of
tokens to vertices: the ith token of colour c along the path must be assigned to the the ith

vertex of colour c.
It remains to solve the weighted token swapping problem on paths. As in the unweighted

case, the required swaps correspond precisely to the inversions, i.e., the pairs of tokens
t, t′ whose order in the initial token placement differs from their order in the final token
placement. The minimum weight of a swap sequence is the sum, over all inversions t, t′ of
w(t) + w(t′).

6.2 Weighted coloured token swapping on stars

In this section we give a polynomial time algorithm for the weighted coloured token swapping
problem on a star. As announced above, we will show that weights and colours can be dealt
with separately.

6.2.1 Weighted token swapping on a star

In this subsection we assume that every token has a distinct colour so we know exactly which
vertex every token must move to. Each token t has a weight w(t) and the cost of swapping
tokens t and t′ is w(t) +w(t′). Let H and U be the sets of tokens initially on the happy and
unhappy leaves, respectively. Let A, the set of active tokens, be all tokens except those in
H, i.e., A is U plus the token at the center vertex.

In the token permutation, the cycle that contains the token at the center vertex of the
star will be called the unlocked cycle, and all other cycles will be called locked cycles. Using
this terminology, Lemma 1 states that the optimum number of swaps to solve the unweighted
token swapping problem is nU + `, where nU = |U | and ` is the number of non-trivial locked
cycles. The intuition for the lemma, and the reason for our terminology, is that every locked
cycle must be ‘unlocked’ by an external token, introducing one extra swap per locked cycle.

The number of swaps performed in the weighted case must be at least nU + ` and we
will show that an optimum solution uses either this lower bound or two extra swaps. The
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idea is the following: each of the locked cycles must be unlocked by some other token, and
we want to use the cheapest possible token for this. Either we will use an active token and
perform nU + ` swaps, or we will introduce two extra swaps that bring and return a globally
cheapest token from an initially happy leaf to the star center and use this token to unlock
all the locked cycles.

Notation. The following notation will be used throughout Section 6.
Let X be the unlocked cycle. Let x be a minimum weight token in X, a be a minimum

weight token in A, and h be a minimum weight token in H (h might not exist if there are no
happy leaves). Observe that w(a) ≤ w(x). As above, let ` denote the number of non-trivial
locked cycles in the input token permutation. Finally, let d(t) be the distance of token t
from its home and let Dw =

∑
token tw(t)d(t). Observe that Dw is a lower bound on the cost

of weighted token swapping.
Before presenting the algorithm, we give an alternative formula for Dw. We will use this

in the forthcoming section on weighted coloured stars. Also, it implies that in the case of unit
weights, Dw = 2nU , which will clarify how the present algorithm generalizes the unweighted
case. For vertex v, recall our notation that s−1(v) is the initial token at v, and f−1(v) is the
final token at v. Thus, a leaf vertex v is happy if and only if s−1(v) = f−1(v).

Claim 6. Dw =
∑{w(s−1(v)) + w(f−1(v)) : v is an unhappy leaf }.

Proof. If t is an unhomed token whose initial and final vertices are both leaves, then it
contributes 2w(t) to both sides of the equation. If t is a token whose initial vertex is the
center vertex and whose final vertex is a leaf, then it contributes w(t) to both sides. Similarly,
a token whose initial vertex is a leaf and whose final vertex is the center, contributes w(t)
to both sides. Finally, a token that is home contributes 0 to both sides.

Corollary 7. When the weights are all 1, Dw = 2nU .

We now describe the algorithm for weighted token swapping on a star. The algorithm
uses the best of three possible strategies, all of which begin the same way:

1. Stategy 1. Begin solving the unlocked cycle X by repeatedly swapping the token from
the star center to its home until the token x is on the star center. Next, use x to
unlock and solve all the locked cycles. Finally, complete solving X. The total weight
is Dw + 2w(x)`.

2. Strategy 2. This strategy only applies when w(a) < w(x), in which case a ∈ U \ X.
Begin solving the unlocked cycle X by repeatedly swapping the token from the star
center to its home until the token x is on the star center. Then swap x with a.
Suppose a was in the locked cycle L. Use a to unlock and solve all the other locked
cycles, leaving tokens of X and L \ {a} fixed. Then use a to solve cycle L, which will
return x to the center token. Finally, complete solving X. The effect is that one locked
cycle is unlocked by x at a cost of 2w(x) and `− 1 cycles are unlocked by a at a cost
of 2w(a)(`− 1), for a total cost of Dw + 2w(x) + 2w(a)(`− 1).
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3. Strategy 3. This strategy only applies when h exists. Begin solving the unlocked cycle
X by repeatedly swapping the token from the star center to its home until the token
x is on the star center. Then swap x with h. Use h to unlock and solve all the locked
cycles, leaving tokens of X fixed. Then swap h and x. Finally, complete solving X.
The total weight is Dw + 2w(x) + 2w(h) + 2w(h)` = Dw + 2w(x) + 2w(h)(`+ 1).

To decide between the strategies we find the minimum of w(x)(` − 1), w(a)(` − 1),
w(h)(` + 1) and use the corresponding strategy 1, 2, or 3, respectively, achieving a total
weight of Dw + 2w(x) + 2 min{w(a)(`− 1), w(h)(`+ 1)}.

Theorem 8. The above algorithm finds a minimum weight swap sequence and the weight of
the swap sequence is:

Dw + 2w(x) + 2 min{w(a)(`− 1), w(h)(`+ 1)}.

Observe that in the case of unit weights, Dw = 2nU by Corollary 7, so the theorem says
that the minimum number of token moves is 2nU + 2 + 2(`− 1) = 2nU + 2`, i.e., the number
of swaps is nU + `, which matches what we know for the unweighted case.

To prove the theorem, we will need the following result about the unweighted star.

Lemma 9. Any swap sequence on an unweighted star that moves a happy leaf does at least
two more swaps than an optimal swap sequence.

Proof. By Lemma 1, solving the unweighted problem on a star optimally takes nU +` swaps,
where nU is the number of unhappy leaves and ` is the number of non-trivial locked cycles.
It suffices to check that after swapping a happy token with the center token the value given
by the formula is increased by one. Indeed, the number of non-trivial locked cycles stays the
same and the number of unhomed leaves increases by one, hence, the net change is +1.

We now prove Theorem 8.

Proof. The swap sequence found by the algorithm realizes the formula given in the theorem.
It remains to show that the formula provides a lower bound on the weight of any swap
sequence.

To reach its home, each token t must contribute weight at least w(t)d(t), for a total
over all tokens of Dw. If ` = 0 then U − X is empty so w(a) = w(x) and the formula
evaluates to Dw, which is a lower bound. Assume from now on that ` ≥ 1. In addition to
the moves accounted for in Dw, there must be at least 2` other token moves, two for each
locked cycle. Furthermore, there must be a first move that swaps some token t of X with
a token outside X. This swap can only happen when t is at the center vertex. Since t will
then be unhomed, there must be a move that returns token t back to the center vertex. The
minimum weight for each of these moves is w(x), and this provides the term 2w(x) in the
lower bound. Subtracting these two moves from the required 2` moves leaves 2(`− 1) moves
still to be accounted for.
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We now consider two cases depending whether a token of H is moved or not. If no token
of H is moved in the swap sequence, then the best we can do for the remaining 2(`−1) moves
is to use a minimum weight token from A, so the weight is at least Dw+2w(x)+2(`−1)w(a).

Next, consider swap sequences that move a token of H. By Lemma 9, the sequence must
do at least two extra swaps, i.e., at least 4 extra token moves. Thus the number of moves
(beyond those for Dw) is at least 2`+ 4. As argued above, we need two moves for a token of
X, costing at least w(x) each. We also need two moves for a token of H (to leave its home
and then return) costing at least w(h) each. This leaves 2` further moves. This gives weight
at least Dw + 2w(x) + 2w(h) + 2`min{w(a), w(h)}. If w(h) ≥ w(a) then this lower bound
is higher than the previous ones and becomes irrelevant. If w(h) < w(a), then the bound
becomes Dw + 2w(x) + 2w(h) + 2`w(h) = Dw + 2w(x) + 2w(h)(`+ 1).

Thus, combining these possibilities, we have a lower bound of Dw+2w(x)+2 min{w(a)(`−
1), w(h)(`+ 1)}, which completes the proof.

6.2.2 Coloured token swapping on a star

Recall that in the coloured token swapping problem, tokens and vertices are assigned colours,
possibly with multiple tokens and vertices sharing the same colour, and the aim is to move
the tokens to vertices of corresponding colours using a minimum number of swaps.

Our algorithm will find a token-vertex assignment that maps each token t of colour c to
a vertex v of colour c, with the interpretation that token t should move to vertex v in the
token swapping problem. Such an assignment yields a standard token-swapping problem
which, by Lemma 1, requires nU + ` swaps, where nU is the number of unhappy leaves and
` is the number of non-trivial locked cycles. Thus, we want a token-vertex assignment that
minimizes nU + `. Note that minimizing nU is the same as maximizing nH , the number of
happy leaves since nU = n− 1− nH , where n is the number of vertices in the star.

We will find an optimum token-vertex assignment using an auxiliary multigraph G that
has a vertex for each colour and one edge for each vertex of the star: for a vertex of colour
c with an initial token of colour d, add a directed edge from c to d in G. In case c = d this
edge is a loop. See Figure 7 for an example.

Let λ be the number of leaf loops of G—loops corresponding to leaf vertices of the star.
Any leaf loop corresponding to leaf vertex v and token t can be turned into a happy leaf by
assigning token t to vertex v. This maximizes the number of happy leaves, nH .

In the input, the number of vertices of colour c is equal to the number of tokens of
colour c. Thus, each vertex of G has in-degree equal to out-degree, which implies that any
connected component in G is strongly connected and has a directed Eulerian tour. We call a
connected component trivial if it has one vertex. Let κ be the number of non-trivial connected
components of G not counting the component that contains the edge corresponding to the
center vertex of the star.

The algorithm for coloured token swapping on a star is as follows:

1. Find a token-vertex assignment:

(a) Construct the multigraph G.

24



v4

v1

v2

v3

v5

v6

v7

v8

v9

t4

t1

t2

t3

t5
t6

t7

t8

t9

v10

t10

v4

v1

v2

v3

v5

v6

v7

v8

v9

t4

t1

t2

t3

t5
t6

t7

t8

t9

v10

t10

v2

v3

v1

v10

v4v9

v7

v8

v6

v5

Figure 7: Left: an input for coloured token swapping on a star. The token at a vertex is
drawn as a disc near the vertex. A token must move to a vertex of the same colour. Middle:
the multi-graph G with edges labelled by the corresponding vertex of the star. There are
3 loops but one of them corresponds to the center vertex of the star, so λ = 2. There are
3 connected components, but one is trivial, and one contains the edge corresponding to the
center vertex so κ = 1. Right: a token-vertex assignment (shown by the dashed arrows) that
minimizes nU + `. One may also observe that assigning token t10 to the center vertex v10 or
token t7 to vertex v8 are both sub-optimal.

(b) For each of the λ leaf-loops, assign its token to its vertex.

(c) Remove the leaf-loops from G to obtain G′. Observe that κ is unchanged, and
G′ is still Eulerian. For each connected component of G′ find an Eulerian tour
that traverses all the edges of the component. Convert each Eulerian tour to a
token-vertex assignment as follows: Suppose the edges of the tour are labelled by
vertices v1, v2, . . . , vb (we are freely re-labelling vertices to ease the notation), and
suppose that the edge of G labelled vi goes from colour ci−1 to colour ci (subscript
addition modulo b). Then vertex vi has colour ci−1 and the colour of its initial
token, say ti, is ci. The next edge in the tour corresponds to vertex vi+1 of colour
ci. Assign token ti to vertex vi+1. Note that both have colour ci. This assignment
is well-defined since the edges of the walk correspond to distinct vertices with
distinct initial tokens. Note that this token-vertex assignment introduces a cycle
t1, t2, . . . tb in the corresponding token permutation.

2. Solve the (un-coloured) token swapping problem determined by the computed token-
vertex assignment.

This algorithm produces a token-vertex assignment with λ happy leaves, and κ non-trivial
locked cycles, one for each non-trivial connected component of G′ except the component that
contains the edge corresponding to the center vertex of the star. In other words, nH = λ,
nU = n− 1− λ and ` = κ. Thus the number of swaps is (n− 1− λ) + κ by Lemma 1.

Our goal in the remainder of this subsection is to prove that the algorithm uses the
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minimum number of swaps which means showing that any token-vertex assignment results
in at least (n−1−λ) +κ swaps. The following lemma will help us do that. (Note: the third
statement in the lemma will be useful in the next section.)

Lemma 10. Any token-vertex assignment T has the following properties:

1. T has at most λ happy leaves.

2. T has at least κ non-trivial locked cycles.

3. If T has λ happy leaves then the tokens in the unlocked cycle of T are a subset of XA,
where XA is the set of tokens that are in the unlocked cycle resulting from the above
algorithm.

Proof. 1. Happy leaves only arise from leaf loops so T has at most λ happy leaves.
2. The token permutation corresponding to T can be expressed as a set C of cycles. We

claim that each cycle C ∈ C corresponds to a closed walk C̄ of the same size in G and that
every edge of G is in C̄ for some C ∈ C. This will prove property 2, because it implies that
we need at least one cycle for each connected component in G, and more precisely, that we
need at least one non-trivial locked cycle for each of the components counted in κ.

Consider an edge of G, say the edge corresponding to the vertex whose initial token is t1.
Token t1 appears in some cycle C ∈ C, say (t1, t2, . . . , tb). (We are freely re-naming tokens,
vertices, and colours in this proof.) Suppose token ti has colour ci and is initially at vertex
vi. Then the cycle moves token ti to vertex vi+1 (subscript addition modulo b). Since the
token-vertex assignment respects the colours, vertex vi+1 has colour ci. Also, vertex vi+1 has
initial token ti+1 of colour ci+1. Thus there is a corresponding edge ci, ci+1 in G. Therefore,
the cycle corresponds to a closed walk in G. Also, this closed walk uses the edge we began
with, the one whose initial token is t1.

3. The unlocked cycle of T is the one that contains the token tc initially on the center
vertex u. By the argument above, the tokens in the unlocked cycle must come from the
connected component of G that contains the edge labelled with u. This set of tokens consists
of XA together with some tokens of leaf-loops. But if T has λ happy leaves, then all the
leaf-loops have been turned into happy leaves, so the set of tokens is reduced to XA. Thus,
the tokens of the unlocked cycle are a subset of XA.

We are now ready to prove that the algorithm is optimal:

Theorem 11. The above algorithm uses (n − 1 − λ) + κ swaps and this is the minimum
possible.

Proof. As already stated, the algorithm uses (n− 1− λ) + κ swaps.
By Lemma 10 any other token-vertex assignment results in at most λ happy leaves, i.e. at

least n − 1 − λ unhappy leaves, and at least κ non-trivial locked cycles, and therefore, by
Lemma 1, at least (n− 1− λ) + κ swaps.
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6.2.3 Weighted coloured token swapping on a star

Our algorithm for weighted coloured token swapping on a star is as follows:

1. Ignore the weights and find a token-vertex assignment as in Step 1 of the algorithm in
the previous section.

2. Using this token-vertex assignment T and the original token weights, run the algorithm
for the (uncoloured) weighted star.

In order to show that this algorithm is correct, we will first show that any optimum
token-vertex assignment must turn all leaf-loops into happy leaves. After that we only need
to compare the solution found by the algorithm to solutions with this property.

Claim 12. Suppose T is a token-vertex assignment and there is a leaf-loop consisting of a
leaf vertex v with token t such that both v and t have colour c, but the token-vertex assignment
does not assign t to v. Then T is not optimum for the weighted problem.

Proof. By Theorem 8, the cost of T is

F (T ) = Dw + 2w(x) + 2 min{w(a)(`− 1), w(h)(`+ 1)},

where Dw, w(x), w(a), w(h), and ` depend on T . We will construct a new token-vertex
assignment T ′ that assigns t to v and has F (T ′) < F (T ).

Since t is not assigned to v, t must be part of some non-trivial cycle C in the token
permutation determined by T . Suppose that the cycle C contains tokens p, t, q in that
order (possibly p = q), with initial vertices s(p), s(t)=v, s(q), respectively. Define a new
token-vertex assignment T ′ that assigns t to v, i.e., v becomes a happy leaf, and shortcuts
the rest of C by assigning token p to vertex s(q). This is valid because token p and vertex
s(q) both have colour c, the same as t. The new cycle C ′ is formed by deleting t from C.
We will compare F (T ) and F (T ′) by looking at the quantities Dw, w(x), w(a), w(h) and `.

First of all, no leaf becomes unhappy, so no token leaves H and w(h) does not increase.
Furthermore, v becomes happy, so by Claim 6, Dw decreases by at least 2w(t).

Next we show that w(x) does not increase. That would only happen if t leaves the set
X. Then C must be the unlocked cycle. Since t is at a leaf vertex, the token from the center
vertex remains in C ′, so C ′ is the new unlocked cycle. Furthermore, token p, which is a ‘twin’
of t in the sense that it has the same colour and weight, remains in C ′, so w(x) remains the
same.

Finally we must consider ` and w(a). Here we will separate out one special case—when
|C| = 2 and C exchanges two leaf tokens, in which case C ′ becomes a trivial locked cycle. If
we are not in the special case then either C ′ is a non-trivial locked cycle, or C ′ is the unlocked
cycle. In either case C has the same status, so ` is unchanged and t’s twin p remains in the
active set A so w(a) does not increase. Thus F (T ′) < F (T ) when we are not in the special
case.
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It remains to consider the special case when C exchanges two leaf tokens. Then C was a
non-trivial locked cycle, but C ′ is a trivial locked cycle. Thus ` decreases by 1. Furthermore,
by Claim 6, Dw decreases by at least 4w(t) since two leaves become happy. If w(a) does
not increase then we are fine. If it does increase then w(a) = w(t) and t was the minimum
weight element in A. Because we are in the special case, both t and its twin token p have
left A and joined H. If F (T ) is determined by w(h)(`+ 1) we are again fine. Hence we only
need to provide an additional argument if F (T ) = Dw + 2w(x) + 2w(a)(` − 1). Since we
now have a token of weight w(a) = w(t) in H, Strategy 3 gives a swap sequence for T ′ of
weight at most (Dw− 4w(t)) + 2w(x) + 2w(t)(`) = Dw− 2w(t) + 2w(x) + 2w(t)(`− 1). Thus
F (T ′) < F (T ) even in the special case.

With this claim in hand, we are ready to prove that the algorithm is correct.

Theorem 13. The above algorithm solves the weighted coloured token swapping problem on
a star optimally.

Proof. By Theorem 8, the cost of a token-vertex assignment T is

F (T ) = Dw + 2w(x) + 2 min{w(a)(`− 1), w(h)(`+ 1)},

where Dw, w(x), w(a), w(h), and ` depend on T .
We will compare the cost of a token-vertex assignment TA found by the algorithm to an

optimum token-vertex assignment TOPT. By Claim 12, TOPT turns all leaf-loops into happy
leaves, so it has λ happy leaves. The algorithm does the same, so TA and TOPT have the
same set H of tokens on happy leaves, and the same set U of tokens on unhappy leaves. This
implies that w(a) and w(h) are the same for TA and TOPT.

Next, we claim that Dw is the same for TA and TOPT. This follows directly from Claim 6
since the set of unhappy leaves is the same.

It remains to compare ` (the number of non-trivial locked cycles) and w(x) between TA
and TOPT. Both values should be as small as possible in TOPT. The algorithm achieves ` = κ
and w(x) = min{w(t) : t ∈ XA}, where XA is the set of tokens in the unlocked cycle of TA.
By Lemma 10(2) TOPT has at least κ non-trivial locked cycles. By Lemma 10(3), TOPT’s set
of tokens in the unlocked cycle is a subset of XA (here we again use the fact that TOPT has
λ happy leaves). Thus TA and TOPT achieve the same values for ` and w(x). This completes
the proof that the algorithm achieves the minimum value of F (T ).

7 Token Swapping on Brooms

In this section we give a polynomial-time algorithm for token swapping on a broom.
A broom is a tree that consists of a star joined to the endpoint of a path. Suppose that

the broom’s star has k leaves, v1, . . . , vk and one center vertex, vk+1, and its path has n− k
vertices, vk+1, vk+2, . . . , vn. See Figure 8. We will call vertices v1, . . . , vk the star leaves and
call vertices vk+1, vk+2, . . . , vn the path vertices. We will call vk+1 the center vertex, though
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we also consider it to be a path vertex. For purposes of identification, we will orient the
edges of a broom from lower index vertices to higher index vertices, and we will draw brooms
with edges directed to the right as in the figure.
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Figure 8: A broom with leaves v1, v2, v3, v4, v5, path v6, v7, v8, v9 and center vertex v6. Left:
The initial placement of tokens (drawn in circles). Destinations within the star are indicated
by dashed lines. Tokens 4 and 5 form a cycle on the star leaves and will be exchanged by
Step 2 of the algorithm. The algorithm begins with token 9. Step 1(b) does not apply, so
token 9 is moved to its home. Middle: The token placement after token 9 is homed. Token
8 will be homed next. For token 7, Step 1(b) applies, since the chain starting from token 3
on the center vertex leads to token 7. Right: The token placement after tokens 8 and 7 are
homed.

The input to the problem is a broom and an initial assignment of tokens 1, 2, . . . , n to the
vertices. The problem is to find a minimum length sequence of swaps to “sort” the labels,
i.e., to get label i at vertex vi for all i.

In 1999 Vaughan [41] gave a polynomial-time algorithm for token swapping on a broom.
Her algorithm is a bit more complicated than ours and her proof of correctness is long (14
pages). Another polyomial-time algorithm for token swapping on a broom was given by
Kawahara et al. [23] (with proof in [22]). They use the term “star-path” instead of “broom”
and were unaware of Vaughan’s work. Their algorithm is simple, but their proof is again
long (11 pages). Our correctness proof is shorter. Further comparisons can be found below.
It is interesting that three independently developed algorithms for the problem are similar
in nature, and that all three correctness proofs are non-trivial. None of the three manage
to give a formula for the number of swaps that is independent of the operation of algorithm
(such as the formulas for paths and stars).

We will call the tokens 1, . . . , k—the tokens that want to end up at the star leaves—the
star tokens and we will call the other tokens the path tokens. A centered star chain of token
tm+1 is a sequence of tokens t1, . . . , tm+1 such that

• t1 is currently at the center vertex,

• t2, . . . , tm+1 are currently at star vertices,

• for 1 ≤ i < m, ti’s home currently contains ti+1, i.e., the sequence forms a chain in the
token permutation.

For example, in Figure 8(b) token 7 has a centered star chain 3, 1, 2, 7.
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7.1 Algorithm for token swapping on a broom

Our algorithm, A, is as follows.

1. While there is a path token that is not home:

(a) Let pmax be the maximum path token that is not home.

(b) If pmax is on a star leaf and has a centered star chain t1, . . . , tm, pmax then perform
the m swaps that move ti home for i = 1, . . . ,m. The final swap moves pmax to
the center vertex.

(c) Home pmax.

2. (At this point all path tokens are home.) Solve the star.

Step 2 of the algorithm just involves solving the star at the end, and is well-understood
from previous work. Note that the algorithm does not move happy leaves—thus, correctness
of the algorithm implies that the Happy Leaf Conjecture is true for brooms.

We begin our analysis of the algorithm by noting that Step 1 has the following nice
properties:

(P1) Every path token moves left for a time (as larger tokens move past it) and then moves
right to its home.

(P2) Every swap performed by the algorithm either moves the largest unhomed path token
to the right, or homes a star token. When we are lucky, a single swap does both (the
last swap performed in Step 1(b)).

We prove correctness of the algorithm in Section 7.3 below. Before that, we analyze the
number of swaps used by the algorithm (this is not needed for the correctness proof) and we
compare our algorithm to the others.

7.2 Algorithm analysis

We first consider Step 2. Let `S be the number of non-trivial cycles in the initial permutation
that only involve star tokens on star leaves, and let nS be the number of tokens that are in
these cycles. These tokens are not touched by Step 1, and we claim that, conversely, after
Step 1, these are the only unhomed tokens. The reason is that no swap performed by the
algorithm can create a cycle involving star tokens on star leaves—this is precisely what Step
1(b) prevents. Thus, by Lemma 1 the number of swaps performed by Step 2 of the algorithm
is nS + `S.

It remains to analyze the number of swaps performed in Step 1. To ease notation, we now
assume that nS is 0. Let W be the number of swaps performed by Step 1 of the algorithm.
Write W = WP + WS where WP is the number of swaps that involve a path token and WS

is the number of swaps that involve two star tokens. Then WS = SU − L, where SU is the
number of unhomed star tokens and L is the number of ‘lucky’ swaps that move pmax to
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the right AND home a star token. Equivalently, L is the number of times Step 1(b) of the
algorithm is performed.

To analyze WP , we will allocate each of its swaps to the maximum path token involved in
the swap. Then WP =

∑
pW (p) where W (p) is the number of swaps allocated to path token

p. For any path token p, define d(p) to be the distance (the number of edges) from a star
leaf to p’s home. Observe that it does not matter which star leaf we use in this definition.
Relative to the initial token placement, let r(p) be the number of tokens smaller than p that
occur to the right of p.

Claim 14. W (p) is the minimum of d(p) and r(p).

Proof. By Property (P1), the movement of every path token p during the algorithm consists
of some number of steps to the left followed by some number of steps to the right until p
reaches its home. The leftward steps are caused by larger tokens moving over p and are
allocated to the larger tokens. W (p) counts the rightward steps of token p.

Let C be the configuration of tokens after the algorithm has homed all tokens larger than
p. In C, the tokens larger than p take up all the vertices to the right of p’s home, so p will
be to the left of its home. Let rC(p) be the number of tokens smaller than p that occur to
the right of p in configuration C. Then W (p) = rC(p). No swap has occurred between p and
a smaller token, so rC(p) ≤ r(p). Furthermore, rC(p) = r(p) unless p is at a star leaf (in
which case some of the original r(p) vertices may have moved to other star leaves). We now
consider two possibilities:

• If p is at a star leaf in configuration C then its distance from its home is d(p) so
W (p) = d(p) = rC(p), which implies that d(p) ≤ r(p). Thus W (p) = min{d(p), r(p)}.

• If p is not at a star leaf in configuration C then r(p) = rC(p) < d(p). Then W (p) = r(p),
and again W (p) = min{d(p), r(p)}.

In either case, W (p) = min{d(p), r(p)}.
In summary, the number of swaps, W , performed by Step 1 of the algorithm can be

expressed in terms of the initial token placement except for the ‘lucky’ term L, which is
found by running the algorithm:

Lemma 15. W =
∑{min{d(p), r(p)} : p a path token}+ SU − L.

Vaughan’s algorithm. The algorithm by Vaughan [41] is similar to our algorithm. We
introduce one new concept, generalizing a centered star chain. A star chain of token tm+1 is
a sequence of tokens t1, . . . , tm+1 such that

• t1 is not at a star vertex,

• t2, . . . , tm+1 are currently at star vertices,

• for 1 ≤ i < m, ti’s home currently contains ti+1, i.e., the sequence forms a chain in the
token permutation.
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Using this terminology, Vaughan’s algorithm is as follows.

1. While there is a path token on a star leaf:

(a) Let pmax be the maximum path token on a star leaf.

(b) Let t be the leftmost token on a path vertex that is smaller than pmax.

(c) Swap t leftward along the path to the center vertex. Let t1, . . . , tm, pmax be the
star chain of pmax. Swap t to the star vertex that is the home of t1 and continue
resolving the star chain (next moving t2) until pmax is swapped to the center
vertex. Note that token t will be home only if and only if the star chain was
centered.

2. Solve the star. Solve the path.

It can be shown that the two algorithms are equivalent. Vaughan proved that her
algorithm is correct by transforming any optimal swap sequence to one that matches her
algorithm in its first phase. Her proof is difficult because properties (P1) and (P2) do not
hold.

Alternate algorithm. The algorithm by Kawahara et al. [22] is very simple:

1. While there is a token that is not home:

(a) Let tmax be the maximum token that is not home.

(b) While the center vertex contains a star token, home it.

(c) Home tmax.

Their algorithm satisfies (P2) but not (P1) (in particular, a path token may bounce
around inside the star) which makes their proof difficult.

7.3 Correctness

In order to prove that algorithm A finds an optimal swap sequence, i.e., a swap sequence
with a minimum number of swaps, we will prove that for any input to the token swapping
problem on a broom there is an optimal swap sequence with some nice properties, and then
apply induction on n. We begin with an easy observation about optimal swap sequences.

Claim 16. An optimal swap sequence does not contain two swaps that swap the same two
tokens.

Proof. We prove the contrapositive. Suppose the swap sequence σ = σ1σ2 · · ·σm sorts the
tokens but contains two swaps σi and σj, i < j, that swap the same two tokens a and b.
Modify σ by deleting σi and σj and, for each k, i < k < j, exchanging the roles of a and b.
The result is a shorter swap sequence that sorts the tokens.
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Next we show that an optimal swap sequence that minimizes the number of swaps on
path edges has some nice properties. For convenience, we will say that a swap sequence is
P-optimal if it is an optimal swap sequence and minimizes the number of swaps on path
edges.

Lemma 17. A P-optimal swap sequence σ has the following properties:

1. No swap of two star tokens occurs on a path edge.

2. For every swap on a path edge that involves a path token, the larger of the two tokens
moves to the right.

3. No token crosses the first path edge, (vk+1, vk+2), from left to right and later from right
to left. (No token “re-enters the star”.) In particular, this implies that no star token
crosses the first path edge from left to right.

4. The path tokens that cross the first path edge from left to right do so in order (the first
one that crosses is larger than the others, etc.).

Proof. (1) Suppose two star tokens s and t swap on a path edge in σ. We will show
how to modify σ to obtain an optimal swap sequence with fewer swaps on the path edges.
Sometime after the swap of s and t in σ, both s and t must enter the star (perhaps multiple
times). Suppose the last time one of them enters the star, it is t that enters. Then in this
configuration T , token t is on the center vertex and s is at a star leaf. We will modify σ
as follows. Omit the swap of s and t. Then carry out the swap sequence, but with s and t
exchanged. Continue until the point in σ where configuration T was reached. Then swap s
and t. Now we are back in configuration T . The same number of swaps have been performed,
but a swap on a path edge has been replaced by a swap on a star edge, so the number of
swaps on path edges has been reduced.

(2) Call a swap “bad” if it swaps two tokens by moving a path token to the left and a smaller
token to the right. Suppose σ has a bad swap on a path edge. As above, we will show how to
modify σ to obtain an optimal swap sequence with fewer swaps on the path edges. Suppose
that, in σ, path token p swaps to the left with a smaller token t on a path edge. In the final
configuration, p must be to the right of t. They cannot swap directly by Claim 16. So it
must happen that p reaches a star leaf, then t reaches a star leaf, then p goes to the center
vertex. Call this intermediate configuration T ′. We will modify σ as follows. Omit the swap
of p and t. Then carry out the swap sequence, but with p and t exchanged. Continue until
the point in σ where configuration T ′ was reached. Then swap p and t. Now we are back
in configuration T ′. The same number of swaps have been performed, but a swap on a path
edge has been replaced by a swap on a star edge, so the number of swaps on path edges has
been reduced.

(3) Suppose that in σ there is a swap σi where a token t crosses the first path edge from
left to right, and a later swap σj, j > i where t crosses the first path edge from right to left.
Take the minimum possible j > i. Suppose σi involves tokens t and a and σj involves tokens
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t and b. We first claim that token b must be on a star leaf when σi takes place. Suppose b
were on a path edge when σi takes place. Then b would be to the right of t. Between σi and
σj, token t may move around on path edges, but not the first path edge (by our assumption
on j). Token b cannot swap twice with t in an optimal swap sequence, so b must still be to
the right of t when σj takes place, a contradiction.

We will modify σ as follows. Just before σi, swap t (on the center vertex) and b (on a
star leaf). Then carry out the swap sequence σi, . . . , σj−1, but with t and b exchanged. Then
omit swap σj. This gives the same result. The same number of swaps have been performed,
but a swap on a path edge has been replaced by a swap on a star edge, so the number of
swaps on path edges has been reduced.

(4) Suppose a smaller path token s crosses the first path edge from left to right in swap σi
and later on, say in swap σj, j > i, a larger path token t crosses the first path edge from
left to right. By property (3), token s does not re-cross the first path edge. Then, after t
crosses, tokens s and t are in the wrong order on the path. Since neither token re-enters the
star by (3), they must swap on the path during some later swap σh, h > j. Now consider
where token t is when swap σi occurs. If t is on the path, then in order for t to exit the star
in swap σj, it must first swap with s. But then the two tokens swap twice, which contradicts
Claim 16. Therefore, we may assume that t is at a star leaf when σi occurs. We will modify
σ as follows. Swap s and t just before σi, then carry out the swap sequence with s and t
exchanged until swap σh, and omit σh. This gives the same result. The same number of
swaps have been performed, but a swap on a path edge has been replaced by a swap on a
star edge, so the number of swaps on path edges has been reduced.

Theorem 18. Algorithm A above finds a swap sequence with a minimum number of swaps.

Proof. By induction on the number of tokens in the path, with the base case when the path
has no edges and the broom is just a star. For the general induction step it suffices to show
that the swaps performed in the first phase of the algorithm when pmax = n are part of an
optimal swap sequence. We consider 3 cases depending on the initial position of token n.

Case 1. Token n is initially on a path vertex, not the center vertex. Let σ be a P-optimal
swap sequence. By Lemma 17, Property (2) token n only moves to the right in σ. We claim
that we can modify σ to do the swaps involving n first. Let σi be the swap in σ that homes
token n, and let T be the resulting configuration of tokens. Let k be the distance from
token n’s initial position to its home vertex vn. Then there are k swaps in σ1, . . . , σi that
involve token n. Let σ′ be the subsequence of σ1, . . . , σi consisting of the i − k swaps that
do not involve token n. Construct a swap sequence, τ , that first homes token n in k swaps,
then performs the swaps σ′, and then proceeds with swaps σi+1, . . . , σm. Homing token n
leaves the remaining tokens in the same relative order along the path and does not alter the
tokens in the star. Thus, the swaps σ′ can be performed next, and the result is the same
configuration T as achieved by σ. This implies that τ is an optimal swap sequence that
matches our algorithm in the first phase.

Case 2. Token n is initially on the center vertex. Let σ be a P-optimal swap sequence.
Sequence σ must contain a swap, say σj that swaps token n along the first path edge e =
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(vk+1, vk+2). By Lemma 17, Property (4) this is the first swap that occurs along edge e.
If there are no swaps before σj on star edges, then we can just apply the argument from
Case 1—home token n first, and then proceed with the swaps that do not involve token n.

Thus it suffices to show that there is a P-optimal swap sequence that does not do any
swaps on star edges before swapping token n along the first path edge. We will adjust σ to
make this true. Separate the subsequence σ1, . . . σj−1 into two subsequences: σ′, the swaps
that operate on path edges, and σ′′, the swaps that operate on star edges. Observe that we
can rearrange σ1, . . . , σj to perform σ′ and then σ′′, since there is no interaction between the
star and the path in this time interval. Observe that σ′ does not move token n, and that σ′′

returns token n to the center vertex. We will do one more modification. After σ′, perform
the swap σj, which swaps token n with token a, say. Then perform the sequence σ′′ of swaps
on star edges but with a in place of n. Clearly this gives the same result, with the same
number of swaps, and the same number of swaps on path edges. Thus there is an optimal
swap sequence that matches our algorithm in the first phase.

Case 3. Token n is initially on a star leaf. Let the token on the center vertex be t. Consider
a P-optimal swap sequence σ with the further property that it does a minimum number of
swaps on star edges before the first swap, σh, that moves token n to the center vertex. We
will show that σ performs the same swaps as our algorithm does up to the point where the
algorithm moves token n to the center vertex.

If the situation in Step 1(b) applies, we will say there is a complete homing cycle from t
to n. Using this terminology, our algorithm does a complete homing cycle if it exists, and
otherwise swaps n and t. We must prove that σ does the same. Our proof will have two
steps:

(1) σ either swaps n and t or does a complete homing cycle.
(2) If there exists a complete homing cycle then σ does it.
To prove (1), suppose that σ does not swap n and t and does not do a complete homing

cycle. By Lemma 17, Property (4) applied to σ, the first swap on the first path edge involves
token n. Thus, the tokens on the star and the tokens on the path do not interact until after
swap σh. Consider the subsequence σ′ of σ1, . . . , σh that consists of swaps on star edges. They
achieve a certain permutation P of the tokens on the star. By hypothesis, σ′ is a minimum
length swap sequence effecting the permutation P . This permutation can be written as a
disjoint union of cycles, and—because the token n moves to the star center, which contains
token t—one of those cycles, say C has the form (t0t1t2 · · · t`) where t0 = t and t` = n. By
the known results for token swapping on stars (Lemma 1), σ′ then effects the cycle C by
swapping t0 and t1, then t1 and t2, and so on, until finally t`−1 is swapped with t`. Since this
places t` = n on the center vertex, it must complete σ′. Also, since σ does not swap n and
t, we have ` ≥ 2.

By assumption, σ′ is not a complete homing cycle. Therefore, there must be some
i = 0, . . . `− 1 such that the swap of ti and ti+1 does not move ti to its home. We claim that
there is a P-optimal sequence with fewer swaps on star edges before n reaches the center
vertex, which will be a contradiction. We will modify σ as follows. Modify the cycle C by
omitting ti (or omit t1 in case i = 0). In the resulting token placement, ti−1 and ti (or t0
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and t1) are switched compared to the configuration in σ. Both tokens are on star leaves.
Continue the swap sequence σ beyond σh until the first time when one of these two tokens is
swapped (necessarily to the center vertex). Observe that such a time must exist since token
ti is not home. At this point, one of the two tokens is at the center vertex and the other is
at a star leaf. Swap the two tokens at this point. The result is the same, the total number
of swaps is the same, and the number of swaps on path edges is the same. Thus we have a
P-optimal swap sequence with fewer swaps on star edges before n reaches the center vertex.
This completes the proof of (1).

To prove (2), suppose that σ does not do a complete homing cycle. Then, by (1), σ
swaps n and t and this is not a complete homing cycle. Suppose, for a contradiction, that
there is a complete homing cycle of length ` ≥ 3. Then the swap on n and t creates—in
the permutation we need to effect—a cycle C of length `− 1 among the star tokens that lie
at star leaves. We now prove that it takes at least ` swaps to solve this cycle. (This is the
same argument as used for stars.) Each token in C is distance 2 from its home, so the sum
of the distances is 2(`− 1) and we need at least `− 1 swaps, since one swap can move two of
the tokens closer to their homes. Furthermore, the first swap and the last swap that operate
on the tokens in the cycle move only one of the cycle tokens. This gives a total of ` swaps.
Together with the swap on n and t this is `+ 1 swaps. However, doing the complete homing
cycle first would take `− 1 swaps, which is better, a contradiction to σ being optimal. This
completes the proof of (2).

8 Conclusions and Open Questions

Although we have not resolved the question of whether token swapping on a tree is in P or
NP-complete, we have identified a previously unexplored difficulty—namely that we must
decide how and when to move tokens that are at happy leaves. This difficulty does not arise
for the cases where poly-time algorithms are known, specifically, paths, stars and brooms.

We showed that any algorithm that fixes tokens at happy leaves cannot achieve better
than a 4

3
approximation factor, and that this lower bound rises to 2 for two of the three

known approximation algorithms, thus providing tight approximation factors for them.
Furthermore, we established a difference in complexity between general trees on the one

hand, and paths and stars on the other hand, namely that weighted coloured token swapping
is NP-complete for general trees, but poly-time for paths and stars.

We conclude with some open questions.

1. Is the token swapping problem on trees NP-complete? in P?

2. For hardness, a first step would be to show that the problem is NP-complete with
either colours or weights (rather than both, as we proved).

3. Characterize the class of trees for which the happy leaf conjecture holds for every
token assignment. Certainly the tree should not have the 10-vertex tree of Figure 2 as
a subtree.
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4. Is there a polynomial time algorithm for token swapping on any tree for which the
happy leaf conjecture holds? This may not be easy, given the difficulty of correctly
solving token swapping on a broom.

5. Is there an approximation algorithm for token swapping on a tree with approximation
factor better than 2? What is the exact approximation factor of Vaughan’s algorithm?
We conjecture that it is 2, perhaps even for the same example as used in Theorem 3
for the other approximation algorithms. The proof seems more elusive because a token
can stray further from the path between its initial and target vertices.

6. The example in Figure 3, which defeats all algorithms that fix happy leaves, consists
of a star joined to two paths. Such a two-tailed star is like a broom with an extra
handle. We conjecture that there is a polynomial time algorithm for token-swapping
on two-tailed stars. This would be a starting point towards solving token swapping
when happy leaves must be swapped.

7. For general graphs there is a 4-approximation algorithm [28] for token swapping. Is
the approximation factor 4 tight?
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