
Approximation Algorithms for the Unit Disk Cover Problem in

2D and 3D

Ahmad Biniaz∗ Paul Liu† Anil Maheshwari∗ Michiel Smid∗

February 12, 2016

Abstract

Given a set P of n points in the plane, we consider the problem of covering P with a
minimum number of unit disks. This problem is known to be NP-hard. We present a simple
4-approximation algorithm for this problem which runs in O(n log n)-time. We also show
how to extend this algorithm to other metrics, and to three dimensions.

1 Introduction

In this paper we consider the unit disk cover (UDC) problem. Given a set P of n points in the
plane, the UDC problem asks for the minimum number of disks of prescribed radius r (or simply
unit disks of radius 1), which cover all points of P . Unless otherwise specified, we assume that
the disks are in the L2-norm.

The UDC problem is known to be NP-hard in the L1, L2, and L∞ norms [8]. For points
in Rd and any integer l ≥ 1, it is possible to approximate the UDC problem in the L2-norm

within a factor of
(
1 + 1

l

)d
with running time O((dl)O(d)nO((dl)d)) [12] and within a factor of

2
(
1 + 1

l

)d-1
with running time O((dl)O(d)nO(dd)) [11]. For points under the L1 and L∞ norms,

similar ideas lead to a
(
1 + 1

l

)d
approximation algorithm with running time O(ldn2l

d+1) [12]

and a
(
1 + 1

l

)d-1
approximation algorithm with running time O(dlO(d-1)nO(dld-1)) [11]. However,

these algorithms are mainly of theoretical interest, and are impractical for large data sets.
Gonzalez [11] presented a 2-approximation algorithm for the UDC problem in the L1 and

L∞ norms and an 8-approximation in the L2-norm. These algorithms run in O(n logS)-time,
where S ≤ n is the number of disks in an optimal solution. A constant approximation algorithm
running in O(n3 log n)-time is also presented in [4]. The algorithm uses the fact that the UDC
problem is equivalent to a set cover in a range space of finite VC dimension. However, no efforts
were made to optimize or determine the exact value of the approximation factor. By constraining
the disk centers to lie on a grid, Franceschetti et al. [9] developed, for any l ≥ 1, an O(Kn)
time algorithm with approximation factor 3(1 + 1

l)
2, where K is a function of l and the size of

the approximation grid. A 2.8334-approximation algorithm which runs in O(n(log n log logn)2)
time is presented in [10]. We note that this algorithm is quite difficult to implement, and has
a high constant factor in the running time. Using a different approach of dividing the input
into vertical strips, Liu and Lu [13] presented a 25

6 -approximation algorithm for this problem
running in O(n log n) time. A listing of all the algorithms as well as their approximation factors
is given in Table 1.

∗School of Computer Science, Carleton University, Ottawa, Canada. Research supported by NSERC.
†Department of Computer Science, University of British Columbia.

1

Reference Approximation Running Time

[11] 2
(
1 + 1

l

)
O(l2n7)

[11] 8 O(n logS)

[4] O(1) O(n3 log n)

[9] 3
(
1 + 1

l

)2
O(Kn)

[10] 2.8334 O(n(log n log log n)2)

[13] 25/6 O(n log n)

This paper 4 O(n log n)

Table 1: A history of approximation algorithms for the unit disk cover problem in L2.

There are numerous variants of the UDC problem. If the disk centers are constrained to an
arbitrary point set Q, the UDC problem becomes the discrete unit disk cover problem (DUDC),
which is also NP-hard. Many approximation algorithms are proposed for the DUDC problem,
where the best known approximation factor is 9 + ε for any 0 < ε ≤ 6 [2]. An instance of the
UDC problem can be reduced to an instance of the DUDC problem as follows. Any solution
for the UDC problem can be transformed (by moving the circles in the solution) to another
solution in which each unit disk D has at least 2 input points on its boundary or an input
point on its center; in the former case the center of D can be computed easily. Since each disk
has unit radius, any pair of input points defines at most two possible centers for disks in our
cover. Hence by choosing Q to be the union of P and these O(n2) centers, an instance of the
DUDC problem is obtained. Thus, any approximation algorithm for the DUDC problem gives
a solution for the UDC problem with the same approximation factor.

In the L∞-norm, the UDC problem further reduces to the minimum clique cover problem
[7]. The reduction uses the Lt unit disk graph on P . Each point in P corresponds to a vertex in
the graph, and every edge (u, v) in the graph corresponds to intersecting Lt unit discs centered
at u and v. Any family F of unit squares (L∞ unit disks) satisfies Helly’s property: if each
pair of squares in F has a non-empty intersection, then the intersection of all squares in F is
non-empty. Hence any clique in the L∞ unit disc graph can be covered by a single L∞ unit
disc. Unfortunately, this reduction does not hold in the L2-norm. The minimum clique problem
on both the L∞ and L2 unit disk graphs has a large body of work, see [7] and the references
contained therein.

We present an O(n log n)-time constant-ratio approximation algorithm for the UDC problem
in Lt-norms. In Section 2, we present a 4-approximation algorithm for this problem in the
Euclidean norm (L2-norm). By using the plane sweep technique, we show in Section 3 that this
algorithm can be implemented to run in O(n log n) time. We emphasize that this algorithm is
usable in practical settings and simple to implement. The most costly step is sorting of the
points with respect to some dimension. In Section 4, we extend this algorithm to other Lt-norms.
It is a 2-approximation for t ∈ {1,∞}, a 6-approximation for t > 2, and a 5-approximation for
1 < t < 2. We also extend this algorithm for points in three dimensions in Section 5; an instance
of the UDC problem in three dimensions is known as unit ball covering. As a result, we obtain
an O(n log n)-time 12-approximation algorithm for the unit ball covering problem. Concluding
remarks and open problems are given in Section 6.

2 A 4-Approximation Algorithm in L2

In this section we consider the UDC problem in the Euclidean norm. Given a point set P in
the plane, let Copt be an optimal unit disk cover for P . Recall that the unit disks have radius

2

1. The unit disk intersection graph, UDIG(P), is defined to have the points of P as its vertices
and has a straight-line edge between two points p, q ∈ P if and only if |pq| ≤ 2, where |pq| is
the Euclidean distance between p and q. We begin with the following observation:

Observation 1. For two points p, q ∈ P , if (p, q) /∈ UDIG(P), then p and q cannot be covered
by a unit disk.

An independent set in UDIG(P) is a subset I of P such that there is no edge between any
pair of points in I. I is said to be a maximal independent set if for all p ∈ P \ I, I ∪ {p} is not
an independent set in UDIG(P).

Assume I is a maximal independent set in UDIG(P). By Observation 1, the size of any
independent set in UDIG(P) is a lower bound for the number of disks needed to cover P .
Therefore,

|I| ≤ |Copt|. (1)

It is known that to cover a disk of radius 2, seven unit disks of radius 1 are necessary and
sufficient; see Figure 1. Moreover, to cover a ball of radius 2 in three dimension, 21 unit balls are
necessary and sufficient [1]. Based on that, a 7-approximation algorithm for the UDC problem
is obtained as follows. Let I be any maximal independent set in UDIG(P). For a point p ∈ I,
let D(p, 2) be the disk of radius 2 which is centered at p. Let d(p) be a disk in any unit disk
cover which covers p. By Observation 1, none of the points of P which are at distance greater
than 2 from p can be covered by d(p). Therefore, all points of P which are not in D(p, 2) must
be covered by disks different from d(p). Moreover, all points of P which are covered by d(p)
are in D(p, 2). Therefore, by covering D(p, 2) with seven unit disks (Figure 1), for all p ∈ I, a
7-approximation algorithm is obtained. Note that UDIG(P) may have up to O(n2) edges, and
hence the time complexity of computing UDIG(P) is quadratic in the worst case.

p 2

1

D(p, 2)

Figure 1: D(p, 2) can be covered by 7 unit disks.

Now we show how to reduce the approximation ratio to 4. Let p be the leftmost point in P .
In case of degeneracy, we consider the leftmost point with the smallest y-coordinate. Let ` be
the vertical line passing through p. Let R(p) be the intersection of D(p, 2) with the half-plane
to the right of `, i.e., R(p) is the right half-disk of D(p, 2) (see Figure 2(a)). As discussed
earlier, all points of P which are covered by d(p) are in D(p, 2) and consequently in R(p). As
shown in Figure 2(a), R(p) can be covered by 4 unit disks. Figure 2(b) shows a configuration
of seven points in R(p) such that at least four unit disks are needed to cover all these seven

3

p 2

1

p

(a) (b)

Figure 2: (a) Any half-disk of radius 2 can be covered by four unit disks. (b) Seven points in a
half-disk of radius 2 which cannot be covered by less than four unit disks.

points: in any unit disk cover, the disk which covers p can cover at most one of the points on
the boundary. The remaining five points need at least three unit disks to be covered.

For a point p and a given point set I, the distance, d(p, I), between p and I is defined as the
minimum Euclidean distance between p and any point in I, i.e., d(p, I) = min{|pq| : q ∈ I}. If
I = ∅, then d(p, I) = ∞. Our 4-approximation algorithm is given in Algorithm 1. The output
of this algorithm is a set C of unit disks that cover P . The algorithm starts by creating a
sorted list of points from left to right. Then it repeatedly selects and deletes the first element
in the list, say p. If d(p, I) ≤ 2, then p is already covered by some disk in C. Otherwise, i.e.,
if d(p, I) > 2, the algorithm covers R(p) by four unit disks, and adds them to C. Finally it
returns the set C of unit disks.

Algorithm 1 UnitDiskCover(P)

Input: A point set P in the plane.
Output: A set C of unit disks that cover P .

1: C ← ∅
2: I ← ∅
3: L← list of points in P sorted from left to right
4: while L is not empty do
5: p← first element of L
6: if d(p, I) > 2 then
7: Cover R(p) by four unit disks c1, c2, c3, c4
8: C ← C ∪ {c1, c2, c3, c4}
9: I ← I ∪ {p}

10: L← L− {p}
11: return C

In each iteration, Algorithm 1, adds p to I if and only if d(p, I) > 2. Thus, in UDIG(P), p
is not connected to any point in I. Therefore, I is an independent set in UDIG(P). In addition,
the while loop iterates over all points. Thus, after Algorithm 1 terminates, I is a maximal
independent set in UDIG(P).

4

Theorem 1. Algorithm 1 is a 4-approximation for the unit disk cover problem.

Proof. Consider the set I of points and the set C of unit disks after the termination of Al-
gorithm 1. Since I is a maximal independent set in UDIG(P), by Inequality (1) we have
|I| ≤ |Copt|. Each point q ∈ P is in a half-disk R(p), for some p ∈ I (possibly q = p). Since
for each p ∈ I, we cover R(p) with four unit disks, C covers P . Moreover, |C| ≤ 4|I| ≤ 4|Copt|.
This proves the statement of the theorem.

The running time of Algorithm 1, can be expressed as O(n log n + n · t(d)), where t(d) is
the time for computing d(p, I). Any nearest-neighbor data structure is sufficient here, and only
insertions and queries are needed. As the nearest-neighbor problem is a decomposable search
problem, the general technique of Bentley and Saxe [3] gives an O(log2 n)-amortized time bound
for both insertions and queries, and uses only O(n)-space. Using this data structure, d(p, I)
can be computed in O(log2 n)-amortized time, and hence Algorithm 1 can be implemented to
run in O(n log2 n)-time.

3 Improving the Time Complexity

Instead of computing d(p, I) dynamically, we can speed up Algorithm 1 by taking advantage of
the fact that we only need to check if d(p, I) is greater than 2. Every time we add a new point
p to I in Algorithm 1, we are essentially removing every point in P lying in R(p). We can do
this in O(n log n)-time with a simple sweep-line algorithm.

We sweep a vertical line from left to right and maintain a binary search tree (BST) storing
the centers of all the half-disks intersecting the sweep line. The points in BST are sorted in
non-decreasing order of their y-coordinates. In case of ties, we sort them in increasing order of
their x-coordinates. Since all half-disks have radius 2, they are uniquely defined by their centers
which are stored in BST. Initially BST is empty.

We also keep an event queue that stores two types of events: site events and deletion events.
A site event is a point of P . Each deletion event is associated with a site event; for each point
p ∈ P its deletion event is the rightmost point of R(p). Thus, for every point p = (px, py) in P ,
we have a deletion event p′ = (px + 2, py). The event queue is kept as a priority queue sorted by
the x-coordinates of the events. Initially we add to the event queue each point p ∈ P as a site
event and p′ as a deletion event. At each step of the sweep algorithm, we pop the event with
the smallest x-coordinate from the queue, and “move” the sweep-line to that point.

Deletion events are straight-forward to handle, as we remove the center of the half-disk
—which corresponds to this event—from BST.

Now we describe how to handle the site events. Let p be the current site event which is
encountered by the sweep-line SL. If p is covered by a half-disk in BST, then we proceed to
the next event. If p is not covered by any half-disk in BST, then we insert a new half-disk (its
center) into BST. Since the half-disks in BST have radius 2, we have the following observation:

Observation 2. The distance between any two points in BST is more than 2.

Note that the half-disks corresponding to the points of P that are to the left of SL and are
not in BST do not intersect SL. Therefore, these points have distance bigger than 2 from SL,
and p cannot be covered by their half-disks.

In order to check if p is covered by any half-disk intersecting the sweep-line we do the
following. We search for p in BST by its y-coordinate. Let p− and p+ be the predecessor and
the successor of p in BST, respectively. In other words, p− is the point in BST with the largest
y-coordinate and p+ is the point in BST with the smallest y-coordinate such that p−y < py < p+y .

5

If |pp−| ≤ 2 (or |pp+| ≤ 2), then p is covered by R(p−) (or R(p+)). However, this may not
be the only case to decide if p is covered by a half-disk in BST. As shown in Figure 3(a), p is
covered by a half-disk which is neither R(p−) nor R(p+).

p

p+

p−

p++

SL

p

p+
p++

SL

q

`

D(p, 2)

D(q, 2)

p′

q′
q′′

c

(a) (b)

Figure 3: (a) p is covered by a half-disk other than R(p−) and R(p+). (b) Proof of Lemma 1

Let p−− be the predecessor of p− and p++ be the successor of p+ in BST.

Lemma 1. If p is covered by any half-disk intersecting the sweep line, then p ∈ R(p−−) ∪
R(p−) ∪R(p+) ∪R(p++).

Proof. The proof is by contradiction. Assume p is covered by a half-disk R(q) which is centered
at a point q in BST while p /∈ R(p−−) ∪ R(p−) ∪ R(p+) ∪ R(p++). Without loss of generality
assume qy ≥ py. Since p+ is the successor of p and p++ is the successor of p+ in BST, we have
qy ≥ p++

y . Let l be the vertical line which is at distance 2 from p and to the left of the sweep
line SL; see Figure 3(b). All points in BST (including p+, p++, and q) lie between (or on) l
and SL.

Let p′ be the intersection point of l and the horizontal line passing through p. Let q′ (resp.
q′′) be the intersection point of l (resp. SL) and the horizontal line passing through q. See
Figure 3(b). Let R be the rectangle having its corners on p, p′, q′ and q′′. Observe that the
maximum side length for R is 2.

Since py ≤ p+y ≤ p++
y ≤ qy, p+ and p++ lie in R. Consider D(p, 2) and D(q, 2). Since

p ∈ R(q), |pq| ≤ 2; this implies that p, q ∈ D(p, 2) ∩ D(q, 2). By Observation 2, both p+

and p++ are outside D(q, 2). In addition, p is to the right of p+ and to the right of p++ and
p /∈ R(p+) ∪ R(p++), which implies that both p+ and p++ are outside D(p, 2). Therefore p+

and p++ lie in region Q = R− (D(p, 2) ∪D(q, 2)); the blue region in Figure 3(b). Let c be the
intersection point of the two diagonals of R. The triangle 4pq′q′′ is a subset of D(q, 2) and the
triangle 4pp′q′′ is a subset of D(p, 2). Thus, Q is a subset of the triangle 4cp′q′. 4cp′q′ has
diameter at most 2. Thus, the distance between any two points in Q is at most 2. Therefore,
|p+p++| ≤ 2; which contradicts Observation 2.

6

Given a site event p, in O(log n)-time we can find p−−, p−, p+, and p++ in BST. In order
to check if p is in the coverage of any point in BST, by Lemma 1, it is enough to check if the
distance of p to p−−, p−, p+, or p++ is at most 2. Therefore, each site event can be handled
in O(log n)-time; each deletion event can be handled in O(log n)-time as well. Since we have
2n events, we conclude that Algorithm 1 can be implemented to run in O(n log n)-time and
O(n)-space.

4 Extensions to other Metrics

In this section we extend the algorithm presented in Section 2 to other metrics. We consider
the unit disk cover problem for a point set P in the Lt-norm, for t ≥ 1. In the Lt-norm, a unit
circle which is centered at the origin is expressed by the equation

|x|t + |y|t = 1.

Figure 4 shows the unit circles in different Lt-norms. We refer to the union of a unit circle in
the Lt-norm and its interior as an Lt-unit disk.

1
t = 1

t = 2

t =∞
2 < t <∞

1 < t < 2

Figure 4: Illustration of unit circles in different Lt-norms.

Observation 3. For any t and t′, with 1 ≤ t < t′ ≤ ∞, the Lt-unit disk which is centered at
the origin is contained in the Lt′-unit disk which is centered at the origin.

Let Dt(p, 2) be the Lt-unit disk which is centered at point p and scaled by a factor of 2.
Observe that any Lt-unit disk which covers p, does not cover any point outside Dt(p, 2). Let
Rt(p) be the right half-disk of Dt(p, 2). By Observation 3, Rt(p) is contained in R∞(p).

4.1 Lt for t ≥ 2

Assume t ≥ 2. As shown in Figure 5(a), R∞(p) can be covered by six L2-unit disks. Since
Rt(p) ⊆ R∞(p), Rt(p) can also be covered by six L2-unit disks. By Observation 3, any L2-unit
disk is contained in an Lt-unit disk. Thus, Rt(p) also can be covered by six Lt-unit disks.
Therefore, a modified version of Algorithm 1 gives an Lt-unit disk cover C for P such that
|C| ≤ 6|Copt|.

Since an Lt-unit disk contains an L2-unit disk, Lemma 1 can be extended to the Lt-norm:

7

p 2 p

2

(a) (b)

Figure 5: (a) R∞(p) which is covered by six L2-unit disks. (b) R2(p) which is covered by five
L1 unit disks.

Lemma 2. If p is covered by any Lt-half disk intersecting the sweep line, then p ∈ Rt(p
−−) ∪

Rt(p
−) ∪Rt(p

+) ∪Rt(p
++).

Therefore, an O(n log n)-time 6-approximation algorithm for the UDC problem in the Lt-
norm, where t ≥ 2, is obtained.

4.2 Lt for 1 ≤ t ≤ 2

Assume 1 ≤ t ≤ 2. As shown in Figure 5(b), R2(p) can be covered by five L1-unit disks. By
Observation 3, Rt(p) is contained in R2(p). In addition, an L1-unit disk is contained in an Lt-
unit disk. Thus, Rt(p) can also be covered by five Lt-unit disks. Therefore, a modified version
of Algorithm 1 gives an Lt-unit disk cover C for P such that |C| ≤ 5|Copt|. Lemma 1 can be
extended to the L1-norm as follows.

Lemma 3. In L1-norm, if p is covered by any half-disk intersecting the sweep line, then p ∈
R1(p

−−) ∪R1(p
−) ∪R1(p

+) ∪R1(p
++).

Proof. The proof is by contradiction; and similar to the proof of Lemma 1. We skip the details.
Consider D1(p, 2) and D1(q, 2). Note that both p+ and p++ are outside D1(p, 2) ∪ D1(q, 2).
See Figure 6(a). Therefore p+ and p++ lie in region Q = R − (D1(p, 2) ∪ D1(q, 2)), where R
is a unit square which has its bottom-right corner on p. As shown in Figure 6(a), Q (the blue
region) can be covered by the L1-unit disk S. Therefore, the L1-distance between p+ and p++

is at most 2; which contradicts Observation 2.

Since an Lt-unit disk contains an L1-unit disk, Lemma 3 can be extended to the Lt-norm.
Therefore, an O(n log n)-time 5-approximation algorithm for the UDC problem in the Lt-norm,
where 1 ≤ t ≤ 2, is obtained.

4.3 L∞ and L1

Assume t = ∞. An L∞-unit disk is an axis-aligned square of side length 2. As shown in
Figure 6(b), R∞(p) can be covered by two L∞-unit disks. Therefore, a modified version of

8

p
p+

p++

SL

q

`

D1(p, 2)

D1(q, 2)

S

p

2

1

(a) (b)

Figure 6: (a) Illustration of Lemma 3. (b) R∞(p) which is covered by two L∞ unit disks.

Algorithm 1 gives an L∞-unit disk cover C for points in P such that |C| ≤ 2|Copt|. In addition,
we have the following Lemma, which is stronger than Lemma 1.

Lemma 4. If p is covered by any L∞-half disk intersecting the sweep line, then p ∈ R∞(p−) ∪
R∞(p+).

Therefore, a simple O(n log n)-time 2-approximation algorithm for the UDC problem in
the L∞-norm is obtained. Gonzalez [11] presented a faster O(n logS)-time 2-approximation
algorithm for this problem, where S is the size of an optimal solution.

The UDC problem in the L1-norm can easily be reduced to a UDC problem in the L∞-norm
by simply rotating the x and y axes by 45◦ around the origin, followed by scaling with

√
2/2.

Therefore, a simple O(n log n)-time 2-approximation algorithm for the UDC problem in L1 is
obtained.

5 Unit Ball Cover Problem in R3

In this section we consider the unit ball cover (UBC) problem. Given a set P of n points in R3,
the UBC problem asks for the minimum number of unit balls (balls of radius 1) which cover all
points of P . We show how to extend Algorithm 1 to cover the points in P . We sweep the space
by a plane; instead of covering half-disks, here we cover half-balls.

To cover a ball of radius 2 in three dimension, twenty-one unit balls are necessary and
sufficient [1]. Therefore, we can obtain a 21-approximation algorithm for the UBC problem
by using Observation 1. However, instead of covering a ball of radius 2, as we have seen in
Algorithm 1, it is sufficient to cover a half-ball of radius 2. Let B(p, 2) be the ball of radius
2 which is centered at a point p. Any plane which passes through p, divides B(p, 2) into two
half-balls, say L(p) and R(p). Consider a covering of B(p, 2) with 21 unit balls, as in [1]. We
find a plane H which passes through p such that one of the half-spaces, on each side of H,
contains 7 unit balls. Assume L(p) is in the same half-space as these 7 unit balls. Thus, R(p) is
covered by the remaining 14 unit balls. We can use this covering of R(p) to cover any half-ball
of radius 2. Therefore, a half ball of radius 2 in R3 can be covered by 14 unit balls. See Figure 7
for such a covering: the half-ball is centered at the origin and has its base on xy-plane; the
coordinates of the centers of the unit balls are given in Appendix A.

9

Figure 7: Covering a half-ball of radius 2 by 14 unit balls.

Let p be the current site event. In Algorithm 1, in order to check d(p, I) > 2, it is sufficient
to check B(p, 2) does not contain any point of I; this is a ball emptiness query. A ball emptiness
query in R3 can be transformed to a half-space emptiness query in R4 by projecting the points
of P to the paraboloid x4 = x21 + x22 + x23. Chan [5] presented a linear-size data structure
which can be constructed in O(n log n)-time that answers half-space emptiness queries in R4

in O(
√
n)-time. Based on the techniques of Bentley and Saxe [3], this gives an insertion-only

dynamic data structure which supports insertions and half-space emptiness queries in R4 in
O(
√
n log n)-amortized time. Let I ′ be the set of points obtained by projecting the points of I

to R4, and let H be the half-space obtained by projecting B(p, 2) to R4. We store the points
of I ′ in an insertion-only dynamic data structure. In order to check B(p, 2) is empty, we check
the emptiness of H. Therefore, an O(n

√
n log n)-time 14-approximation algorithm for the UBC

problem is obtained.

5.1 Improving the Approximation Factor

Through a combination of both manual and automated searching, we have found a covering of
the half-ball with 12 unit balls. See Figure 8; the coordinates of the centers of the unit balls
are given in Appendix A. We give a basic description of the search and the verification below.

Constructing the covering The boundary of a half-ball consists of a hemisphere surface
and a base disk. Let H, H ′, and h be the half-balls of radius 2,

√
3, and 1, respectively, which

are centered at the origin and have their base on the xy-plane. Note that h ⊂ H ′ ⊂ H. Let
S, S′, and s be the surfaces of H, H ′, and h, respectively. We show how to cover H with a
set B of eleven balls that are centered on S′ and a ball b that is centered at the origin. Note
that h is covered by b, and we have to make sure H − h is covered by B. Each ball in B creates
a cap on H with contact angle of 60◦. They also create caps of the same contact angle on h.
Hence, if S is covered by the balls in B, then s is covered, and because of the convexity, H − h
is also covered. Thus, in order to verify the covering, it suffices to check if B covers S (or s). To
find the cover itself, we adjust the centers of the balls in B manually until they cover S. The

10

Figure 8: Covering a half-ball of radius 2 by 12 unit balls.

covering is verified by the following procedure.

Verifying the covering Let B = {B1, . . . , B11}. For each Bi ∈ B, let Ci be the circle on
S which is the intersection of the surface of Bi with S; here we assumed S is the surface of
the whole ball of radius 2. Let C = {C1, . . . , C11}. We choose B such that each circle Ci ∈ C
intersects some circle Cj ∈ C, with i 6= j, in two distinct points. Let C be the boundary circle
of the base of H. Let I be the set of intersection points between every two circles in C ∪ {C}
which are on S.

Lemma 5. If S is not covered by B, then there exists a point of S at distance ε from a point
of I that is also not covered by B, for some ε > 0.

Proof. Let p be a point on S that is not covered by B. Let Ci be the circle in C which has the
smallest spherical distance to p, where the spherical distance between Ci and p is the length of
the shortest path between Ci and p on S. Let Bi be the ball in B which corresponds to Ci, and
let c be the center of Bi. Let B′i to be the ball of radius 1 + ε centered at c. Let C ′i be the circle
on S which is the intersection of the surface of B′i with S. Let p′ be the point of C ′i that has the
smallest spherical distance to p. See Figure 9. Observe that no point of the arc pp′ is covered
by B. Since Ci intersects some circles of C, by picking ε to be small enough, we make sure that
C ′i also intersects the same circles of C. Let Cj be the first circle of C which is intersected by
C ′i while walking on C ′i in counter-clockwise (or clockwise) from p′. Let p′′ be the point on the
boundary of C ′i just before intersecting Cj . Observe that no point of the arc p′p′′ is covered by
B. Since p′′ is not covered by B and it is at distance ε from an intersection point of Ci and Cj ,
the claim follows.

By Lemma 5, if S is not covered by B, then there exists an open neighborhood of a point in
I that is not covered by B. Thus, in order to verify the covering, we check each point in I to
be strictly within a ball of B. The entire verification procedure is done in rational arithmetic,
with no possible rounding errors. From the results of our search, we believe that 12 unit balls
are necessary and sufficient to cover the half-ball of radius 2, but we do not yet have a proof of
this. The lower bound is eleven as twenty-one unit balls are necessary to cover an entire ball of
radius 2.

11

c

p

p′

p′′

Ci C ′i

Cj

Figure 9: The intersection points between circles belong to I. No point of the line segment pp′

and the arc p′p′′ is covered by B.

5.2 Improving the Time Complexity

In this section we show how to improve the running time by using a dynamic rectangular fixed
windowing data structure (DRW). This data structure maintains a dynamic set, P , of n points
in the plane to support fixed window-queries, while allowing points to be inserted into and
deleted from P . Given an orthogonal rectangle W , a fixed window-query is to report the points
in W ′ ∩P where W ′ is an arbitrary translate of W . In [6] the authors presented an O(n)-space
dynamic rectangular fixed windowing data structure which supports insert and delete operations
in O(log n) time and search operations in O(log n+ k) time, where k is the size of the output.

We sweep the space by a plane H—which is perpendicular to z-axis—from the point with
the smallest z-coordinate to the point with the largest z-coordinate. We maintain a DRW
storing the points whose half-balls intersect H. The points are stored in DRW by their x and
y coordinates. Initially DRW is empty. As in Section 3, we keep track of an event queue which
stores the site and deletion events. For each point p ∈ P we have a site event at p and a
deletion event at p′ = (px, py, pz + 2). The event queue is sorted by the z-coordinates of the
events. Deletion events are easy to handle. When H encounters a deletion event p′, we remove
its corresponding site event, p, from DRW; this takes O(log n) time. If p is not in DRW, then
we proceed to the next event. Deletion events ensure that the points whose half-ball do not
intersect H, are not in DRW. Based on that, the z-coordinate of the points in DRW is in the
range [p′z − 2, p′z).

Now, we describe how to handle the site events. Assume H encounters a site event p. If p is
covered by any half-ball intersecting H, then we proceed to the next event, otherwise, we insert
p into DRW. This ensures that the distance between any two points in DRW is more than 2.
In order to check if p is covered by any half-ball intersecting H, it is enough to check B(p, 2)
contains a point of DRW. Let C(p) be the smallest axis-aligned cube that contains B(p, 2).
Observe that C(p) is a 4× 4× 4 cube. Let S(p) be the projection of C(p) to H. Observe that
S(p) is a 4× 4 square. Now we query DRW by the window S(p); let Q be the set of all points
in DRW falling in S(p). If B(p, 2) contains a point q in DRW, then q ∈ Q. Observe that in R3,
the points of Q fall in an axis-aligned 2 × 4 × 4 cuboid one of its faces is S(p). Based on that

12

and since the mutual distances between the points in Q are more than 2, we argue that Q has a
constant number of points. Thus, the window query S(p) takes O(log n) time. In addition, in a
constant time we can check if B(p, 2) contains a point of Q, and subsequently, a point of DRW.
Thus, each site event can be handled in O(log n) time. Therefore, we can modify Algorithm 1
to obtain a 12-approximation for the unit ball covering problem in R3 in O(n log n) time and
O(n) space.

6 Conclusion

We considered the NP-hard problem of covering n given points in the plane with the minimum
number of unit disks. We presented an easily implementable 4-approximation algorithm which
runs in O(n log n)-time and O(n)-space. The presented algorithm is faster than previous algo-
rithms having a similar approximation ratio. It is interesting that the most time consuming
step of the algorithm is sorting and maintaining a BST.

We extended the algorithm to other Lt-norms. As a result we obtained O(n log n)-time algo-
rithms; a 2-approximation for t ∈ {1,∞}, a 6-approximation for t > 2, and a 5-approximation
for 1 < t < 2. We also extended the presented algorithm to cover the points in three dimensions
with unit balls. As a result, an O(n)-space and O(n log n)-time 12-approximation algorithm for
the unit ball covering problem is obtained.

The natural problem is to reduce the approximation ratio of the presented algorithms, while
not increasing the running time. Another open problem is to prove that twelve unit balls are
necessary and sufficient to cover a half-ball of radius two.

References

[1] J. O’Rourke. Covering a unit ball with balls half the radius. http://www.mathoverflow.net/
questions/98007/covering-a-unit-ball-with-balls-half-the-radius.

[2] R. Acharyya, M. Basappa, and G. K. Das. Unit disk cover problem in 2D. In Proceedings
of 13th Int. Conf. in Comput. Sci. and its App.-ICCSA, pages 73–85, 2013.

[3] J. L. Bentley and J. B. Saxe. Decomposable searching problems. I. Static-to-dynamic
transformation. J. Algorithms, 1(4):301–358, 1980.

[4] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete & Computational Geometry, 14(4):463–479, 1995.

[5] T. M. Chan. Optimal partition trees. Discrete & Computational Geometry, 47(4):661–690,
2012.

[6] R. Klein, O. Nurmi, T. Ottmann, and D. Wood. A Dynamic Fixed Windowing Problem.
Algorithmica, 4(4):535–550, 1989.

[7] M. De, G. K. Das, and S. C. Nandy. Approximation algorithms for the discrete piercing
set problem for unit disks. In Proceedings of the 23rd Annual Canadian Conf. on Comput.
Geom., 2011.

[8] R. J. Fowler, M. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane
are NP-complete. Inf. Process. Lett., 12(3), 1981.

[9] M. Franceschetti, M. Cook, and J. Bruck. A geometric theorem for approximate disk
covering algorithms. Technical report, 2001.

13

[10] B. Fu, Z. Chen, and M. Abdelguerfi. An almost linear time 2.8334-approximation algorithm
for the disc covering problem. In Proceedings of 3rd International Conference of Algorithmic
Aspects in Information and Management, pages 317–326, 2007.

[11] T. F. Gonzalez. Covering a set of points in multidimensional space. Inf. Process. Lett.,
40(4):181–188, 1991.

[12] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems
in image processing and VLSI. J. ACM, 32(1):130–136, 1985.

[13] P. Liu and D. Lu. A fast 25/6-approximation for the minimum unit disk cover problem.
CoRR, abs/1406.3838, 2014.

14

A Appendix

The coordinates of the points for 14 and 12 covering is given in Tables 2 and 3, respectively.
Here we assume the half-ball has radius 1 and the unit balls have radius 1/2. The half-ball is
centered at the origin and has its base on xy-plane. Since the coordinates of the points in 14
covering are obtained from [1], some of z-coordinates are negative.

Table 2: The coordinates of the 14 cover, and the excluded balls of the 21 cover.

ball # x y z

1 -0.7042476993699713 -0.1897384908139258 0.4669408193044991
2 -0.3292862314363903 -0.7679448770185321 0.22766449373236058
3 0.5967710354972143 0.024432485403975968 0.6271102565247735
4 -0.803599430801605 -0.3050361127732187 -0.10573681771048753
5 0.6442044964439396 0.5624162836729194 0.1367060371671741
6 -0.11704300843515354 -0.27387869213520005 0.8131980518986511
7 -0.03634386701799877 0.8543361223697555 0.13707210477113296
8 -0.39301629040814245 0.449001371543003 0.6276427110198327
9 0.3327167675185201 -0.7924581713220512 -0.10634783351783872
10 0.8423378833005855 -0.19947886977538137 0.025992391460308913
11 0.3483067871797808 -0.641230866192109 0.46637530683454576
12 0.1931042097097512 0.4492843966181599 0.7147408565360098
13 -0.725047439878574 0.472849050034495 0.02683527916757068
14 0 0 0

1 0.27777845357333375 0.64820988747711 -0.5026562053076835
2 -0.0002474206056868669 0.0005095864126698074 -0.8660248031983451
3 -0.31458497985994993 0.6332628300547775 -0.5000151029724296
4 0.42206181844876095 -0.46795691910398096 -0.5940369529342732
5 -0.2785742232734966 -0.6488076234832963 -0.5014436157480976
6 0.6752035014327228 0.20869474927712645 -0.500547429119508
7 -0.6304928571982162 -0.016465523803227772 -0.5934713797150755

Table 3: The coordinates of the centers of 12 unit balls.

ball # x y z

1 -0.7638103193805045 0.2916707987226469 0.28552047418765747
2 -0.7361984406498542 -0.4102678330060574 0.19922891653883215
3 -0.15685273236392883 -0.7980104830689634 0.297618025767945
4 0.5429274132864615 -0.6551216417858168 0.16138605381484397
5 0.8231862798974567 0.027307901405844496 0.2676165673298175
6 0.5069450704690941 0.6715187748330166 0.2051078510780353
7 -0.2619940422412506 0.8087354742390338 0.1652454372666754
8 -0.3625112845808338 -0.1713273372287619 0.7676148201211697
9 -0.185959221348503 0.5374732209436377 0.6531016037064448
10 0.3644368797245205 0.22772543684531862 0.7518822288831304
11 0.28771813222122117 -0.3895392199254971 0.7179675985244508
12 0 0 0

15

