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Abstract

Motivated by the problem of orienting directional an-
tennas in wireless communication networks, we study
average bounded-angle minimum spanning trees. Let P
be a set of points in the plane and let α be an angle.
An α-spanning tree (α-ST) of P is a spanning tree of
the complete Euclidean graph induced by P with the
restriction that all edges incident to each point p ∈ P
lie in a wedge of angle α with apex p. An α-minimum
spanning tree (α-MST) of P is an α-ST with minimum
total edge length.

An average-α-spanning tree (denoted by α-ST) is a
spanning tree with the relaxed condition that incident
edges to all points lie in wedges with average angle α.
An average-α-minimum spanning tree (α-MST) is an α-
ST with minimum total edge length. In this paper, we
focus on α = 2π

3 . Let A
(
2π
3

)
be the smallest ratio of

the length of the 2π
3 -MST to the length of the standard

MST, over all sets of points in the plane. Biniaz, Bose,
Lubiw, and Maheshwari (Algorithmica 2022) showed
that 4

3 ≤ A
(
2π
3

)
≤ 3

2 . In this paper we improve the

upper bound and show that A
(
2π
3

)
≤ 13

9 .

1 Introduction

A wireless communication network can be represented
as a geometric graph in the plane. Each antenna is
represented by a point p, its transmission range is rep-
resented by a disk with radius r centered at p, and there
is an edge between two points if they are within each
other’s transmission ranges. The problems of assign-
ing transmission ranges to antennas to achieve networks
possessing certain properties has been widely studied
[3, 5, 9, 12, 14, 15, 16, 17].

In recent years, there has been considerable research
on the problem of replacing omni-directional antennas
with directional antennas [1, 2, 4, 6, 8, 10, 11, 13, 14, 18].
Here, the transmission range of each point p is an ori-
ented wedge with apex p and angle α. Directional an-
tennas provide several advantages over omni-directional
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antennas, including less potential for interference, lower
power consumption, and reduced area where communi-
cations could be maliciously intercepted [3, 18].

Motivated by this problem, Aschner and Katz [2] in-
troduced the α-Spanning Tree (α-ST): a spanning tree
of the complete Euclidean graph in the plane where all
incident edges of each point p lie in a wedge of angle
α with apex p. They also presented approximation al-
gorithms for the cases where α = π

2 ,
2π
3 , and π, with

approximation factors of 16, 6, and 2, respectively, with
respect to the MST. For α = 2π

3 and α = π
2 , the ap-

proximation ratios have been improved to 16
3 [6] and 10

[7], respectively. Aschner and Katz further proved the
NP-hardness of the problem of computing the α-MST
for the α = 2π

3 and α = π cases.

Most previous research in this context has been done
on the case where α is one fixed value for all anten-
nas [6]. Biniaz et al. [6] extended this concept to an
average-α-minimum spanning tree (α-MST): an α-MST
with the relaxed restriction that the average angle of all
the wedges is at most α. More formally, a total angle
of αn must be allocated among n points p so that each
point has a sufficient allowed angle to cover all incident
edges. In the case where α = 2π

3 , they presented an
algorithm that achieves an α-ST of length at most 3

2
times the length of the MST. They also proved a lower
bound of 4

3 on the approximation factor with respect to
the MST.

In this paper, we improve the upper bound on A
(
2π
3

)
from 3

2 to 13
9 . In fact we modify the algorithm of [6] and

obtain an α-ST of length at most 13
9 times the length of

the MST. Our algorithm involves a stronger exploitation
of the Euclidean metric than the previous work.

Our improved upper bound immediately gives an ap-
proximation algorithm with ratio 13

9 (with respect to
the MST) for the α-MST problem for any α ≥ 2π

3 . Sim-
ilar to that of [6], our algorithm runs in linear time after
computing the MST.

1.1 Notation

We use the terms point and vertex interchangeably de-
pending on the context.

To facilitate comparison, we borrow the following no-
tation from [6]. A maximal path in a tree is a path with
at least two edges where all internal vertex degrees are
2, and the end vertex degrees are not 2. To contract a
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maximal path is to remove all vertices of degree 2 on
the path and the edges between them, and add an edge
connecting the end vertices. The angle that the inci-
dent edges of a vertex in an α-MST are allowed to fall
within is called its charge. Charges can be redistributed
between vertices. We denote the total length of edges
of a geometric graph G by w(G).

As the length of the optimal solution is not known,
we use the underlying MST of the points as a lower
bound in our analysis. We denote the smallest ratio of

the length of the 2π
3 -MST to the length of the standard

MST over all points in the plane as A
(
2π
3

)
. In [6], it

was shown that 4
3 ≤ A

(
2π
3

)
≤ 3

2 .

1.2 Outline

The approximation algorithm of [6] for the 2π
3 -MST

starts with a standard MST that has maximum degree 5
(which always exists). Then it re-assigns angle charges
from leaves to inner vertices. Their approach first con-
siders the MST with all maximal paths contracted, and
then introduces edge shortcuts in each contracted path.

By exploiting additional geometric properties we en-
sure the connectivity of path vertices with less total
charge. This enables us to save some charges. The saved
charges allow us to introduce fewer shortcuts than the

original algorithm, resulting in a shorter 2π
3 -ST.

2 The Algorithm of Biniaz et al.

In this section we briefly describe the algorithm of
Biniaz et al. [6], which we refer to by “Algorithm 1”.

The algorithm starts by computing a degree-5 mini-
mum spanning tree T of the point set, where each vertex
holds a charge of 2π

3 . Then the algorithm goes through
two phases that redistribute the charges and also mod-
ify the tree. In the first phase, all maximal paths of
T are contracted (to edges), resulting in a tree with no
vertices of degree 2, and all other vertices having the
same degree as in T . The charge from the leaves are
then redistributed among the internal vertices so that
each vertex of degree 3, 4, and 5 has a charge of 4π

3 ,
2π, and 8π

3 , respectively. Since the charge of each inter-
nal vertex with degree n is at least

(
1− 1

n

)
2π, which

covers any set of n edges, all vertices can cover their
incident edges. After redistribution, degree-1 vertices
have 0 charge and each degree-2 vertex holds its origi-
nal 2π

3 charge. This redistribution retains a pool of 4π
3

charge that can be split among all leaves in the tree at
the end of the algorithm.

In the second phase, the edges of each path p1, p2,
. . . , pm that was contracted in phase 1 are split into
two matchings, M1 and M2 with equal number of edges
(if the path has odd number of edges then the last
edge is not in either matching). The edges of the

matching with the larger weight are removed, and a set
S = {(p1, p3), (p3, p5), ...} of new edges called shortcuts
are introduced (see Figure 15 of [6], which we include
here as Figure 1). By this process, the charge of ev-
ery new degree-1 vertex is redistributed among other
vertices so that each new degree-2 and degree-3 vertex
along the path has a charge of π and 4π

3 , respectively;
this is handled in four cases based on which matching
is heavier and whether the path length is even or odd,
as shown in Figure 1. Note that the charge given to
vertices assigned degree 2 and 3 allows them to cover
any set of 2 and 3 edges, respectively.

Let M ′
1 and M ′

2 be the union of the edges in the
smaller and larger-weight matchings of all contracted
paths, respectively. Let T ′ be the final tree obtained by
the above algorithm, and let E be the set of edges of T
not in M ′

1∪M ′
2. Then w(T ) = w(E) +w(M ′

1) +w(M ′
2).

By the triangle equality we have w(S) ≤ w(M ′
1) +

w(M ′
2). Since w(M ′

2) ≥ w(M ′
1) we get

w(T ′) = w(E) + w(M ′
1) + w(S)

≤ w(E) + w(M ′
1) + w(M ′

1) + w(M ′
2)

= w(T ) + w(M ′
1) ≤ 3

2
w(T ).

3 The Improved Algorithm

We begin by modifying the charge-redistribution of
phase 2 of Algorithm 1 with a more careful charge re-
distribution. In particular we show that the 3 edges,
that are incident to new degree-3 vertices, can be cov-
ered by 4π

3 −
π
12 charge (meaning that we can save the π

12
charge). We then use the saved charge of π

12 to achieve a
better approximation with respect to the original MST.
The following lemma, although very simple, plays an
important role in the design of the modified algorithm.

Lemma 1 It is possible to save at least π
12 charge from

every shortcut performed by phase 2 of Algorithm 1.

Proof. Consider a shortcut ac between two consecutive
edges ab and bc of a contracted path as depicted in Fig-
ure 2. Up to symmetry we may assume that ab is in M2

and thus it has been removed in phase 2 of Algorithm
1. Denote the angle ∠bca by β. Since the path (a, b, c)
is part of the MST, ac is the largest edge of the trian-
gle 4abc, and thus ∠abc is its largest angle. Therefore
β ≤ π

2 .

a

b

c
β

Figure 2: illustration of the proof of Lemma 1.
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Figure 1: (borrowed from [6]) The contracted path is shown by black segments. The dashed-black edges belong to
M2 and the red edges belong to S.

The replacement of ab by the shortcut ac has not
changed the degree of a, has decreased the degree of b
by 1, and has increased the degree of c by 1. Thus the
charge assigned to a by Algorithm 1 remains enough to
cover its incident edges. Since b has degree 1, its 2π

3
charge is free. Algorithm 1 transfers this free charge
to c to cover its new edge. We show how to cover all
edges incident to c while saving π

12 charge. If c’s original
degree (i.e. after phase 1 and before phase 2) was 4 or
5 then it carries at least 2π charge which is sufficient to
cover its edges. We may assume that the original degree
of c is 1, 2, or 3, in which case it holds a charge of 0,
2π
3 , or 4π

3 , respectively. Thus the new degree of c (after
phase 2) is 2, 3, or 4. Based on this we distinguish three
cases.

• If deg(c) = 2 then the two incident edges of c are
ac and bc. We can cover these edges by a charge
of β (≤ π

2 ). Thus we transfer π
2 charge from b to c

and we save π
6 .

• If deg(c) = 3 then we cover β and the smaller of
the other two angles at c. Thus the three incident
edges to c can be covered by charge of

β +

(
2π − β

2

)
=

2π + β

2
≤

2π + π
2

2
=

5π

4
.

Thus by transferring 7π
12 from b to c it will have

charge of 5π
4 (including its original 2π

3 charge).
Thus we save charge of 2π

3 −
7π
12 = π

12 from b.

• If deg(c) = 4 then we transfer π
6 charge from b to c

and save the remaining π
2 charge of b. The vertex c

now holds 3π
2 charge (including its charge 4π

3 after
phase 1) which covers its four incident edges.

�

The following is a direct implication of Lemma 1.

Corollary 2 It is possible to save π
3 charge from every

four shortcuts that are performed by Algorithm 1.

3.1 Reversing Shortcuts

In this section, we present an approximation algorithm
that uses fewer shortcuts than Algorithm 1. In fact
the new algorithm reverses a constant fraction of the
shortcuts performed by Algorithm 1.

Theorem 3 Given a set of n points in the plane and
an angle α > 2π

3 , there is an α-spanning tree of length
at most 13

9 times the length of the MST. Furthermore,
there is an algorithm to find such an α-ST that runs in
linear time after computing the MST.

Proof. Let T be a degree-5 minimum spanning tree of

the point set, and T ′ be the 2π
3 -spanning tree obtained

from T by Algorithm 1.
Consider the sequence of shortcuts introduced by Al-

gorithm 1 along each contracted path. Let s1, s2, ..., sm
be the concatenation of the sequences for all contracted
paths. We split these shortcuts into nine sets S0, . . . , S8

such that si ∈ S(i mod 9) for each i ∈ {1, . . . ,m}. Note
that no two adjacent shortcuts in the same contracted
path will be in the same set Si. Moreover the number
of shortcuts in any two sets Si and Sj differ by at most
1. Recall that the edges of each contracted path in Al-
gorithm 1 are split into two matchings M1 and M2. Let
M ′

1 be the set of edges that are kept in the tree (i.e. M ′
1

is the union of the smaller-weight matchings from each
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contracted path), and let the set of edges in the heavier
matchings be M ′

2. Among S0, . . . , S8, let S8 be the one
whose corresponding edges in M ′

1 have the largest total
weight.

Our plan now is to reverse the shortcuts in S8, i.e.,
to replace them by their corresponding edges in M ′

2.
Let S′ be the union of S0, . . . , S7. Notice that |S′| ≥
8 · (|S8| − 1). Let C denote the pool of charges that is
obtained after phase 1 of Algorithm 1, and recall that it
contains 4π

3 charge. For each shortcut in S′ we reassign
the charges between its corresponding points to save at
least π

12 charge (as shown in Lemma 1), and add this
charge to C. Thus the total charge of C is at least

4π

3
+ 8 · (|S8| − 1) · π

12
= (|S8|+ 1) · 2π

3
.

We will show that to reverse each shortcut from S8 it
suffices to take 2π

3 charge from C.
Consider any shortcut ac from S8 between two consec-

utive edges ab and bc of a contracted path as depicted
in Figure 3. We reverse this shortcut by replacing ac
with the removed edge ab. We also reclaim any portion
of b’s charge that was transferred to c. Thus the reverse
operation brings the charges of b and c back to what
it was after phase 1 and before phase 2; in particular
it brings the charge of b back to 2π

3 . There is one ex-
ceptional case where w(M1) < w(M2) and the path has
odd number of edges (the last case in Figure 1 where
p3, p2, p1 play the roles of a, b, c, respectively). In this
case the charge of b (i.e. p2) would be π

3 as pm holds
the other π

3 portion. (Since no two shortcuts in S8 are
adjacent in the same contracted path, we can analyze a
reverse operation independently of others. Notice, how-
ever, that it is possible that two or more shortcuts of
S8 are adjacent at a vertex that has degree at least 3
after phase 1. In this case, the charge of such a vertex
suffices to cover its edges after reversing the shortcuts
since it will have at least π

6 charge added for each new
edge introduced by the process described in Lemma 1.)
The reverse operation does not change the degree of a
and thus its charge remains sufficient to cover its edges.
The reverse operation makes b of degree 2 and decreases
the degree of c by 1.

We take π
3 charge from C for b to bring it to a charge

of π, which covers its two incident edges. If deg(c) = 1
or deg(c) ≥ 3, its charge is sufficient to cover its edges.
If deg(c) = 2 then we take an additional charge of π

3
from C for c to cover its two incident edges. In the
exceptional where w(M1) < w(M2) and the path has
odd number of edges (the last case in Figure 1), p2 = b
holds π

3 charge, so we take 2π
3 from C for p2 to cover

its two incident edges. Since p1 = c is of degree 1 or at
least 3 (as the contracted path is maximal), its charge
(acquired after phase 1) is sufficient to cover its edges.
Thus, in the worst case we take 2π

3 from C to reverse
every shortcut.

After reversing all shortcuts in S8, the pool C is left
with at least 2π

3 charge which can be distributed among
the leaves of the resulting tree.

a

b

c a c

b

Figure 3: Left: The tree T ′ before reversing shortcut
ac. Right: The tree T ′′ after reversing ac.

Let T ′′ be the 2π
3 -ST tree obtained from T ′ after re-

versing all shortcuts in S8. Let E be the set of edges of
T ′′ not in M ′

1 ∪M ′
2. Let E′ be the set of all edges of

M ′
1 ∪M ′

2 that correspond to the shortcuts in S8. Let
M ′′

1 = M ′
1 \ E′ and M ′

2 = M ′
2 \ E′ (i.e. all edges in

M ′
1 and M ′

2, respectively, with a shortcut between their
endpoints in T ′′). Then,

w(T ′′) = w(E) + w(E′) + w(S′) + w(M ′′
1 )

≤ w(E) + w(E′) + w(M ′′
1 ) + w(M ′′

2 ) + w(M ′′
1 )

= w(T ) + w(M ′′
1 ).

Since S8 has the largest corresponding M ′
1 weight,

w(M ′′
1 ) ≤ 8

9w(M ′
1) ≤ 8

9 ·
1
2w(T ) = 4

9w(T ). Thus,

w(T ′′) ≤ w(T ) +
4

9
w(T ) =

13

9
w(T ).

�

With Theorem 3 in hand, we report the following
bound for A

(
2π
3

)
.

Corollary 4 4
3 ≤ A

(
2π
3

)
≤ 13

9 .

4 Conclusions

An obvious open problem is to further tighten the gap
between the upper bound of 13

9 and lower bound of 4
3

for A
(
2π
3

)
. This could be done by either introducing

a new algorithm with a better approximation factor, or

by finding a new set of points whose 2π
3 -MST must have

a weight of more than 4
3 times that of the MST.

References

[1] E. Ackerman, T. Gelander, and R. Pinchasi. Ice-creams
and wedge graphs. Computational Geometry: Theory
and Applications, 46(3):213–218, 2013.

[2] R. Aschner and M. J. Katz. Bounded-angle spanning
tree: Modeling networks with angular constraints. Al-
gorithmica, 77(2):349–373, 2017.



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

[3] R. Aschner, M. J. Katz, and G. Morgenstern. Do direc-
tional antennas facilitate in reducing interferences? In
Proceedings of the 13th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT), pages 201–
212, 2012.

[4] S. Ashur and M. J. Katz. A 4-approximation of the
2π
3

-MST. In Proceedings of the 17th International Sym-
posium on Algorithms and Data Structures (WADS),
pages 129–143, 2021.

[5] A. Biniaz. Euclidean bottleneck bounded-degree span-
ning tree ratios. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2020.

[6] A. Biniaz, P. Bose, A. Lubiw, and A. Maheshwari.
Bounded-angle minimum spanning trees. Algorithmica,
84(1):150–175, 2022.

[7] A. Biniaz, M. Daliri, and A. H. Moradpour. A 10-
Approximation of the π

2
-MST. In Proceedings of the

39th International Symposium on Theoretical Aspects
of Computer Science (STACS), pages 13:1–13:15, 2022.

[8] P. Bose, P. Carmi, M. Damian, R. Y. Flatland, M. J.
Katz, and A. Maheshwari. Switching to directional an-
tennas with constant increase in radius and hop dis-
tance. Algorithmica, 69(2):397–409, 2014.

[9] P. M. Camerini. The min-max spanning tree problem
and some extensions. Information Processing Letters,
7(1):10–14, 1978.

[10] I. Caragiannis, C. Kaklamanis, E. Kranakis,
D. Krizanc, and A. Wiese. Communication in
wireless networks with directional antennas. In
Proceedings of the 20th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA),
pages 344–351, 2008.

[11] P. Carmi, M. J. Katz, Z. Lotker, and A. Rosén. Connec-
tivity guarantees for wireless networks with directional
antennas. Computational Geometry: Theory and Ap-
plications, 44(9):477–485, 2011.

[12] T. M. Chan. Euclidean bounded-degree spanning tree
ratios. Discrete & Computational Geometry, 32(2):177–
194, 2004.

[13] M. Damian and R. Y. Flatland. Spanning properties of
graphs induced by directional antennas. Discrete Math-
ematics, Algorithms and Applications, 5(3), 2013.

[14] S. Dobrev, E. Kranakis, D. Krizanc, J. Opatrny, O. M.
Ponce, and L. Stacho. Strong connectivity in sensor
networks with given number of directional antennae of
bounded angle. Discrete Mathematics, Algorithms and
Applications, 4(3), 2012.

[15] S. Dobrev, E. Kranakis, O. M. Ponce, and M. Plźık. Ro-
bust sensor range for constructing strongly connected
spanning digraphs in UDGs. In Proceedings of the 7th
International Computer Science Symposium in Russia
(CSR), pages 112–124, 2012.
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