
An Optimal Algorithm for the Euclidean Bottleneck
Full Steiner Tree Problem

Ahmad Biniaz∗ Anil Maheshwari∗ Michiel Smid∗

September 30, 2013

Abstract

Let P and S be two disjoint sets of n and m points in the plane, respectively. We
consider the problem of computing a Steiner tree whose Steiner vertices belong to S,
in which each point of P is a leaf, and whose longest edge length is minimum. We
present an algorithm that computes such a tree in O((n +m) logm) time, improving
the previously best result by a logarithmic factor. We also prove a matching lower
bound in the algebraic computation tree model.

1 Introduction

Let P and S be two disjoint sets of n and m points in the plane, respectively. A full Steiner
tree of P with respect to S is a tree T with vertex set P ∪ S ′, for some subset S ′ of S, in
which each point of P is a leaf. Such a tree T consists of a skeleton tree, which is the part
of T that spans S ′, and external edges, which are the edges of T that are incident on the
points of P .

The bottleneck length of a full Steiner tree is defined to be the Euclidean length of a
longest edge. An optimal bottleneck full Steiner tree is a full Steiner tree whose bottleneck
length is minimum. In [1], Abu-Affash shows that such an optimal tree can be computed in
O((n+m) log2m) time. In this paper, we improve the running time by a logarithmic factor
and prove a matching lower bound. That is, we prove the following result:

Theorem 1 Let P and S be disjoint sets of n and m points in the plane, respectively. An
optimal bottleneck full Steiner tree of P with respect to S can be computed in O((n+m) logm)
time, which is optimal in the algebraic computation tree model.

If n = 2, i.e., the set P only consists of two points, say p and q, then an optimal bottleneck
full Steiner tree can be obtained in the following way: In O(m logm) time, compute a
Euclidean minimum spanning tree of the set P ∪ S and return the path in this tree between

∗School of Computer Science, Carleton University, Ottawa, Canada. Research supported by NSERC.

1

p and q. The correctness of this algorithm follows from basic properties of minimum spanning
trees.

In the rest of this paper, we will assume that n ≥ 3. This implies that any full Steiner
tree of P with respect to S contains at least one vertex from S; in other words, the skeleton
tree has a non-empty vertex set S ′.

2 The algorithm

2.1 Preprocessing

We compute a Euclidean minimum spanning tree MST (S) of the point set S, which can
be done in O(m logm) time. Then we compute the bipartite graph Υ6(P, S) with vertex
set P ∪ S that is defined as follows: Consider a collection of six cones, each of angle π/3
and having its apex at the origin, that cover the plane. For each point p of P , translate
these cones such that their apices are at p. For each of these translated cones C for which
C∩S 6= ∅, the graph Υ6(P, S) contains one edge connecting p to a nearest neighbor in C∩S.
(This is a variant of the well-known Yao-graph as introduced in [5].) Using an algorithm of
Chang et al. [3], together with a point-location data structure, the graph Υ6(P, S) can be
constructed in O((n+m) logm) time.

The entire preprocessing algorithm takes O((n+m) logm) time.

2.2 A decision algorithm

Let λ∗ denote the optimal bottleneck length, i.e., the bottleneck length of an optimal bottle-
neck full Steiner tree of P with respect to S.

In this section, we present an algorithm that decides, for any given real number λ > 0,
whether λ∗ < λ or λ∗ ≥ λ. This algorithm starts by removing from MST (S) all edges having
length at least λ, resulting in a collection T1, T2, . . . of trees. The algorithm then computes
the set J of all indices j for which the following holds: Each point p of P is connected by
an edge of Υ6(P, S) to some point s, such that (i) s is a vertex of Tj and (ii) the Euclidean
distance |ps| is less than λ. As we will prove later, this set J has the property that it is
non-empty if and only if λ∗ < λ. The formal algorithm is given in Figure 1.

Observe that, at any moment during the algorithm, the set J has size at most six.
Therefore, the running time of this algorithm is O(n+m).

Before we prove the correctness of the algorithm, we introduce the following notation.
Let j be an arbitrary element in the output set J of algorithm CompareToOptimal(λ).
It follows from the algorithm that, for each i with 1 ≤ i ≤ n, there exists a point si in S
such that

• si is a vertex of Tj,

• (pi, si) is an edge in Υ6(P, S), and

• |pisi| < λ.

2

Algorithm CompareToOptimal(λ);
remove from MST (S) all edges having length at least λ;
denote the resulting trees by T1, T2, . . .;
number the points of P arbitrarily as p1, p2, . . . , pn;
J := ∅;
for each edge (p1, s) in Υ6(P, S)
do j := index such that s is a vertex of Tj;

if |p1s| < λ
then J := J ∪ {j}
endif

endfor;
for i := 2 to n
do for each j ∈ J

do keep(j) := false
endfor;
for each edge (pi, s) in Υ6(P, S)
do j := index such that s is a vertex of Tj;

if j ∈ J and |pis| < λ
then keep(j) := true
endif

endfor;
J := {j ∈ J : keep(j) = true}

endfor;
return the set J

Figure 1: This algorithm takes as input a real number λ and returns a set J . This set J is
non-empty if and only if λ∗ < λ.

3

We define Tj to be the full Steiner tree with skeleton tree Tj and external edges (pi, si),
1 ≤ i ≤ n. Observe that, since each edge of Tj has length less than λ, the bottleneck length
of Tj is less than λ. Therefore, we have proved the following lemma.

Lemma 1 Assume that the output J of algorithm CompareToOptimal(λ) is non-empty.
Then λ∗ < λ.

The following lemma states that the converse of Lemma 1 also holds.

Lemma 2 Assume that λ∗ < λ. Then the output J of algorithm CompareToOptimal(λ)
has the following two properties:

1. J 6= ∅ and

2. J contains an element j such that Tj is a full Steiner tree, whose skeleton tree Tj has
bottleneck length less than λ, and in which each external edge has length at most λ∗.

Proof. Consider an optimal bottleneck full Steiner tree, let T ∗ be its skeleton tree, and
denote its external edges by (pi, si), 1 ≤ i ≤ n; thus, each si is a vertex of T ∗. Each edge of
this optimal tree has length at most λ∗.

We may assume that T ∗ is a subtree of MST (S); see Lemma 2.1 in Abu-Affash [1]. Since
each edge of T ∗ has length at most λ∗, which is less than λ, there exists an index j, such that
T ∗ is a subtree of Tj. We will prove that, at the end of algorithm CompareToOptimal(λ),
j is an element of the set J .

Let i be any index with 1 ≤ i ≤ n. Recall that the graph Υ6(P, S) uses cones of angle
π/3. Consider the cone with apex pi that contains si. This cone contains a point s′i of S
such that (pi, s

′
i) is an edge in Υ6(P, S). (It may happen that s′i = si.) Since |pis′i| ≤ |pisi|,

we have |sis′i| ≤ |pisi| ≤ λ∗ < λ.
Consider the path in MST (S) between si and s′i. It follows from basic properties of

minimum spanning trees that each edge on this path has length at most |sis′i| < λ. Therefore,
s′i is a vertex of the tree Tj.

It follows from algorithm CompareToOptimal(λ) that, when pi is considered, the
index j is added to J if i = 1, and j stays in J if i ≥ 2. Thus, at the end of the algorithm,
j is an element of the set J , proving the first claim in the lemma.

The full Steiner tree Tj, having skeleton tree Tj and external edges (pi, s
′
i) for 1 ≤ i ≤ n,

satisfies the second claim in the lemma.

2.3 Binary search and completing the algorithm

Let k denote the number of distinct lengths of the edges of MST (S), and let λ1 < λ2 < . . . <
λk denote the sorted sequence of these edge lengths. Define λ0 := 0 and λk+1 := ∞. Using
algorithm CompareToOptimal to perform a binary search in the sequence λ0, λ1, . . . , λk+1,
we obtain an index ` with 1 ≤ ` ≤ k + 1, such that λ`−1 ≤ λ∗ < λ`.

4

Since algorithm CompareToOptimal takes O(n+m) time, the total time for the binary
search is O((n+m) logm).

Run algorithm CompareToOptimal(λ`). Since λ∗ < λ`, it follows from Lemma 2 that,
at the end of this algorithm, the set J contains an index j such that Tj is a full Steiner tree,
whose skeleton tree Tj has bottleneck length less than λ, and in which each external edge
has length at most λ∗. Since Tj is a subtree of MST (S), it follows that each edge of Tj has
length at most λ`−1, which is at most λ∗. Thus, Tj is a full Steiner tree with bottleneck
length at most λ∗. By definition of λ∗, it then follows that the bottleneck length of Tj is
equal to λ∗.

Thus, to complete the algorithm, we run algorithm CompareToOptimal(λ`) and con-
sider its output J . For each of the at most six elements j of J , we construct the full Steiner
tree Tj and compute its bottleneck length λ∗j . For any index j that minimizes λ∗j , Tj is
an optimal bottleneck full Steiner tree. This final step completes the algorithm and takes
O(n+m) time. This proves the first part of Theorem 1.

3 The lower bound

In this section, we prove that our algorithm is optimal in the algebraic computation tree
model; refer to Ben-Or [2] for the definition of this model.

3.1 The case when n is small as compared to m

We start by assuming that n = O(m). We will prove that the problem of computing
an optimal bottleneck full Steiner tree has a lower bound of Ω(m logm), which is Ω((n +
m) logm).

Consider a sequence s1, s2, . . . , sm of real numbers. The maximum gap of these numbers
is the largest distance between any two elements that are consecutive in the sorted order of
this sequence. Lee and Wu [4] have shown that, in the algebraic computation tree model,
computing the maximum gap takes Ω(m logm) time.

Consider the following algorithm that takes as input a sequence s1, s2, . . . , sm of real
numbers:

1. Compute the minimum and maximum elements in the input sequence, compute the
absolute value ∆ of their difference, and compute the value g = ∆/(m+ 1).

2. Compute the set S = {(si, 0) : 1 ≤ i ≤ m}, a set P1 consisting of n/2 points that are
to the left of (s1, 0) and have distance at most g/2 to (s1, 0), a point set P2 consisting
of n/2 points that are to the right of (sm, 0) and have distance at most g/2 to (sm, 0).
Let P be the union of P1 and P2.

3. Compute an optimal bottleneck full Steiner tree T of P with respect to S, and compute
the length λ∗ of a longest edge in T .

4. Return λ∗.

5

Let G be the maximum gap of the sequence s1, s2, . . . , sm, and observe that G ≥ g. It is not
difficult to see that G = λ∗. Thus, the above algorithm solves the maximum gap problem
and, therefore, takes Ω(m logm) time. Since n = O(m), the running time of this algorithm
is O(m + n) = O(m) plus the time needed to compute T . It follows that the problem of
computing an optimal bottleneck full Steiner tree has a lower bound of Ω(m logm).

3.2 The case when n is large as compared to m

We now assume that n = Ω(m). We will prove that the problem of computing an optimal
bottleneck full Steiner tree has a lower bound of Ω(n logm), which is Ω((n+m) logm).

A sequence p1, p2, . . . , pn of points in the plane is specified by 2n real numbers. We identify
such a sequence with the point (p1, p2, . . . , pn) in R2n. For each integer i with 1 ≤ i ≤ m, let
ci be the point (i, 1). Define the subset V of R2n as

V = {(p1, p2, . . . , pn) ∈ R2n : {p1, p2, . . . , pn} ⊆ {c1, c2, . . . , cm}}.

For any function f : {1, 2, . . . , n} → {1, 2, . . . ,m}, define the point Pf = (cf(1), cf(2), . . . , cf(n)).
Since there are mn such functions f , we obtain mn different points Pf , each one belonging
to the set V . The set V is in fact equal to the set of these mn points Pf and, therefore,
V has exactly mn connected components. Thus, by Ben-Or’s theorem [2], any algorithm
that decides whether a given point (p1, p2, . . . , pn) belongs to V has worst-case running time
Ω(n logm).

Now consider the following algorithm that takes as input a sequence p1, p2, . . . , pn of
points in the plane:

1. Compute the set S = {(i, 0) : 1 ≤ i ≤ m}.

2. Let p = (0, 0) and q = (m+ 1, 0), and compute the set P ′ = {p, q} ∪ {p1, p2, . . . , pn}.

3. Compute an optimal bottleneck full Steiner tree T of P ′ with respect to S.

4. Set output = true.

5. For each j with 1 ≤ j ≤ n, do the following:

(a) Let i be the index such that pj and (i, 0) are connected by an external edge in T .

(b) If pj 6= ci, set output = false.

6. Return output .

If the output of the algorithm is true, then each pj is equal to some ci and, therefore, the
point (p1, p2, . . . , pn) belongs to the set V .

Assume that (p1, p2, . . . , pn) ∈ V . The (unique) optimal bottleneck full Steiner tree of
P ′ with respect to S is the union of (i) the path connecting the points of S sorted from
left to right (this is the skeleton tree), (ii) the edge connecting p with (1, 0) and the edge

6

connecting q with (m, 0) (these are external edges), and (iii) edges that connect each point
pj of P to the point ci having the same x-coordinate as pj (these are also external edges). It
then follows from the algorithm that the output is true.

Thus, the algorithm correctly decides whether any given point (p1, p2, . . . , pn) belongs to
V . By the result above, the worst-case running time of this algorithm is Ω(n logm). Since
m = O(n), the running time of this algorithm is O(m+ n) = O(n) plus the time needed to
compute T . It follows that the problem of computing an optimal bottleneck full Steiner tree
has a lower bound of Ω(n logm).

This completes the proof of the lower bound in Theorem 1.

References

[1] A. K. Abu-Affash. On the Euclidean bottleneck full Steiner tree problem. In Proceedings
of the 27th ACM Symposium on Computational Geometry, pages 433–439, 2011.

[2] M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the 15th
ACM Symposium on the Theory of Computing, pages 80–86, 1983.

[3] M. S. Chang, N.-F. Huang, and C.-Y. Tang. An optimal algorithm for constructing
oriented Voronoi diagrams and geographic neighborhood graphs. Information Processing
Letters, 35:255–260, 1990.

[4] D. T. Lee and Y. F. Wu. Geometric complexity of some location problems. Algorithmica,
1:193–211, 1986.

[5] A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related
problems. SIAM Journal on Computing, 11:721–736, 1982.

7

