An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem

Ahmad Biniaz* Anil Maheshwari* Michiel Smid* September 30, 2013

Abstract

Let P and S be two disjoint sets of n and m points in the plane, respectively. We consider the problem of computing a Steiner tree whose Steiner vertices belong to S, in which each point of P is a leaf, and whose longest edge length is minimum. We present an algorithm that computes such a tree in $O((n+m)\log m)$ time, improving the previously best result by a logarithmic factor. We also prove a matching lower bound in the algebraic computation tree model.

1 Introduction

Let P and S be two disjoint sets of n and m points in the plane, respectively. A full Steiner tree of P with respect to S is a tree \mathcal{T} with vertex set $P \cup S'$, for some subset S' of S, in which each point of P is a leaf. Such a tree \mathcal{T} consists of a skeleton tree, which is the part of \mathcal{T} that spans S', and external edges, which are the edges of \mathcal{T} that are incident on the points of P.

The bottleneck length of a full Steiner tree is defined to be the Euclidean length of a longest edge. An optimal bottleneck full Steiner tree is a full Steiner tree whose bottleneck length is minimum. In [1], Abu-Affash shows that such an optimal tree can be computed in $O((n+m)\log^2 m)$ time. In this paper, we improve the running time by a logarithmic factor and prove a matching lower bound. That is, we prove the following result:

Theorem 1 Let P and S be disjoint sets of n and m points in the plane, respectively. An optimal bottleneck full Steiner tree of P with respect to S can be computed in $O((n+m)\log m)$ time, which is optimal in the algebraic computation tree model.

If n=2, i.e., the set P only consists of two points, say p and q, then an optimal bottleneck full Steiner tree can be obtained in the following way: In $O(m \log m)$ time, compute a Euclidean minimum spanning tree of the set $P \cup S$ and return the path in this tree between

^{*}School of Computer Science, Carleton University, Ottawa, Canada. Research supported by NSERC.

p and q. The correctness of this algorithm follows from basic properties of minimum spanning trees.

In the rest of this paper, we will assume that $n \geq 3$. This implies that any full Steiner tree of P with respect to S contains at least one vertex from S; in other words, the skeleton tree has a non-empty vertex set S'.

2 The algorithm

2.1 Preprocessing

We compute a Euclidean minimum spanning tree MST(S) of the point set S, which can be done in $O(m \log m)$ time. Then we compute the bipartite graph $\Upsilon_6(P, S)$ with vertex set $P \cup S$ that is defined as follows: Consider a collection of six cones, each of angle $\pi/3$ and having its apex at the origin, that cover the plane. For each point p of P, translate these cones such that their apices are at p. For each of these translated cones C for which $C \cap S \neq \emptyset$, the graph $\Upsilon_6(P, S)$ contains one edge connecting p to a nearest neighbor in $C \cap S$. (This is a variant of the well-known Yao-graph as introduced in [5].) Using an algorithm of Chang et al. [3], together with a point-location data structure, the graph $\Upsilon_6(P, S)$ can be constructed in $O((n + m) \log m)$ time.

The entire preprocessing algorithm takes $O((n+m)\log m)$ time.

2.2 A decision algorithm

Let λ^* denote the *optimal bottleneck length*, i.e., the bottleneck length of an optimal bottleneck full Steiner tree of P with respect to S.

In this section, we present an algorithm that decides, for any given real number $\lambda > 0$, whether $\lambda^* < \lambda$ or $\lambda^* \ge \lambda$. This algorithm starts by removing from MST(S) all edges having length at least λ , resulting in a collection T_1, T_2, \ldots of trees. The algorithm then computes the set J of all indices j for which the following holds: Each point p of P is connected by an edge of $Y_6(P, S)$ to some point s, such that (i) s is a vertex of T_j and (ii) the Euclidean distance |ps| is less than λ . As we will prove later, this set J has the property that it is non-empty if and only if $\lambda^* < \lambda$. The formal algorithm is given in Figure 1.

Observe that, at any moment during the algorithm, the set J has size at most six. Therefore, the running time of this algorithm is O(n+m).

Before we prove the correctness of the algorithm, we introduce the following notation. Let j be an arbitrary element in the output set J of algorithm COMPARETOOPTIMAL (λ) . It follows from the algorithm that, for each i with $1 \leq i \leq n$, there exists a point s_i in S such that

- s_i is a vertex of T_j ,
- (p_i, s_i) is an edge in $\Upsilon_6(P, S)$, and
- $|p_i s_i| < \lambda$.

```
Algorithm CompareToOptimal(\lambda);
remove from MST(S) all edges having length at least \lambda;
denote the resulting trees by T_1, T_2, \ldots;
number the points of P arbitrarily as p_1, p_2, \ldots, p_n;
J := \emptyset;
for each edge (p_1, s) in \Upsilon_6(P, S)
do j := \text{index such that } s \text{ is a vertex of } T_j;
    if |p_1s| < \lambda
    then J := J \cup \{j\}
    endif
endfor;
for i := 2 to n
do for each j \in J
    do keep(j) := false
    endfor;
    for each edge (p_i, s) in \Upsilon_6(P, S)
    do j := \text{index such that } s \text{ is a vertex of } T_j;
        if j \in J and |p_i s| < \lambda
        then keep(j) := true
        endif
    endfor;
    J := \{ j \in J : keep(j) = true \}
endfor;
return the set J
```

Figure 1: This algorithm takes as input a real number λ and returns a set J. This set J is non-empty if and only if $\lambda^* < \lambda$.

We define \mathcal{T}_j to be the full Steiner tree with skeleton tree T_j and external edges (p_i, s_i) , $1 \leq i \leq n$. Observe that, since each edge of T_j has length less than λ , the bottleneck length of \mathcal{T}_j is less than λ . Therefore, we have proved the following lemma.

Lemma 1 Assume that the output J of algorithm CompareToOptimal(λ) is non-empty. Then $\lambda^* < \lambda$.

The following lemma states that the converse of Lemma 1 also holds.

Lemma 2 Assume that $\lambda^* < \lambda$. Then the output J of algorithm CompareToOptimal(λ) has the following two properties:

- 1. $J \neq \emptyset$ and
- 2. I contains an element j such that \mathcal{T}_j is a full Steiner tree, whose skeleton tree T_j has bottleneck length less than λ , and in which each external edge has length at most λ^* .

Proof. Consider an optimal bottleneck full Steiner tree, let T^* be its skeleton tree, and denote its external edges by (p_i, s_i) , $1 \le i \le n$; thus, each s_i is a vertex of T^* . Each edge of this optimal tree has length at most λ^* .

We may assume that T^* is a subtree of MST(S); see Lemma 2.1 in Abu-Affash [1]. Since each edge of T^* has length at most λ^* , which is less than λ , there exists an index j, such that T^* is a subtree of T_j . We will prove that, at the end of algorithm COMPARETOOPTIMAL (λ) , j is an element of the set J.

Let i be any index with $1 \le i \le n$. Recall that the graph $\Upsilon_6(P, S)$ uses cones of angle $\pi/3$. Consider the cone with apex p_i that contains s_i . This cone contains a point s_i' of S such that (p_i, s_i') is an edge in $\Upsilon_6(P, S)$. (It may happen that $s_i' = s_i$.) Since $|p_i s_i'| \le |p_i s_i|$, we have $|s_i s_i'| \le |p_i s_i| \le \lambda^* < \lambda$.

Consider the path in MST(S) between s_i and s'_i . It follows from basic properties of minimum spanning trees that each edge on this path has length at most $|s_i s'_i| < \lambda$. Therefore, s'_i is a vertex of the tree T_i .

It follows from algorithm COMPARETOOPTIMAL(λ) that, when p_i is considered, the index j is added to J if i = 1, and j stays in J if $i \geq 2$. Thus, at the end of the algorithm, j is an element of the set J, proving the first claim in the lemma.

The full Steiner tree \mathcal{T}_j , having skeleton tree T_j and external edges (p_i, s_i') for $1 \le i \le n$, satisfies the second claim in the lemma.

2.3 Binary search and completing the algorithm

Let k denote the number of distinct lengths of the edges of MST(S), and let $\lambda_1 < \lambda_2 < \ldots < \lambda_k$ denote the sorted sequence of these edge lengths. Define $\lambda_0 := 0$ and $\lambda_{k+1} := \infty$. Using algorithm COMPARETOOPTIMAL to perform a binary search in the sequence $\lambda_0, \lambda_1, \ldots, \lambda_{k+1}$, we obtain an index ℓ with $1 \le \ell \le k+1$, such that $\lambda_{\ell-1} \le \lambda^* < \lambda_{\ell}$.

Since algorithm COMPARETOOPTIMAL takes O(n+m) time, the total time for the binary search is $O((n+m)\log m)$.

Run algorithm CompareToOptimal(λ_{ℓ}). Since $\lambda^* < \lambda_{\ell}$, it follows from Lemma 2 that, at the end of this algorithm, the set J contains an index j such that \mathcal{T}_j is a full Steiner tree, whose skeleton tree T_j has bottleneck length less than λ , and in which each external edge has length at most λ^* . Since T_j is a subtree of MST(S), it follows that each edge of T_j has length at most $\lambda_{\ell-1}$, which is at most λ^* . Thus, \mathcal{T}_j is a full Steiner tree with bottleneck length at most λ^* . By definition of λ^* , it then follows that the bottleneck length of \mathcal{T}_j is equal to λ^* .

Thus, to complete the algorithm, we run algorithm CompareToOptimal(λ_{ℓ}) and consider its output J. For each of the at most six elements j of J, we construct the full Steiner tree \mathcal{T}_j and compute its bottleneck length λ_j^* . For any index j that minimizes λ_j^* , \mathcal{T}_j is an optimal bottleneck full Steiner tree. This final step completes the algorithm and takes O(n+m) time. This proves the first part of Theorem 1.

3 The lower bound

In this section, we prove that our algorithm is optimal in the algebraic computation tree model; refer to Ben-Or [2] for the definition of this model.

3.1 The case when n is small as compared to m

We start by assuming that n = O(m). We will prove that the problem of computing an optimal bottleneck full Steiner tree has a lower bound of $\Omega(m \log m)$, which is $\Omega((n + m) \log m)$.

Consider a sequence s_1, s_2, \ldots, s_m of real numbers. The maximum gap of these numbers is the largest distance between any two elements that are consecutive in the sorted order of this sequence. Lee and Wu [4] have shown that, in the algebraic computation tree model, computing the maximum gap takes $\Omega(m \log m)$ time.

Consider the following algorithm that takes as input a sequence s_1, s_2, \ldots, s_m of real numbers:

- 1. Compute the minimum and maximum elements in the input sequence, compute the absolute value Δ of their difference, and compute the value $g = \Delta/(m+1)$.
- 2. Compute the set $S = \{(s_i, 0) : 1 \le i \le m\}$, a set P_1 consisting of n/2 points that are to the left of $(s_1, 0)$ and have distance at most g/2 to $(s_1, 0)$, a point set P_2 consisting of n/2 points that are to the right of $(s_m, 0)$ and have distance at most g/2 to $(s_m, 0)$. Let P be the union of P_1 and P_2 .
- 3. Compute an optimal bottleneck full Steiner tree \mathcal{T} of P with respect to S, and compute the length λ^* of a longest edge in \mathcal{T} .
- 4. Return λ^* .

Let G be the maximum gap of the sequence s_1, s_2, \ldots, s_m , and observe that $G \geq g$. It is not difficult to see that $G = \lambda^*$. Thus, the above algorithm solves the maximum gap problem and, therefore, takes $\Omega(m \log m)$ time. Since n = O(m), the running time of this algorithm is O(m + n) = O(m) plus the time needed to compute \mathcal{T} . It follows that the problem of computing an optimal bottleneck full Steiner tree has a lower bound of $\Omega(m \log m)$.

3.2 The case when n is large as compared to m

We now assume that $n = \Omega(m)$. We will prove that the problem of computing an optimal bottleneck full Steiner tree has a lower bound of $\Omega(n \log m)$, which is $\Omega((n + m) \log m)$.

A sequence p_1, p_2, \ldots, p_n of points in the plane is specified by 2n real numbers. We identify such a sequence with the point (p_1, p_2, \ldots, p_n) in \mathbb{R}^{2n} . For each integer i with $1 \leq i \leq m$, let c_i be the point (i, 1). Define the subset V of \mathbb{R}^{2n} as

$$V = \{(p_1, p_2, \dots, p_n) \in \mathbb{R}^{2n} : \{p_1, p_2, \dots, p_n\} \subseteq \{c_1, c_2, \dots, c_m\}\}.$$

For any function $f: \{1, 2, ..., n\} \to \{1, 2, ..., m\}$, define the point $P_f = (c_{f(1)}, c_{f(2)}, ..., c_{f(n)})$. Since there are m^n such functions f, we obtain m^n different points P_f , each one belonging to the set V. The set V is in fact equal to the set of these m^n points P_f and, therefore, V has exactly m^n connected components. Thus, by Ben-Or's theorem [2], any algorithm that decides whether a given point $(p_1, p_2, ..., p_n)$ belongs to V has worst-case running time $\Omega(n \log m)$.

Now consider the following algorithm that takes as input a sequence p_1, p_2, \ldots, p_n of points in the plane:

- 1. Compute the set $S = \{(i, 0) : 1 \le i \le m\}$.
- 2. Let p = (0,0) and q = (m+1,0), and compute the set $P' = \{p,q\} \cup \{p_1, p_2, \dots, p_n\}$.
- 3. Compute an optimal bottleneck full Steiner tree \mathcal{T} of P' with respect to S.
- 4. Set output = true.
- 5. For each j with $1 \le j \le n$, do the following:
 - (a) Let i be the index such that p_j and (i,0) are connected by an external edge in \mathcal{T} .
 - (b) If $p_j \neq c_i$, set output = false.
- 6. Return output.

If the output of the algorithm is true, then each p_j is equal to some c_i and, therefore, the point (p_1, p_2, \ldots, p_n) belongs to the set V.

Assume that $(p_1, p_2, ..., p_n) \in V$. The (unique) optimal bottleneck full Steiner tree of P' with respect to S is the union of (i) the path connecting the points of S sorted from left to right (this is the skeleton tree), (ii) the edge connecting p with (1,0) and the edge

connecting q with (m, 0) (these are external edges), and (iii) edges that connect each point p_j of P to the point c_i having the same x-coordinate as p_j (these are also external edges). It then follows from the algorithm that the output is true.

Thus, the algorithm correctly decides whether any given point (p_1, p_2, \ldots, p_n) belongs to V. By the result above, the worst-case running time of this algorithm is $\Omega(n \log m)$. Since m = O(n), the running time of this algorithm is O(m+n) = O(n) plus the time needed to compute \mathcal{T} . It follows that the problem of computing an optimal bottleneck full Steiner tree has a lower bound of $\Omega(n \log m)$.

This completes the proof of the lower bound in Theorem 1.

References

- [1] A. K. Abu-Affash. On the Euclidean bottleneck full Steiner tree problem. In *Proceedings* of the 27th ACM Symposium on Computational Geometry, pages 433–439, 2011.
- [2] M. Ben-Or. Lower bounds for algebraic computation trees. In *Proceedings of the 15th ACM Symposium on the Theory of Computing*, pages 80–86, 1983.
- [3] M. S. Chang, N.-F. Huang, and C.-Y. Tang. An optimal algorithm for constructing oriented Voronoi diagrams and geographic neighborhood graphs. *Information Processing Letters*, 35:255–260, 1990.
- [4] D. T. Lee and Y. F. Wu. Geometric complexity of some location problems. *Algorithmica*, 1:193–211, 1986.
- [5] A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing, 11:721–736, 1982.