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A B S T R A C T

A geometric graph is a graph whose vertex set is a set of points in the plane and whose edge set
contains straight-line segments. A matching in a graph is a subset of edges of the graph with no
shared vertices. A matching is called perfect if it matches all the vertices of the underling graph. A
geometric matching is a matching in a geometric graph. In this thesis, we study matching problems
in various geometric graphs. Among the family of geometric graphs we look at complete graphs,
complete bipartite graphs, complete multipartite graphs, Delaunay graphs, Gabriel graphs, and
Θ-graphs. The classical matching problem is to find a matching of maximum size in a given graph.
We study this problem as well as some of its variants on geometric graphs. The bottleneck matching
problem is to find a maximum matching that minimizes the length of the longest edge. The plane
matching problem is to find a maximum matching so that the edges in the matching are pairwise
non-crossing. A geometric matching is strong with respect to a given shape S if we can assign
to each edge in the matching a scaled version of S such that the shapes representing the edges
are pairwise disjoint. The strong matching problem is to find the maximum strong matching with
respect to a given shape. The matching packing problem is to pack as many edge-disjoint perfect
matchings as possible into a geometric graph. We study these problems and establish lower and
upper bounds on the size of different kinds of matchings in various geometric graphs. We also
present algorithms for computing such matchings. Some of the presented bounds are tight, while
the others need to be sharpened.
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P R E FA C E

This thesis is in “integrated article format” in which each chapter is based on published papers,
conference proceedings, or papers awaiting publication.

• Chapter 2 considers the matching problems in Gabriel graphs. This chapter is a combination
of results that have been published in the journal of Theoretical Computer Science [9]
and results that have been presented in the 32nd European Workshop on Computational
Geometry (EuroCG’16) [5].

• Chapter 3 considers matching problems in triangular-distance Delaunay graphs. This chap-
ter presents the results that have been published in the journal of Computational Geometry:
Theory and Applications [7]. A preliminary version of these results have been published in
the proceedings of the First International Conference on Algorithms and Discrete Applied
Mathematics (CALDAM 2015) [8].

• Chapter 4 considers the strong matching problem. This chapter is based on the results that
have been accepted for publication in the journal of Computational Geometry: Theory and
Applications, special issue in memoriam: Ferran Hurtado [4].

• Chapter 5 considers the non-crossing bottleneck matching problem in a point set. The re-
sults of this chapter have been published in the journal of Computational Geometry: Theory
and Applications [1].

• Chapter 6 considers the non-crossing bottleneck matching problem in bipartite geometric
graphs. The results of this chapter have appeared in the proceedings of the 26th Canadian
Conference on Computational Geometry (CCCG 2014) [6].

• Chapter 7 considers the non-crossing maximum matching problem in complete multipartite
geometric graphs. The results of this chapter have been published in the proceedings of the
14th International Symposium on Algorithms and Data Structures (WADS 2015) [3].

• Chapter 8 considers the problem of packing edge-disjoint perfect matchings in to a complete
geometric graph. The results of this chapter have been published in the journal of Discrete
Mathematics & Theoretical Computer Science [2].
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1
I N T R O D U C T I O N

A matching in a graph is a subset of edges of the graph with no shared vertices. A geometric
graph is a graph whose vertex set is a set of points in the plane and whose edge set contains
straight-line segments between the points. In this thesis we consider matching problems in vari-
ous geometric graphs.

In this section we provide a summary of the thesis. First we give a description of various geo-
metric graphs that are considered in this thesis. We also provide the definition of different kinds
of matching problems that we are looking at. Then we provide a brief review of the previous
work on each problem, followed by a summary of the obtained results. Moreover, we present a
brief description of the main ideas that are used to obtain these results.

1.1 geometric graphs

Let P be a set of n points in the plane. A geometric graph, G = (P,E), is a graph whose vertex set is
P and whose edge set E contains straight-line segments with endpoints in P. A complete geometric
graph, K(P), is a geometric graph on P that contains a straight-line edge between every pair of
points in P. Let {P1, . . . ,Pk}, where k > 2, be a partition of P. A complete multipartite geometric
graph, K(P1, . . . ,Pk), is a geometric graph on P that contains a straight-line edge between every
point in Pi and every point in Pj where i 6= j.

For two points p and q in P letD(p,q) be the closed disk having pq as diameter, and let5(p,q)
(resp. 4(p,q)) be the smallest downward (resp. upward) equilateral triangle having p and q on
its boundary. Moreover, let the lune L(p,q) be the intersection of two disks of radius |pq| that are
centered at p and q, where |pq| denote the Euclidean distance between p and q. See Figure 1.1 for
illustration of the following geometric graphs. Assume P does not contain any four co-circular
points. Then the Delaunay triangulation on P, denoted by DT(P), has an edge between two points
p and q if and only if there exists a circle that contains p and q on its boundary and whose
interior does not contain any point of P. The Gabriel graph on P, denoted by GG(P), is defined to
have an edge between two points p and q if and only if D(p,q) is empty. The relative neighborhood
graph on P, denoted by RNG(P), has an edge (p,q) if and only if L(p,q) is empty. Similarly, the
triangular-distance Delaunay graph on P, denoted by TD(P), is defined to have an edge between two
points p and q if and only if 5(p,q) is empty. The theta-six graph on P, denoted by Θ6(P), has
an edge (p,q) if and only if 5(p,q) or 4(p,q) is empty. The L∞-Delaunay graph on P is defined
to have an edge between two points p and q if and only if there exists an empty axis-parallel
square that has p and q on its boundary.

The order-k Gabriel graph on P, denoted by k-GG, has an edge (p,q) if and only if D(p,q)
contains at most k points of P \ {p,q}. Note that 0-GG is equal to GG(P). The k-RNG graph is
defined similarly. The order-k triangular-distance Delaunay graph on P, denoted by k-TD, has an
edge (p,q) if and only if 5(p,q) contains at most k points of P \ {p,q}. Note that 0-TD is equal
to TD(P).

Given a radius r > 0, the disk graph on P, denoted by DG(P, r), has an edge (p,q) if and only if
the Euclidean distance between p and q is at most r. The unit disk graph on P, which is denoted
by UDG(P), is DG(P, 1).
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Figure 1.1: Some geometric graphs.

1.2 matching problems

Consider a geometric graph G. We say that two edges of G cross if they have a point in common
that is interior to both edges. Two edges are disjoint if they have no point in common. A matching
in G is a set of edges that do not share vertices. A maximum matching is a matching with maximum
cardinality. A perfect matching is a matching that matches all the vertices of G. When we talk about
perfect matchings we assume that G has an even number of points. A plane matching is a matching
whose edges do not cross. A bottleneck matching is a maximum matching in G in which the length
of the longest edge is minimized. Given a matching M and geometric shape S, we say that M is
a strong matching if we can assign to each edge (p,q) in M a scaled copy of the shape S such that
p and q are on the boundary of S and all the shapes are pairwise disjoint (do not overlap). A
bottleneck biconnected subgraph of G is a 2-connected spanning subgraph of G in which the length
of the longest edge is minimized. A bottleneck Hamiltonian cycle is defined similarly.

Let {P1, . . . ,Pk}, where k > 2, be a partition of P. Assume the points in Pi are colored Ci. P is
called color-balanced if no color is in strict majority, i.e., |Pi| 6 |P|/2 for all i ∈ {1, . . . ,k}. A matching
in K(P1, . . . ,Pk) is called a colored matching. A balanced cut is a line ` that partitions a color-
balanced point set P into two color-balanced point setsQ1 andQ2 such that max{|Q1|, |Q2|} 6 2

3 |P|.
See Figure 1.2(a). The ham-sandwich cut is a balanced cut; given a set of red and blue points,
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there exists a line that simultaneously bisects the red points and the blue points. A ham-sandwich
cut can be computed in O(n) time [30].

`

Q1

Q2

(a) (b)

Figure 1.2: (a) A balanced cut. (b) A packing example of three edge-disjoint plane perfect matchings.

We say that a set of subgraphs is packed into K(P), if the subgraphs in the set are pairwise
edge-disjoint (do not share any edge). In a packing problem, we ask for the largest number of
subgraphs of a given type that can be packed into K(P). Among all subgraphs of K(P), plane per-
fect matchings, plane spanning trees, and plane spanning paths are of interest. See Figure 1.2(b).
We say that a graph G is matching persistent if by removing any perfect matching M from G, the
resulting graph, G−M, has a perfect matching. We define the matching persistency of G as the
size of the smallest set M of edge-disjoint perfect matchings that can be removed from G such
that G−M does not have any perfect matching. The plane matching persistency of G is defined
similarly while each of the matchings in M is plane.

1.3 previous work

In a (strong) matching problem, usually we are looking for a (strong) matching of maximum
cardinality in a specific geometric graph. Dillencourt [26] proved that the Delaunay triangulation
of P, denoted by DT(P), contains a perfect matching. Ábrego et al. [2] proved that DT(P) has a
strong circle matching of size at least d(n− 1)/8e. Ábrego et al. [2, 3] proved that L∞-DT(P) has
a perfect matching and a strong matching of size at least dn/5e.

A problem related to the bottleneck matching problem is the containment problem in which we
want to determine the smallest value k∗ for which k∗-GG contains a bottleneck perfect matching
of every point set P (or of K(P)). Chang et al. [25] proved that a bottleneck perfect matching of P
is contained in 16-RNG. Since for a given point set k-RNG is a subgraph of k-GG, this implies that
16-GG contains a bottleneck matching of P. Chang et al. [24] showed that a bottleneck biconnected
subgraph of P is contained in 1-RNG, and hence in 1-GG. In [1] it is shown that a bottleneck
Hamiltonian cycle for P is contained in 15-GG. Recently, Kaiser et al. [28] improved the bound by
showing that 10-GG contains a bottleneck Hamiltonian cycle of P. This implies that 10-GG has a
perfect matching. They also showed that 5-GG may not contain any bottleneck Hamiltonian cycle
of P.

The bottleneck plane matching problem is to compute a plane perfect matching in a geometric
graph in which the length of the longest edge is minimized. Let {R,B} be a partition of P such
that |R| = |B|. Carlsson et al. [23] showed that the bottleneck plane perfect matching problem
in K(R,B) is NP-hard. When R ∪ B is in general position, they presented an O(n4 logn)-time
algorithm. Abu-Affash et al. [5] showed that the bottleneck plane perfect matching problem in



4 introduction

K(P) is NP-hard and does not admit a PTAS (Polynomial Time Approximation Scheme), unless
P=NP. Let λ∗ be the length of the longest edge in an optimal bottleneck plane perfect matching in
K(P). Abu-Affash et al. [5] presented a polynomial-time algorithm that computes a plane perfect
matching whose edges have length at most 2

√
10λ∗.

A plane perfect matching in K(R,B), with |R| = |B|, can be computed optimally in Θ(n logn)
time by recursively applying the ham-sandwich theorem [30]. Let {P1, . . . ,Pk} with k > 2, be a
partition of P. Aichholzer et al. [6] and Kano et al. [29] showed that K(P1, . . . ,Pk) has a plane
colored matching if and only if P is color-balanced. Kano et al. [29] presented an algorithm that
computes such a matching in O(n2 logn) time.

In a packing problem we usually ask for the maximum number of edge-disjoint structures that
can be packed into a complete graph. Aichholzer et al. [7] considered the problem of packing
plane spanning trees and plane Hamiltonian paths into K(P). They showed that at least

√
n plane

spanning trees can be packed into K(P). They also showed how to pack 2 plane Hamiltonian
paths into K(P).

1.4 obtained results

We looked at the maximum matching problem in Gabriel graphs and TD-Delaunay graphs. We
showed that 0-GG, 1-GG, and 2-GG has a matching of size at least n−14 , 2(n−1)5 , and n−1

2 , re-
spectively [22]. We also showed that 0-TD, 1-TD, 2-TD contains a matching of size at least n−13 ,
2(n−1)
5 , and n−1

2 , respectively [20, 21]. As for Euclidean bottleneck matching, we showed that a
bottleneck perfect matching of P is contained in 9-GG, but 8-GG may not have any bottleneck
perfect matching [22, 18]. As for triangular-distance bottleneck matching, we showed that a bot-
tleneck perfect matching of P is contained in 6-TD, but 5-TD may not have any bottleneck perfect
matching [20, 21]. In [8, 9] we considered the maximum matching problem in 0-TD.

In [17] we considered the strong matching problem. We showed that if shape S is a diametral-
disk (a disk whose diameter is a line segment between two input points), a downward equilateral
triangle, and an axis-aligned square then P admits a strong matching of size at least n−117 , n−19 ,
and n−1

4 , respectively. If both downward and upward equilateral triangles are allowed, we com-
pute a strong matching of size at least n−14 .

For the plane matching problem in complete multipartite geometric graphs, we show how to
compute a plane maximum matching in K(P1, . . . ,Pk) in Θ(n logn) time [16]. We also extended
this results to the case where the points are in the interior of a simple polygon [15, 13].

In [4] we considered the plane bottleneck matching problem in K(P), which is NP-hard. We
show how to compute a plane bottleneck matching of size at least n5 in K(P) with edges of length
at most λ∗ in O(n log2 n) time, where λ∗ is the length of the longest edge in an optimal bottleneck
plane perfect matching. We also presented an O(n logn)-time approximation algorithm that com-
putes a plane matching of size at least 2n5 in K(P) whose edges have length at most (

√
2+
√
3)λ∗.

In [19] we considered the bottleneck matching problem in complete bipartite geometric graphs.
In [14] we considered the problem of packing plane edge-disjoint matchings into K(P). We

proved that at least blog2 nc− 1 edge-disjoint plane perfect matchings can be packed into K(P).

1.5 summary of the thesis

In this section we describe the obtained results in more detail. Moreover we give a brief descrip-
tion of the approaches used to obtain these results.
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1.5.1 Maximum Matchings

In [22, 18, Chapter 2] and [21, 20, Chapter 3] we consider the maximum matching and bottleneck
matching containment problems in k-GG and k-TD graphs. In [22] we showed that 0-GG has a
matching of size at least n−14 and this bound is tight. We also proved that 1-GG has a matching
of size at least 2(n−1)5 and 2-GG has a perfect matching. As for Euclidean bottleneck matching,
we showed that a bottleneck matching of P is contained in 9-GG, but 8-GG may not have any bot-
tleneck matching; see [22, 18]. In [18] we also showed that 7-GG may not contain any bottleneck
Hamiltonian cycle of P. In [9, 8] we have shown that 0-TD contains a matching of size at least n−13
and this bound is tight (this result is not included in the thesis). In [21, 20] we proved that 1-TD
has a matching of size at least 2(n−1)5 and 2-TD has a perfect matching. As for triangular-distance
bottleneck matching, we showed that a bottleneck matching of P is contained in 6-TD, but 5-TD
may not have any bottleneck matching. We also showed that a bottleneck biconnected subgraph
of P is contained in 1-TD. In addition, we showed that 7-TD contains a bottleneck Hamiltonian
cycle of P while 5-TD may not contain any. Tables 1.1 and 1.2 summarize the results.

Table 1.1: Lower bounds on the size of maximum (strong) matchings.

Graph Max matching Reference Strong matching Reference

DT bn2 c [26] dn−18 e [2]

L∞-DT bn2 c [2, 3]
dn5 e [2, 3]

dn−14 e [17, Section 4.7]

0-GG dn−14 e [22, Section 2.4] dn−117 e [17, Section 4.4]

1-GG d2n−25 e [22, Section 2.4] - -

2-GG bn2 c [22, Section 2.4] - -

0-TD dn−13 e [9] dn−19 e [17, Section 4.5]

1-TD d2n−25 e [21, Section 3.5.2] - -

2-TD bn2 c [21, Section 3.5.2] - -

Θ6 dn−13 e [9] dn−14 e [17, Section 4.6]

our approach : In order to provide a lower bound on the size of a maximum matching in
k-GG and k-TD, we first give a lower bound on the number of components that result after
removing a set S of vertices from k-GG and k-TD. Then we use the following theorem of Tutte
and Berge. For a graph G = (V ,E) and S ⊆ V , let G− S be the subgraph obtained from G by
removing all vertices in S, and let o(G − S) be the number of odd components in G − S, i.e.,
connected components with an odd number of vertices. In a graph G, the deficiency, defG(S), is
o(G− S) − |S|. Let def(G) = maxS⊆V defG(S).

theorem 1 .1 (Tutte-Berge formula [12]). The size of a maximum matching in G is

1

2
(n− def(G)).

In order to show that 9-GG and 6-TD contain bottleneck matchings, we do the following. For
a matching M we define the length sequence of M, LS(M), as the sequence containing the lengths



6 introduction

Table 1.2: Bottleneck structures containment in k-GG and k-TD.

Distance Bott. struct. /∈ Reference ∈ Reference

Euclidean
biconnected subgraph 0-GG [24] 1-GG [24]

matching 8-GG [22, Section 2.3.2] 9-GG [18, Section 2.3.1]

cycle 7-GG [18, Section 2.3.3] 10-GG [28]

Triangular
biconnected subgraph 0-TD [21, Section 3.3.2] 1-TD [21, Section 3.3.2]

matching 5-TD [21, Section 3.5.1] 6-TD [21, Section 3.5.1]

cycle 5-TD [21, Section 3.4] 7-TD [21, Section 3.4]

of the edges of M in non-increasing order. A matching M1 is said to be less than a matching M2

if LS(M1) is lexicographically smaller than LS(M2). Then, we show that the matching with the
minimum length sequence is contained in 10-GG and 6-TD.

1.5.2 Strong Matchings

A geometric matching is strong with respect to a given shape S if we can assign to each edge in
the matching a scaled version of S with the endpoints of the edge on the boundary, such that the
shapes representing the edges are pairwise disjoint.

In [17, Chapter 4] we considered the strong matching problem with respect to a given geometric
object S. We proved that if S is a diametral-disk (a disk whose diameter is a line segment between
two input points), then P (and hence GG(P)) has a strong matching of size at least dn−117 e, and if
S is a downward equilateral triangle, then P (and hence TD(P)) has a strong matching of size at
least dn−19 e. In case both downward and upward equilateral triangles are allowed, we compute
a strong matching of size at least dn−14 e in P (and hence in Θ6(P)). If S is an axis-aligned square,
then we compute a strong matching of size at least dn−14 e in P (and hence in L∞-DT(P)); this
improves the previous bound of dn5 e. The results are summarized in Table 1.1.

(a) (b) (c)

Figure 1.3: Point set P and (a) a non-strong perfect matching in G5(P) (two shapes overlap), (b) a perfect
strong matching in G54(P), and (c) a perfect strong matching in G2(P).

our approach : To compute a strong matching with diametral-disks and equilateral triangles
we present the following algorithm that is depicted in Algorithm 1. For a given point set P and a
geometric shape S ∈ {	,5}, the edge weighted geometric graph GS(P) on P is defined to have an
edge between two points of P if and only if there exists an empty shape S having the two points
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on its boundary. The weight of each edge e is equal to the area of S(e), where S(e) is a smallest
scaled copy of S containing e. Let T be a minimum spanning tree of GS(P). For each edge e ∈ T
we denote by T(e+) the set of all edges in T whose weight is at least w(e). Moreover, we define
the influence set of e, as the set of all edges in T(e+) whose representing shapes overlap with S(e),
i.e.,

Inf(e) = {e ′ : e ′ ∈ T(e+),S(e ′)∩ S(e) 6= ∅}.
Note that Inf(e) is not empty, as e ∈ Inf(e). Consequently, we define the influence number of T to

be the maximum size of a set among the influence sets of edges in T , i.e.,

Inf(T) = max{|Inf(e)| : e ∈ T }.
Algorithm 1 receives GS(P) as input and computes a strong matching in GS(P) as follows.

The algorithm starts by computing a minimum spanning tree T of GS(P), where the weight of
each edge is equal to the area of its representing shape. Then it initializes a forest F by T , and a
matching M by an empty set. Afterwards, as long as F is not empty, the algorithm adds to M, the
smallest edge e in F, and removes the influence set of e from F. Finally, it returns M.

Algorithm 1 Strong-matching(GS(P))

1: T ←MST(GS(P))
2: F← T

3: M← ∅
4: while F 6= ∅ do
5: e← smallest edge in F
6: M←M∪ {e}
7: F← F− Inf(e)

8: return M

theorem 1 .2. Given a set P of n points in the plane and a shape S ∈ {	,5}, Algorithm 1 computes a
strong matching of size at least d n−1Inf(T)e in GS(P), where T is a minimum spanning tree of GS(P).

In order to compute a strong matching with diametral-disks and equilateral triangles, we show
that if S is 	 then Inf(T) 6 17, and if S is 5, then Inf(T) 6 9.

The bounds for the strong matching when S is an square is proved by induction on the area
of the smallest axis-aligned square containing P. The bounds for the strong matching when S is
allowed to be upward or downward equilateral triangle is proved similarly.

1.5.3 Bottleneck Matchings

A bottleneck matching in a graph G is a maximum matching in which the length of the longest
edge is minimized. A plane bottleneck matching is a bottleneck matching that is non-crossing.

Table 1.3: Approximating plane bottleneck matching.

time complexity plane bottleneck size of matching Reference

O(n1.5
√

logn) 2
√
10λ∗ n/2 [5]

O(n log2 n) λ∗ n/5 [4, Section 5.4.1]

O(n logn) (
√
2+
√
3)λ∗ 2n/5 [4, Section 5.4.2]
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Problems related to computing bottleneck plane matchings in geometric graphs are considered
in [4, Chapter 5] and [19, Chapter 6]. Computing a bottleneck plane matching in K(P) is NP-hard.
In [4], we present an O(n logn)-time algorithm that computes a plane matching of size at least
n−1
5 in a connected disk graph. Using this algorithm we obtain a bottleneck plane matching of

size at least n5 in K(P) with edges of length at most λ∗ in O(n log2 n) time, where λ∗ is the length
of the longest edge in an optimal bottleneck plane perfect matching in K(P). We also presented
an O(n logn)-time approximation algorithm that computes a plane matching of size at least 2n5
in K(P) whose edges have length at most (

√
2+
√
3)λ∗. Table 1.3 summarizes the results. In [19]

we considered the bottleneck plane matching problem in K(R,B) with |R| = |B|. This problem is
NP-hard; we provided polynomial-time algorithms that compute exact solutions for some special
cases of the problem. When R∪B is in convex position we solve this problem in O(n3) time that
improves upon the previous algorithm of [23] by a factor of n logn. If R ∪ B is on the boundary
of a circle we solve this problem in O(n logn) time. If the points in R are on a line and the points
in B are on one side of the line, we solve this problem in O(n4) time. Table 1.4 summarizes the
results.

our approach : In order to compute a bottleneck plane matching in K(P) we do the following.
First we present anO(n logn)-time algorithm that computes a plane matching of size at least n−15
in any connected disk graph. Using this algorithm we obtain a bottleneck plane matching of size
at least n5 in K(P) with edges of length at most λ∗ in O(n log2 n) time.

We show that every minimum spanning tree on K(P) is a minimum spanning tree of UDG(P).
Monma et al. [31] proved that every set of points in the plane admits a minimum spanning tree
of degree at most five that can be computed in O(n logn) time. Now we present an algorithm
that extracts a plane matching M from a minimum spanning tree T of UDG(P) with vertices of
degree at most five. We define the skeleton tree, T ′, as the tree obtained from T by removing all its
leaves; see Figure 1.4. Clearly T ′ ⊆ T ⊆ UDG(P). For clarity we use u and v to refer to the leaves
of T and T ′ respectively. In addition, let v and v ′, respectively, refer to the copies of a vertex v in T
and T ′. In each step, pick an arbitrary leaf v ′ ∈ T ′. By the definition of T ′, it is clear that the copy
of v ′ in T , i.e. v, is connected to vertices u1, . . . ,uk, for some 1 6 k 6 4, that are leaves of T (if T ′

has one vertex then k 6 5). Pick an arbitrary leaf ui and add (v,ui) as a matched pair to M. For
the next step we update T by removing v and all its adjacent leaves. We also compute the new
skeleton tree and repeat this process. In the last iteration, T ′ is empty and we may be left with
a tree T consisting of one single vertex or one single edge. If T consists of one single vertex, we
disregard it, otherwise we add its only edge to M. M has size at least n−15 and can be computed
in O(n logn) time.

v′

v

u1

u2

u3

Figure 1.4: Minimum spanning tree T with union of empty convex hulls. The skeleton tree T ′ is sur-
rounded by dashed line, and v ′ is a leaf in T ′.
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Then we compute a (possibly crossing) bottleneck perfect matching M× of K(P) using the
algorithm in [25]. Let λM× denote the length of the bottleneck edge in M×. It is obvious that the
bottleneck length of any plane perfect matching is not less than λM× . Therefore, λ∗ > λM× . We
consider a “unit” disk graph DG(λM× ,P) over P, in which there is an edge between two vertices
p and q if |pq| 6 λM× . Note that DG(λM× ,P) is not necessarily connected. Let G1, . . . ,Gk be the
connected components of DG(λM× ,P). For each component Gi, consider a minimum spanning
tree Ti of degree at most five. We show how to extract from Ti a plane matching Mi of proper
size n5 and length λ∗. We show how to compute M in O(n log2 n) time.

To compute a plane matching of size at least 2n5 in K(P) with edges of length at most (
√
2+√

3)λ∗, we do the following. Let DT(P) denote the Delaunay triangulation of P. Let the edges
of DT(P) be, in sorted order of their lengths, e1, e2, . . . . Initialize a forest F consisting of n trees,
each one being a single node for one point of P. Run Kruskal’s algorithm on the edges of DT(P)
and terminate as soon as every tree in F has an even number of nodes. Let el be the last edge
that is added by Kruskal’s algorithm. Observe that el is the longest edge in F. Denote the trees
in F by T1, . . . , Tk and for 1 6 i 6 k, let Pi be the vertex set of Ti and let ni = |Pi|. Then we prove
the following lemma.

lemma 1 .3. λ∗ > |el|.

By Lemma 1.3 the length of the longest edge in F is at most λ∗. For each Ti ∈ F, where
1 6 i 6 k, we compute a plane matching Mi of Pi of size at least 2ni5 with edges of length at
most (

√
2+
√
3)λ∗ and return

⋃k
i=1Mi. This gives a plane matching of P of size at least 25n with

bottleneck at most (
√
2+
√
3)λ∗. This matching can be computed in O(n logn) time.

The plane bottleneck matchings for the special cases of R ∪ B in K(R,B) are computed by
dynamic programming.

1.5.4 Plane Matchings

There has been much research to extend the well-known ham-sandwich theorem—that partitions
a two colored point set—to more colors; see [10, 11, 29]. For a color-balanced point set P in the
plane we showed how to compute a balanced cut in linear time [16, Chapter 7]. Moreover, by
applying balanced cuts recursively, we computed a plane matching in K(P1, . . . ,Pk) in Θ(n logn)
time. We have also extended this notion for points that are in the interior of a simple polygon [15]
(this extension is not included in the thesis).

our approach : Let {R,B} be a partition of P such that |R| = |B|. Assume the points in R are
colored red and the points in B are colored blue. A plane perfect matching in Kn(R,B) can be
computed in Θ(n logn) time by recursively applying the following Ham Sandwich Theorem.

theorem 1 .4 (Ham Sandwich Theorem). For a point set P in general position in the plane that is
partitioned into sets R and B, there exists a line that simultaneously bisects R and B.

Let {P1, . . . ,Pk}, with k > 2, be a partition of P. A necessary and sufficient for the existence of
a plane perfect matching in Kn(P1, . . . ,Pk) is obtained by the following theorem.

theorem 1 .5 (Aichholzer et al. [6], and Kano et al. [29]). Let k > 2 and consider a partition
{P1, . . . ,Pk} of a point set P, where |P| is even. Then, Kn(P1, . . . ,Pk) has a plane colored perfect matching
if and only if P is color-balanced.
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Table 1.4: Plane colored matchings.

Problem Point set Time complexity Reference

bottleneck 2-colored

plane perfect matching

general position NP-hard [23]

convex position O(n4 logn) [23]

convex position O(n3) [19, Section 6.2]

on circle O(n logn) [19, Section 6.2.1]

one color on a line O(n4) [19, Section 6.3]

plane maximum matching
2-colored Θ(n logn) [27]

k-colored Θ(n logn) [16, Section 7.3]

`

Q1

Q2

Figure 1.5: Illustrating the balanced cut theorem.

Based on that, we first prove the existence of a balanced cut in a color-balanced point set.

theorem 1 .6 (Balanced Cut Theorem). Let P be a color-balanced point set of n > 4 points in general
position in the plane. In O(n) time we can compute a line ` such that

1. ` does not contain any point of P.

2. ` partitions P into two point sets Q1 and Q2, where

a) both Q1 and Q2 are color-balanced,

b) both Q1 and Q2 contains at most 23n+ 1 points.

c) if |P| is even, then both |Q1| and |Q2| are even.

Then, by applying the Balanced Cut Theorem recursively, we can compute a plane perfect
matching in matching in Kn(P1, . . . ,Pk) in Θ(n logn) time.

1.5.5 Matching Packing

Recall that in a matching packing problem, we ask for the largest number of matchings that can
be packed into K(P). A plane matching packing problem is to pack non-crossing matchings to
K(P).

In [14, Chapter 8] we consider the problem of packing perfect matchings into K(P). Let n be
the number of points in P, and assume that n is an even number. We proved that if P is in general
position, then at least blog2 nc− 1 plane perfect matchings can be packed into K(P). Moreover,
we show that for some point set P in general position, no more than dn3 e can be packed into K(P).
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If P is in convex position we show that the maximum number of plane perfect matchings that
can be packed to K(P) is n2 , and n

2 − 1 when P is in regular wheel configuration. As for matching
persistencey, we showed that the matching persistency of K(P) is n2 if n ≡ 2 mod 4, and n

2 + 1 if
n ≡ 0 mod 4. As for plane matchings we showed that if P is in convex position then the plane
matching persistency of K(P) is 2. We also show the existence of a set of points in general position
with plane matching persistence of at least 3.

Figure 1.6: About 1/3 of the points are in the middle and the boundary has an odd number of points.

our approach : In order to show the upper bound, we provide an example, as depicted in
Figure 1.6, that does not contain more than dn3 e edge-disjoint plane perfect matchings.

22

10 12

4

2 2

6

24

2 2

6

42

2 2 2 2

24

6

Figure 1.7: The points in P are assigned, in pairs, to the leaves of T , from left to right. Internal nodes
store the number of points in their subtree. The three edge disjoint plane perfect matchings are
shown in red, green, and blue.
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To prove the lower bound of blog2 nc − 1, we first build a binary tree T on the point set P,
then we assign the points of P to the leaves of T , and then we extract a plane matching from the
internal nodes in each level of T . See Figure 1.7.
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2
M AT C H I N G I N G A B R I E L G R A P H S

Given a set P of n points in the plane, the order-k Gabriel graph on P, denoted by k-GG, has an
edge between two points p and q if and only if the closed disk with diameter pq contains at most
k points of P, excluding p and q. We study matching problems in k-GG graphs. We show that a
Euclidean bottleneck matching of P is contained in 9-GG, but 8-GG may not have any Euclidean
bottleneck matching. In addition we show that 0-GG has a matching of size at least n−14 and this
bound is tight. We also prove that 1-GG has a matching of size at least 2(n−1)5 and 2-GG has a
perfect matching. Finally we consider the problem of blocking the edges of k-GG.

This chapter is a combination of results that have been published in the journal of Theoretical
Computer Science [6] and results that have been presented in the 32nd European Workshop on
Computational Geometry (EuroCG’16) [5].

2.1 introduction

Let P be a set of n points in the plane. For any two points p,q ∈ P, let D[p,q] denote the closed
disk which has the line segment pq as diameter. Let |pq| be the Euclidean distance between p
and q. The Gabriel graph on P, denoted by GG(P), is defined to have an edge between two points
p and q if D[p,q] is empty of points in P \ {p,q}. Let C(p,q) denote the circle which has pq as
diameter. Note that if there is a point of P \ {p,q} on C(p,q), then (p,q) /∈ GG(P). That is, (p,q)
is an edge of GG(P) if and only if

|pq|2 < |pr|2 + |rq|2 ∀r ∈ P, r 6= p,q.

Gabriel graphs were introduced by Gabriel and Sokal [12] and can be computed in O(n logn)
time [14]. Every Gabriel graph has at most 3n− 8 edges, for n > 5, and this bound is tight [14].

A matching in a graph G is a set of edges without common vertices. A maximum matching in
G is a matching of maximum cardinality, i.e., maximum number of edges. A perfect matching is
a matching which matches all the vertices of G. In the case that G is an edge-weighted graph, a
bottleneck matching is defined to be a perfect matching in G in which the weight of the maximum-
weight edge is minimized. For a perfect matching M, we denote the bottleneck of M, i.e., the
length of the longest edge in M, by λ(M). For a point set P, a Euclidean bottleneck matching is a
perfect matching which minimizes the length of the longest edge.

In this chapter we consider perfect matching and bottleneck matching admissibility of higher
order Gabriel Graphs. The order-k Gabriel graph on P, denoted by k-GG, is the geometric graph
which has an edge between two points p and q iff D[p,q] contains at most k points of P \ {p,q}.
The standard Gabriel graph, GG(P), corresponds to 0-GG. It is obvious that 0-GG is plane, but
k-GG may not be plane for k > 1. Su and Chang [17] showed that k-GG can be constructed
in O(k2n logn) time and contains O(k(n − k)) edges. In [7], the authors proved that k-GG is
(k+ 1)-connected.

15



16 matching in gabriel graphs

2.1.1 Previous Work

It is well-known that a maximum matching in a graph with n vertices and m edges can be
computed in O(m

√
n) time, e.g., by Edmonds algorithm (see [10, 15]). Any Gabriel graph is

planar, and thus, has O(n) edges. Therefore a maximum matching in a Gabriel graph can be
computed in O(n1.5) time. Mucha and Sankowski [16] showed that a maximum matching in a
planar graph can be found in O(nω/2) time, where ω is the exponent of matrix multiplication.
Since ω < 2.38 (see [19]) a maximum matching in a Gabriel graph can be computed in O(n1.18)

time.
For any two points p and q in P, the lune of p and q, denoted by L(p,q), is defined as the

intersection of the open disks of radius |pq| centred at p and q. The order-k Relative Neighborhood
Graph on P, denoted by k-RNG, is the geometric graph which has an edge (p,q) iff L(p,q)
contains at most k points of P. The order-kDelaunay Graph on P, denoted by k-DG, is the geometric
graph which has an edge (p,q) iff there exists a circle through p and q which contains at most k
points of P in its interior. It is obvious that

k-RNG ⊆ k-GG ⊆ k-DG.

The problem of determining whether a geometric graph has a (bottleneck) perfect matching
is quite of interest. Dillencourt showed that the Delaunay triangulation (0-DG) admits a perfect
matching [9]. Chang et al. [8] proved that a Euclidean bottleneck perfect matching of P is con-
tained in 16-RNG.1 This implies that 16-GG and 16-DG contain a (bottleneck) perfect matching of
P. In [1] the authors showed that 15-GG is Hamiltonian. Recently, Kaiser et al. [13] improved the
bound by showing that 10-GG is Hamiltonian. This implies that 10-GG has a perfect matching.

Given a geometric graph G(P) on a set P of n points, we say that a set K of points blocks G(P) if
in G(P ∪K) there is no edge connecting two points in P, in other words, P is an independent set
in G(P ∪K). Aichholzer et al. [2] considered the problem of blocking the Delaunay triangulation
(i.e. 0-DG) for P in general position. They show that 3n2 points are sufficient to block DT(P) and
at least n − 1 points are necessary. To block a Gabriel graph, n − 1 points are sufficient, and
3
4n− o(n) points are sometimes necessary [3].

2.1.2 Our Results

In this chapter we consider the following three problems: (a) for which values of k does every
k-GG have a Euclidean bottleneck matching of P? (b) for a given value k, what is the size of a
maximum matching in k-GG? (c) how many points are sufficient/necessary to block a k-GG? In
Section 2.2 we review and prove some graph-theoretic notions. In Section 2.3 we consider the
problem (a) and prove that a Euclidean bottleneck matching of P is contained in 9-GG. In addi-
tion, we show that for some point sets, 8-GG does not have any Euclidean bottleneck matching.
Moreover, we show that for some point sets, 7-GG does not have any Euclidean Hamiltonian cy-
cle; this improves the previous bound of 5-GG that is obtained in [13]. In Section 2.4 we consider
the problem (b) and give some lower bounds on the size of a maximum matching in k-GG. We
prove that 0-GG has a matching of size at least n−14 , and this bound is tight. In addition we prove
that 1-GG has a matching of size at least 2(n−1)5 and 2-GG has a perfect matching. In Section 2.5
we consider the problem (c). We show that at least dn−13 e points are necessary to block a Gabriel

1 They defined k-RNG in such a way that L(p,q) contains at most k− 1 points of P.
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graph and this bound is tight. We also show that at least d (k+1)(n−1)3 e points are necessary and
(k+ 1)(n− 1) points are sufficient to block a k-GG. The open problems and concluding remarks
are presented in Section 2.6.

2.2 preliminaries

Let G be an edge-weighted graph with vertex set V and weight function w : E→ R+. Let T be a
minimum spanning tree of G, and let w(T) be the total weight of T .

lemma 2 .1. Let δ(e) be a cycle in G that contains an edge e ∈ T . Let δ ′ be the set of edges in δ(e) which
do not belong to T and let e ′max be the largest edge in δ ′. Then, w(e) 6 w(e ′max).

Proof. Let e = (u, v) and let Tu and Tv be the two trees obtained by removing e from T . Let
e ′ = (x,y) be an edge in δ ′ such that one of x and y belongs to Tu and the other one belongs to
Tv. By definition of e ′max, we have w(e ′) 6 w(e ′max). Let T ′ = Tu ∪ Tv ∪ {(x,y)}. Clearly, T ′ is a
spanning tree of G. If w(e ′) < w(e) then w(T ′) < w(T); contradicting the minimality of T . Thus,
w(e) 6 w(e ′), which completes the proof of the lemma.

For a graph G = (V ,E) and S ⊆ V , let G− S be the subgraph obtained from G by removing
all vertices in S, and let o(G − S) be the number of odd components in G − S, i.e., connected
components with an odd number of vertices. The following theorem by Tutte [18] gives a charac-
terization of the graphs which have perfect matching:

theorem 2 .2 (Tutte [18]). G has a perfect matching if and only if o(G− S) 6 |S| for all S ⊆ V .

Berge [4] extended Tutte’s theorem to a formula (known as the Tutte-Berge formula) for the
maximum size of a matching in a graph. In a graph G, the deficiency, defG(S), is o(G− S) − |S|.
Let def(G) = maxS⊆V defG(S).

theorem 2 .3 (Tutte-Berge formula; Berge [4]). The size of a maximum matching in G is

1

2
(n− def(G)).

For an edge-weighted graph G we define the weight sequence of G, WS(G), as the sequence
containing the weights of the edges of G in non-increasing order. A graph G1 is said to be less
than a graph G2 if WS(G1) is lexicographically smaller than WS(G2).

2.3 euclidean bottleneck matching

In Subsection 2.3.1 we prove the following theorem.

theorem 2 .4. For every point set P in the plane, 9-GG contains a Euclidean bottleneck matching of P.

In Subsection 2.3.2 we prove the following proposition.

proposition 1. There exist point sets P in the plane such that 8-GG does not contain any Euclidean
bottleneck matching of P.

In Subsection 2.3.3 we prove the following proposition.

proposition 2. There exist point sets P in the plane such that 7-GG does not contain any Euclidean
bottleneck Hamiltonian cycle of P.

Proposition 2 improves the previous bound of 5-GG that is obtained by Kaiser et al. [13]
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2.3.1 Proof of Theorem 2.4

In this section we prove Theorem 2.4. The proofs for Lemmas 2.5 and 2.6 are similar to the
proofs in [8] which are adjusted for Gabriel graphs. The proof of Lemma 2.8 is based on a similar
technique that is used in [13] for the Hamiltonicity of Gabriel graphs.

Let M be the set of all perfect matchings of the complete graph with vertex set P. For a matching
M ∈ M we define the weight sequence of M, WS(M), as the sequence containing the weights of
the edges of M in non-increasing order. A matching M1 is said to be less than a matching M2

if WS(M1) is lexicographically smaller than WS(M2). We define a total order on the elements of
M by their weight sequence. If two elements have exactly the same weight sequence, break ties
arbitrarily to get a total order.

LetM∗ = {(a1,b1), . . . , (an
2

,bn
2
)} be a matching in M with minimum weight sequence. Observe

that M∗ is a Euclidean bottleneck matching for P. In order to prove Theorem 2.4, we will show
that all edges of M∗ are in 9-GG. Consider any edge (a,b) in M∗. If D[a,b] contains no point of
P \ {a,b}, then (a,b) is an edge of 9-GG. Suppose that D[a,b] contains k points of P \ {a,b}. We
are going to prove that k 6 9. Let R = {r1, r2, . . . , rk} be the set of points of P \ {a,b} that are in
D[a,b]. Let S = {s1, s2, . . . , sk} represent the points for which (ri, si) ∈M∗.

Without loss of generality, we assume that D[a,b] has diameter 1 and is centered at the origin
o = (0, 0), and a = (−0.5, 0) and b = (0.5, 0). For any point p in the plane, let ‖p‖ denote
the distance of p from o. Note that |ab| = 1, and for any point x ∈ D[a,b] \ {a,b} we have
max{|xa|, |xb|} < 1.

lemma 2 .5. For each point si ∈ S, min{|sia|, |sib|} > 1.

Proof. The proof is by contradiction; suppose that |sia| < 1. Let M be the perfect matching
obtained from M∗ by deleting {(a,b), (ri, si)} and adding {(si,a), (ri,b)}. The lengths of the two
new edges are smaller than 1, and hence both (si,a) and (ri,b) are shorter than (a,b). Thus,
WS(M) <lex WS(M∗), which contradicts the minimality of M∗.

As a corollary of Lemma 2.5, R and S are disjoint.

lemma 2 .6. For each pair of points si, sj ∈ S, |sisj| > max{|risi|, |rjsj|, 1}.

Proof. The proof is by contradiction; suppose that |sisj| < max{|risi|, |rjsj|, 1}. LetM be the perfect
matching obtained from M∗ by deleting {(a,b), (ri, si), (rj, sj)} and adding {(a, ri), (b, rj), (si, sj)}.
Note that max{|ari|, |brj|, |sisj|} < max{|risi|, |rjsj|, |ab|}. Thus, we get WS(M)<lexWS(M∗), which
contradicts the minimality of M∗.

Let C(x, r) (resp. D(x, r)) be the circle (resp. closed disk) of radius r that is centered at a point
x in the plane. For i ∈ {1, . . . ,k}, let s ′i be the intersection point between C(o, 1.5) and the ray
with origin at o passing through si. Let the point pi be si, if ‖si‖ < 1.5, and s ′i, otherwise. See
Figure 2.1. Let S ′ = {a,b,p1, . . . ,pk}.

observation 2 .7. Let sj be a point in S, where ‖sj‖ > 1.5. Then, the disk D(sj, ‖sj‖− 0.5) is con-
tained in the disk D(sj, |sjrj|). Moreover, the disk D(pj, 1) is contained in the disk D(sj, ‖sj‖− 0.5). See
Figure 2.1.

lemma 2 .8. The distance between any pair of points in S ′ is at least 1.
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1
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Figure 2.1: Proof of Lemma 2.8; pi = s ′i, pj = s
′
j, and pk = sk.

Proof. Let x and y be two points in S ′. We are going to prove that |xy| > 1. We distinguish
between the following three cases.

• {x,y} = {a,b}. In this case the claim is trivial.

• x ∈ {a,b},y ∈ {p1, . . . ,pk}. If ‖y‖ = 1.5, then y is on C(o, 1.5), and hence |xy| > 1. If
‖y‖ < 1.5, then y is a point in S. Therefore, by Lemma 2.5, |xy| > 1.

• x,y ∈ {p1, . . . ,pk}. Without loss of generality assume x = pi and y = pj, where 1 6 i < j 6 k.
We differentiate between three cases:

Case (i): ‖pi‖ < 1.5 and ‖pj‖ < 1.5. In this case pi and pj are two points in S. Therefore, by
Lemma 2.6, |pipj| > 1.

Case (ii): ‖pi‖ < 1.5 and ‖pj‖ = 1.5. In this case pi is a point in S. By Observation 2.7, the
disk D(pj, 1) is contained in the disk D(sj, |sjrj|), and by Lemma 2.6, pi is not in the interior
of D(sj, |sjrj|). Therefore, pi is not in the interior of D(pj, 1), which implies that |pipj| > 1.

Case (iii): ‖pi‖ = 1.5 and ‖pj‖ = 1.5. In this case ‖si‖ > 1.5 and ‖sj‖ > 1.5. Without loss
of generality assume ‖si‖ 6 ‖sj‖. For the sake of contradiction assume that |pipj| < 1;
see Figure 2.1. Then, for the angle α = ∠siosj we have sin(α/2) < 1

3 . Then, cos(α) =

1− 2 sin2(α/2) > 7
9 . By the law of cosines in the triangle 4siosj, we have

|sisj|
2 < ‖si‖2 + ‖sj‖2 −

14

9
‖si‖‖sj‖. (2.1)
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By Observation 2.7, the disk D(sj, ‖sj‖− 0.5) is contained in the disk D(sj, |sjrj|), and by
Lemma 2.6, si is not in the interior of D(sj, |sjrj|). Therefore, si is not in the interior of
D(sj, ‖sj‖− 0.5). Thus, |sisj| > ‖sj‖− 0.5. In combination with Inequality (2.1), this implies

‖sj‖
(
14

9
‖si‖− 1

)
< ‖si‖2 −

1

4
. (2.2)

In combination with the assumption ‖si‖ 6 ‖sj‖, Inequality (2.2) implies

5

9
‖si‖2 − ‖si‖+

1

4
< 0,

i.e.,
5

9

(
‖si‖−

3

10

)(
‖si‖−

3

2

)
< 0.

This is a contradiction, because, since ‖si‖ > 1.5, the left-hand side is non-negative. Thus
|pipj| > 1, which completes the proof of the lemma.

By Lemma 2.8, the points in S ′ have mutual distance at least 1. Moreover, the points in S ′

lie in D(o, 1.5). Fodor [11] proved that the smallest circle which contains 12 points with mutual
distances at least 1 has radius 1.5148. Therefore, S ′ contains at most 11 points. Since a,b ∈ S ′,
this implies that k 6 9. Therefore, S, and consequently R, contains at most 9 points. Thus, (a,b)
is an edge in 9-GG. This completes the proof of Theorem 2.4.

2.3.2 Proof of Proposition 1

In this section we prove Proposition 1. We show that for some point sets P, 8-GG does not contain
any Euclidean bottleneck matching of P.

Consider Figure 2.2 which shows a configuration of a set P of 20 points. The closed disk D[a,b]
is centred at c and has diameter one, i.e., |ab| = 1. D[a,b] contains 9 points U = {u1, . . . ,u9}
which lie on a circle with radius 1

2 − ε which is centred at c. Nine points in U ′ = {r1, . . . , r9}
are placed on a circle with radius 1.5 which is centred at c in such a way that |rjuj| = 1 + ε,
|rja| > 1 + ε, |rjb| > 1 + ε, and |rjrk| > 1 + ε for 1 6 j,k 6 9 and j 6= k. Consider a perfect
matching M = {(a,b)}∪ {(ri,ui) : i = 1, . . . , 9} where each point ri ∈ U ′ is matched to its closest
point ui. It is obvious that λ(M) = 1 + ε, and hence the bottleneck of any bottleneck perfect
matching is at most 1+ ε. We will show that any Euclidean bottleneck matching of P contains
(a,b). By contradiction, let M∗ be a Euclidean bottleneck matching which does not contain (a,b).
In M∗, a is matched to a point x ∈ U ∪U ′. If x ∈ U ′, then |ax| > 1+ ε. If x ∈ U, w.l.o.g. assume
that x = u1. Thus, inM∗ the point r1 is matched to a point ywhere y 6= u1. Since u1 is the closest
point to r1 and |r1u1| = 1+ ε, |r1y| > 1+ ε. In both cases λ(M∗) > 1+ ε, which is a contradiction.
Therefore,M∗ contains (a,b). SinceD[a,b] contains 9 points of P \ {a,b}, (a,b) /∈ 8-GG. Therefore
8-GG does not contain any Euclidean bottleneck matching of P.

2.3.3 Proof of Proposition 2

In this section we prove Proposition 2. We show that for some point sets P, 7-GG does not contain
any Euclidean bottleneck Hamiltonian cycle of P.
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Figure 2.2: A set of 20 points such that 8-GG does not contain any Euclidean bottleneck matching.

Figure 2.3 shows a configuration of a multiset P = {a,b, x, r1, . . . , r8, s1, . . . , s7} of 26 points,
where s5 is repeated nine times. The closed disk D[a,b] is centered at o and has diameter one,
i.e., |ab| = 1. D[a,b] contains all 8 points of the set R = {r1, . . . , r8}; these points lie on the
circle with radius 1

2 − ε that is centered at o; all points of R are in the interior of D[a,b]. Let
S = {s1, . . . , s7} be the multiset of 15 points, where s5 is repeated nine times. The red circles
have radius 1 and are centered at points in S. Each point in S is connected to its first and second
closest point (the black edges in Figure 2.3). Let B the chain formed by these edges. Note that
r1 and r8 are the endpoints of B. Specifically, |r1s1| = |r8s7| = 1, and for each point ri, where
2 6 i 6 7, |sia| > 1, |sib| > 1, |six| > 1, and |risi−1| = |risi| = 1 (here by s5 we mean the first
and last endpoints of the chain defined by points labeled s5). Consider the Hamiltonian cycle
H = B ∪ {(r1,a), (a,b), (b, x), (x, r8)}. The longest edge in H has length 1. Therefore, the length
of the longest edge in any bottleneck Hamiltonian cycle for P is at most 1. In the rest we will
show—by contradiction—that any bottleneck Hamiltonian cycle of P contains (a,b). Since in B
each point of S is connected to its first and second closest point, every bottleneck Hamiltonian
cycle of P contains B, because otherwise, one of the points in S should be connected to a point that
is farther than its second closest point, and hence that edge is longer than 1. Now we consider
possible ways to construct a bottleneck Hamiltonian cycle, say H∗, using the edges in B and the
points a,b, x. Assume (a,b) /∈ H∗. Then, in H∗, a is connected to two points in {r1, r8, x}. We
differentiate between two cases:
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• (a, x) ∈ H∗. In this case |ax| > 1, and hence the longest edge in H∗ is longer than 1, which
is a contradiction.

• (a, x) /∈ H∗. In this case (a, r1) ∈ H∗ and (a, r8) ∈ H∗. This means that H∗ does not contain
x and b, which is a contradiction.

Therefore, we conclude that H∗, and consequently any bottleneck Hamiltonian cycle of P, con-
tains (a,b). Since D[a,b] contains 8 points of P \ {a,b}, (a,b) /∈ 7-GG. Therefore 7-GG does not
contain any Euclidean bottleneck Hamiltonian cycle of P.

s1
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s6 s7

x

a bo
r1

r2

r3 r4

r5

r6
r7

r8
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s5

s5s5

s5

s5

Figure 2.3: Proof of Proposition 2. The bold-black edges belong to B. D[a,b] contains 8 points.

2.4 maximum matching

Let P be a set of n points in the plane. In this section we will prove that 0-GG has a matching
of size at least n−14 ; this bound is tight. We also prove that 1-GG has a matching of size at least
2(n−1)
5 and 2-GG has a perfect matching (when n is even).

First we give a lower bound on the number of components that result after removing a set
S of vertices from k-GG. Then we use Theorem 2.2 and Theorem 2.3, respectively presented by
Tutte [18] and Berge [4], to prove a lower bound on the size of a maximum matching in k-GG.
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ea b
Pi

Pj

(a) (b)

Figure 2.4: The point set P of 16 points is partitioned into white/black disks, white/black squares, and
crosses. (a) The graph G(P), (b) The set T of straight-line edges corresponding to MST(G(P))
is in bold, and the set D of their corresponding disks.

Let P = {P1,P2, . . . } be a partition of the points in P. For two sets Pi and Pj in P define the
distance d(Pi,Pj) as the smallest Euclidean distance between a point in Pi and a point in Pj, i.e.,
d(Pi,Pj) = min{|ab| : a ∈ Pi,b ∈ Pj}. Let G(P) be the complete edge-weighted graph with vertex
set P. For each edge e = (Pi,Pj) in G(P), let w(e) = d(Pi,Pj). This edge e is defined by two points
a and b, where a ∈ Pi and b ∈ Pj. Therefore, an edge e ∈ G(P) corresponds to a straight line
edge between two points a,b ∈ P; see Figure 2.4(a). Let MST(G(P)) be a minimum spanning tree
of G(P). It is obvious that each edge e in MST(G(P)) corresponds to a straight line edge between
a,b ∈ P. Let T be the set of all these straight line edges. Let D be the set of disks which have the
edges of T as diameter, i.e., D = {D[a,b] : (a,b) ∈ T}. See Figure 2.4(b).

observation 2 .9. T is a subgraph of a minimum spanning tree of P, and hence T is plane.

lemma 2 .10. A disk D[a,b] ∈ D does not contain any point of P \ {a,b}.

Proof. By Observation 2.9, T is a subgraph of a minimum spanning tree of P. It is well known that
any minimum spanning tree of P is a subgraph of 0-GG(P). Thus, T is a subgraph of 0-GG(P),
and hence, any disk D[a,b] ∈ D—representing an edge of T—does not contain any point of
P \ {a,b}.

lemma 2 .11. For each pair Di and Dj of disks in D, Di (resp. Dj) does not contain the center of Dj
(resp Di).

Proof. Let (ai,bi) and (aj,bj) respectively be the edges of T which correspond to Di and Dj. Let
Ci and Cj be the circles representing the boundary of Di and Dj. W.l.o.g. assume that Cj is the
bigger circle, i.e., |aibi| < |ajbj|. By contradiction, suppose that Cj contains the center ci of Ci.
Let x and y denote the intersections of Ci and Cj. Let xi (resp. xj) be the intersection of Ci (resp.
Cj) with the line through y and ci (resp. cj). Similarly, let yi (resp. yj) be the intersection of Ci
(resp. Cj) with the line through x and ci (resp. cj).

As illustrated in Figure 2.5, the arcs x̂ix, ŷiy, x̂jx, and ŷjy are the potential positions for
the points ai, bi, aj, and bj, respectively. First we will show that the line segment xixj passes
through x and |aiaj| 6 |xixj|. The angles ∠xixy and ∠xjxy are right angles, thus the line segment
xixj goes through x. Since x̂ix < π (resp. x̂jx < π), for any point ai ∈ x̂ix, |aix| 6 |xix| (resp.
aj ∈ x̂jx, |ajx| 6 |xjx|). Therefore,

|aiaj| 6 |aix|+ |xaj| 6 |xix|+ |xxj| = |xixj|.
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Figure 2.5: Illustration of Lemma 2.11: Ci and Cj intersect, and Cj contains the center of Ci.

Consider triangle 4xixjy which is partitioned by segment cixj into t1 = 4xixjci and t2 =

4cixjy. Since xiy is a diameter of Ci which passes through the center ci, the length of the
segment xici of t1 is equal to the length of the segment ciy of t2. The segment cixj is shared by
t1 and t2. Since ci is inside Cj and ŷxj = π, the angle ∠ycixj >

π
2 . Thus, ∠xicixj in t1 is smaller

than π
2 (and hence smaller than ∠ycixj in t2). Therefore, the segment xixj of t1 is smaller than

the segment xjy of t2. Thus,

|aiaj| 6 |xixj| < |xjy| = |ajbj|.

By symmetry |bibj| < |ajbj|. Therefore max{|aiaj|, |bibj|} < max{|aibi|, |ajbj|}. In addition δ =

(ai,aj,bj,bi,ai) is a cycle and at least one of (ai,aj) and (bi,bj) does not belong to T. This
contradicts Lemma 2.1 (Note that by Observation 2.9, T is a subgraph of a minimum spanning
tree of P).

Now we show that the intersection of every four disks in D is empty. In other words, every
point in the plane cannot lie in more than three disks in D. In Section 2.4.1 we prove the following
theorem, and in Section 2.4.2 we present the lower bounds on the size of a maximum matching
in k-GG.

theorem 2 .12. For every four disks D1,D2,D3,D4 ∈ D, D1 ∩D2 ∩D3 ∩D4 = ∅.

2.4.1 Proof of Theorem 2.12

The proof is by contradiction. Let D1, D2, D3, and D4 be four disks in D. Let X = D1 ∩D2 ∩D3 ∩
D4 and let x be a point in X. For i = 1, 2, 3, 4, let ci be the center of Di, let Ci be the boundary
of Di, and let (ai,bi) be the edge in T which corresponds to Di. Denote the angle ∠aixbi by αi,
for i = 1, 2, 3, 4. Since (ai,bi) is a diameter of Di and x lies in Di, αi > π

2 . First we prove the
following observation.

observation 2 .13. For i, j ∈ {1, 2, 3, 4}, where i 6= j, the angles αi and αj are either disjoint or one is
completely contained in the other.
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Proof. The proof is by contradiction. Suppose that αi and αj are not disjoint and none of them
is completely contained in the other. Thus αi and αj share some part and w.l.o.g. assume that
bi is in the cone which is obtained by extending the edges of αj, and bj is in the cone which is
obtained by extending the edges of αi. Three cases arise:

• bi ∈ 4xajbj. In this case bi is inside Dj which contradicts Lemma 2.10.

• bj ∈ 4xaibi. In this case bj is inside Di which contradicts Lemma 2.10.

• bi /∈ 4xajbj and bj /∈ 4xaibi. In this case (ai,bi) intersects (aj,bj) which contradicts
Observation 2.9.

We call αi a blocked angle if αi is contained in an angle αj for some j ∈ {1, 2, 3, 4}, where j 6= i.
Otherwise, we call αi a free angle.

lemma 2 .14. At least one αi, for i ∈ {1, 2, 3, 4}, is blocked.

Proof. Suppose that all angles αi, where i ∈ {1, 2, 3, 4}, are free. This implies that the αis are
pairwise disjoint and α =

∑4
i=1 αi > 2π. If α > 2π, we obtain a contradiction to the fact that the

sum of the disjoint angles around x is at most 2π. If α = 2π, then the four edges (ai,bi) where
i ∈ {1, 2, 3, 4}, form a cycle which contradicts the fact that T is a subgraph of a minimum spanning
tree of P.

bi

ci

x

ai

Ci

cj
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bi

ai

ci

(a) (b)

Figure 2.6: (a) The point x should be inside the circle segment sc(ci,bi). (b) The trap(ai,bi) which consists
of two lenses lens(ai, ci) and lens(bi, ci).

By Lemma 2.14 at least one of the angles is blocked. Hereafter, assume that αj is blocked by
αi where 1 6 i, j 6 4 and i 6= j. W.l.o.g. assume that aibi is a vertical line segment and the
point x (which belongs to X) is to the left of aibi. Thus, ajbj and cj are to the right of aibi. This
implies that aibi ∩Dj 6= ∅. See Figure 2.6(a). By Lemma 2.11, ci cannot be inside Dj, thus either
aici ∩Dj 6= ∅ or cibi ∩Dj 6= ∅, but not both. W.l.o.g. assume that cibi ∩Dj 6= ∅. Let C ′ be the
circle with radius |cibi| which is centered at bi. Let d denote the intersection of C ′ with Ci which
is to the right of cibi. Consider the circle C ′′ with radius |dbi| centered at d. Note that C ′′ goes
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through bi and ci. Let sc(ci,bi) be the segment of the circle C ′′ which is between the chord cibi
and the arc ĉibi as shown in Figure 2.6(a).

We show that x cannot be outside sc(ci,bi). By contradiction suppose that x is outside sc(ci,bi)
(and to the left of cibi). Let l1 and l2 respectively be the perpendicular bisectors of xbi and xci.
Let b ′i and c ′i respectively be the intersection of l1 and l2 with cibi and let d ′ be the intersection
point of l1 and l2. Since x is outside sc(ci,bi), the intersection point d ′ is to the left of (the vertical
line through) d and inside triangle 4bicid. If cj is below l1 then |cjbi| < |cjx| and Dj contains
bi which contradicts Lemma 2.11. If cj is above l2 then |cjbi| < |cjx| and Dj contains ci which
contradicts Lemma 2.11. Thus, cj is above l1 and below l2, and (by the initial assumption) to the
right of cibi. That is, cj is in triangle 4b ′ic ′id ′. Since 4b ′ic ′id ′ ⊆ 4bicid ⊆ Di, cj lies inside Di
which contradicts Lemma 2.11. Therefore, x is contained in sc(ci,bi).

By symmetry Dj can intersect aici and/or cj can be to the left of aibi as well. Therefore, if αi
blocks αj, the point x can be in sc(ci,bi) or any of the symmetric segments of the circles. For an
edge aibi we denote the union of these segments by trap(ai,bi) which is shown in Figure 2.6(b).
For each disk Di, let trap(Di) = trap(ai,bi) where (ai,bi) is the edge in T corresponding to Di.
Therefore x is contained in trap(Di) which implies that

X ⊆ trap(Di).

Note that trap(Di) consists of two symmetric lenses lens(ai, ci) and lens(bi, ci), i.e., trap(Di) =
lens(ai, ci)∪ lens(bi, ci).

lemma 2 .15. For any point x ∈ trap(ai,bi), ∠aixbi > 150◦.

Proof. See Figure 2.6(a). The angle ∠bidci = 60◦, which implies that ĉibi = 60◦. Thus, for any
point x ′ on the arc ĉibi, ∠x ′cibi + ∠x ′bici = 30◦, and hence for any point x in the segment
sc(ci,bi), ∠xcibi +∠xbici 6 30◦. This implies that in 4xbici, ∠bixci > 150◦. On the other hand
∠bixci 6 ∠bixai, which proves the lemma.
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Figure 2.7: Illustration of Lemma 2.16.

lemma 2 .16. For any two disks Di and Dj in D, trap(Di)∩ trap(Dj) = ∅.
Proof. We prove this lemma by contradiction. Suppose x ∈ trap(Di) ∩ trap(Dj) and w.l.o.g. as-
sume that x ∈ lens(ai, ci)∩ lens(aj, cj) as shown in Figure 2.7. Connect x to ai, ci, aj, and cj (ai
may be identified with aj). As shown in the proof of Lemma 2.15, min{∠aixci,∠ajxcj} > 150◦.
Two configurations may arise:
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• ∠cixcj 6 60◦. In this case |cicj| 6 max{|xci|, |xcj|}. W.l.o.g. assume that |xci| 6 |xcj| which
implies that |cicj| 6 |xcj|; see Figure 2.7(a). Clearly |xcj| < |cjaj|, and hence |cicj| < |cjaj|.
Thus, Dj contains ci which contradicts Lemma 2.11.

• ∠cixcj > 60◦. In this case ∠aixcj 6 60◦ and ∠ajxci 6 60◦, hence |aicj| 6 max{|aix|, |cjx|}
and |ajci| 6 max{|ajx|, |cix|}. Three configurations arise:

– |aix| < |cjx|, in this case |aicj| < |cjx| < |cjaj| and hence Dj contains ai. See Fig-
ure 2.7(b).

– |ajx| < |cix|, in this case |ajci| < |cix| < |ciai| and hence Di contains aj.

– |aix| > |cjx| and |ajx| > |cix|, in this case w.l.o.g. assume that |aix| 6 |ajx|. Thus
|aicj| 6 |aix| 6 |ajx| < |ajcj| which implies that Dj contains ai. See Figure 2.7(b).

All cases contradict Lemma 2.10.

Recall that each blocking angle represents a trap. Thus, by Lemma 2.14 and Lemma 2.16, we
have the following corollary:

corollary 2 .17. Exactly one αi, where 1 6 i 6 4, is blocked.

Recall that αj is blocked by αi, aibi is vertical line segment, cj is to the right of aibi, and
x ∈ sc(ci,bi). As a direct consequence of Corollary 2.17, αi, αk, and αl are free angles, where
1 6 i, j,k, l 6 4 and i 6= j 6= k 6= l. In addition, ck and cl are to the left of aibi. It is obvious that

X ⊆ trap(Di)∩Dk ∩Dl.

bi

ci

aibk

ak
bl

al

x αi

αk

αl

Figure 2.8: Illustration of Lemma 2.18.

lemma 2 .18. For a blocking angle αi and free angles αk and αl, trap(Di)∩Dk ∩Dl = ∅.
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Proof. Since αi is a blocking angle and αk, αl are free angles, ck and cl are on the same side of
aibi. By contradiction, suppose that x ∈ trap(Di) ∩Dj ∩Dk. See Figure 2.8. It is obvious that
max{|xai|, |xbi|} < |aibi|, max{|xak|, |xbk|} < |akbk|, and max{|xal|, |xbl|} < |albl|. By Lemma 2.15,
αi > 150◦. In addition αk,αl > 90◦. Thus, max{∠aixbk,∠akxbl,∠alxbi} 6 30◦. Hence, |aibk|
< max{|xai|, |xbk|}, |akbl| < max{|xak|, |xbl|}, and |albi| < max{|xal|, |xbi|}. Therefore, max{|aibk|,
|akbl|, |albi|} < max{|aibi|, |akbk|, |albl|}. In addition δ = (ai,bi,al,bl,ak,bk,ai) is a cycle and
at least one of (ai,bk), (ak,bl) and (al,bi) does not belong to T. This contradicts Lemma 2.1.

Thus, X = ∅; which contradicts the fact that x ∈ X. This completes the proof of Theorem 2.12.

2.4.2 Lower Bounds

In this section we present some lower bounds on the size of a maximum matching in 2-GG, 1-GG,
and 0-GG.

theorem 2 .19. For a set P of an even number of points, 2-GG has a perfect matching.

Proof. First we show that by removing a set S of points from 2-GG, at most |S|+ 1 components are
generated. Then we show that at least one of these components must be even. Using Theorem 2.2,
we conclude that 2-GG has a perfect matching.

Let S be a set vertices removed from 2-GG, and let C = {C1, . . . ,Cm(S)} be the resulting m(S)

components. Then, P = {V(C1), . . . ,V(Cm(S))} is a partition of the vertices in P \ S.

claim 1 . m(S) 6 |S|+ 1.
Let G(P) be the complete graph with vertex set P which is constructed as described above. Let

T be the set of all edges between points in P corresponding to the edges of MST(G(P)) and let D
be the set of disks corresponding to the edges of T. It is obvious that T contains m(S) − 1 edges
and hence |D| = m(S)− 1. Let F = {(p,D) : p ∈ S,D ∈ D,p ∈ D} be the set of all (point, disk) pairs
where p ∈ S, D ∈ D, and p is inside D. By Theorem 2.12 each point in S can be inside at most
three disks in D. Thus, |F| 6 3 · |S|. Now we show that each disk in D contains at least three points
of S in its interior. Consider any disk D ∈ D and let e = (a,b) be the edge of T corresponding
to D. By Lemma 2.10, D does not contain any point of P \ S. Therefore, D contains at least three
points of S, because otherwise (a,b) is an edge in 2-GG which contradicts the fact that a and b
belong to different components in C. Thus, each disk in D has at least three points of S. That is,
3 · |D| 6 |F|. Therefore, 3(m(S) − 1) 6 |F| 6 3|S|, and hence m(S) 6 |S|+ 1.

claim 2 . o(C) 6 |S|.
By Claim 1, |C| = m(S) 6 |S|+ 1. If |C| 6 |S|, then o(C) 6 |S|. Assume that |C| = |S|+ 1. Since

P = S ∪ {
⋃|S|+1
i=1 V(Ci)}, the total number of vertices of P is equal to n = |S| +

∑|S|+1
i=1 |V(Ci)|.

Consider two cases where (i) |S| is odd, (ii) |S| is even. In both cases if all the components in C are
odd, then n is odd; contradicting our assumption that P has an even number of vertices. Thus, C
contains at least one even component, which implies that o(C) 6 |S|.

Finally, by Claim 2 and Theorem 2.2, we conclude that 2-GG has a perfect matching.

theorem 2 .20. For every set P of n points, 1-GG has a matching of size at least 2(n−1)5 .

Proof. Let S be a set of vertices removed from 1-GG, and let C = {C1, . . . ,Cm(S)} be the resulting
m(S) components. Then, P = {V(C1), . . . ,V(Cm(S))} is a partition of the vertices in P \ S. Note
that o(C) 6 m(S). Let M∗ be a maximum matching in 1-GG. By Theorem 2.3,
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|M∗| =
1

2
(n− def(1-GG)), (2.3)

where

def(1-GG) = max
S⊆P

(o(C) − |S|) 6 max
S⊆P

(|C|− |S|) = max
06|S|6n

(m(S) − |S|). (2.4)

Define G(P), T, D, and F as in the proof of Theorem 2.19. By Theorem 2.12, |F| 6 3 · |S|. By the
same reasoning as in the proof of Theorem 2.19, each disk in D has at least two points of S in its
interior. Thus, 2|D| 6 |F|. Therefore, 2(m(S) − 1) 6 |F| 6 3|S|, and hence

m(S) 6
3|S|

2
+ 1. (2.5)

In addition, |S|+m(S) = |S|+ |C| 6 |P| = n, and hence

m(S) 6 n− |S|. (2.6)

By Inequalities (2.5) and (2.6),

m(S) 6 min
{
3|S|

2
+ 1,n− |S|

}
. (2.7)

Thus, by (2.4) and (2.7)

def(1-GG) 6 max
06|S|6n

(m(S) − |S|) 6 max
06|S|6n

{
min
{
3|S|

2
+ 1,n− |S|

}
− |S|

}
= max
06|S|6n

{
min
{
|S|

2
+ 1,n− 2|S|

}}
=
n+ 4

5
, (2.8)

where the last equation is achieved by setting |S|
2 + 1 equal to n − 2|S|, which implies |S| =

2(n−1)
5 . Finally by substituting (2.8) in Equation (2.3) we have

|M∗| >
2(n− 1)

5
.

By similar reasoning as in the proof of Theorem 2.20 we have the following Theorem.

Figure 2.9: A 0-GG of n = 17 points with a maximum matching of size n−14 = 4 (bold edges). The dashed
edges do not belong to the graph because any of their corresponding closed disks has a point
on its boundary.

theorem 2 .21. For every set P of n points, 0-GG has a matching of size at least n−14 .

The bound in Theorem 2.21 is tight, as can be seen from the graph in Figure 2.9, for which
the maximum matching has size n−14 . Actually this is a Gabriel graph of maximum degree four
which is a tree. The dashed edges do not belong to 0-GG because any closed disk which has one
of these edges as diameter has a point on its boundary. Observe that each edge in any matching
is adjacent to one of the vertices of degree four.
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note : For a point set P, let νk(P) and αk(P) respectively denote the size of a maximum match-
ing and a maximum independent set in k-GG. For every edge in the maximum matching, at most
one of its endpoints can be in the maximum independent set. Thus,

αk(P) 6 |P|− νk(P).

By combining this formula with the results of Theorems 2.21, 2.20, 2.19, respectively, we have
α0(P) 6

3n+1
4 , α1(P) 6 3n+2

5 , and α2(P) 6 dn2 e. The 0-GG graph in Figure 2.9 has an indepen-
dent set of size 3n+1

4 = 13, which shows that this bound is tight for 0-GG. On the other hand,
0-GG is planar and every planar graph is 4-colorable; which implies that α0(P) > dn4 e. There are
some examples of 0-GG in [14] such that α0(P) = dn4 e, which means that this bound is tight as
well.

2.5 blocking higher-order gabriel graphs

In this section we consider the problem of blocking higher-order Gabriel graphs. Recall that a
point set K blocks k-GG(P) if in k-GG(P ∪K) there is no edge connecting two points in P.

theorem 2 .22. For every set P of n points, at least dn−13 e points are necessary to block 0-GG(P).

Proof. Let K be a set of m points which blocks 0-GG(P). Let G(P) be the complete graph with
vertex set P = P. Let T be a minimum spanning tree of G(P) and let D be the set of closed
disks corresponding to the edges of T. Since G(P) has n vertices, T has n− 1 edges. Thus, |D| =

n− 1. By Lemma 2.10 each disk D[a,b] ∈ D does not contain any point of P \ {a,b}, thus, T ⊆
0-GG(P). To block each edge of T, corresponding to a disk in D, at least one point is necessary. By
Theorem 2.12 each point in K can lie in at most three disks of D. Therefore, m > dn−13 e, which
implies that at least dn−13 e points are necessary to block all the edges of T and hence 0-GG(P).

(a) (b)

Figure 2.10: (a) 0-GG graph of n = 13 points (in bold edges) which is blocked by dn−13 e = 4 white points,
(b) dashed edges do not belomg to 0-GG.

Figure 2.10(a) shows a 0-GG with n = 13 (black) points which is blocked by dn−13 e = 4 (white)
points. Note that all the disks, corresponding to the edges of every cycle, intersect at the same
point in the plane (where we have placed the white points). As shown in Figure 2.10(b), the
dashed edges do not belong to 0-GG. Thus, the lower bound provided by Theorem 2.22 is tight.
It is easy to generalize the result of Theorem 2.22 to higher-order Gabriel graphs. Since in a k-GG
we need at least k+ 1 points to block an edge of T and each point can be inside at most three
disks in D, we have the following corollary:
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corollary 2 .23. For every set P of n points, at least d (k+1)(n−1)3 e points are necessary to block
k-GG(P).

In [3] the authors showed that every Gabriel graph can be blocked by a set K of n− 1 points by
putting a point slightly to the right of each point of P, except for the rightmost one. Every disk
with diameter determined by two points of P will contain a point of K. Using a similar argument
one can block a k-GG by putting k+ 1 points slightly to the right of each point of P, except for
the rightmost one. Thus,

corollary 2 .24. For every set P of n points, there exists a set of (k+ 1)(n− 1) points that blocks
k-GG(P).

Note that this upper bound is tight, because if the points of P are on a line, the disks repre-
senting the minimum spanning tree are disjoint and each disk needs k+ 1 points to block the
corresponding edge.

2.6 conclusions

In this chapter, we considered the bottleneck and perfect matching admissibility of higher-order
Gabriel graphs. We proved that

• 9-GG contains a Euclidean bottleneck matching of P and 8-GG may not have any.

• 0-GG has a matching of size at least n−14 and this bound is tight.

• 1-GG has a matching of size at least 2(n−1)5 .

• 2-GG has a perfect matching.

• At least dn−13 e points are necessary to block 0-GG and this bound is tight.

• d (k+1)(n−1)3 e points are necessary and (k+ 1)(n− 1) points are sufficient to block k-GG.
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3
M AT C H I N G I N T D - D E L A U N AY G R A P H S

We consider an extension of the triangular-distance Delaunay graphs (TD-Delaunay) on a set P
of points in general position in the plane. In TD-Delaunay, the convex distance is defined by a
fixed-oriented equilateral triangle 5, and there is an edge between two points in P if and only if
there is an empty homothet of5 having the two points on its boundary. We consider higher-order
triangular-distance Delaunay graphs, namely k-TD, which contains an edge between two points if
the interior of the smallest homothet of5 having the two points on its boundary contains at most
k points of P. We consider the connectivity, Hamiltonicity and perfect-matching admissibility of
k-TD. Finally we consider the problem of blocking the edges of k-TD.

This chapter was first published in the proceedings of the First International Conference on
Algorithms and Discrete Applied Mathematics (CALDAM 2015) [7], and was subsequently pub-
lished in the journal of Computational Geometry: Theory and Applications [8].

We also obtained lower and upper bounds on the size of maximum matching in 0-TD graphs,
which are not included in this thesis. The results were first published in the proceedings of
the 7th International Workshop on Algorithms and Computation (WALCOM 2013) [4], and was
subsequently invited and accepted to a special issue of Theoretical Computer Science [5].

3.1 introduction

The triangular-distance Delaunay graph of a point set P in the plane, TD-Delaunay for short, was
introduced by Chew [15]. A TD-Delaunay is a graph whose convex distance function is defined by
a fixed-oriented equilateral triangle. Let 5 be a downward equilateral triangle whose barycenter
is the origin and one of whose vertices is on the negative y-axis. A homothet of 5 is obtained by
scaling 5 with respect to the origin by some factor µ > 0, followed by a translation to a point b
in the plane: b+ µ5 = {b+ µa : a ∈ 5}. In the TD-Delaunay graph of P, there is a straight-line
edge between two points p and q if and only if there exists a homothet of 5 having p and q on
its boundary and whose interior does not contain any point of P. In other words, (p,q) is an edge
of TD-Delaunay graph if and only if there exists an empty downward equilateral triangle having
p and q on its boundary. In this case, we say that the edge (p,q) has the empty triangle property.

We say that P is in general position if the line passing through any two points from P does
not make angles 0◦, 60◦, and 120◦ with horizontal. In this chapter we consider point sets in
general position and our results assume this pre-condition. If P is in general position, then the
TD-Delaunay graph is a planar graph, see [10]. We define t(p,q) as the smallest homothet of 5
having p and q on its boundary. See Figure 3.1(a). Note that t(p,q) has one of p and q at a vertex,
and the other one on the opposite side. Thus,

observation 3 .1. Each side of t(p,q) contains either p or q.

A graph G is connected if there is a path between any pair of vertices in G. Moreover, G is
k-connected if there does not exist a set of at most k− 1 vertices whose removal disconnects G. In
case k = 2, G is called biconnected. In other words a graph G is biconnected iff there is a simple

33
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cycle between any pair of its vertices. A matching in G is a set of edges in G without common
vertices. A perfect matching is a matching which matches all the vertices of G. A Hamiltonian cycle
in G is a cycle (i.e., closed loop) through G that visits each vertex of G exactly once. For H ⊆ G
we denote the bottleneck of H, i.e., the length of the longest edge in H, by λ(H).

Let Kn(P) be a complete edge-weighted geometric graph on a point set P which contains a
straight-line edge between any pair of points in P. For an edge (p,q) in Kn(P) let w(p,q) denote
the weight of (p,q). A bottleneck matching (resp. bottleneck Hamiltonian cycle) in P is defined to be a
perfect matching (resp. Hamiltonian cycle) in Kn(P), in which the weight of the maximum-weight
edge is minimized. A bottleneck biconnected spanning subgraph of P is a spanning subgraph, G(P),
of Kn(P) which is biconnected and the weight of the longest edge in G(P) is minimized.

A tight lower bound on the size of a maximum matching in a TD-Delaunay graph, i.e. 0-TD,
is presented in [5]. In this chapter we study higher-order TD-Delaunay graphs. The order-k TD-
Delaunay graph of a point set P, denoted by k-TD, is a geometric graph which has an edge (p,q) iff
the interior of t(p,q) contains at most k points of P; see Figure 3.1(b). The standard TD-Delaunay
graph corresponds to 0-TD. We consider graph-theoretic properties of higher-order TD-Delaunay
graphs, such as connectivity, Hamiltonicity, and perfect-matching admissibility. We also consider
the problem of blocking TD-Delaunay graphs.

t(p, q)

p

q

q

p
t(p, q)

(a) (b) (c)

Figure 3.1: (a) Triangular-distance Delaunay graph (0-TD), (b) 1-TD graph, the light edges belong to 0-TD
as well, and (c) Delaunay triangulation.

3.1.1 Previous Work

A Delaunay triangulation (DT) of P (which does not have any four co-circular points) is a graph
whose distance function is defined by a fixed circle © centered at the origin. DT has an edge
between two points p and q iff there exists a homothet of © having p and q on its boundary and
whose interior does not contain any point of P; see Figure 3.1(c). In this case the edge (p,q) is said
to have the empty circle property. The order-k Delaunay Graph on P, denoted by k-DG, is defined
to have an edge (p,q) iff there exists a homothet of © having p and q on its boundary and
whose interior contains at most k points of P. The standard Delaunay triangulation corresponds
to 0-DG.

For each pair of points p,q ∈ P let D[p,q] be the closed disk having pq as diameter. A Gabriel
Graph on P is a geometric graph which has an edge between two points p and q iff D[p,q] does
not contain any point of P \ {p,q}. The order-k Gabriel Graph on P, denoted by k-GG, is defined to
have an edge (p,q) iff D[p,q] contains at most k points of P \ {p,q}.

For each pair of points p,q ∈ P, let L(p,q) be the intersection of the two open disks with
radius |pq| centered at p and q, where |pq| is the Euclidean distance between p and q. A Relative
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Neighborhood Graph on P is a geometric graph which has an edge between two points p and q iff
L(p,q) does not contain any point of P. The order-k Relative Neighborhood Graph on P, denoted by
k-RNG, is defined to have an edge (p,q) iff L(p,q) contains at most k points of P. It is obvious
that for a fixed point set, k-RNG is a subgraph of k-GG, and k-GG is a subgraph of k-DG.

The problem of determining whether an order-k geometric graph always has a (bottleneck) per-
fect matching or a (bottleneck) Hamiltonian cycle is of interest. In order to show the importance
of this problem we provide the following example. Gabow and Tarjan [18] showed that a bottle-
neck matching of maximum cardinality in a graph can be computed in O(m · (n logn)0.5) time,
where m is the number of edges in the graph. Using their algorithm, a bottleneck perfect match-
ing of a point set can be computed in O(n2 · (n logn)0.5) time; note that the complete graph on
n points has Θ(n2) edges. Chang et al. [14] showed that a bottleneck perfect matching of a point
set is contained in 16-DG; this graph has Θ(n) edges and can be computed in O(n logn) time.
Thus, by running the algorithm of Gabow and Tarjan on 16-DG, a bottleneck perfect matching of
a point set can be computed in O(n · (n logn)0.5) time.

If for each edge (p,q) in Kn(P), w(p,q) is equal the Euclidean distance between p and q, then
Chang et al. [12, 13, 14] proved that a bottleneck biconnected spanning graph, bottleneck perfect
matching, and bottleneck Hamiltonian cycle of P are contained in 1-RNG, 16-RNG, 19-RNG,
respectively. This implies that 16-RNG has a perfect matching and 19-RNG is Hamiltonian. Since
k-RNG is a subgraph of k-GG, the same results hold for 16-GG and 19-GG. It is known that
k-GG is (k+ 1)-connected [11] and 10-GG (and hence 10-DG) is Hamiltonian [19]. Dillencourt
showed that every Delaunay triangulation (0-DG) admits a perfect matching [17] but it can fail
to be Hamiltonian [16].

Given a geometric graph G(P) on a set P of n points, we say that a set K of points blocks G(P)
if in G(P ∪ K) there is no edge connecting two points in P. Actually P is an independent set in
G(P∪K). Aichholzer et al. [2] considered the problem of blocking the Delaunay triangulation (i.e.
0-DG) for a given point set P in which no four points are co-circular. They show that 3n2 points
are sufficient to block 0-DG and n− 1 points are necessary. To block a Gabriel graph, n− 1 points
are sufficient [3].

3.1.2 Our Results

We consider some graph-theoretical properties of higher-order triangular distance Delaunay
graphs on a given set P of n points in general position in the plane. We show for which values of
k, k-TD contains a bottleneck biconnected spanning graph, a bottleneck Hamiltonian cycle, and
a (bottleneck) perfect-matching; for the bottleneck structures we assume that the weight of any
edge (p,q) in Kn(P) is equal to the area of the smallest homothet of 5 having p and q on its
boundary. In Section 3.3 we prove that every k-TD graph is (k+ 1)-connected. In addition we
show that a bottleneck biconnected spanning graph of P is contained in 1-TD. Using a similar ap-
proach as in [1, 12], in Section 3.4 we show that a bottleneck Hamiltonian cycle of P is contained
in 7-TD. We also show a configuration of a point set P such that 5-TD fails to have a bottleneck
Hamiltonian cycle. In Section 3.5 we prove that a bottleneck perfect matching of P is contained in
6-TD, and we show that for some point set P, 5-TD does not have a bottleneck perfect matching.
In Section 3.5.2 we prove that 2-TD has a perfect matching and 1-TD has a matching of size at
least 2(n−1)5 . In Section 3.6 we consider the problem of blocking k-TD. We show that at least
dn−12 e points are necessary and n− 1 points are sufficient to block a 0-TD. The open problems
and concluding remarks are presented in Section 3.7.
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3.2 preliminaries

Bonichon et al. [9] showed that the half-Θ6 graph of a point set P in the plane is equal to the TD-
Delaunay graph of P. They also showed that every plane triangulation is TD-Delaunay realizable.

p

q

C1
p

C2
p

C3
p

C4
p

C5
p

C6
p

t(p, q)

l60p

l0p

l120p

Figure 3.2: The construction of the TD-Delaunay graph.

The half-Θ6 graph (or equivalently a TD-Delaunay graph) on a point set P can be constructed
in the following way. For each point p in P, let lp be the horizontal line through p. Define lγp as
the line obtained by rotating lp by γ-degrees in counter-clockwise direction around p. Actually
l0p = lp. Consider three lines l0p, l60p , and l120p which partition the plane into six disjoint cones with
apex p. Let C1p, . . . ,C6p be the cones in counter-clockwise order around p as shown in Figure 3.2.
C1p, C3p, C5p will be referred to as odd cones, and C2p, C4p, C6p will be referred to as even cones.
For each even cone Cip, connect p to the “nearest” point q in Cip. The distance between p and q,
d(p,q), is defined as the Euclidean distance between p and the orthogonal projection of q onto
the bisector of Cip. See Figure 3.2. The resulting graph is the half-Θ6 graph which is defined by
even cones [9]. Moreover, the resulting graph is the TD-Delaunay graph defined with respect
to homothets of 5. By considering the odd cones, another half-Θ6 graph is obtained. The well-
known Θ6 graph is the union of half-Θ6 graphs defined by odd and even cones.

Recall that t(p,q) is the smallest homothet of 5 having p and q on its boundary. In other
words, t(p,q) is the smallest downward equilateral triangle through p and q. Similarly we define
t ′(p,q) as the smallest upward equilateral triangle having p and q on its boundary. It is obvious
that the even cones correspond to downward triangles and odd cones correspond to upward
triangles. We define an order on the equilateral triangles: for each two equilateral triangles t1
and t2 we say that t1 ≺ t2 if the area of t1 is less than the area of t2. Since the area of t(p,q) is
directly related to d(p,q),

d(p,q) < d(r, s) if and only if t(p,q) ≺ t(r, s).

For a set {t1, . . . , tm} of equilateral triangles we define max{t1, . . . , tm} to be the triangle with
the largest area. As shown in Figure 3.3 we have the following observation:

observation 3 .2. If t(p,q) contains a point r, then t(p, r) and t(q, r) are contained in t(p,q).

As a direct consequence of Observation 3.2, if a point r is contained in t(p,q), then max{t(p, r),
t(q, r)} ≺ t(p,q). It is obvious that,
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p

t(p, q)q

r t(p, r)
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t(p, q)q

r
t(p, r)
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t(p, q)q
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t(p, r)

t(q, r)

(a) (b) (c)

Figure 3.3: Illustration of Observation 3.2: the point r is contained in t(p,q). The triangles t(p, r) and t(q, r)
are inside t(p,q).

observation 3 .3. For each two points p,q ∈ P, the area of t(p,q) is equal to the area of t ′(p,q).

Thus, we define X(p,q) as a regular hexagon centered at p which has q on its boundary, and
its sides are parallel to l0p, l60p , and l120p .

observation 3 .4. If X(p,q) contains a point r, then t(p, r) ≺ t(p,q).

We construct k-TD as follows. For each point p ∈ P, imagine the six cones having their apex
at p, as described earlier. Then connect p to its (k + 1) nearest neighbors in each even cone
around p. For each edge (p,q) in k-TD we define its weight, w(p,q), to be equal to the area of
t(p,q). The resulting graphs is k-TD, which has O(kn) edges. The k-TD can be constructed in
O(n logn+ kn log logn)-time, using the algorithm introduced by Lukovszki [20] for computing
fault tolerant spanners.

For a graph G = (V ,E) and K ⊆ V , let G− K be the subgraph obtained from G by removing
the vertices in K, and let o(G− K) be the number of odd components in G− K. The following
theorem by Tutte [21] gives a characterization of the graphs which have a perfect matching:

theorem 3 .5 (Tutte [21]). G has a perfect matching if and only if o(G−K) 6 |K| for all K ⊆ V .

Berge [6] extended Tutte’s theorem to a formula (known as Tutte-Berge formula) for the max-
imum size of a matching in a graph. In a graph G, the deficiency, defG(K), is o(G− K) − |K|. Let
def(G) = maxK⊆V defG(K).

theorem 3 .6 (Tutte-Berge formula; Berge [6]). The size of a maximum matching in G is

1

2
(n− def(G)).

For an edge-weighted graph G we define the weight sequence of G, WS(G), as the sequence
containing the weights of the edges of G in non-increasing order. For two graphs G1 and G2 we
say that WS(G1) ≺ WS(G2) if WS(G1) is lexicographically smaller than WS(G2). A graph G1 is
said to be less than a graph G2 if WS(G1) ≺WS(G2).

3.3 connectivity

In this section we consider the connectivity of higher-order triangular-distance Delaunay graphs.



38 matching in td-delaunay graphs

3.3.1 (k+ 1)-connectivity

For a set P of points in the plane, the TD-Delaunay graph, i.e., 0-TD, is not necessarily a triangu-
lation [15], but it is connected and internally triangulated [5], i.e., all internal faces are triangles.
As shown in Figure 3.1(a), 0-TD may not be biconnected. As a warm up exercise we show that
every k-TD is (k+ 1)-connected.

theorem 3 .7. For every point set P in general position in the plane, k-TD is (k + 1)-connected. In
addition, for every k, there exists a point set P such that k-TD is not (k+ 2)-connected.

Proof. We prove the first part of this theorem by contradiction. Let K be the set of (at most)
k vertices removed from k-TD, and let C = {C1,C2, . . . ,Cm}, where m > 1, be the resulting
maximal connected components. Let T be the set of all triangles defined by any pair of points
belonging to different components, i.e., T = {t(a,b) : a ∈ Ci,b ∈ Cj, i 6= j}. Consider the smallest
triangle tmin ∈ T . Assume that tmin is defined by two points a and b, i.e., tmin = t(a,b), where
a ∈ Ci, b ∈ Cj, and i 6= j.

Claim 1: tmin does not contain any point of P \K in its interior. By contradiction, suppose that
tmin contains a point c ∈ P \K in its interior. Three cases arise: (i) c ∈ Ci, (ii) c ∈ Cj, (iii) c ∈ Cl,
where l 6= i and l 6= j. In case (i) the triangle t(c,b) between Ci and Cj is contained in t(a,b). In
case (ii) the triangle t(a, c) between Ci and Cj is contained in t(a,b). In case (iii) both triangles
t(a, c) and t(c,b) are contained in t(a,b). All cases contradict the minimality of t(a,b) = tmin.
Thus, tmin contains no point of P \K in its interior, proving Claim 1.

By Claim 1, tmin = t(a,b) may only contain points of K. Since |K| 6 k, there must be an edge
between a and b in k-TD. This contradicts that a and b belong to different components Ci and
Cj in C. Therefore, k-TD is (k+ 1)-connected.

We present a constructive proof for the second part of theorem. Let P = A ∪ B ∪ K, where
|A|, |B| > 1 and |K| = k+ 1. Place the points of A in the plane. Let C4A =

⋂
p∈AC

4
p. Place the

points of K in C4A. Let C4K =
⋂
p∈KC

4
p. Place the points of B in C4K. Consider any pair (a,b) of

points where a ∈ A and b ∈ B. It is obvious that any path between a and b in k-TD goes through
the vertices in K. Thus by removing the vertices in K, a and b become disconnected. Therefore,
k-TD of P is not (k+ 2)-connected.

3.3.2 Bottleneck Biconnected Spanning Graph

As shown in Figure 3.1(a), 0-TD may not be biconnected. By Theorem 3.7, 1-TD is biconnected.
In this section we show that a bottleneck biconnected spanning graph of P is contained in 1-TD.

theorem 3 .8. For every point set P in general position in the plane, 1-TD contains a bottleneck bicon-
nected spanning graph of P.

Proof. Let G be the set of all biconnected spanning graphs with vertex set P. We define a total
order on the elements of G by their weight sequence. If two elements have the same weight
sequence, we break the ties arbitrarily to get a total order. Let G∗ = (P,E) be a graph in G with
minimal weight sequence. Clearly, G∗ is a bottleneck biconnected spanning graph of P. We will
show that all edges of G∗ are in 1-TD. By contradiction suppose that some edges in E do not
belong to 1-TD, and let e = (a,b) be the longest one (by the area of the triangle t(a,b)). If the
graph G∗ − {e} is biconnected, then by removing e, we obtain a biconnected spanning graph
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G with WS(G) ≺ WS(G∗); this contradicts the minimality of G∗. Thus, there is a pair {p,q} of
points such that any cycle between p and q in G∗ goes through e. Since (a,b) /∈ 1-TD, t(a,b)
contains at least two points of P, say x and y. Let G be the graph obtained from G∗ by removing
the edge (a,b) and adding the edges (a, x), (b, x), (a,y), (b,y). We show that in G there is a
cycle C between p and q which does not go through e. Consider a cycle C∗ in G∗ between two
points p and q (which goes through e). If none of x and y belong to C∗, then C = (C∗ − {(a,b)})
∪ {(a, x), (b, x)} is a cycle in G between p and q. If one of x or y, say x, belongs to C∗, then
C = (C∗ − {(a,b)})∪ {(a,y), (b,y)} is a cycle in G between p and q. If both x and y belong to C∗,
w.l.o.g. assume that x is between b and y in the path C∗ − {(a,b)}. Consider the partition of C∗

into four parts: (a) edge (a,b), (b) path δbx between b and x, (c) path δxy between x and y, and
(d) path δya between y and a. There are four cases:

1. None of p and q are on δxy. Let C = δbx ∪ δya ∪ {(a, x), (b,y)}.

2. Both p and q are on δxy. Let C = δxy ∪ {(a, x), (a,y)}.

3. One of p,q is on δxy while the other is on δbx. Let C = δbx ∪ δxy ∪ {(b,y)}.

4. One of p,q is on δxy while the other is on δya. Let C = δxy ∪ δya ∪ {(a, x)}.

In all cases, C is a cycle in G between p and q. Thus, between any pair of points in G there
exists a cycle, and hence G is biconnected. Since x and y are inside t(a,b), by Observation 3.2,
max{t(a, x), t(a,y), t(b, x), t(b,y)} ≺ t(a,b). Therefore, WS(G) ≺ WS(G∗); this contradicts the
minimality of G∗.

3.4 hamiltonicity

In this section we show that 7-TD contains a bottleneck Hamiltonian cycle. In addition, we will
show that for some point sets, 5-TD does not contain any bottleneck Hamiltonian cycle.

theorem 3 .9. For every point set P in general position in the plane, 7-TD contains a bottleneck Hamil-
tonian cycle.

Proof. Let H be the set of all Hamiltonian cycles through the points of P. Define a total order
on the elements of H by their weight sequence. If two elements have exactly the same weight
sequence, break ties arbitrarily to get a total order. Let H∗ = a0,a1, . . . ,an−1,a0 be a cycle in H

with minimal weight sequence. It is obvious that H∗ is a bottleneck Hamiltonian cycle of P. We
will show that all the edges of H∗ are in 7-TD. Consider any edge e = (ai,ai+1) in H∗ and let
t(ai,ai+1) be the triangle corresponding to e (all the index manipulations are modulo n).

Claim 1: None of the edges of H∗ can be completely in the interior t(ai,ai+1). Suppose there
is an edge f = (aj,aj+1) inside t(ai,ai+1). Let H be a cycle obtained from H∗ by deleting e and
f, and adding (ai,aj) and (ai+1,aj+1). By Observation 3.2, t(ai,ai+1) � max{t(ai,aj), t(ai+1,
aj+1)}, and hence WS(H) ≺WS(H∗). This contradicts the minimality of H∗.

Therefore, we may assume that no edge of H∗ lies completely inside t(ai,ai+1). Suppose there
are w points of P inside t(ai,ai+1). Let U = u1,u2, . . . ,uw represent these points indexed in the
order we would encounter them on H∗ starting from ai. Let R = {r1, r2, . . . , rw} represent the
vertices where ri is the vertex succeeding ui in the cycle. All the vertices in R, probably except
rw, are different from ai (and ai+1). Without loss of generality assume that ai ∈ C4ai+1 , and
t(ai,ai+1) is anchored at ai+1, as shown in Figure 3.4.
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Claim 2: For each rj ∈ R, t(rj,ai+1) � max{t(ai,ai+1), t(uj, rj)}. Suppose there is a point rj ∈ R
such that t(rj,ai+1) ≺ max{t(ai,ai+1), t(uj, rj)}. Construct a new cycle H by removing the edges
(uj, rj), (ai,ai+1) and adding the edges (ai+1, rj) and (ai,uj). Since the two new edges have
length strictly less than max{t(ai,ai+1), t(uj, rj)}, WS(H) ≺WS(H∗); which is a contradiction.

Claim 3: For each rj, rk ∈ R, t(rj, rk) � max{t(ai,ai+1), t(uj, rj), t(uk, rk)}. Suppose there is a
pair rj and rk such that t(rj, rk) ≺ max{t(ai,ai+1), t(uj, rj),d(uk, rk)}. Construct a cycle H from
H∗ by first deleting (uj, rj), (uk, rk), (ai,ai+1). This results in three paths. One of the paths must
contain both ai and either rj or rk. W.l.o.g. suppose that ai and rk are on the same path. Add
the edges (ai,uj), (ai+1,uk), (rj, rk). Since max{t(uj, rj), t(uk, rk),d(ai,ai+1)} � max{t(ai,uj),
t(ai+1,uk), t(rj, rk)}, WS(H) ≺WS(H∗); we get a contradiction.
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B2

C1
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l120ai
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l2

l1

rk

l0ai+1

l120ai+1

Figure 3.4: Illustration of Theorem 3.9.

We use Claim 2 and Claim 3 to show that the size of R is at most seven, and consequently
w 6 7. Consider the lines l0ai+1 , l

60
ai+1

, l120ai+1 , and l120ai as shown in Figure 3.4. Let l1 and l2 be
the rays starting at the corners of t(ai,ai+1) opposite to ai+1 and parallel to l0ai+1 and l60ai+1
respectively. These lines and rays partition the plane into 12 regions, as shown in Figure 3.4. We
will show that each of the regions D1, D2, D3, D4, C1, C2, and B = B1 ∪B2 contains at most one
point of R, and the other regions do not contain any point of R. Consider the hexagon X(ai+1,ai).
By Claim 2 and Observation 3.4, no point of R can be inside X(ai+1,ai). Moreover, no point of
R can be inside the cones A1, A2, or A3, because if rj ∈ {A1 ∪A2 ∪A3}, the (upward) triangle
t ′(uj, rj) contains ai+1. Then by Observation 3.4, t(rj,ai+1) ≺ t(uj, rj); which contradicts Claim
2.

We show that each of the regions D1, D2, D3, D4 contains at most one point of R. Consider the
region D1; by similar reasoning we can prove the claim for D2, D3, D4. Using contradiction, let
rj and rk be two points in D1, and w.l.o.g. assume that rj is the farthest to l60ai+1 . Then rk can lie
inside any of the cones C1rj , C

5
rj

, and C6rj (but not in X). If rk ∈ C1rj , then t ′(rj, rk) is smaller than
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t ′(ai,ai+1) which means that t(rj, rk) ≺ t(ai,ai+1). If rk ∈ C5rj , then t ′(uj, rj) contains rk, that
is t(rj, rk) ≺ t(uj, rj). If rk ∈ C6rj , then t(uj, rj) contains rk, that is t(rj, rk) ≺ t(uj, rj). All cases
contradict Claim 3.

Now consider the region C1 (or C2). By contradiction assume that it contains two points rj
and rk. Let rj be the farthest from l0ai+1 . It is obvious that t ′(uj, rj) contains rk, that is t(rj, rk) ≺
t(uj, rj); which contradicts Claim 3.

Consider the region B = B1 ∪ B2. Note that it is possible for rj or rk to be ai. If both rj and
rk belong to B2, then t ′(rj, rk) is smaller that t(ai,ai+1). If rj ∈ B1 and rk ∈ B2, then t ′(uj, rj)
contains rk, and hence t(rj, rk) ≺ t(uj, rj). If both rj and rk belong to B1, let rj be the farthest
from l120ai . Clearly, t(uj, rj) contains rk and hence t(rj, rk) ≺ t(uj, rj). All cases contradict Claim
3.

Therefore, any of the regions D1, D2, D3, D4, C1, C2, and B = B1 ∪ B2 contains at most one
point of R. Thus, |R| 6 7 and w 6 7, and t(ai,ai+1) contains at most 7 points of P. Therefore,
e = (ai,ai+1) is an edge of 7-TD.

As a direct consequence of Theorem 3.9 we have shown that:

corollary 3 .10. 7-TD is Hamiltonian.
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Figure 3.5: t(ai,ai+1) contains 7 points while the conditions in the proof of Theorem 3.9 hold.



42 matching in td-delaunay graphs

An interesting question is to determine if k-TD contains a bottleneck Hamiltonian cycle for
k < 7. Figure 3.5 shows a configuration where t(ai,ai+1) contains 7 points while the conditions
of Claim 1, Claim 2, and Claim 3 in the proof of Theorem 3.9 hold. In Figure 3.5, d(ai,ai+1) = 1,
d(ri,ui) = 1+ ε, d(ri, rj) > 1+ ε, d(ri,ai+1) > 1+ ε for i, j = 1, . . . 7 and i 6= j.

a

b

1

1 + ε

r1
r2

r3

r4

r5

r6

u1u2
u3

u4

u5
u6

t1

t2

t3

X(t3, r1)

X(r2, u2)

X(a, b)

X(r6, u6)

Figure 3.6: The points {r1, . . . , r6, t1, t2, t3} are connected to their first and second closest point (the bold
edges). The edge (a,b) should be in any bottleneck Hamiltonian cycle, while t(a,b) contains 6

points.

theorem 3 .11. There exists an arbitrary large point set such that its 5-TD does not contain any bottle-
neck Hamiltonian cycle.

Proof. In order to prove the theorem, we provide such a point set. Figure 3.6 shows a configu-
ration of P with 17 points such that 5-TD does not contain a bottleneck Hamiltonian cycle. In
Figure 3.6, d(a,b) = 1 and t(a,b) contains 6 points U = {u1, . . . ,u6}. In addition d(ri,ui) = 1+ ε,
d(ri, rj) > 1+ ε, d(ri,b) > 1+ ε for i, j = 1, . . . 6 and i 6= j. Let R = {t1, t2, t3, r1, . . . , r6}. The
dashed hexagons are centered at a and b and have diameter 1. The dotted hexagons are centered
at vertices in R and have diameter 1 + ε. Each point in R is connected to its first and second
closest points by edges of length 1+ ε (the bold edges). Let B be the set of these edges. Let H
be a cycle formed by B ∪ {(u3,b), (b,a), (a,u5)}, i.e., H = (u4, r4,u5, r5,u6, r6, t1, t2, t3, r1,u1, r2,
u2, r3,u3,a,b,u4). It is obvious that H is a Hamiltonian cycle for P and λ(H) = 1+ ε. Thus, the
bottleneck of any bottleneck Hamiltonian cycle for P is at most 1 + ε. We will show that any
bottleneck Hamiltonian cycle for P contains the edge (a,b) which does not belong to 5-TD. By
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contradiction, let H∗ be a bottleneck Hamiltonian cycle which does not contain (a,b). In H∗, b is
connected to two vertices bl and br, where bl 6= a and br 6= a. Since the distance between b and
any vertex in R is strictly bigger than 1+ ε and λ(H∗) 6 1+ ε, bl /∈ R and br /∈ R. Thus bl and br
belong to U. Let U ′ = {u1,u2,u5,u6}. Consider two cases:

• bl ∈ U ′ or br ∈ U ′. W.l.o.g. assume that bl ∈ U ′ and bl = u1. Since u1 is the first/second
closest point of r1 and r2, in H∗ one of r1 and r2 must be connected by an edge e to a point
that is farther than its second closet point; e has length strictly greater than 1+ ε.

• bl /∈ U ′ and br /∈ U ′. Thus, both bl and br belong to {u3,u4}. That is, in H∗, a should be
connected to a point c where c ∈ R∪U ′. If c ∈ R then the edge (a, c) has length more than
1+ ε. If c ∈ U ′, w.l.o.g. assume c = u1; by the same argument as in the previous case, one
of r1 and r2 must be connected by an edge e to a point that is farther than its second closet
point; e has length strictly greater than 1+ ε.

Since e ∈ H∗, both cases contradicts that λ(H∗) 6 1+ ε. Therefore, every bottleneck Hamil-
tonian cycle contains edge (a,b). Since (a,b) is not an edge in 5-TD, a bottleneck Hamiltonian
cycle of P is not contained in 5-TD. We can construct larger point sets by adding new points very
close to t2, and at distance at least 1+ 2ε from b.

3.5 perfect matching admissibility

In this section we consider the matching problem in higher-order triangular-distance Delaunay
graphs. In Subsection 3.5.1 we show that 6-TD contains a bottleneck perfect matching. We also
show that for some point sets P, 5-TD does not contain any bottleneck perfect matching. In
Subsection 3.5.2 we prove that every 2-TD has a perfect matching when P has an even number of
points, and 1-TD contains a matching of size at least 2(n−1)5 .

3.5.1 Bottleneck Perfect Matching

theorem 3 .12. For a set P of an even number of points in general position in the plane, 6-TD contains
a bottleneck perfect matching.

Proof. Let M be the set of all perfect matchings through the points of P. Define a total order on the
elements of M by their weight sequence. If two elements have exactly the same weight sequence,
break ties arbitrarily to get a total order. Let M∗ = {(a1,b1), . . . , (an

2
,bn

2
)} be a perfect matching

in M with minimal weight sequence. It is obvious that M∗ is a bottleneck perfect matching for
P. We will show that all edges of M∗ are in 6-TD. Consider any edge e = (ai,bi) in M∗ and its
corresponding triangle t(ai,bi).

Claim 1: None of the edges of M∗ can be inside t(ai,bi). Suppose there is an edge f = (aj,bj)
inside t(ai,bi). Let M be a perfect matching obtained from M∗ by deleting {e, f}, and adding
{(ai,aj), (bi,bj)}. By Observation 3.2, the two new edges are smaller than the old ones. Thus,
WS(M) ≺WS(M∗) which contradicts the minimality of M∗.

Therefore, we may assume that no edge of M∗ lies completely inside t(ai,bi). Suppose there
are w points of P inside t(ai,bi). Let U = u1,u2, . . . ,uw represent the points inside t(ai,bi), and
R = r1, r2, . . . , rw represent the points where (ri,ui) ∈ M∗. W.l.o.g. assume that ai ∈ C4bi , and
t(ai,bi) is anchored at bi as shown in Figure 3.7.
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Figure 3.7: Proof of Theorem 3.12.

Claim 2: For each rj ∈ R, min{t(rj,ai), t(rj,bi)} � max{t(ai,bi), t(uj, rj)}. Otherwise, by a
similar argument as in the proof of Claim 2 in Theorem 3.9 we can either match rj with ai or bi
to obtain a smaller matching M; which is a contradiction.

Claim 3: For each pair rj and rk of points in R, t(rj, rk) � max{t(ai,bi), t(rj,uj), t(rk,uk)}. The
proof is similar to the proof of Claim 3 in Theorem 3.9.

Consider Figure 3.7 which partitions the plane into eleven regions. As a direct consequence
of Claim 2, the hexagons X(bi,ai) and X(ai,bi) do not contain any point of R. By a similar
argument as in the proof of Theorem 3.9, the regions A1, A2, A3 do not contain any point of R. In
addition, the region B does not contain any point rj of R, because otherwise t ′(rj,uj) contains ai,
that is t(rj,ai) ≺ t(uj, rj) which contradicts Claim 2. As shown in the proof of Theorem 3.9 each
of the regions D1, D2, D ′3, D ′4, C1, and C2 contains at most one point of R (note that D ′3 ⊂ D3
and D ′4 ⊂ D4). Thus, w 6 6, and t(ai,bi) contains at most 6 points of P. Therefore, e = (ai,bi)
is an edge of 6-TD.

As a direct consequence of Theorem 3.12 we have shown that:

corollary 3 .13. For a set P of even number of points in general position in the plane, 6-TD has a
perfect matching.

In the following theorem, we show that the bound k = 6 proved in Theorem 3.12 is tight.

theorem 3 .14. There exists an arbitrarily large point set such that its 5-TD does not contain any
bottleneck perfect matching.

Proof. In order to prove the theorem, we provide such a point set. Figure 3.8 shows a configura-
tion of a set P with 14 points such that d(a,b) = 1 and t(a,b) contains six points U = {u1, . . . ,u6}.
In addition d(ri,ui) = 1+ ε, d(ri, x) > 1+ ε where x 6= ui, for i = 1, . . . 6. Let R = {r1, . . . , r6}.
In Figure 3.8, the dashed hexagons are centered at a and b, each of diameter 1, and the dot-
ted hexagons centered at vertices in R, each of diameter 1 + ε. Consider a perfect matching
M = {(a,b)} ∪ {(ri,ui) : i = 1, . . . , 6} where each point ri ∈ R is matched to its closest point ui.
It is obvious that λ(M) = 1+ ε, and hence the bottleneck of any bottleneck perfect matching is
at most 1+ ε. We will show that any bottleneck perfect matching for P contains the edge (a,b)
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a

b

r1

r2

r3

r4
r5

r6

u1u2

u3

u4
u5

u6

1

1 + ε

Figure 3.8: The points {r1, . . . , r6} are matched to their closest point. The edge (a,b) should be an edge in
any bottleneck perfect matching, while t(a,b) contains 6 points.

which does not belong to 5-TD. By contradiction, let M∗ be a bottleneck perfect matching which
does not contain (a,b). In M∗, b is matched to a point c ∈ R∪U. If c ∈ R, then d(b, c) > 1+ ε. If
c ∈ U, w.l.o.g. assume c = u1. Thus, in M∗ the point r1 is matched to a point d where d 6= u1.
Since u1 is the unique closest point to r1 and d(r1,u1) = 1+ ε, d(r1,d) > 1+ ε. Both cases con-
tradicts that λ(M∗) 6 1+ ε. Therefore, every bottleneck perfect matching contains (a,b). Since
(a,b) is not an edge in 5-TD, a bottleneck perfect matching of P is not contained in 5-TD. We
can construct larger point sets by adding new points—which are within distance 1+ ε from each
other—at distance at least 1+ 2ε from the current point set.

3.5.2 Perfect Matching

In [5] the authors proved a tight lower bound of dn−13 e on the size of a maximum matching in
0-TD. In this section we prove that 1-TD has a matching of size 2(n−1)

5 and 2-TD has a perfect
matching when P has an even number of points.

For a triangle t(a,b) through the points a and b, let top(a,b), left(a,b), and right(a,b) re-
spectively denote the top, left, and right sides of t(a,b). Refer to Figure 3.9(a) for the following
lemma.

lemma 3 .15. Let t(a,b) and t(p,q) intersect a horizontal line `, and t(a,b) intersects top(p,q) in such
a way that t(p,q) contains the lowest corner of t(a,b). Let a (resp. p) lie on right(a,b) (resp. right(p,q).
If a and b lie above top(p,q), and p and q lie above `, then, max{t(a,p), t(b,q)} ≺ max{t(a,b), t(p,q)}.
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`

t(a, b)

t(p, q)

sb sa

spsq

sb

s′a

s′′a

sq sp

r

` x

t1

t2

(a) (b)

Figure 3.9: (a) Illustration of Lemma 3.15, and (b) proof of Lemma 3.15.

Proof. Recall that t(a,b) is the smallest downward triangle through a and b. By Observation 3.1
each side of t(a,b) contains either a or b. In Figure 3.9(a) the set of potential positions for point a
on the boundary of t(a,b) is shown by the line segment sa; and similarly by sb, sp, sq for b, p, q,
respectively. We will show that t(a,p) ≺ max{t(a,b), t(p,q)}. By similar reasoning we can show
that t(b,q) ≺ max{t(a,b), t(p,q)}. Let x denote the intersection of ` and right(p,q). Consider a
ray r initiated at x and parallel to left(p,q) which divides sa into (at most) two parts s ′a and s ′′a
as shown in Figure 3.9(b). Two cases may appear:

• a ∈ s ′a. Let t1 be a downward triangle anchored at x which has its top side on the line
through top(a,b) (the dashed triangle in Figure 3.9(b)). The top side of t1 and t(a,b) lie on
the same horizontal line. The bottommost corner of t1 is on ` while the bottommost corner
of t(a,b) is below `. Thus, t1 ≺ t(a,b). In addition, t1 contains s ′a and sp, thus, for any two
points a ∈ s ′a and p ∈ sp, t(a,p) � t1. Therefore, t(a,p) ≺ t(a,b).

• a ∈ s ′′a. Let t2 be a downward triangle anchored at the intersection of right(a,b) and
top(p,q) which has one side on the line through right(p,q) (the dotted triangle in Fig-
ure 3.9(b)). This triangle is contained in t(p,q), and has sp on its right side. If we slide t2
upward while its top-left corner remains on s ′′a, the segment sp remains on the right side
of t2. Thus, any triangle connecting a point a ∈ s ′′a to a point p ∈ sp has the same size as
t2. That is, t(a,p) = t2 ≺ t(p,q).

Therefore, we have t(a,p) ≺ max{t(a,b), t(p,q)}. By similar argument we conclude that t(b,q) ≺
max{t(a,b), t(p,q)}.

Let P = {P1,P2, . . . } be a partition of the points in P. Let G(P) be the complete graph with
vertex set P. For each edge e = (Pi,Pj) in G(P), let w(e) be equal to the area of the smallest
triangle between a point in Pi and a point in Pj, i.e. w(e) = min{t(a,b) : a ∈ Pi,b ∈ Pj}. That
is, the weight of an edge e ∈ G(P) corresponds to the size of the smallest triangle t(e) defined
by the endpoints of e. Let T be a minimum spanning tree of G(P). Let T be the set of triangles
corresponding to the edges of T, i.e. T = {t(e) : e ∈ T}.

lemma 3 .16. The interior of any triangle in T does not contain any point of P.
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Proof. By contradiction, suppose there is a triangle τ ∈ T which contains a point c ∈ P. Let
e = (Pi,Pj) be the edge in T which corresponds to τ. Let a and b respectively be the points in
Pi and Pj which define τ, i.e. τ = t(a,b) and w(e) = t(a,b). Three cases arise: (i) c ∈ Pi, (ii)
c ∈ Pj, (iii) c ∈ Pl where l 6= i and l 6= j. In case (i) the triangle t(c,b) between c ∈ Pi and b ∈ Pj
is smaller than t(a,b); contradicts that w(e) = t(a,b) in G(P). In case (ii) the triangle t(a, c)
between a ∈ Pi and c ∈ Pj is smaller than t(a,b); contradicts that w(e) = t(a,b) in G(P). In case
(iii) the triangle t(a, c) (resp. t(c,b)) between Pi and Pl (resp. Pl and Pj) is smaller than t(a,b);
contradicts that e is an edge in T.

lemma 3 .17. Each point in the plane can be in the interior of at most three triangles in T .

Proof. For each t(a,b) ∈ T , the sides top(a,b), right(a,b), and left(a,b) contains at least one of
a and b. In addition, by Lemma 3.16, t(a,b) does not contain any point of P in its interior. Thus,
none of top(a,b), right(a,b), and left(a,b) is completely inside the other triangles. Therefore,
the only possible way that two triangles t(a,b) and t(p,q) can share a point is that one triangle,
say t(p,q), contains a corner of t(a,b) in such a way that a and b are outside t(p,q). In other
words t(a,b) intersects t(p,q) through one of the sides top(p,q), right(p,q), or left(p,q). If
t(a,b) intersects t(p,q) through a direction d ∈ {top, right, left} we say that t(p,q) ≺d t(a,b).

By contradiction, suppose there is a point c in the plane which is inside four triangles {t1, t2, t3,
t4} ⊆ T . Out of these four, either (i) three of them are like ti ≺d tj ≺d tk or (ii) there is a triangle tl
such that tl ≺top ti, tl ≺right tj, tl ≺left tk, where 1 6 i, j,k, l 6 4 and i 6= j 6= k 6= l. Figure 3.10

shows the two possible configurations (note that all other configurations obtained by changing
the indices of triangles and/or the direction are symmetric to Figure 3.10(a) or Figure 3.10(b)).

t1

t2

t3

t1

t2 t3

t4

(a) (b)

Figure 3.10: Two possible configurations: (a) t3 ≺top t2 ≺top t1, (b) t4 ≺top t1, t4 ≺left t2, t4 ≺right t3.

Recall that each of t1, t2, t3, t4 corresponds to an edge in T. In the configuration of Figure 3.10(a)
consider t1, t2, and top(t3) which is shown in more detail in Figure 3.11(a). Suppose t1 (resp. t2)
is defined by points a and b (resp. p and q). By Lemma 3.16, p and q are above top(t3), a and
b are above top(t2). By Lemma 3.15, max{t(a,p), t(b,q)} ≺ max{t(a,b), t(p,q)}. This contradicts
the fact that both of the edges representing t(a,b) and t(p,q) are in T, because by replacing
max{t(a,b), t(p,q)} with t(a,p) or t(b,q), we obtain a tree T ′ which is smaller than T. In the
configuration of Figure 3.10(b), consider all pairs of potential positions for two points defining t4
which is shown in more detail in Figure 3.11(b). The pairs of potential positions on the boundary
of t4 are shown in red, green, and orange. Consider the red pair, and look at t2, t4, and left(t1).
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By Lemma 3.15 and the same reasoning as for the previous configuration, we obtain a smaller
tree T ′; which contradicts the minimality of T. By symmetry, the green and orange pairs lead to
a contradiction. Therefore, all configurations are invalid; which proves the lemma.

top(t3)

t1 = t(a, b)

t2 = t(p, q)

b
a

p

q

t1

t2 t3

t4

right(t1) left(t1)

top(t3)

(a) (b)

Figure 3.11: Illustration of Lemma 3.17.

Our results in this section are based on Lemma 3.16, Lemma 3.17, Theorem 3.5, and Theo-
rem 3.6.

Now we prove that 2-TD has a perfect matching.

theorem 3 .18. For a set P of an even number of points in general position in the plane, 2-TD has a
perfect matching.

Proof. First we show that by removing a set K of points from 2-TD, at most |K|+ 1 components
are generated. Then we show that at least one of these components must be even. Finally by
Theorem 3.5 we conclude that 2-TD has a perfect matching.

Let K be a set of vertices removed from 2-TD, and let C = {C1, . . . ,Cm(K)} be the resultingm(K)

components. Then, P = {V(C1), . . . ,V(Cm(K))} is a partition of the vertices in P \K.

claim 1 . m(K) 6 |K|+ 1.
Let G(P) be the complete graph with vertex set P which is constructed as described above.

Let T be a minimum spanning tree of G(P) and let T be the set of triangles corresponding to
the edges of T. It is obvious that T contains m(K) − 1 edges and hence |T | = m(K) − 1. Let
F = {(p, t) : p ∈ K, t ∈ T ,p ∈ t} be the set of all (point, triangle) pairs where p ∈ K, t ∈ T , and
p is inside t. By Lemma 3.17 each point in K can be inside at most three triangles in T . Thus,
|F| 6 3 · |K|. Now we show that each triangle in T contains at least three points of K. Consider
any triangle τ ∈ T . Let e = (V(Ci),V(Cj)) be the edge of T which is corresponding to τ, and
let a ∈ V(Ci) and b ∈ V(Cj) be the points defining τ. By Lemma 3.16, τ does not contain any
point of P \ K in its interior. Therefore, τ contains at least three points of K, because otherwise
(a,b) is an edge in 2-TD which contradicts the fact that a and b belong to different components
in C. Thus, each triangle in T contains at least three points of K in its interior. That is, 3 · |T | 6 |F|.
Therefore, 3(m(K) − 1) 6 |F| 6 3|K|, and hence m(K) 6 |K|+ 1.
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claim 2 . o(C) 6 |K|.
By Claim 1, |C| = m(K) 6 |K|+ 1. If |C| 6 |K|, then o(C) 6 |K|. Assume that |C| = |K|+ 1. Since P =

K ∪ {
⋃|K|+1
i=1 V(Ci)}, the total number of vertices of P can be defined as n = |K|+

∑|K|+1
i=1 |V(Ci)|.

Consider two cases where (i) |K| is odd, (ii) |K| is even. In both cases if all the components in C

are odd, then n is odd; this contradicts our assumption that P has an even number of vertices.
Thus, C contains at least one even component, which implies that o(C) 6 |K|.

Finally, by Claim 2 and Theorem 3.5, we conclude that 2-TD has a perfect matching.

theorem 3 .19. For every set P of points in general position in the plane, 1-TD has a matching of size
2(n−1)
5 .

Proof. Let K be a set of vertices removed from 1-TD, and let C = {C1, . . . ,Cm(K)} be the resulting
m(K) components. Then, P = {V(C1), . . . ,V(Cm(K))} is a partition of the vertices in P \ K. Note
that o(C) 6 m(K). Let M∗ be a maximum matching in 1-TD. By Theorem 3.6,

|M∗| =
1

2
(n− def(1-TD)), (3.1)

where

def(1-TD) = max
K⊆P

(o(C) − |K|) 6 max
K⊆P

(|C|− |K|) = max
06|K|6n

(m(K) − |K|). (3.2)

Define G(P), T, T , and F as in the proof of Theorem 3.18. Then, by Lemma 3.17, |F| 6 3 · |K|. By
the same reasoning as in the proof of Theorem 3.18, each triangle in T has at least two points of
K in its interior. Thus, 2|T | 6 |F|. Therefore, 2(m(K) − 1) 6 |F| 6 3|K|, and hence

m(K) 6
3|K|

2
+ 1. (3.3)

In addition, |K|+m(K) = |K|+ |C| 6 |P| = n, and hence

m(K) 6 n− |K|. (3.4)

By Inequalities (3.3) and (3.4),

m(K) 6 min
{
3|K|

2
+ 1,n− |K|

}
. (3.5)

Thus, by (3.2) and (3.5)

def(1-TD) 6 max
06|K|6n

(m(K) − |K|) 6 max
06|K|6n

{
min
{
3|K|

2
+ 1,n− |K|

}
− |K|

}
= max
06|K|6n

{
min
{
|K|

2
+ 1,n− 2|K|

}}
=
n+ 4

5
, (3.6)

where the last equation is achieved by setting |K|
2 + 1 equal to n− 2|K|, which implies |K| =

2(n−1)
5 . Finally by substituting (3.6) in Equation (3.1) we have

|M∗| >
2(n− 1)

5
.
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3.6 blocking td-delaunay graphs

In this section we consider the problem of blocking TD-Delaunay graphs. Let P be a set of n
points in the plane such that no pair of points of P is collinear in the l0, l60, and l120 directions.
Recall that a point set K blocks k-TD(P) if in k-TD(P ∪K) there is no edge connecting two points
in P. That is, P is an independent set in k-TD(P ∪K).
theorem 3 .20. At least d (k+1)(n−1)3 e points are necessary to block k-TD(P).

Proof. Let K be a set of m points which blocks k-TD(P). Let G(P) be the complete graph with
vertex set P = P. Let T be a minimum spanning tree of G(P) and let T be the set of triangles
corresponding to the edges of T. It is obvious that |T | = n − 1. By Lemma 3.16 the triangles
in T are empty, thus, the edges of T belong to any k-TD(P) where k > 0. To block each edge,
corresponding to a triangle in T , at least k+ 1 points are necessary. By Lemma 3.17 each point in
K can lie in at most three triangles of T . Therefore, m > d (k+1)(n−1)3 e, which implies that at least
d (k+1)(n−1)3 e points are necessary to block all the edges of T and hence k-TD(P).

pi

C1
pi

C2
pi

C3
pi

≥ δ ≥ δ

p′i

q

qq

(a) (b)

Figure 3.12: (a) A 0-TD graph which is shown in bold edges is blocked by dn−12 e white points, (b) p ′i
blocks all the edges connecting pi to the vertices above l0pi .

Theorem 3.20 gives a lower bound on the number of points that are necessary to block a TD-
Delaunay graph. By this theorem, at least dn−13 e, d

2(n−1)
3 e, n− 1 points are necessary to block 0-,

1-, 2-TD(P) respectively. Now we introduce another formula which gives a better lower bound for
0-TD. For a point set P, let νk(P) and αk(P) respectively denote the size of a maximum matching
and a maximum independent set in k-TD(P). For every edge in the maximum matching, at most
one of its endpoints can be in the maximum independent set. Thus,

αk(P) 6 |P|− νk(P). (3.7)

Let K be a set of m points which blocks k-TD(P). By definition there is no edge between points
of P in k-TD(P ∪K). That is, P is an independent set in k-TD(P ∪K). Thus,

n 6 αk(P ∪K). (3.8)

By (3.7) and (3.8) we have

n 6 αk(P ∪K) 6 (n+m) − νk(P ∪K). (3.9)
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theorem 3 .21. At least dn−12 e points are necessary to block 0-TD(P).

Proof. Let K be a set of m points which blocks 0-TD(P). Consider 0-TD(P ∪ K). It is known that
ν0(P ∪K) > dn+m−1

3 e; see [5]. By Inequality (3.9),

n 6 (n+m) −

⌈
n+m− 1

3

⌉
6
2(n+m) + 1

3
,

and consequently m > dn−12 e (note that m is an integer number).

Figure 3.12(a) shows a 0-TD graph on a set of 12 points which is blocked by 6 points. By
removing the topmost point we obtain a set with odd number of points which can be blocked by
5 points. Thus, the lower bound provided by Theorem 3.21 is tight.

Now let k = 1. By Theorem 3.19 we have ν1(P ∪K) > 2((n+m)−1)
5 , and by Inequality (3.9)

n 6 (n+m) −
2((n+m) − 1)

5
=
3(n+m) + 2

5
,

and consequently m > d2(n−1)3 e; the same lower bound as in Theorem 3.20.
Now let k = 2. By Theorem 3.18 we have ν2(P ∪K) = bn+m2 c (note that n+m may be odd). By

Inequality (3.9)

n 6 (n+m) −

⌊
n+m

2

⌋
=

⌈
n+m

2

⌉
,

and consequently m > n, where n+m is even, and m > n− 1, where n+m is odd.

theorem 3 .22. There exists a set K of n− 1 points that blocks 0-TD(P).

Proof. Let d0(p,q) be the Euclidean distance between l0p and l0q. Let δ = min{d0(p,q) : p,q ∈ P}.
For each point p ∈ P let p(x) and p(y) respectively denote the x and y coordinates of p in
the plane. Let p1, . . . ,pn be the points of P in the increasing order of their y-coordinate. Let
K = {p ′i : p

′
i(x) = pi(x),p

′
i(y) = pi(y) + ε, ε < δ, 1 6 i 6 n− 1}. See Figure 3.12(b). For each point

pi, let Epi (resp. Epi) denote the edges of 0-TD(P) between pi and the points above l0pi (resp.
below l0pi). It is easy to see that the downward triangle between pi and any point q above l0pi (i.e.
any point q ∈ C1pi ∪C2pi ∪C3pi) contains p ′i. Thus, p ′i blocks all the edges in Epi . In addition, the
edges in Epi are blocked by p ′1, . . . ,p ′i−1. Therefore, all the edges of 0-TD(P) are blocked by the
n− 1 points in K.

We can extend the result of Theorem 3.22 to k-TD(P) where k > 1. For each point pi we put
k+ 1 copies of p ′i very close to pi. Thus,

theorem 3 .23. There exists a set K of (k+ 1)(n− 1) points that blocks k-TD(P).

This bound is tight. Consider the case where k = 0. In this case 0-TD(P) can be a path rep-
resenting n − 1 disjoint triangles and for each triangle we need at least one point to block its
corresponding edge.
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3.7 conclusions

In this chapter, we considered some combinatorial properties of higher order triangular-distance
Delaunay graphs of a point set P. We proved that

• k-TD is (k+ 1) connected.

• 1-TD contains a bottleneck biconnected spanning graph of P.

• 7-TD contains a bottleneck Hamiltonian cycle and 5-TD may not have any.

• 6-TD contains a bottleneck perfect matching and 5-TD may not have any.

• 1-TD has a matching of size at least 2(n−1)5 .

• 2-TD has a perfect matching when P has an even number of points.

• dn−12 e points are necessary to block 0-TD.

• d (k+1)(n−1)3 e points are necessary and (k+ 1)(n− 1) points are sufficient to block k-TD.

We leave a number of open problems:

• What is a tight lower bound for the size of maximum matching in 1-TD?

• Does 6-TD contain a bottleneck Hamiltonian cycle?

• As shown in Figure 3.1(a) 0-TD may not have a Hamiltonian cycle. For which values of
k = 1, . . . , 6, is the graph k-TD Hamiltonian?
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4
S T R O N G M AT C H I N G O F P O I N T S W I T H G E O M E T R I C S H A P E S

Let P be a set of n points in general position in the plane. Given a convex geometric shape S, a
geometric graph GS(P) on P is defined to have an edge between two points if and only if there
exists an empty homothet of S having the two points on its boundary. A matching in GS(P) is
said to be strong, if the homothests of S representing the edges of the matching, are pairwise
disjoint, i.e., do not share any point in the plane. We consider the problem of computing a strong
matching in GS(P), where S is a diametral-disk, an equilateral-triangle, or a square. We present an
algorithm which computes a strong matching in GS(P); if S is a diametral-disk, then it computes
a strong matching of size at least dn−117 e, and if S is an equilateral-triangle, then it computes a
strong matching of size at least dn−19 e. If S can be a downward or an upward equilateral-triangle,
we compute a strong matching of size at least dn−14 e in GS(P). When S is an axis-aligned square
we compute a strong matching of size dn−14 e in GS(P), which improves the previous lower bound
of dn5 e.

The results that are presented in this chapter are accepted to be published in the journal of
Computational Geometry: Theory and Applications, special issue in memoriam: Ferran Hur-
tado [6].

4.1 introduction

Let S be a compact and convex set in the plane that contains the origin in its interior. A homothet
of S is obtained by scaling S with respect to the origin by some factor µ > 0, followed by a
translation to a point b in the plane: b+ µS = {b+ µa : a ∈ S}. For a point set P in the plane, we
define GS(P) as the geometric graph on P which has an straight-line edge between two points
p and q if and only if there exists a homothet of S having p and q on its boundary and whose
interior does not contain any point of P. If P is in “general position”, i.e., no four points of P
lie on the boundary of any homothet of S, then GS(P) is plane [10]. Hereafter, we assume that
P is a set of n points in the plane, which is in general position with respect to S (we will define
the general position in Section 4.2). If S is a disk # whose center is the origin, then G#(P) is the
Delaunay triangulation of P. If S is an equilateral triangle 5 whose barycenter is the origin, then
G5(P) is the triangular-distance Delaunay graph of P which is introduced by Chew [11].

A matching in a graph G is a set of edges which do not share any vertices. A maximum matching
is a matching with maximum cardinality. A perfect matching is a matching which matches all
the vertices of G. Let M be a matching in GS(P). M is referred to as a matching of points with
shape S, e.g., a matching in G#(P) is a matching of points with with disks. Let SM be a set of
homothets of S representing the edges of M. M is called a strong matching if there exists a set
SM whose elements are pairwise disjoint, i.e., the objects in SM do not share any point in the
plane. Otherwise, M is a weak matching. See Figure 4.1. To be consistent with the definition of the
matching in the graph theory, we use the term “matching” to refer to a weak matching. Given
a point set P in the plane and a shape S, the (strong) matching problem is to compute a (strong)
matching of maximum cardinality in GS(P). In this chapter we consider the strong matching
problem of points in general position in the plane with respect to a given shape S ∈ {	,5, 2} (see
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Section 4.2 for the definition), where by 	 we mean the line segment between the two points on
the boundary of the disk is a diameter of that disk.

(a) (b) (c)

Figure 4.1: Point set P and (a) a perfect weak matching in G5(P), (b) a perfect strong matching in G54(P),
and (c) a perfect strong matching in G2(P).

4.1.1 Previous Work

The problem of computing a maximum matching in GS(P) is one of the fundamental problems in
computational geometry and graph theory [1, 2, 3, 5, 8, 7, 12]. Dillencourt [12] and Ábrego et al.
[1] considered the problem of matching points with disks. Let S be a closed disk # whose center
is the origin, and let P be a set of n points in the plane which is in general position with respect
to #. Then, G#(P) is the graph which has an edge between two points p,q ∈ P if there exists
a homothet of # having p and q on its boundary and does not contain any point of P \ {p,q}.
G#(P) is equal to the Delaunay triangulation on P, DT(P). Dillencourt [12] proved that G#(P)

contains a perfect (weak) matching. Ábrego et al. [1] proved that G#(P) has a strong matching of
size at least d(n− 1)/8e. They also showed that there exists a set P of n points in the plane with
arbitrarily large n, such that G#(P) does not contain a strong matching of size more than 36

73n.
For two points p and q, the disk which has the line segment pq as its diameter is called the

diametral-disk between p and q. We denote a diametral-disk by 	. Let G	(P) be the graph which
has an edge between two points p,q ∈ P if the diametral-disk between p and q does not contain
any point of P \ {p,q}. G	(P) is equal to the Gabriel graph on P, GG(P). Biniaz et al. [8] proved
that G	(P) has a matching of size at least d(n− 1)/4e, and this bound is tight.

The problem of matching of points with equilateral triangles has been considered by Babu et
al. [3]. Let S be a downward equilateral triangle 5 whose barycenter is the origin and one of
its vertices is on the negative y-axis. Let P be a set of n points in the plane which is in general
position with respect to 5. Let G5(P) be the graph which has an edge between two points
p,q ∈ P if there exists a homothet of 5 having p and q on its boundary and does not contain
any point of P \ {p,q}. G5(P) is equal to the triangular-distance Delaunay graph on P, which was
introduced by Chew [11]. Bonichon et al. [9] showed that G5(P) is equal to the half-theta six
graph on P, 12Θ6(P). Babu et al. [3] proved that G5(P) has a matching of size at least d(n− 1)/3e,
and this bound is tight. If we consider an upward triangle 4, then G4(P) is defined similarly.
Let G54(P) be the graph on P which is the union of G5(P) and G4(P). Bonichon et al. [9] showed
that G54(P) is equal to the theta six graph on P, Θ6(P). Since G5(P) is a subgraph of G54(P), the
lower bound of d(n− 1)/3e on the size of maximum matching in G5(P) holds for G54(P).

The problem of strong matching of points with axis-aligned rectangles is trivial. An obvious
algorithm is to repeatedly match the two leftmost points. The problem of matching points with
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Table 4.1: Lower bounds on the size of weak and strong matchings in GS(P).

S Weak match. Ref. Strong match. Ref.

# bn2 c [12] dn−18 e [1]

	 dn−14 e [8] dn−117 e Theorem 4.14

5 dn−13 e [3] dn−19 e Theorem 4.26

5 or 4 dn−13 e [3] dn−14 e Theorem 4.27

2 bn2 c [1, 2]
dn5 e [1, 2]

dn−14 e Theorem 4.28

axis-aligned squares was considered by Ábrego et al. [2]. Let S be an axis-aligned square 2
whose center is the origin. Let P be a set of n points in the plane which is in general position
with respect to 2. Let G2(P) be the graph which has an edge between two points p,q ∈ P if
there exists a homothet of 2 having p and q on its boundary and does not contain any point of
P \ {p,q}. G2(P) is equal to the L∞-Delaunay graph on P. Ábrego et al. [1, 2] proved that G2(P)

has a perfect (weak) matching and a strong matching of size at least dn/5e. Further, they showed
that there exists a set P of n points in the plane with arbitrarily large n, such that G2(P) does not
contain a strong matching of size more than 5

11n. Table 4.1 summarizes the results.
Bereg et al. [5] concentrated on matching points of P with axis-aligned rectangles and squares,

where P is not necessarily in general position. They proved that any set of n points in the plane
has a strong rectangle matching of size at least bn3 c, and such a matching can be computed in
O(n logn) time. As for squares, they presented a Θ(n logn) time algorithm that decides whether
a given matching has a weak square realization, and an O(n2 logn) time algorithm for the strong
square matching realization. They also proved that it is NP-hard to decide whether a given point
set has a perfect strong square-matching.

4.1.2 Our results

In this chapter we consider the problem of computing a strong matching in GS(P), where S ∈
{	,5, 2}. In Section 4.2, we provide some observations and prove necessary Lemmas. Given a
point set P in which is in general position with respect to a given shape S, in Section 4.3, we
present an algorithm which computes a strong matching in GS(P). In Section 4.4, we prove that
if S is a diametral-disk, then the algorithm of Section 4.3 computes a strong matching of size at
least d(n− 1)/17e in G	(P). In Section 4.5, we prove that if S is an equilateral triangle, then the
algorithm of Section 4.3 computes a strong matching of size at least d(n − 1)/9e in G5(P). In
Section 4.6, we compute a strong matching of size at least d(n− 1)/4e in G54(P). In Section 4.7,
we compute a strong matching of size at least d(n− 1)/4e in G2(P); this improves the previous
lower bound of dn/5e. A summary of the results is given in Table 4.1. In Section 4.8 we discuss
a possible way to further improve upon the result obtained for diametral-disks in Section 4.4.
Concluding remarks and open problems are given in Section 4.9.
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4.2 preliminaries

Let S ∈ {	,5, 2}, and let S1 and S2 be two homothets of S. We say that S1 is smaller then S2 if
the area of S1 is smaller than the area of S2. For two points p,q ∈ P, let S(p,q) be a smallest
homothet of S having p and q on its boundary. If S is a diametral-disk, a downward equilateral-
triangle, or a square, then we denote S(p,q) by D(p,q), t(p,q), or Q(p,q), respectively. If S is a
diametral-disk, then D(p,q) is uniquely defined by p and q. If S is an equilateral-triangle or a
square, then S has the shrinkability property: if there exists a homothet S ′ of S that contains two
points p and q, then there exists a homothet S ′′ of S such that S ′′ ⊆ S ′, and p and q are on the
boundary of S ′′. If S is an equilateral-triangle, then we can shrink S ′′ further, such that each side
of S ′′ contains either p or q. If S is a square, then we can shrink S ′′ further, such that p and q are
on opposite sides of S ′′. Thus, we have the following observation:

observation 4 .1. For two points p,q ∈ P,

• D(p,q) is uniquely defined by p and q, and it has the line segment pq as a diameter.

• t(p,q) is uniquely defined by p and q, and it has one of p and q on a corner and the other point is
on the side opposite to that corner.

• Q(p,q) has p and q on opposite sides.

p

D(p, q)

q

r

D(p, r)

D(q, r)

p

t(p, q)q

r
t(p, r)

t(q, r) p

Q(p, q)

qr

Q(p, r)

Q(q, r)

Figure 4.2: Illustration of Observation 4.2.

Given a shape S ∈ {	,5, 2}, we define an order on the homothets of S. Let S1 and S2 be two
homothets of S. We say that S1 ≺ S2 if the area of S1 is less than the area of S2. Similarly, S1 � S2
if the area of S1 is less than or equal to the area of S2. We denote the homothet with the larger
area by max{S1,S2}. As illustrated in Figure 4.2, if S(p,q) contains a point r, then both S(p, r) and
S(q, r) have smaller area than S(p,q). Thus, we have the following observation:

observation 4 .2. If S(p,q) contains a point r, then max{S(p, r),S(q, r)} ≺ S(p,q).

definition 4 .3. Given a point set P and a shape S ∈ {	,5, 2}, we say that P is in “general position”
with respect to S if

S = 	 : no four points of P lie on the boundary of any diametral disk defined by any two points of P.

S = 5 : the line passing through any two points of P does not make angles 0◦, 60◦, or 120◦ with the
horizontal. This implies that no four points of P are on the boundary of any homothet of 5.

S = 2 : (i) no two points in P have the same x-coordinate or the same y-coordinate, and (ii) no four points
of P lie on the boundary of any homothet of 2.
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Given a point set P which is in general position with respect to a given shape S ∈ {	 ,5 , 2},
let KS(P) be the complete edge-weighted geometric graph on P. For each edge e = (p , q) in
KS(P), we define S(e) to be the shape S(p , q), i.e., a smallest homothet of S having p and q

on its boundary. We say that S(e) represents e, and vice versa. Furthermore, we assume that the
weight w(e) (resp. w(p , q)) of e is equal to the area of S(e). Thus,

w(p,q) < w(r, s) if and only if S(p,q) ≺ S(r, s).

Note that GS(P) is a subgraph of KS(P), and has an edge (p,q) iff S(p,q) does not contain any
point of P \ {p,q}.

lemma 4 .4. Let P be a set of n points in the plane which is in general position with respect to a given
shape S ∈ {	,5, 2}. Then, any minimum spanning tree of KS(P) is a subgraph of GS(P).

Proof. The proof is by contradiction. Assume there exists an edge e = (p,q) in a minimum
spanning tree T of KS(P) such that e /∈ GS(P). Since (p,q) is not an edge in GS(P), S(p,q)
contains a point r such that r ∈ P \ {p,q}. By Observation 4.2, max{S(p, r),S(q, r)} ≺ S(p,q). Thus,
w(p, r) < w(p,q) and w(q, r) < w(p,q). By replacing the edge (p,q) in T with either (p, r) or
(q, r), we obtain a spanning tree in KS(P) which is smaller than T . This contradicts the minimality
of T .

lemma 4 .5. Let G be an edge-weighted graph with edge set E and edge-weight function w : E → R+.
For any cycle C in G, if the maximum-weight edge in C is unique, then that edge is not in any minimum
spanning tree of G.

Proof. The proof is by contradiction. Let e = (u, v) be the unique maximum-weight edge in a
cycle C in G, such that e is in a minimum spanning tree T of G. Let Tu and Tv be the two trees
obtained by removing e from T . Let e ′ = (x,y) be an edge in C which connects a vertex x ∈ Tu
to a vertex y ∈ Tv. By assumption, w(e ′) < w(e). Thus, in T , by replacing e with e ′, we obtain a
tree T ′ = Tu ∪ Tv ∪ {(x,y)} in G such that w(T ′) < w(T). This contradicts the minimality of T .

Recall that t(p,q) is the smallest homothet of 5 which has p and q on its boundary. Similarly,
let t ′(p,q) denote the smallest upward equilateral-triangle 4 having p and q on its boundary.
Note that t ′(p,q) is uniquely defined by p and q, and it has one of p and q on a corner and the
other point is on the side opposite to that corner. In addition the area of t ′(p,q) is equal to the
area of t(p,q).
G5(P) is equal to the triangular-distance Delaunay graph TD-DG(P), which is in turn equal to

a half theta-six graph 1
2Θ6(P) [9]. A half theta-six graph on P, and equivalently G5(P), can be

constructed in the following way. For each point p in P, let lp be the horizontal line through p.
Define lγp as the line obtained by rotating lp by γ-degrees in counter-clockwise direction around
p. Thus, l0p = lp. Consider three lines l0p, l60p , and l120p which partition the plane into six disjoint
cones with apex p. Let C1p, . . . ,C6p be the cones in counter-clockwise order around p as shown in
Figure 4.3. C1p,C3p,C5p will be referred to as odd cones, and C2p,C4p,C6p will be referred to as even
cones. For each even cone Cip, connect p to the “nearest” point q in Cip. The distance between p
and q, is defined as the Euclidean distance between p and the orthogonal projection of q onto
the bisector of Cip. See Figure 4.3. In other words, the nearest point to P in Cip is a point q in
Cip which minimizes the area of t(p,q). The resulting graph is the half theta-six graph which is
defined by even cones [9]. Moreover, the resulting graph is G5(P) which is defined with respect
to the homothets of 5. By considering the odd cones, G4(P) is obtained. By considering the odd
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Figure 4.3: The construction of G5(P).

cones and the even cones, G54(P)—which is equal to Θ6(P)—is obtained. Note that G54(P) is the
union of G5(P) and G4(P).

Let X(p,q) be the regular hexagon centered at p which has q on its boundary, and its sides are
parallel to l0p, l60p , and l120p . Then, we have the following observation:

observation 4 .6. If X(p,q) contains a point r, then t(p, r) ≺ t(p,q).

4.3 strong matching in GS(P)

Given a point set P in the plane which is in general position with respect to a given shape
S ∈ {	 ,5 , 2}, in this section we present an algorithm which computes a strong matching in
GS(P). Recall that KS(P) is the complete edge-weighted graph on P with the weight of each
edge e is equal to the area of S(e), where S(e) is a smallest homothet of S representing e. Let T
be a minimum spanning tree of KS(P). By Lemma 4.4, T is a subgraph of GS(P). For each edge
e ∈ T we denote by T (e+) the set of all edges in T whose weight is at least w(e). Moreover, we
define the influence set of e, as the set of all edges in T (e+) whose representing shapes overlap
with S(e), i.e.,

Inf(e) = {e ′ : e ′ ∈ T (e+) , S(e ′) ∩ S(e) 6= ∅} .
Note that Inf(e) is not empty, as e ∈ Inf(e). Consequently, we define the influence number of T

to be the maximum size of a set among the influence sets of edges in T , i.e.,

Inf(T ) = max{|Inf(e) | : e ∈ T } .

Algorithm 2 receives GS(P) as input and computes a strong matching in GS(P) as follows.
The algorithm starts by computing a minimum spanning tree T of GS(P), where the weight of
each edge is equal to the area of its representing shape. Then it initializes a forest F by T , and a
matching M by an empty set. Afterwards, as long as F is not empty, the algorithm adds to M,
the smallest edge e in F, and removes the influence set of e from F. Finally, it returns M.

theorem 4 .7. Given a set P of n points in the plane and a shape S ∈ {	 ,5 , 2}, Algorithm 2 computes
a strong matching of size at least d n−1

Inf(T ) e in GS(P), where T is a minimum spanning tree of GS(P).
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Algorithm 2 Strong-matching(GS(P))

1: T ← MST(GS(P))
2: F ← T

3: M ← ∅
4: while F 6= ∅ do
5: e ← smallest edge in F
6: M ← M ∪ {e}

7: F ← F − Inf(e)

8: return M

Proof. Let M be the matching returned by Algorithm 2. First we show that M is a strong matching.
If M contains one edge, then trivially, M is a strong matching. Consider any two edges e1 and
e2 in M. Without loss of generality assume that e1 is considered before e2 in the while loop. At
the time e1 is added to M, the algorithm removes from F, the edges in Inf(e1), i.e., all the edges
whose representing shapes intersect S(e1). Since e2 remains in F after the removal of Inf(e1),
e2 /∈ Inf(e1). This implies that S(e1) ∩ S(e2) = ∅, and hence M is a strong matching.

In each iteration of the while loop we select e as the smallest edge in F, where F is a subgraph
of T . Then, all edges in F have weight at least w(e). Thus, F ⊆ T(e+); which implies that the set
of edges in F whose representing shapes intersect S(e) is a subset of Inf(e). Therefore, in each
iteration of the while loop, out of at most |Inf(e)|-many edges of T , we add one edge to M. Since
|Inf(e)| 6 Inf(T) and T has n− 1 edges, we conclude that |M| > d n−1Inf(T)e.

remark Let T be the minimum spanning tree computed by Algorithm 2. Let e = (u, v) be an
edge in T . Recall that T(e+) contains all the edges of T whose weight is at least w(e). We define
the degree of e as deg(e) = deg(u) + deg(v) − 1, where deg(u) and deg(v) are the number of
edges incident on u and v in T(e+), respectively. Note that all the edges incident on u or v in
T(e+) are in the influence set of e. Thus, |Inf(e)| > deg(e), and consequently Inf(T) > deg(e).

4.4 strong matching in G	(P)

In this section we consider the case where S is a diametral-disk 	. Recall that G	(P) is an edge-
weighted geometric graph, where the weight of an edge (p , q) is equal to the area of D(p , q).
G	(P) is equal to the Gabriel graph, GG(P). We prove that G	(P), and consequently GG(P),
has a strong diametral-disk matching of size at least d n−1

17 e.
We run Algorithm 2 on G	(P) to compute a matching M. By Theorem 4.7, M is a strong

matching of size at least d n−1
Inf(T ) e, where T is a minimum spanning tree in G	(P). By Lemma 4.4,

T is a minimum spanning tree of the complete graph K	(P). Observe that T is a Euclidean
minimum spanning tree for P as well. In order to prove the desired lower bound, we show that
Inf(T ) 6 17. Since Inf(T ) is the maximum size of a set among the influence sets of edges in T , it
suffices to show that for every edge e in T , the influence set of e contains at most 17 edges.

lemma 4 .8. Let T be a minimum spanning tree of G	(P), and let e be any edge in T . Then, |Inf(e) | 6
17.

We will prove this lemma in the rest of this section. Recall that, for each two points p , q ∈ P,
D(p , q) is the closed diametral-disk with diameter pq. Let D denote the set of diametral-disks
representing the edges in T . Since T is a subgraph of G	(P), we have the following observation:
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observation 4 .9. Each disk in D does not contain any point of P in its interior.

We have proved the following lemma in Chapter 2.

lemma 4 .10. For each pair Di and Dj of disks in D, Di (resp. Dj) does not contain the center of Dj
(resp Di).

Let e = (u, v) be an edge in T . Without loss of generality, we suppose that D(u, v) has radius
1 and centered at the origin o = (0, 0) such that u = (−1, 0) and v = (1, 0). For any point p in
the plane, let ‖p‖ denote the distance of p from o. Let D(e+) be the disks in D representing the
edges of T(e+). Recall that T(e+) contains the edges of T whose weight is at least w(e), where
w(e) is equal to the area of D(u, v). Since the area of any circle is directly related to its radius, we
have the following observation:

observation 4 .11. The disks in D(e+) have radius at least 1.

Let C(x, r) (resp. D(x, r)) be the circle (resp. closed disk) of radius r which is centered at a
point x in the plane. Let I(e+) = {D1, . . . ,Dk} be the set of disks in D(e+) \ {D(u, v)} intersecting
D(u, v). We show that I(e+) contains at most sixteen disks, i.e., k 6 16.

For i ∈ {1, . . . ,k}, let ci denote the center of the disk Di. In addition, let c ′i be the intersection
point between C(o, 2) and the ray with origin at o which passing through ci. Let the point pi be
ci, if ‖ci‖ < 2, and c ′i, otherwise. See Figure 4.4. Finally, let P ′ = {o,u, v,p1, . . . ,pk}.

observation 4 .12. Let cj be the center of a disk Dj in I(e+), where ‖cj‖ > 2. Then, the disk
D(cj, ‖cj‖−1) is contained in the diskDj. Moreover, the diskD(pj, 1) is contained in the diskD(cj, ‖cj‖−
1). See Figure 4.4.
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Dj
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ck

c′k
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α

1

Figure 4.4: Proof of Lemma 4.13; pi = c ′i, pj = c
′
j, and pk = ck.

The main idea in the proof of the following lemma is similar to the main idea in the proof of
Lemma 2.8 in Chapter 2. Since the number of points and the constants involved in the calculations
are different, for the sake of completeness we present a full proof for the following lemma.



4.4 strong matching in G	 (P) 63

lemma 4 .13. The distance between any pair of points in P ′ is at least 1.

Proof. Let x and y be two points in P ′. We are going to prove that |xy| > 1. We distinguish
between the following three cases.

• x,y ∈ {o,u, v}. In this case the claim is trivial.

• x ∈ {o,u, v},y ∈ {p1, . . . ,pk}. If ‖y‖ = 2, then y is on C(o, 2), and hence |xy| > 1. If ‖y‖ < 2,
then y is the center of a disk Di in I(e+). By Observation 4.9, Di does not contain u and v,
and by Lemma 4.10, Di does not contain o. Since Di has radius at least 1, we conclude that
|xy| > 1.

• x,y ∈ {p1, . . . ,pk}. Without loss of generality assume x = pi and y = pj, where 1 6 i < j 6 k.
We differentiate between three cases:

– ‖pi‖ < 2 and ‖pj‖ < 2. In this case pi and pj are the centers of Di and Dj, respectively.
By Lemma 4.10 and Observation 4.11, we conclude that |pipj| > 1.

– ‖pi‖ < 2 and ‖pj‖ = 2. By Observation 4.12 the disk D(pj, 1) is contained in the disk
Dj. By Lemma 4.10, pi is not in the interior of Dj, and consequently, it is not in the
interior of D(pj, 1). Therefore, |pipj| > 1.

– ‖pi‖ = 2 and ‖pj‖ = 2. Recall that ci and cj are the centers of Di and Dj, such
that ‖ci‖ > 2 and ‖cj‖ > 2. Without loss of generality assume ‖ci‖ 6 ‖cj‖. For the
sake of contradiction assume that |pipj| < 1. Then, for the angle α = ∠ciocj we have
sin(α/2) < 1

4 . Then, cos(α) > 1− 2 sin2(α/2) = 7
8 . By the law of cosines in the triangle

4ciocj, we have

|cicj|
2 < ‖ci‖2 + ‖cj‖2 −

14

8
‖ci‖‖cj‖. (4.1)

By Observation 4.12 the disk D(cj, ‖cj‖ − 1) is contained in Dj; see Figure 4.4. By
Lemma 4.10, ci is not in the interior of Dj, and consequently, is not in the interior of
D(cj, ‖cj‖− 1). Thus, |cicj| > ‖cj‖− 1. In combination with Inequality (4.1), this gives

‖cj‖
(
14

8
‖ci‖− 2

)
< ‖ci‖2 − 1. (4.2)

In combination with the assumption that ‖ci‖ 6 ‖cj‖, Inequality (4.2) gives

6

8
‖ci‖2 − 2‖ci‖+ 1 < 0.

To satisfy this inequality, we should have ‖ci‖ < 2, contradicting the fact that ‖ci‖ > 2.
This completes the proof.

By Lemma 4.13, the points in P ′ has mutual distance 1. Moreover, the points in P ′ lie in
(including the boundary) C(o, 2). Bateman and Erdős [4] proved that it is impossible to have 20

points in (including the boundary) a circle of radius 2 such that one of the points is at the center
and all of the mutual distances are at least 1. Therefore, P ′ contains at most 19 points, including o,
u, and v. This implies that k 6 16, and hence I(e+) contains at most sixteen edges. This completes
the proof of Lemma 4.8.

theorem 4 .14. Algorithm 2 computes a strong matching of size at least dn−117 e in G	(P).
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4.5 strong matching in G5(P)

In this section we consider the case where S is a downward equilateral triangle 5, whose barycen-
ter is the origin and one of its vertices is on the negative y-axis. In this section we assume that
P is in general position, i.e., for each point p ∈ P, there is no point of P \ {p} on l0p, l60p , and
l120p . In combination with Observation 4.1, this implies that for two points p , q ∈ P, no point
of P \ {p , q} are on the boundary of t(p , q) (resp. t ′(p , q)). Recall that t(p , q) is the smallest
homothet of 5 having of p and q on a corner and the other point on the side opposite to that
corner. We prove that G5(P), and consequently 1

2Θ6(P), has a strong triangle matching of size
at least d n−1

9 e.
We run Algorithm 2 on G5(P) to compute a matching M. Recall that G5(P) is an edge-

weighted graph with the weight of each edge (p,q) is equal to the area of t(p,q). By Theorem 4.7,
M is a strong matching of size at least d n−1Inf(T)e, where T is a minimum spanning tree in G5(P). In
order to prove the desired lower bound, we show that Inf(T) 6 9. Since Inf(T) is the maximum
size of a set among the influence sets of edges in T , it suffices to show that for every edge e in T ,
the influence set of e has at most nine edges.

lemma 4 .15. Let T be a minimum spanning tree ofG5(P), and let e be any edge in T . Then, |Inf(e)| 6 9.

t

s1

s3s2

v1v2

v3

t′
s1

s3

s2

v1

v2

v3

t2

t1(s3)

t2(v2)t1

(a) (b) (c)

Figure 4.5: (a) Labeling the vertices and the sides of a downward triangle. (b) Labeling the vertices and
the sides of an upward triangle. (c) Two intersecting triangles.

We will prove this lemma in the rest of this section. We label the vertices and the sides of
a downward equilateral-triangle, t, and an upward equilateral-triangle, t ′, as depicted in Fig-
ures 4.5(a) and 4.5(b). We refer to a vertex vi and a side si of a triangle t by t(vi) and t(si),
respectively.

Recall that F is a subgraph of the minimum spanning tree T in G5(P). In each iteration of
the while loop in Algorithm 2, let T denote the set of triangles representing the edges in F. By
Lemma 4.4 and the general position assumption we have

observation 4 .16. Each triangle t(p,q) in T does not contain any point of P \ {p,q} in its interior or
on its boundary.

Consider two intersecting triangles t1(p1,q1) and t2(p2,q2) in T. By Observation 4.1, each side
of t1 contains either p1 or q1, and each side of t2 contains either p2 or q2. Thus, by Observa-
tion 4.16, we argue that no side of t1 is completely in the interior of t2, and vice versa. Therefore,
either exactly one vertex (corner) of t1 is in the interior of t2, or exactly one vertex of t2 is in
the interior of t1. Without loss of generality assume that a corner of t2 is in the interior of t1,
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as shown in Figure 4.5(c). In this case we say that t1 intersects t2 through the vertex t2(v2), or
symmetrically, t2 intersects t1 through the side t1(s3).

The following two lemmas have been proved by Biniaz et al. [7]:

lemma 4 .17 (Biniaz et al. [7]). Let t1 be a downward triangle which intersects a downward triangle
t2 through t2(s1), and let a horizontal line ` intersects both t1 and t2. Let p1 and q1 be two points on
t1(s2) and t1(s3), respectively, which are above t2(s1). Let p2 and q2 be two points on t2(s2) and t2(s3),
respectively, which are above `. Then, max{t(p1,p2), t(q1,q2)} ≺ max{t1, t2}. See Figure 4.6(b).

lemma 4 .18 (Biniaz et al. [7]). For every four triangles t1, t2, t3, t4 ∈ T, t1 ∩ t2 ∩ t3 ∩ t4 = ∅.

As a consequence of Lemma 4.17, we have the following corollary:

corollary 4 .19. Let t1, t2, t3 be three triangles in T. Then t1, t2, and t3 cannot make a chain
configuration, such that t2 intersects t3 through t3(s1) and t1 intersects both t2 and t3 through t2(s1)
and t3(s1). See Figure 4.6(b).

t1 t2

t′
p

qt1(s
′
3)

t1(s
′
2) `

t1

t2

p1

p2

q1

q2

t3

(a) (b)

Figure 4.6: (a) Illustration of Lemma 4.20. (b) Illustration of Lemma 4.17.

lemma 4 .20. Let t1 be a downward triangle which intersects a downward triangle t2 through t2(v2).
Let p be a point on t1(s3) and to the left of t2(s2), and let q be a point on t2(s2) and to the right of t1(s3).
Then, t(p,q) ≺ max{t1, t2}.

Proof. Refer to Figure 4.6(a). Let t1(s ′3) be the part of the line segment t1(s3) which is to the left
of t2(s2), and let t2(s ′2) be the part of the line segment t2(s2) which is to the right of t1(s3).
Without loss of generality assume that t1(s ′3) is larger than t2(s ′2). Let t ′ be an upward triangle
having t1(s ′3) as its left side. Then, t ′ ≺ t1, which implies that t ′ ≺ max{t1, t2}. Since t ′ has both
p and q on its boundary, the area of the downward triangle t(p,q) is smaller than the area of t ′.
Therefore, t(p,q) � t ′; which completes the proof.

Because of the symmetry, the statement of Lemma 4.20 holds even if p is above t2(s1) and q is
on t2(s1). Consider the six cones with apex at p, as shown in Figure 4.3.

lemma 4 .21. Let T be a minimum spanning tree in G5(P). Then, in T , every point p is adjacent to at
most one point in each cone Cip, where 1 6 i 6 6.
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Proof. If i is even, then by the construction of G5(P), which is given in Section 4.2, p is adjacent
to at most one point in Cip. Assume i is odd. For the sake of contradiction, assume in T , the point
p is adjacent to two points q and r in a cone Cip. Then, t(p,q) has q on a corner, and t(p, r) has
r on a corner. Without loss of generality assume t(p, r) ≺ t(q, r). Then, the hexagon X(q,p) has r
in its interior. Thus, t(q, r) ≺ t(p,q). Then the cycle r,p,q, r contradicts Lemma 4.5. Therefore, p
is adjacent to at most one point in each of the six cones.

In Algorithm 2, in each iteration of the while loop, let T(e+) be the triangles representing
the edges of F. Recall that e is the smallest edge in F, and hence, t(e) is a smallest triangle
in T(e+). Let e = (p,q) and let I(e+) be the set of triangles in T(e+) (excluding t(e)) which
intersect t(e). We show that I(e+) contains at most eight triangles. We partition the triangles
in I(e+) into {I1, I2}, such that every triangle τ ∈ I1 shares only p or q with t = t(e), i.e.,
I1 = {τ : τ ∈ I(e+), τ ∩ t ∈ {p,q}}, and every triangle τ ∈ I2 intersects t either through a side or
through corner which is not p nor q.

p

C1
p

C2
p

C4
q

C6
p

t(p, q)
t(s′′2 )

t(s′2)

q

t(s1)

t(s3)

Figure 4.7: Illustration of the triangles in I1.

By Observation 4.1, for each triangle t(p,q), one of p and q is on a corner of t(p,q) and the
other one is on the side opposite to that corner. Without loss of generality assume that p is on the
corner t(v1), and hence, q is on the side t(s2). See Figure 4.7. Note that the other cases, where
p is on t(v2) or on t(v3) are similar. Since the intersection of t with any triangle τ ∈ I1 is either
p or q, τ has either p or q on its boundary. In combination with Observation 4.16, this implies
that τ represent an edge e ′ in T , and hence, either p or q is an endpoint of e ′. As illustrated
in Figure 4.7, the other endpoint of e ′ can be either in C1p, C2p, C6p, or in C4q, because otherwise
τ ∩ t /∈ {p,q}. By Lemma 4.21, p has at most one neighbor in each of C1p, C2p, C6p, and q has at
most one neighbor in C4q. Therefore, I1 contains at most four triangles. We are going to show
that I2 also contains at most four triangles.

The point q divides t(s2) into two parts. Let t(s ′2) and t(s ′′2 ) be the parts of t(s2) which are
below and above q, respectively; see Figure 4.7. The triangles in I2 intersect t either through
t(s1) ∪ t(s ′′2 ) or through t(s3) ∪ t(s ′2); which are shown by red and blue polylines in Figure 4.7.
We show that most two triangles in I2 intersect t through each of t(s1) ∪ t(s ′′2 ) or t(s3) ∪ t(s ′2).
Because of symmetry, we only prove for t(s3)∪ t(s ′2). When a triangle t ′ intersects t through both
t(s3) and t(s ′2) we say t ′ intersects t through t(v3). In the next lemma, we prove that at most
one triangle in I2 intersects t through each of t(s3), t(s ′2). Again, because of symmetry, we only
prove for t(s3).
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Figure 4.8: Illustration of Lemma 4.22: (a) t1(v2) ∈ t2. (b) t1(v2) /∈ t2 and t2(v2) /∈ t1.

lemma 4 .22. At most one triangle in I2 intersects t through t(s3).

Proof. The proof is by contradiction. Assume two triangles t1(p1,q1) and t2(p2,q2) in I2 intersect
t through t(s3). Without loss of generality assume that pi is on ti(s1) and qi is on ti(s2) for
i = 1, 2. Recall that the area of t1 and the area of t2 are at least the area of t. If t1(v2) is in
the interior of t2 (as shown in Figure 4.8(a)) or t2(v2) is in the interior of t1, then we get a
contradiction to Corollary 4.19. Thus, assume that t1(v2) /∈ t2 and t2(v2) /∈ t1.

Without loss of generality assume that t1(s1) is above t2(s1); see Figure 4.8(b). By Lemma 4.20,
we have t(p,p1) ≺ max{t, t1} � t1. If q1 is in X(p,q), then by Observation 4.6, t(p,q1) ≺ t. Then,
the cycle p,p1,q1,p contradicts Lemma 4.5. Thus, assume that q1 /∈ X(p,q,). In this case t2(s3) is
to the left of t1(s3), because otherwise q1 lies in t2 which contradicts Observation 4.16. Since both
t1 and t2 are larger than t, t2 intersects t1 through t1(s2), and hence t2(v1) is in the interior of t1.
This implies that q2 is on t2(v3). In addition, p2 is on the part of t2(s1) which lies in the interior
of X(p,q). By Observation 4.6 and Lemma 4.20, we have t(p,p2) ≺ t and t(q1,q2) ≺ max{t1, t2},
respectively. Thus, the cycle p,p1,q1,q2,p2,p contradicts Lemma 4.5.

lemma 4 .23. At most two triangles in I2 intersect t through t(v3).

Proof. For the sake of contradiction assume three triangles t1, t2, t3 ∈ I2 intersect t through t(v3).
This implies that t(v3) belongs to four triangles t, t1, t2, t3, which contradicts Lemma 4.18.

lemma 4 .24. If two triangles in I2 intersect t through t(v3), then no other triangle in I2 intersects t
through t(s3) or through t(s ′2).

Proof. The proof is by contradiction. Assume two triangles t1(p1,q1) and t2(p2,q2) in I2 intersect
t through t(v3), and a triangle t3(p3,q3) in I2 intersects t through t(s3) or t(s ′2). Let pi be the
point which lies on ti(s1) for i = 1, 2, 3. By Lemma 4.23, t3 cannot intersect both t(s3) and
t(s ′2). Thus, t3 intersects t either through t(s3) or through t(s ′2). We prove the former case; the
proof for the latter case is similar. Assume that t3 intersects t through t(s3). By Lemma 4.20,
t(p,p3) ≺ t3. See Figure 4.9. In addition, both t1(s3) and t2(s3) are to the left of t3(s3), because
otherwise q3 lies in t1 ∪ t2 ∪ X(p,q). If q3 ∈ t1 ∪ t2 we get a contradiction to Observation 4.16.
If q3 ∈ X(p,q) then by Observation 4.6, we have t(p,q3) ≺ t, and hence, the cycle p,p3,q3,p
contradicts Lemma 4.5.
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Figure 4.9: Illustration of Lemma 4.24: (a) p2 is to the right of t1(s3), (b) q1 ∈ C5t(v3), (c) q1 ∈ C6t(v3), and

(d) q1 ∈ C1t(v3).

Without loss of generality assume that t1(s1) is above t2(s1); see Figure 4.9. If t1(v3) is in t2 or
t2(v3) is in t1, then we get a contradiction to Corollary 4.19. Thus, assume that t1(v3) /∈ t2 and
t2(v3) /∈ t1. This implies that either (i) t2(s3) is to the right of t1(s3) or (ii) t2(s2) is to the left of
t1(s2). We show that both cases lead to a contradiction.

In case (i), p2 lies in the interior of X(p,q,), and then by Observation 4.6, we have t(p,p2) ≺ t;
see Figure 4.9(a). In addition, Lemma 4.20 implies that t(p2,q3) ≺ max{t, t3} � t3. Thus, the cycle
p,p3,q3,p2,p contradicts Lemma 4.5.

Now consider case (ii) where t1(s1) is above t2(s1) and t2(s2) is to the left of t1(s2). If p1 is to
the right of t, then as in case (i), the cycle p,p3,q3,p1,p contradicts Lemma 4.5. Thus, assume that
p1 is to the left of t, as shown in Figure 4.9(b). By Lemma 4.20, we have t(q,p1) ≺ max{t, t1} � t1.
Each side of t1 contains either p1 or q1, while p1 is on the part of t1(s1) which is to the left of t,
thus, q1 is on t1(s3). Consider the six cones around t(v3); see Figure 4.9(b). We have three cases:
(a) q1 ∈ C5t(v3), (b) q1 ∈ C6t(v3) or (c) q1 ∈ C1t(v3).

In case (a), which is shown in Figure 4.9(b), by Lemma 4.17, we have max{t(p1,p2), t(q1,q2)} ≺
max{t1, t2}. Thus, the cycle p1,p2,q2,q1,p1 contradicts Lemma 4.5. In Case (b), which is shown
in Figure 4.9(c), we have t(q1,q3) ≺ t3, because if we map t3 to a downward triangle τ—of area
equal to the area of t3—which has τ(v2) on t(v3), then τ contains both q1 and q3. Therefore, the
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cycle p,p3,q3,q1,p1,q,p contradicts Lemma 4.5. In Case (c), which is shown in Figure 4.9(d), by
Observation 4.6, t(p,q1) ≺ t, and then, the cycle p,q1,p1,q,p contradicts Lemma 4.5.
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Figure 4.10: Illustration of Lemma 4.25: (a) p2 ∈ t2(s ′1), and (b) p2 ∈ t2(s ′′1 ).

lemma 4 .25. If three triangles intersect t through t(s ′2), t(v3) and t(s3). Then, at least one of the three
triangles is not in I2.

Proof. The proof is by contradiction. Assume that three triangles t1(p1,q1), t2(p2,q2), t3(p3,q3)
in I2 intersect t through t(s ′2), t(v3), t(s3), respectively. Let pi be the point which lies on ti(s1)
for i = 1, 2, 3. See Figure 4.10(a). By Lemma 4.20, we have t(p,p3) ≺ t3 and t(q,p1) ≺ t1. If q3
is in the interior of X(p,q), then by Observation 4.6, t(p,q3) ≺ t, and hence, the cycle p,p3,q3,p
contradicts Lemma 4.5. If q1 is in X(q,p), then by Observation 4.6, t(q,q1) ≺ t, and hence,
the cycle q,q1,p1,q contradicts Lemma 4.5; see Figure 4.10(b). Thus, assume that q3 /∈ X(p,q)
and q1 /∈ X(q,p). Let t2(s ′1) and t2(s

′′
1 ) be the parts of t2(s1) which are to the right of t(s3)

and to the left of t(s2), respectively. Consider the point p2 which lies on t2(s1). If p2 ∈ t2(s ′1),
then p2 ∈ X(p,q) and by Observation 4.6, t(p,p2) ≺ t. In addition, Lemma 4.20 implies that
t(p2,q3) ≺ t3. Thus, the cycle p,p3,q3,p2,p contradicts Lemma 4.5; see Figure 4.10(a). If p2 ∈
t2(s

′′
1 ), then p2 ∈ X(q,p) and by Observation 4.6, t(q,p2) ≺ t. In addition, Lemma 4.20 implies

that t(p2,q1) ≺ t2. Thus, the cycle q,p2,q1,p1,q contradicts Lemma 4.5; see Figure 4.10(b).

Putting Lemmas 4.22, 4.23, 4.24, and 4.25 together, implies that at most two triangles in I2
intersect t through t(s3)∪ t(s ′2), and consequently, at most two triangles in I2 intersect t through
t(s1)∪ t(s ′′2 ). Thus, I2 contains at most four triangles. Recall that I1 contains at most four triangles.
Then, I(e+) has at most eight triangles. Therefore, the influence set of e, contains at most 9 edges
(including e itself). This completes the proof of Lemma 4.15.

theorem 4 .26. Algorithm 2 computes a strong matching of size at least dn−19 e in G5(P).

The bound obtained by Lemma 4.15 is tight. Figure 4.11 shows a configuration of 10 points
in general position such that the influence set of a minimal edge is 9. In Figure 4.11, t = t(p,q)
represents a smallest edge of weight 1; the minimum spanning tree is shown in bold-green line
segments. The weight of all edges—the area of the triangles representing these edges—is at least
1. The red triangles are in I1 and share either p or q with t. The blue triangles are in I2 and
intersect t through t(s1) ∪ t(s ′′2 ) or through t(s3) ∪ t(s ′2); as show in Figure 4.11, two of them
share only the points t(v2) and t(v3).
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Figure 4.11: Four triangles in I1 (in red) and four triangles in I2 (in blue) intersect with t(p,q).

4.6 strong matching in g54(p)

In this section we consider the problem of computing a strong matching in G54(P). Recall that
G54(P) is the union of G5(P) and G4(P), and is equal to the graph Θ6(P). We assume that
P is in general position, i.e., for each point p ∈ P, there is no point of P \ {p} on l0p, l60p , and
l120p . A matching M in G54(P) is a strong matching if for each edge e in M there is a homothet
of 5 or a homothet of 4 representing e, such that these homothets are pairwise disjoint. See
Figure 4.1(b). Using a similar approach as in [2], we prove the following theorem:

theorem 4 .27. Let P be a set of n points in general position in the plane. Let S be an upward or a
downward equilateral-triangle that contains P. Then, it is possible to find a strong matching of size at least
dn−14 e for G54(P) in S.

Proof. The proof is by induction. Assume that any point set of size n ′ 6 n− 1 in a triangle S ′,
has a strong matching of size dn ′−14 e in S ′. Without loss of generality, assume S is an upward
equilateral-triangle. If n is 0 or 1, then there is no matching in S, and if n ∈ {2, 3, 4, 5}, then by
shrinking S, it is possible to find a strongly matched pair; the statement of the theorem holds.
Suppose that n > 6, and n = 4m+ r, where r ∈ {0, 1, 2, 3}. If r ∈ {0, 1, 3}, then dn−14 e = d

(n−1)−1
4 e,

and by induction we are done. Suppose that n = 4m+ 2, for some m > 1. We prove that there are
dn−14 e = m+ 1 disjoint equilateral-triangles (upward or downward) in S, each of them matches
a pair of points in P. Partition S into four equal area equilateral triangles S1,S2,S3,S4 containing
n1,n2,n3,n4 points, respectively; see Figure 4.12(a). Let ni = 4mi + ri, where ri ∈ {0, 1, 2, 3}. By
induction, in S1 ∪ S2 ∪ S3 ∪ S4, we have a strong matching of size at least

A =

⌈
n1 − 1

4

⌉
+

⌈
n2 − 1

4

⌉
+

⌈
n3 − 1

4

⌉
+

⌈
n4 − 1

4

⌉
. (4.3)

claim 1 . A > m.

Proof. By Equation (4.3), we have

A =

4∑
i=1

⌈
ni − 1

4

⌉
>

4∑
i=1

ni − 1

4
=
n

4
− 1 =

4m+ 2

4
− 1 = m−

1

2
.
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Since A is an integer, we argue that A > m.

If A > m, then we are done. Assume that A = m; in fact, by the induction hypothesis we have
an strong matching of size m for P. In order to complete the proof, we have to get one more
strongly matched pair. Let R be the multiset {r1, r2, r3, r4}.

claim 2 . If A = m, then either (i) one element in R is equal to 3 and the other elements are equal to
1, or (ii) two elements in R are equal to 0 and the other elements are equal to 1.

Proof. Let α = r1 + r2 + r3 + r4, where 0 6 ri 6 3. Then n = 4(m1 +m2 +m3 +m4) + α. Since
n = 4m+ 2, α = 4k+ 2, for some 0 6 k 6 2. Thus, n = 4(m1 +m2 +m3 +m4 + k) + 2, where
m = m1 +m2 +m3 +m4 + k.

By induction, in Si, we get a matching of size at least d (4mi+ri)−1
4 e = mi + dri−14 e. Hence, in

S1 ∪ S2 ∪ S3 ∪ S4, we get a matching of size at least

A = m1 +m2 +m3 +m4 +

⌈
r1 − 1

4

⌉
+

⌈
r2 − 1

4

⌉
+

⌈
r3 − 1

4

⌉
+

⌈
r4 − 1

4

⌉
.

Since A = m and m = m1 +m2 +m3 +m4 + k, we have

k =

⌈
r1 − 1

4

⌉
+

⌈
r2 − 1

4

⌉
+

⌈
r3 − 1

4

⌉
+

⌈
r4 − 1

4

⌉
. (4.4)

Note that 0 6 k 6 2. We go through some case analysis: (i) k = 0, (ii) k = 1, (iii) k = 2. In case
(i), we have α = 4k+ 2 = r1 + r2 + r3 + r4 = 2. In order to have k equal to 0 in Equation (4.4), no
element in R should be more than 1; this happens only if two elements in R are equal to 0 and
the other two elements are equal to 1. In case (ii), we have α = r1 + r2 + r3 + r4 = 6. In order
to have k equal to 1 in Equation (4.4), at most one element in R should be greater than 1; this
happens only if three elements in R are equal to 1 and the other element is equal to 3 (note that
all elements in R are smaller than 4). In case (iii), we have α = r1 + r2 + r3 + r4 = 10. In order to
have k equal to 2 in Equation (4.4), at most two elements in R should be greater than 1; which is
not possible.

We show how to find one more matched pair in each case of Claim 2.
We define S-x

1
as the smallest upward equilateral-triangle contained in S1 and anchored at the

top corner of S1, which contains all the points in S1 except x points. If S1 contains less than x
points, then the area of S-x

1
is zero. We also define S+x

1
as the smallest upward equilateral-triangle

that contains S1 and anchored at the top corner of S1, which has all the points in S1 plus x other
points of P. Similarly we define upward triangles S-x

2
and S+x

2
which are anchored at the left corner

of S2. Moreover, we define upward triangles S-x
4

and S+x
4

which are anchored at the right corner of
S4. We define downward triangles S-x

3l , S-x
3r , S-x

3b which are anchored at the top-left corner, top-right
corner, and bottom corner of S3, respectively. See Figure 4.12(a).

Case 1: One element in R is equal to 3 and the other elements are equal to 1.
In this case, we have m = m1 +m2 +m3 +m4 + 1. Because of the symmetry, we have two

cases: (i) r3 = 3, (ii) rj = 3 for some j ∈ {1, 2, 4}.

• r3 = 3.

In this case n3 = 4m3 + 3. We differentiate between two cases, where all the elements of
the multiset {m1,m2,m4} are equal to zero, or some of them are greater than zero.
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S1

S2 S4S+1
2

S-1
3r

l1

l2
S ′2

S-3
2

(a) (b)

Figure 4.12: (a) Split S into four equal area triangles. (b) S-3

2
is larger than S-3

1
and S-3

4
.

– All elements of {m1,m2,m4} are equal zero. In this case, we have m = m3 + 1. Consider
the triangles S+1

2
and S-1

3r. See Figure 4.12(a). Note that S+1

2
and S-1

3r are disjoint, S+1

2
con-

tains two points, and S-1

3r contains 4m3 + 2 points. By induction, we get a matched pair
in S+1

2
and a matching of size at least m3 + 1 in S-1

3r. Thus, in total, we get a matching of
size at least 1+ (m3 + 1) = m+ 1 in S.

– Some elements of {m1,m2,m4} are greater than zero. Consider the triangles S-3

1
, S-3

2
, and

S-3

4
. Note that the area of some of these triangles—but not all—may be equal to zero.

See Figure 4.12(b). By induction, we get matchings of size m1, m2, and m4 in S-3

1
, S-3

2
,

and S-3

4
, respectively. Without loss of generality, assume S-3

2
, is larger than S-3

1
and S-3

4
.

Consider the half-lines l1 and l2 which are parallel to l0 and l60 axis, and have their
endpoints on the top corner and right corner of S-3

2
, respectively. We define S ′2 as the

downward equilateral-triangle which is bounded by l1, l2, and the right side of S-3

2
;

the dashed triangle in Figure 4.12(b). Note that l1 and l2 do not intersect S-3

1
and S-3

4
.

In addition, S-3

1
, S-3

2
, S-3

4
, and S ′2 are pairwise disjoint. If any point of S1 ∪ S2 ∪ S3 is

to the right of l2, then consider S+1

4
and S-1

3l . By induction, we get a matching of size
m1+m2+(m3+ 1)+ (m4+ 1) in S-3

1
∪S-3

2
∪S-1

3l ∪S+1

4
, and hence a matching of sizem+ 1

in S. If any point of S2 ∪ S3 ∪ S4 is above l1, then consider S+1

1
and S-1

3b. By induction,
we get a matching of size (m1 + 1) +m2 + (m3 + 1) +m4 in S+1

1
∪ S-3

2
∪ S-1

3b ∪ S-3

4
, and

hence a matching of size m+ 1 in S. Otherwise, S ′2 contains n3 + 3 = 4(m3 + 1) + 2

points. Thus, by induction, we get a matching of size m1 +m2 + (m3 + 2) +m4 in
S1 ∪ S-3

2
∪ S ′2 ∪ S4, and hence a matching of size m+ 1 in S.

• rj = 3, for some j ∈ {1, 2, 4}.

Without loss of generality, assume that rj = r2. Then, n2 = 4m2 + 3. Consider the triangles
S-3

1
, S-1

2
, and S-3

4
. See Figure 4.13(a). By induction, we get matchings of size m1, m2 + 1, and

m4 in S-3

1
, S-1

2
, and S-3

4
, respectively. Now we consider the largest triangle among S-3

1
, S-1

2
, and

S-3

4
. Because of the symmetry, we have two cases: (i) S-1

2
is the largest, or (ii) S-3

4
is the largest.

– S-1
2 is larger than S-3

1 and S-3
4 . Define the half-lines l1, l2, and the triangle S ′2 as in the

previous case. See Figure 4.13(a). If any point of S1 ∪ S2 ∪ S3 is to the right of l2, then
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l1

l2

l1

l2

S ′4

(a) (b)

Figure 4.13: (a) S-1

2
is larger than S-3

1
and S-3

4
. (b) S-3

4
is larger than S-3

1
and S-1

2
.

consider S+1

4
and S-1

3l . By induction, we get a matching of size m1 + (m2 + 1) +m3 +

(m4 + 1) in S-3

1
∪ S-1

2
∪ S-1

3l ∪ S+1

4
. If any point of S2 ∪ S3 ∪ S4 is above l1, then consider

S+1

1
and S-1

3b. By induction, we get a matching of size (m1 + 1) + (m2 + 1) +m3 +m4 in
S+1

1
∪ S-1

2
∪ S-1

3b ∪ S-3

4
. Otherwise, S ′2 contains n3+ 1 = 4m3+ 2 points. Thus, by induction,

we get a matching of size m1 + (m2 + 1) + (m3 + 1) +m4 in S1 ∪ S-1

2
∪ S ′2 ∪ S4. As a

result, in all cases we get a matching of size m+ 1 in S.

– S-3
4 is larger than S-3

1 and S-1
2 . Define the half-lines l1, l2, and the triangle S ′4 as in Fig-

ure 4.13(b). If any point of S1 ∪ S3 ∪ S4 is above l1, then by induction, we get a match-
ing of size (m1 + 1) + (m2 + 1) +m3 +m4 in S+1

1
∪ S-1

2
∪ S-1

3b ∪ S+3

4
. If at least three points

of S1 ∪ S3 ∪ S4 are to the left of l2, then consider S+3

2
and S-3

3r. Note that S+3

2
contains

n2 + 3 = 4(m2 + 1) + 2 points. By induction, we get a matching of size m1 + (m2 +

2) +m3 +m4 in S-3

1
∪ S+3

2
∪ S-3

3r ∪ S-3

4
. Otherwise, S ′4 contains at least n3 + 1 = 4m3 + 2

points. Thus, by induction, we get a matching of size m1 + (m2 + 1) + (m3 + 1) +m4
in S1 ∪ S2 ∪ S ′4 ∪ S-3

4
. As a result, in all cases we get a matching of size m+ 1 in S.

Case 2: Two elements in R are equal to 0 and the other elements are equal to 1.
In this case, we have m = m1 +m2 +m3 +m4. Again, because of the symmetry, we have two

cases: (i) r3 = 0, (ii) r3 6= 0.

• r3 = 0.

Without loss of generality assume that r2 = 0 and r1 = r4 = 1. Thus, n1 = 4m1 + 1,
n2 = 4m2, n3 = 4m3, and n4 = 4m4 + 1. If all elements of {m1,m2,m4} are equal to
zero, then we have m = m3, where m3 > 1. Consider the triangles S+1

4
and S-1

3l , which are
disjoint. By induction, we get a matched pair in S+1

4
and a matching of size at least m3 in

S-1

3l . Thus, in total, we get a matching of size at least 1+m3 = m+ 1 in S. Assume some
elements in {m1,m2,m4} are greater than zero. Consider the triangles S-3

1
, S-2

2
, and S-3

4
. See

Figure 4.14(a). By induction, we get a matching of size m1, m2, and m4 in S-3

1
, S-2

2
, and S-3

4
,

respectively. Now we consider the largest triangle among S-3

1
, S-2

2
, and S-3

4
. Because of the

symmetry, we have two cases: (i) S-2

2
is the largest, or (ii) S-3

4
is the largest.

– S-2
2 is larger than S-3

1 and S-3
4 . Define l1, l2, S ′2 as in Figure 4.14(a). If any point of S1 ∪S2 ∪

S3 is to the right of l2, then by induction, we get a matching of size m1 +m2 +m3 +
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l1

l2

l1

l2

(a) (b)

Figure 4.14: (a) S-2

2
is larger than S-3

1
and S-3

4
. (b) S-3

4
is larger than S-3

1
and S-2

2
.

(m4+ 1) in S-3

1
∪S-2

2
∪S-1

3l ∪S+1

4
. If any point of S2 ∪S3 ∪S4 is above l1, then by induction,

we get a matching of size (m1 + 1) +m2 +m3 +m4 in S+1

1
∪ S-2

2
∪ S-1

3b ∪ S-3

4
. Otherwise,

S ′2 contains n3 + 2 = 4m3 + 2 points. Thus, by induction, we get a matching of size
m1 +m2 + (m3 + 1) +m4 in S1 ∪ S-2

2
∪ S ′2 ∪ S4. In all cases we get a matching of size

m+ 1 in S.

– S-3
4 is larger than S-3

1 and S-2
2 . Define l1, l2, S ′4 as in Figure 4.14(b). If any point of S1 ∪S3 ∪

S4 is above l1, then by induction, we get a matching of size (m1 + 1) +m2 +m3 +m4
in S+1

1
∪ S-2

2
∪ S-1

3b ∪ S+3

4
. If at least two points of S1 ∪ S3 ∪ S4 are to the left of l2, then by

induction, we get a matching of size m1 + (m2 + 1) +m3 +m4 in S-3

1
∪ S+2

2
∪ S-2

3r ∪ S-3

4
.

Otherwise, S ′4 contains at least n3 + 2 = 4m3 + 2 points. Thus, by induction, we get a
matching of size m1 +m2 + (m3 + 1) +m4 in S1 ∪ S2 ∪ S ′4 ∪ S-3

4
. In all cases we get a

matching of size m+ 1 in S.

• r3 6= 0.
In this case r3 = 1, and without loss of generality, assume that r2 = 1; which means
r1 = r4 = 0. Thus, n1 = 4m1, n2 = 4m2+ 1, n3 = 4m3+ 1, and n4 = 4m4. If all elements of
{m1,m2,m4} are equal to zero, then we havem = m3, wherem3 > 1. Consider the triangles
S+1

2
and S-1

3r, which are disjoint. By induction, we get a matched pair in S+1

2
and a matching

of size at least m3 in S-1

3r. Thus, in total, we get a matching of size at least 1+m3 = m+ 1

in S. Assume some elements in {m1,m2,m4} are greater than zero. Consider the triangles
S-2

1
, S-3

2
, and S-2

4
. See Figure 4.15(a). By induction, we get matchings of size m1, m2, and m4

in S-2

1
, S-3

2
, and S-2

4
, respectively. Now we consider the largest triangle among S-2

1
, S-3

2
, and S-2

4
.

Because of symmetry, we have two cases: (i) S-3

2
is the largest, or (ii) S-2

4
is the largest.

– S-3
2 is larger than S-2

1 and S-2
4 . Define l1, l2, S ′2 as in Figure 4.15(a). If at least two points

of S1 ∪ S2 ∪ S3 are to the right of l2, then by induction, we get a matching of size
m1 +m2 +m3 + (m4 + 1) in S-2

1
∪ S-3

2
∪ S-2

3l ∪ S+2

4
. If at least two points of S2 ∪ S3 ∪ S4

are above l1, then by induction, we get a matching of size (m1 + 1) +m2 +m3 +m4
in S+2

1
∪ S-3

2
∪ S-2

3b ∪ S-2

4
. Otherwise, S ′2 contains n3 + 1 = 4m3 + 2 points, and we get a

matching of size m1 +m2 + (m3 + 1) +m4 in S1 ∪ S-3

2
∪ S ′2 ∪ S4. In all cases we get a

matching of size m+ 1 in S.
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l1

l2

l1

l2

(a) (b)

Figure 4.15: (a) S-3

2
is larger than S-2

1
and S-2

4
. (b) S-2

4
is larger than S-2

1
and S-3

2
.

– S-2
4 is larger than S-2

1 and S-3
2 . Define l1, l2, S ′4 as in Figure 4.15(b). If at least two points

of S2 ∪ S3 ∪ S4 are above l1, then by induction, we get a matching of size (m1 + 1) +

m2+m3+m4 in S+2

1
∪ S-3

2
∪ S-2

3b ∪ S-2

4
. If any point of S1 ∪ S3 ∪ S4 is to the left of l2, then

by induction, we get a matching of size m1+ (m2+ 1) +m3+m4 in S-2

1
∪ S+1

2
∪ S-1

3r ∪ S-2

4
.

Otherwise, S ′4 contains at least n3+ 1 = 4m3+ 2 points, and we get a matching of size
m1 +m2 + (m3 + 1) +m4 in S1 ∪ S2 ∪ S ′4 ∪ S-2

4
. In all cases we get a matching of size

m+ 1 in S.

4.7 strong matching in G2 (P)

In this section we consider the problem of computing a strong matching in G2 (P), where 2 is
an axis-aligned square whose center is the origin. We assume that P is in general position, i.e., (i)
no two points have the same x-coordinate or the same y-coordinate, and (ii) no four points are
on the boundary of any homothet of 2. Recall that G2 (P) is equal to the L∞-Delaunay graph
on P. Ábrego et al. [1, 2] proved that G2 (P) has a strong matching of size at least dn/5e. Using
a similar approach as in Section 4.6, we prove that G2 (P) has a strong matching of size at least
d n−1
4 e.

theorem 4 .28. Let P be a set of n points in general position in the plane. Let S be an axis-parallel
square that contains P. Then, it is possible to find a strong matching of size at least d n−1

4 e for G2 (P) in
S.

Proof. The proof is by induction. Assume that any point set of size n ′ 6 n − 1 in an axis-
parallel square S ′, has a strong matching of size d n ′−14 e in S ′. If n is 0 or 1, then there is
no matching in S, and if n ∈ {2 , 3 , 4 , 5}, then by shrinking S, it is possible to find a strongly
matched pair. Suppose that n > 6, and n = 4m + r, where r ∈ {0 , 1 , 2 , 3}. If r ∈ {0 , 1 , 3}, then
d n−1
4 e = d

(n−1)−1
4 e, and by induction we are done. Suppose that n = 4m + 2, for some m > 1.

We prove that there are d n−1
4 e = m + 1 disjoint squares in S, each of them matches a pair of

points in P. Partition S into four equal area squares S1 , S2 , S3 , S4 which contain n1 , n2 , n3 , n4
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points, respectively; see Figure 4.16(a). Let ni = 4mi + ri for 1 6 i 6 4, where ri ∈ {0 , 1 , 2 , 3}.
Let R be the multiset {r1 , r2 , r3 , r4 }. By induction, in S1 ∪ S2 ∪ S3 ∪ S4 , we have a strong
matching of size at least

A =

⌈
n1 − 1

4

⌉
+

⌈
n2 − 1

4

⌉
+

⌈
n3 − 1

4

⌉
+

⌈
n4 − 1

4

⌉
.

In the proof of Theorem 4.27, we have shown the following two claims:

claim 1 . A > m.

claim 2 . If A = m, then either (i) one element in R is equal to 3 and the other elements are equal to
1, or (ii) two elements in R are equal to 0 and the other elements are equal to 1.

If A > m, then we are done. Assume that A = m; in fact, by the induction hypothesis we have
an strong matching of size m in S. We show how to find one more strongly matched pair in each
case of Claim 2.

We define S-x
1

as the smallest axis-parallel square contained in S1 and anchored at the top-left
corner of S1, which contains all the points in S1 except x points. If S1 contains less than x points,
then the area of S-x

1
is zero. We also define S+x

1
as the smallest axis-parallel square that contains

S1 and anchored at the top-left corner of S1, which has all the points in S1 plus x other points
of P. See Figure 4.16(a). Similarly we define the squares S-x

2
, S+x

2
, and S-x

3
, S+x

3
, and S-x

4
, S+x

4
which

are anchored at the top-right corner of S2, and the bottom-left corner of S3, and the bottom-right
corner of S4, respectively.

Case 1: One element in R is equal to 3 and the other elements are equal to 1.
In this case, we have m = m1 +m2 +m3 +m4 + 1. Without loss of generality, assume that

r1 = 3 and r2 = r3 = r4 = 1. Consider the squares S-1

1
, S-3

2
, S-3

3
, and S-3

4
. Note that the area of

some of these squares—but not all—may be equal to zero. See Figure 4.16(b). By induction, we
get matchings of size m1 + 1, m2, m3, and m4, in S-1

1
, S-3

2
, S-3

3
, and S-3

4
, respectively. Now consider

the largest square among S-1

1
, S-3

2
, S-3

3
, and S-3

4
. Because of the symmetry, we have only three cases:

(i) S-1

1
is the largest, (ii) S-3

2
is the largest, and (iii) S-3

4
is the largest.

S2

S3 S4

S-3
1

S+2
1

S-1
1

S-3
3

S-3
4

S-3
2

S+1
2

l1

l2

S-1
1

S-3
3

S-3
4

S-3
2

S+3
1

l1

l2

(a) (b) (c)

Figure 4.16: (a) Split S into four equal area squares. (b) S-1

1
is larger than S-3

2
, S-3

3
, and S-3

4
. (c) S-3

2
is larger

than S-1

1
, S-3

3
, and S-3

4
.

• S-1
1 is the largest square. Consider the lines l1 and l2 which contain the bottom side and

right side of S-1

1
, respectively; the dashed lines in Figure 4.16(b). Note that l1 and l2 do not
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intersect any of S-3

2
, S-3

3
, and S-3

4
. If any point of S1 is to the right of l2, then by induction, we

get a matching of size (m1 + 1) + (m2 + 1) +m3 +m4 in S-1

1
∪ S+1

2
∪ S-3

3
∪ S-3

4
. Otherwise, by

induction, we get a matching of size (m1 + 1) +m2 + (m3 + 1) +m4 in S-1

1
∪ S-3

2
∪ S+1

3
∪ S-3

4
.

In all cases we get a matching of size m+ 1 in S.

• S-3
2 is the largest square. Consider the lines l1 and l2 which contain the bottom side and

left side of S-3

2
, respectively; the dashed lines in Figure 4.16(c). Note that l1 and l2 do not

intersect any of S-1

1
, S-3

3
, and S-3

4
. If any point of S2 is below l1, then by induction, we get

a matching of size (m1 + 1) +m2 +m3 + (m4 + 1) in S-1

1
∪ S-3

2
∪ S-3

3
∪ S+1

4
. Otherwise, by

induction, we get a matching of size (m1 + 2) +m2 +m3 +m4 in S+3

1
∪ S-3

2
∪ S-3

3
∪ S-3

4
; see

Figure 4.16(c). In all cases we get a matching of size m+ 1 in S.

• S-3
4 is the largest square. Consider the lines l1 and l2 which contain the top side and left side

of S-3

4
, respectively. If any point of S4 is above l1, then by induction, we get a matching of

size (m1 + 1) + (m2 + 1) +m3 +m4 in S-1

1
∪ S+1

2
∪ S-3

3
∪ S-3

4
. Otherwise, by induction, we get a

matching of size (m1 + 1) +m2 + (m3 + 1) +m4 in S-1

1
∪ S-3

2
∪ S+1

3
∪ S-3

4
. In all cases we get a

matching of size m+ 1 in S.

Case 2: Two elements in R are equal to 0 and two elements are equal to 1.
In this case, we have m = m1 +m2 +m3 +m4. Because of the symmetry, only two cases may

arise: (i) r1 = r2 = 1 and r3 = r4 = 0, (ii) r1 = r4 = 1 and r2 = r3 = 0.

• r1 = r2 = 1 and r3 = r4 = 0. Consider the squares S-3

1
, S-3

2
, S-2

3
, and S-2

4
. By induction, we get

matchings of size m1, m2, m3, and m4, in S-3

1
, S-3

2
, S-2

3
, and S-2

4
, respectively. Now consider

the largest square among S-3

1
, S-3

2
, S-2

3
, and S-2

4
. Because of the symmetry, we have only two

cases: (a) S-3

1
is the largest, (b) S-2

3
is the largest. In case (a) we get one more matched pair

either in S+1

2
or in S+2

3
. In case (b) we get one more matched pair either in S+1

1
or in S+2

4
.

• r1 = r4 = 1 and r2 = r3 = 0. Consider the squares S-3

1
, S-2

2
, S-2

3
, and S-3

4
. By induction, we get

matchings of size m1, m2, m3, and m4, in S-3

1
, S-2

2
, S-2

3
, and S-3

4
, respectively. Now consider

the largest square among S-3

1
, S-2

2
, S-2

3
, and S-3

4
. Because of the symmetry, we have only two

cases: (a) S-3

1
is the largest, (b) S-2

2
is the largest. In case (a) we get one more matched pair

either in S+2

2
or in S+2

3
. In case (b) we get one more matched pair either in S+1

1
or in S+1

4
.

4.8 a conjecture on strong matching in G	(P)

In this section, we discuss a possible way to further improve upon Theorem 4.14, as well as a
construction leading to the conjecture that Algorithm 2 computes a strong matching of size at
least d n−1

8 e; unfortunately we are not able to prove this.
In Section 4.4 we proved that I(e+) contains at most 16 edges. In order to achieve this upper

bound we used the fact that the centers of the disks in I(e+) should be far apart. We did
not consider the endpoints of the edges representing these disks. By Observation 4.9, the disks
representing the edges in I(e+) cannot contain any of the endpoints. We applied this observation
only on u and v. Unfortunately, our attempts to apply this observation on the endpoints of edges
in I(e+) have been so far unsuccessful.

Recall that T is a Euclidean minimum spanning tree of P, and for every edge e = (u , v) in T ,
deg(e) is the degree of e in T (e+), where T (e+) is the set of all edges of T with weight at least
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w(e). Note that w(e) is directly related to the Euclidean distance between u and v. Observe that
the discs representing the edges adjacent to e intersect D(u , v). Thus, these edges are in Inf(e).
We call an edge e in T a minimal edge if e is not longer than any of its adjacent edges. We observed
that the maximum degree of a minimal edge is an upper bound for Inf(e). We conjecture that,

conjecture 1. Inf(T ) is at most the maximum degree of a minimal edge.

Monma and Suri [13] showed that for every point set P there exists a Euclidean minimum
spanning tree, MST(P), of maximum vertex degree five. Thus, the maximum edge degree in
MST(P) is 9. We show that for every point set P, there exists a Euclidean minimum spanning
tree, MST(P), such that the degree of each node is at most five and the degree of each minimal
edge is at most eight. This implies the conjecture that Inf(MST(P)) 6 8. That is, Algorithm 2

returns a strong matching of size at least dn−18 e.

u

v

w

C1

C2

p

Figure 4.17: In MST(P), the triangle 4uvw formed by two adjacent edges uv and uw, is empty.

lemma 4 .29. If uv and uw are two adjacent edges in MST(P), then the triangle 4uvw has no point of
P \ {u, v,w} in its interior or on its boundary.

Proof. If the angle between uv and uw is equal to π, then there is no other point of P on uv and
uw. Assume that ∠vuw < π. Refer to Figure 4.17. Since MST(P) is a subgraph of the Gabriel
graph, the circles C1 and C2 with diameters uv and uw are empty. Since ∠vuw < π, C1 and C2
intersect each other at two points, say u and p. Connect u, v and w to p. Since uv and uw are
the diameters of C1 and C2, ∠upv = ∠wpu = π/2. This means that vw is a straight line segment.
Since C1 and C2 are empty and 4uvw ⊂ C1 ∪C2, it follows that 4uvw∩ P = {u, v,w}.

lemma 4 .30. Follow Figure 4.18. For a convex-quadrilateral Q = a,b, c,d with |ab| 6 |bc| 6 |ad|, if
min{∠abc,∠bad} > π/3 and ∠abc+∠bad 6 π, then |cd| 6 |ad|.

Proof. Let α1 = ∠cad, α2 = ∠bac, β1 = ∠cbd, β2 = ∠abd, γ1 = ∠acd, γ2 = ∠acb, δ1 = ∠bdc,
and δ2 = ∠adb; see Figure 4.18. Since |ab| 6 |bc| 6 |ad|,

γ2 6 α2 and δ2 6 β2.

Let ` be a line passing through c which is parallel to ad. Since ∠abc+∠bad 6 π, ` intersects the
line segment ab. This implies that α1 6 γ2. If β1 < δ1, then |cd| < |bc|, and hence |cd| < |ad| and
we are done. Assume that δ1 6 β1. In this case, δ 6 β. Now consider the two triangles4abc and
4acd. Since δ 6 β and α1 6 γ2, α2 6 γ1. Then we have

α1 6 γ2 6 α2 6 γ1.
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α2
α1

β2

β1

γ2
γ1

δ2

a b

c

d
`

δ1

Figure 4.18: Illustration of Lemma 4.30: |ab| 6 |bc| 6 |ad|, ∠abc > π/3, ∠bad > π/3, and ∠abc+∠bad 6
π.

Since α1 6 γ1, |cd| 6 |ad|, where the equality holds only if α1 = γ2 = α2 = γ1, i.e., Q is a
diamond. This completes the proof.

u v

v1 v2

v3

v4

u1

u2

u3 u4

w1w2

w3

π/3 2π/3

x

Figure 4.19: Solid segments represent the edges of MST(P). Dashed segments represent the swapped
edges. Dotted segments represent the edges which cannot exist.

lemma 4 .31. Every finite set of points P in the plane admits a minimum spanning tree whose node
degree is at most five and whose minimal-edge degree is at most nine.

Proof. Consider a minimum spanning tree, MST(P), of maximum vertex degree 5. The maximum
edge degree in MST(P) is 9. Consider any minimal edge, uv. If the degree of uv is 8, then
MST(P) satisfies the statement of the lemma. Assume that the degree of uv is 9. Let u1,u2,u3,u4
and v1, v2, v3, v4 be the the neighbors of u and v in clockwise and counterclockwise orders,
respectively. See Figure 4.19. In MST(P), the angles between two adjacent edges are at least
π/3. Since ∠uiuui+1 > π/3 and ∠vivvi+1 > π/3 for i = 1, 2, 3, either ∠vuu1 + ∠uvv1 6 π or
∠vuu4 +∠uvv4 6 π. Without loss of generality assume that ∠vuu1 +∠uvv1 6 ∠vuu4 +∠uvv4
and ∠vuu1 + ∠uvv1 6 π. We prove that the spanning tree obtained by swapping the edge uv
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with u1v1 is also a minimum spanning tree, and it has one fewer minimal-edge of degree 9. By
repeating this procedure at each minimal-edge of degree 9, we obtain a minimum spanning tree
which satisfies the statement of the lemma. Let Q = u, v, v1,u1. By Lemma 4.29, v1 is outside the
triangle 4u1uv, and u1 is outside the triangle 4uvv1. In addition, u1 and v1 are on the same
side of the line subtended from uv. Thus, Q is a convex quadrilateral. Without loss of generality
assume that |vv1| 6 |uu1|. By Lemma 4.30, |u1v1| 6 |uu1|. If |u1v1| < |uu1|, we get a contradiction
to Lemma 4.5. Thus, assume that |u1v1| = |uu1|. As shown in the proof of Lemma 4.30, this case
happens only when Q is a diamond. This implies that ∠vuu1 + ∠uvv1 = π, and consequently
∠vuu4+∠uvv4 = π. In addition, ∠uiuui+1 = π/3 and ∠vivvi+1 = π/3 for i = 1, 2, 3. To establish
the validity of our edge-swap, observe that the nine edges incident to u and v are all equal in
length. Therefore, swapping uv with u1v1 does not change the cost of the spanning tree and,
furthermore, the resulting tree is a valid spanning tree since u1v1 is not an edge of the original
spanning treeMST(P); otherwise u, v, v1, and u1 would form a cycle. We have removed a minimal
edge uv of degree 9, but it remains to show that the degree of u1 and v1 does not increase to six
and new minimal edge of degree 9 is not generated. Note that u1u2 and v1v2 are not the edges
of MST(P), and hence, deg(u1) and deg(v1) are still less than six. In order to show that no new
minimal edge is generated, we differentiate between two cases:

• min{∠vv1u1,∠v1u1u} > π/3. Since ∠v1u1u > π/3 and ∠uu1u2 = π/3, u1 can be adjacent
to at most two vertices other than u and v1, and hence deg(u1) 6 4; similarly deg(v1) 6 4.
Thus, u, v, u1, and v1 are of degree at most four, and hence no new minimal edge of degree
9 is generated.

• min{∠vv1u1,∠v1u1u} = π/3. W.l.o.g. assume that ∠v1u1u = π/3. This implies that ∠vv1u1 =
2π/3. Since ∠v1u1u = π/3 and ∠uu1u2 = π/3, u1 is adjacent to at most three vertices other
than u and v1. Let u, v1,w1,w2,w3 be the neighbors of u1 in clockwise order. Note that
v1 is not adjacent to u, v2 nor w1. But v1 can be connected to another vertex, say x, which
implies that deg(v1) 6 3. We prove that the spanning tree obtained by swapping the edge
u1v1 with v1w1 is also a minimum spanning tree of node degree at most five, which has
one fewer minimal edge of degree 9. The new tree is a legal minimum spanning tree for P,
because |v1w1| = |v1u1|. In addition, deg(u1) 6 4 and deg(v1) 6 4. Since w1w2 and w1x
are illegal edges, deg(w1) 6 4. Thus, u, v, u1, v1, and w1 are of degree at most four and no
new minimal edge of degree 9 is generated. This completes the proof that our edge-swap
reduces the number of minimal-edges of degree nine by one.

4.9 conclusions

Given a set of n points in general position in the plane, we considered the problem of strong
matching of points with convex geometric shapes. A matching is strong if the objects represent-
ing whose edges are pairwise disjoint. In this chapter we presented algorithms which compute
strong matchings of points with diametral-disks, equilateral-triangles, and squares. Specifically
we showed that:

• There exists a strong matching of points with diametral-disks of size at least dn−117 e.

• There exists a strong matching of points with downward equilateral-triangles of size at
least dn−19 e.
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• There exists a strong matching of points with downward/upward equilateral-triangles of
size at least dn−14 e.

• There exists a strong matching of points with axis-parallel squares of size at least dn−14 e.

The existence of a downward/upward equilateral-triangle matching of size at least dn−14 e,
implies the existence of either a downward equilateral-triangle matching of size at least dn−18 e
or an upward equilateral-triangle matching of size at least dn−18 e. This does not imply a lower
bound better than dn−19 e for downward equilateral-triangle matching (or any fixed oriented
equilateral-triangle).

A natural open problem is to improve any of the provided lower bounds, or extend these
results for other convex shapes. A specific open problem is to prove that Algorithm 2 computes a
strong matching of points with diametral-disks of size at least dn−18 e as discussed in Section 4.8.
An alternative for Algorithm 2 is to pick an edge with the smallest influence set in each iteration.
It remains open to derive lower bounds on the size of matchings reported by this new algorithm.
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5
B O T T L E N E C K P L A N E M AT C H I N G S I N A P O I N T S E T

A bottleneck plane perfect matching of a set of n points in R2 is defined to be a perfect non-
crossing matching that minimizes the length of the longest edge; the length of this longest edge
is known as bottleneck. The problem of computing a bottleneck plane perfect matching has been
proved to be NP-hard. We present an algorithm that computes a bottleneck plane matching of size
at least n5 inO(n log2 n)-time. Then we extend our idea toward anO(n logn)-time approximation
algorithm which computes a plane matching of size at least 2n5 whose edges have length at most√
2+
√
3 times the bottleneck.

This chapter is published in the journal of Computational Geometry: Theory and Applica-
tions [1].

5.1 introduction

We study the problem of computing a bottleneck non-crossing matching of points in the plane.
For a given set P of n points in the plane, where n is even, let K(P) denote the complete Euclidean
graph with vertex set P. The bottleneck plane matching problem is to find a perfect non-crossing
matching of K(P) that minimizes the length of the longest edge. We denote such a matching by
M∗. The bottleneck, λ∗, is the length of the longest edge in M∗. The problem of computing M∗

has been proved to be NP-hard [2]. Figure 1 in [2] and [4] shows that the longest edge in the
minimum weight matching (which is planar) can be unbounded with respect to λ∗. On the other
hand the weight of the bottleneck matching can be unbounded with respect to the weight of the
minimum weight matching, see Figure 5.1.

1 ε

1 + ε

(a) (b)

Figure 5.1: (a) bottleneck matching, (b) minimum weight matching.

Matching and bottleneck matching problems play an important role in graph theory, and thus,
they have been studied extensively, e.g., [2, 3, 5, 9, 10, 13, 14]. Self-crossing configurations are
often undesirable and may even imply an error condition; for example, a potential collision
between moving objects, or inconsistency in a layout of a circuit. In particular, non-crossing
matchings are especially important in the context of VLSI circuit layouts [11] and operations
research.
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Table 5.1: Summary of results.

Algorithm running time bottleneck (λ) match. size

A.-Affash et al. [2] O(n1.5
√

logn) 2
√
10λ∗ n/2

Section 5.4.1 O(n log2 n) λ∗ n/5

Section 5.4.2 O(n logn) (
√
2+
√
3)λ∗ 2n/5

5.1.1 Previous Work

It is desirable to compute a perfect matching of a point set in the plane, which is optimal with
respect to some criterion such as: (a) minimum-cost matching which minimizes the sum of the
lengths of all edges; also known as minimum-weight matching or min-sum matching, and (b) bottle-
neck matching which minimizes the length of the longest edge; also known as min-max matching
[10]. For the minimum-cost matching, Vaidya [13] presented an O(n2.5 log4 n) time algorithm,
which was improved to O(n1.5 log5 n) by Varadarajan [14]. As for bottleneck matching, Chang
et al. [5] proved that such kind of matching is a subset of 17-RNG (relative neighborhood graph).
They presented an algorithm, running in O(n1.5

√
logn)-time to compute a bottleneck matching

of maximum cardinality. The matching computed by their algorithm may be crossing. Efrat and
Katz [10] extended the result of Chang et al. [5] to higher dimensions. They proved that a bot-
tleneck matching in any constant dimension can be computed in O(n1.5

√
logn)-time under the

L∞-norm.
Note that a plane perfect matching of a point set can be computed in O(n logn)-time, e.g., by

matching the two leftmost points recursively.
Abu-Affash et al. [2] showed that the bottleneck plane perfect matching problem is NP-hard

and presented an algorithm that computes a plane perfect matching whose edges have length at
most 2

√
10 times the bottleneck, i.e., 2

√
10λ∗. They also showed that this problem does not admit

a PTAS (Polynomial Time Approximation Scheme), unless P=NP. Carlsson et al. [4] showed that
the bottleneck plane perfect matching problem for a Euclidean bipartite complete graph is also
NP-hard.

5.1.2 Our Results

The main results of this chapter are summarized in Table 5.1. We use the unit disk graph as a
tool for our approximations. First, we present an O(n logn)-time algorithm in Section 5.3, that
computes a plane matching of size at least n−15 in a connected unit disk graph. Then in Section
5.4.1 we describe how one can use this algorithm to obtain a bottleneck plane matching of size
at least n5 with edges of length at most λ∗ in O(n log2 n)-time. In Section 5.4.2 we present an
O(n logn)-time approximation algorithm that computes a plane matching of size at least 2n5
whose edges have length at most (

√
2+
√
3)λ∗. Finally we conclude this chapter in Section 5.5.

5.2 preliminaries

Let P denote a set of n points in the plane, where n is even, and let K(P) denote the complete
Euclidean graph over P. A matching, M, is a subset of edges of K(P) without common vertices.
Let |M| denote the cardinality of M, which is the number of edges in M. M is a perfect matching if
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it covers all the vertices of P, i.e., |M| = n
2 . The bottleneck of M is defined as the longest edge in

M. We denote its length by λM. A bottleneck perfect matching is a perfect matching that minimizes
the bottleneck length. A plane matching is a matching with non-crossing edges. We denote a plane
matching by M= and a crossing matching by M×. The bottleneck plane perfect matching, M∗, is a
perfect plane matching which minimizes the length of the longest edge. Let λ∗ denote the length
of the bottleneck edge in M∗. In this chapter we consider the problem of computing a bottleneck
plane matching of P.

The Unit Disk Graph, UDG(P), is defined to have the points of P as its vertices and two
vertices p and q are connected by an edge if their Euclidean distance |pq| is at most 1. The
maximum plane matching of UDG(P) is the maximum cardinality matching of UDG(P), which has
no pair of crossing edges. The following lemma states a folklore result, however, for the sake of
completeness we provide a simple proof.

lemma 5 .1. If the maximum plane matching in unit disk graphs can be computed in polynomial time,
then the bottleneck plane perfect matching problem for point sets can also be solved in polynomial time.

Proof. Let D = {|pq| : p,q ∈ P} be the set of all distances determined by pairs of points in P. Note
that λ∗ ∈ D. For each λ ∈ D, define the “unit” disk graph DG(λ,P), in which two points p and
q are connected by an edge if and only if |pq| 6 λ. Then λ∗ is the minimum λ in D such that
DG(λ,P) has a plane matching of size n2 .

The Gabriel Graph, GG(P), is defined to have the points of P as its vertices and two vertices
p and q are connected by an edge if the disk with diameter pq does not contain any point of
P \ {p,q} in its interior and on its boundary.

lemma 5 .2. If the unit disk graph UDG(P) of a point set P is connected, then UDG(P) and K(P) have
the same minimum spanning tree.

Proof. By running Kruskal’s algorithm on UDG(P), we get a minimum spanning tree, say T . All
the edges of T have length at most one, and the edges of K(P) which do not belong to UDG(P)
all have length greater than one. Hence, T is also a minimum spanning tree of K(P).

As a direct consequence of Lemma 5.2 we have the following corollary:

corollary 5 .3. Consider the unit disk graph UDG(P) of a point set P. We can compute the minimum
spanning forest of UDG(P), by first computing the minimum spanning tree of P and then removing the
edges whose length is more than one.

lemma 5 .4. For each pair of crossing edges (u, v) and (x,y) in UDG(P), the four endpoints u, v, x, and
y are in the same component of UDG(P).

Proof. Note that the quadrilateral Q formed by the end points u, v, x, and y is convex. W.l.o.g.
assume that the angle ∠xuy is the largest angle in Q. Clearly ∠xuy > π/2, and hence, in triangle
4xuy, the angles ∠yxu and ∠uyx are both less than π/2. Thus, the edges (u, x) and (u,y) are
both less than (x,y). This means that (u, x) and (u,y) are also edges of UDG(P), thus, their four
endpoints belong to the same component.

As a direct consequence of Lemma 5.4 we have the following corollary:

corollary 5 .5. Any two edges that belong to different components of UDG(P) do not cross.
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Let MST(P) denote the Euclidean minimum spanning tree of P. We have prove the following
lemma in Chapter 4.

lemma 5 .6. If (u, v) and (u,w) are two adjacent edges in MST(P), then the triangle 4uvw has no
point of P \ {u, v,w} inside or on its boundary.

corollary 5 .7. Consider MST(P) and let Nv be the set of neighbors of a vertex v in MST(P). Then
the convex hull of Nv contains no point of P except v and the set Nv.

The shaded area in Figure 5.2 shows the union of all these convex hulls.

5.3 plane matching in unit disk graphs

In this section we present two approximation algorithms for computing a maximum plane match-
ing in a unit disk graph UDG(P). In Section 5.3.1 we present a straight-forward 1

3 -approximation
algorithm. For the case when UDG(P) is connected, we present a 2

5 -approximation algorithm in
Section 5.3.2.

5.3.1 1
3 -approximation algorithm

Given a possibly disconnected unit disk graph UDG(P), we start by computing a (possibly cross-
ing) maximum matching M× of UDG(P) using Edmonds algorithm [7]. Then we transform M×
to another (possibly crossing) matching M ′× with some properties, and then pick at least one-
third of its edges which satisfy the non-crossing property. Consider a pair of crossing edges
(p,q) and (r, s) in M×, and let c denote the intersection point. If their smallest intersection angle
is at most π/3, we replace these two edges with new ones. For example if ∠pcr 6 π/3, we replace
(p,q) and (r, s) with new edges (p, r) and (q, s). Since the angle between them is at most π/3, the
new edges are not longer than the older ones, i.e. max{|pr|, |qs|} 6 max{|pq|, |rs|}, and hence the
new edges belong to the unit disk graph. On the other hand the total length of the new edges is
strictly less than the older ones; i.e. |pr|+ |qs| < |pq|+ |rs|. For each pair of intersecting edges in
M×, with angle at most π/3, we apply this replacement. We continue this process until we have a
matching M ′× with the property that if two matched edges intersect, each of the angles incident
on c is larger than π/3.

For each edge in M ′×, consider the counter clockwise angle it makes with the positive x-axis;
this angle is in the range [0,π). Using these angles, we partition the edges of M ′× into three
subsets, one subset for the angles [0,π/3), one subset for the angles [π/3, 2π/3), and one subset
for the angles [2π/3,π). Observe that edges within one subset are non-crossing. Therefore, if we
output the largest subset, we obtain a non-crossing matching of size at least |M ′×|/3 = |M×|/3.

Since in each step (each replacement) the total length of the matched edges decreases, the
replacement process converges and the algorithm will stop. Bonnet ant Miltzow [8] showed that
this process stops after O(n3) steps, where n is the number of points in P. Thus the running time
of this algorithm is polynomial.

5.3.2 2
5 -approximation algorithm for connected unit disk graphs

In this section we assume that the unit disk graph UDG(P) is connected. Monma et al. [12] proved
that every set of points in the plane admits a minimum spanning tree of degree at most five which
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can be computed in O(n logn) time. By Lemma 5.2, the same claim holds for UDG(P). Here we
present an algorithm which extracts a plane matching M from MST(P). Consider a minimum
spanning tree T of UDG(P) with vertices of degree at most five. We define the skeleton tree, T ′,
as the tree obtained from T by removing all its leaves; see Figure 5.2. Clearly T ′ ⊆ T ⊆ UDG(P).
For clarity we use u and v to refer to the leaves of T and T ′ respectively. In addition, let v and
v ′, respectively, refer to the copies of a vertex v in T and T ′. In each step, pick an arbitrary leaf
v ′ ∈ T ′. By the definition of T ′, it is clear that the copy of v ′ in T , i.e. v, is connected to vertices
u1, . . . ,uk, for some 1 6 k 6 4, which are leaves of T (if T ′ has one vertex then k 6 5). Pick
an arbitrary leaf ui and add (v,ui) as a matched pair to M. For the next step we update T by
removing v and all its adjacent leaves. We also compute the new skeleton tree and repeat this
process. In the last iteration, T ′ is empty and we may be left with a tree T consisting of one single
vertex or one single edge. If T consists of one single vertex, we disregard it, otherwise we add its
only edge to M.

v′

v

u1

u2

u3

Figure 5.2: Minimum spanning tree T with union of empty convex hulls. The skeleton tree T ′ is sur-
rounded by dashed line, and v ′ is a leaf in T ′.

The formal algorithm is given as PlaneMatching, which receives a point set P—whose unit
disk graph is connected—as input and returns a matching M as output. The function MST5(P)

returns a Euclidean minimum spanning tree of P with degree at most five, and the function
Neighbor(v ′, T ′) returns the only neighbor of leaf v ′ in T ′.

lemma 5 .8. Given a set P of n points in the plane such that UDG(P) is connected, algorithm Plane-
Matching returns a plane matchingM ofMST(P) of size |M| > n−1

5 . Furthermore,M can be computed
in O(n logn) time.

Proof. In each iteration an edge (v,ui) ∈ T is added to M. Since T is plane, M is also plane and
M is a matching of MST(P).

Line 5 picks v ′ ∈ T ′ which is a leaf, so its analogous vertex v ∈ T is connected to at least
one leaf. In each iteration we select an edge incident to one of the leaves and add it to M, then
disregard all other edges connected to v (line 9). So for the next iteration T looses at most five
edges. Since T has n− 1 edges initially and we add one edge to M out of each five edges of T ,
we have |M| > n−1

5 .
According to Corollary 5.3 and by [12], line 2 takes O(n logn) time. The while-loop is iterated

O(n) times and in each iteration, lines 5-13 take constant time. So, the total running time of
algorithm PlaneMatching is O(n logn).

The size of a maximum matching can be at most n2 . Therefore, algorithm PlaneMatching

computes a matching of size at least 2(n−1)5n times the size of a perfect matching, and hence,
when n is large enough, PlaneMatching is a 2

5 -approximation algorithm. On the other hand
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Algorithm 3 PlaneMatching(P)

Input: set P of n points in the plane, such that UDG(P) is connected.
Output: plane matching M of MST(P) with |M| > n−1

5 .
1: M← ∅
2: T ←MST5(P)

3: T ′ ←SkeletonTree(T)
4: while T ′ 6= ∅ do
5: v ′ ← a leaf of T ′

6: Lv ← set of leaves connected to v in T

7: u← an element of Lv
8: M←M∪ {(v,u)}
9: T ← T \ ({v}∪ Lv)

10: if deg(Neighbor(v ′, T ′)) = 2 then
11: T ′ ← T ′ \ {v ′, Neighbor(v ′, T ′)}
12: else
13: T ′ ← T ′ \ {v ′}

14: if T consists of one single edge then
15: M←M∪ T
16: return M

there are unit disk graphs whose maximum matchings have size n−15 ; see Figure 5.3. In this case
PlaneMatching returns a maximum matching. In addition, when UDG(P) is a tree or a cycle,
PlaneMatching returns a maximum matching.

Figure 5.3: Unit disk graph with all edges of unit length, and maximum matching of size n−15 .

In Section 5.4.1 we will show how one can use a modified version of algorithm PlaneMatch-
ing to compute a bottleneck plane matching of size at least n5 with bottleneck length at most λ∗.
Recall that λ∗ is the length of the bottleneck edge in the bottleneck plane perfect matching M∗.
Section 5.4.2 extends this idea to an algorithm which computes a plane matching of size at least
2n
5 with edges of length at most (

√
2+
√
3)λ∗.

5.4 approximating bottleneck plane perfect matching

The general approach of our algorithms is to first compute a (possibly crossing) bottleneck perfect
matchingM× of K(P) using the algorithm in [5]. Let λM× denote the length of the bottleneck edge
in M×. It is obvious that the bottleneck length of any plane perfect matching is not less than λM× .
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Therefore, λ∗ > λM× . We consider a “unit” disk graph DG(λM× ,P) over P, in which there is an
edge between two vertices p and q if |pq| 6 λM× . Note that DG(λM× ,P) is not necessarily
connected. Let G1, . . . ,Gk be the connected components of DG(λM× ,P). For each component Gi,
consider a minimum spanning tree Ti of degree at most five. We show how to extract from Ti a
plane matching Mi of proper size and appropriate edge lengths.

lemma 5 .9. Each component of DG(λM× ,P) has an even number of vertices.

Proof. This follows from the facts thatM× is a perfect matching and both end points of each edge
in M× belong to the same component of DG(λM× ,P).

5.4.1 First Approximation Algorithm

In this section we describe the process of computing a plane matching M of size |M| > 1
5n

with bottleneck length at most λ∗. Consider the minimum spanning trees T1, . . . , Tk of the k
components of DG(λM× ,P). For 1 6 i 6 k, let Pi denote the set of vertices in Ti and ni denote
the number of vertices of Pi. Our approximation algorithm runs in two steps:

step 1 : We start by running algorithm PlaneMatching on each of the point sets Pi. Let Mi

be the output. Recall that algorithm PlaneMatching, from Section 5.3.2, picks a leaf v ′ ∈ T ′i ,
corresponding to a vertex v ∈ Ti, matches it to one of its neighboring leaves in Ti and disregards
the other edges connected to v. According to Lemma 5.8, this gives us a plane matching Mi of
size at least ni−15 . However, we are looking for a matching of size at least ni5 .

The total number of edges of Ti is ni − 1 and in each of the iterations, the algorithm picks one
edge out of at most five candidates. If in at least one of the iterations of the while-loop, v has
degree at most four (in Ti), then in that iteration algorithm PlaneMatching picks one edge out
of at most four candidates. Therefore, the size of Mi satisfies

|Mi| > 1+
(ni − 1) − 4

5
=
ni
5

.

If in all the iterations of the while-loop, v has degree five, we look at the angles between the
consecutive leaves connected to v. Recall that in MST(P) all the angles are greater than or equal
to π/3. If in at least one of the iterations, v is connected to two consecutive leaves uj and uj+1
for 1 6 j 6 3, such that ∠ujvuj+1 = π/3, we change Mi as follow. Remove from Mi the edge
incident to v and add to Mi the edges (uj,uj+1) and (v,us), where us, s /∈ {j, j+ 1}, is one of the
leaves connected to v. Clearly 4vujuj+1 is equilateral and |ujuj+1| = |ujv| = |uj+1v| 6 λM× , and
by Lemma 5.6, (uj,uj+1) does not cross other edges. In this case, the size of Mi satisfies

|Mi| = 2+
(ni − 1) − 5

5
=
ni + 4

5
>
ni
5

.

step 2 : In this step we deal with the case that in all the iterations of the while-loop, v has
degree five and the angle between any pair of consecutive leaves connected to v is greater than
π/3. Recall that M× is a perfect matching and both end points of each edge in M× belong to the
same Ti.

lemma 5 .10. In Step 2, at least two leaves of Ti are matched in M×.
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Figure 5.4: Resulted matching Mi by modified PlaneMatching. The numbers show the order in which
the edges (bold edges) are added to Mi.

Proof. Letmi andm ′i denote the number of external (leaves) and internal nodes of Ti, respectively.
Clearly m ′i is equal to the number of vertices of T ′i and mi +m

′
i = ni. Consider the reverse

process in PlaneMatching. Start with a 5-star tree ti, i.e. ti = K1,5, and in each iteration append
a new K1,5 to ti until ti = Ti. In the first step mi = 5 and m ′i = 1. In each iteration a leaf of the
appended K1,5 is identified with a leaf of ti; the resulting vertex becomes an internal node. On
the other hand, the “center”of the new K1,5 becomes an internal node of ti and its other four
neighbors become leaves of ti. So in each iteration, the number of leaves mi increases by three,
and the number of internal nodes m ′i increases by two. Hence, in all iterations (including the first
step) we have mi > m ′i + 4.

Again consider M×. In the worst case if all m ′i internal vertices of Ti are matched to leaves, we
still have four leaves which have to be matched together.

According to Lemma 5.10 there is an edge (p,p ′) ∈ M× where p and p ′ are leaves in Ti. We
can find p and p ′ for all Ti’s by checking all the edges of M× once. We remove all the edges of
Mi and initialize M = {(p,p ′)}. Again we run a modified version of PlaneMatching in such
a way that in each iteration, in line 7 it selects the leaf ui adjacent to v such that (v,ui) is not
intersected by (p,p ′). In each iteration v has degree five and is connected to at least four leaf
edges with angles greater than π/3. Thus, (p,p ′) can intersect at most three of the leaf edges and
such kind of (v,ui) exists. See Figure 5.4. In this case, Mi has size

|Mi| = 1+
ni − 1

5
=
ni + 4

5
>
ni
5

.

We run the above algorithm on each Ti and for each of them we compute a plane matching
Mi. The final matching of point set P will be M =

⋃k
i=1Mi.

theorem 5 .11. Let P be a set of n points in the plane, where n is even, and let λ∗ be the minimum
bottleneck length of any plane perfect matching of P. In O(n1.5

√
logn) time, a plane matching of P of

size at least n5 can be computed, whose bottleneck length is at most λ∗.

Proof. Proof of edge length: Let λM× be the length of the longest edge in M× and consider a compo-
nent Gi of DG(λM× ,P). All the selected edges in Steps 1 and 2 belong to Ti except (uj,uj+1) and
(p,p ′). Ti is a subgraph of Gi, and the edge (uj,uj+1) belongs to Gi, and the edge (p,p ′) belongs
to M× (which belongs to Gi as well). So all the selected edges belong to Gi, and λMi

6 λM× .
Since λM× 6 λ∗, we have λMi

6 λM× 6 λ∗ for all i, 1 6 i 6 k.
Proof of planarity: The edges of Mi belong to the minimum spanning forest of DG(λM× ,P)

which is plane, except (uj,uj+1) and (p,p ′). According to Corollary 5.5 and Lemma 5.6 the edge
(uj,uj+1) does not cross the edges of the minimum spanning forest. In Step 2 we select edges
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of Ti in such a way that avoid (p,p ′). Note that (p,p ′) belongs to the component Gi and by
Corollary 5.5 it does not cross any edge of the other components of DG(λM× ,P). So M is plane.

Proof of matching size: Since M =M1 ∪ · · · ∪Mk, and for each 1 6 i 6 k, |Mi| >
ni
5 , hence

|M| >
k∑
i=1

|Mi| >
k∑
i=1

ni
5

=
n

5
.

Proof of complexity: The initial matching M× can be computed in time O(n1.5
√

logn) by using
the algorithm of Chang et al. [5]. By Lemma 5.8 algorithm PlaneMatching runs in O(n logn)
time. In Step 1 we spend constant time for checking the angles and the number of leaves con-
nected to v during the while-loop. In Step 2, the matched leaves p and p ′ can be computed in
O(n) time for all Ti’s by checking all the edges of M× before running the algorithm again. So
the modified PlaneMatching still runs in O(n logn) time, and the total running time of our
method is O(n1.5

√
logn).

Since the running time of the algorithm is bounded by the time of computing the initial bottle-
neck matching M×, any improvement in computing M× leads to a faster algorithm for comput-
ing a plane matching M. In the next section we improve the running time.

5.4.1.1 Improving the Running Time

In this section we present an algorithm that improves the running time to O(n log2 n). We first
compute a forest F, such that each edge in F is of length at most λ∗ and, for each tree T ∈ F, we
have a leaf p ∈ T and a point p ′ ∈ T such that |pp ′| 6 λ∗. Once we have this forest F, we apply
Step 1 and Step 2 on F to obtain the matching M as in the previous section.

Let MST(P) be a (five-degree) minimum spanning tree of P. Let Fλ = {T1, T2, . . . , Tk} be the
forest obtained from MST(P) by removing all the edges whose length is greater than λ, i.e.,
Fλ = {e ∈MST(P) : |e| 6 λ}. For a point p ∈ P, let cl(p,P) be the point in P that is closest to p.

lemma 5 .12. For all T ∈ Fλ∗ , it holds that

(i) the number of points in T is even, and

(ii) for each two leaves p,q ∈ T that are incident to the same node v in T , let p ′ = cl(p,P \ {v}), let
q ′ = cl(q,P \ {v}), and assume that |pp ′| 6 |qq ′|. Then, λ∗ > |pp ′| and p ′ belongs to T .

Proof. (i) Suppose that T has odd number of points. Thus in M∗ one of the points in T should be
matched to a point in a tree T ′ 6= T by an edge e. Since e /∈ Fλ∗ , we have |e| > λ∗, which contradicts
that λ∗ is the minimum bottleneck. (ii) Note that v is the closest point to both p and q. In M∗, at
most one of p and q can be matched to v, and the other one must be matched to a point which
is at least as far as its second closest point. Thus, λ∗ is at least |pp ′|. The distance between any
two trees in Fλ∗ is greater than λ∗. Now if p ′ is not in T , then in any bottleneck perfect matching,
either p or q is matched to a point of distance greater than λ∗, which contradicts that λ∗ is the
minimum bottleneck.

Let E = (e1, e2, . . . , en−1) be the edges of MST(P) in sorted order of their lengths. Our algo-
rithm performs a binary search on E, and for each considered edge ei, it uses Algorithm 4 to
decide whether λ < λ∗, where λ = |ei|. The algorithm constructs the forest Fλ, and for each
tree T in Fλ, it picks two leaves p and q from T and finds their second closest points p ′ and q ′.
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Assume w.l.o.g. that |pp ′| 6 |qq ′|. Then, the algorithm returns FALSE if p ′ does not belong to T .
By Lemma 5.12, if the algorithm returns FALSE, then we know that λ < λ∗.

Let ej be the shortest edge in MST(P), for which Algorithm 4 does not return FALSE. This
means that Algorithm 4 returns FALSE for ej−1, and there is a tree T in F|ej−1| and a leaf p in T ,
such that |pp ′| > |ej|. Thus |ej| 6 λ∗ and for each tree T in the forest F|ej|, we stored a leaf p of
T and a point p ′ ∈ T , such that |pp ′| 6 λ∗. Since each tree in F|ej| is a subtree of MST(P), F|ej| is
planar and each tree in F|ej| is of degree at most five.

Algorithm 4 CompareToOpt(λ)

1: compute Fλ
2: L← empty list
3: for each T ∈ Fλ do
4: if T has an odd number of points then
5: return FALSE
6: if there exist two leaves p and q incident to a node v ∈ T then
7: p ′ ← cl(p,P \ {v})
8: q ′ ← cl(q,P \ {v})
9: if |pp ′| 6 |qq ′| then

10: if p ′ does not belong to T then
11: return FALSE
12: else
13: add the triple (p,p ′, T) to L

14: else
15: if q ′ does not belong to T then
16: return FALSE
17: else
18: add the triple (q,q ′, T) to L

19: return L

Now we can apply Step 1 and Step 2 on F|ej| as in the previous section. Note that in Step 2,
for each tree Ti we have a pair (p,p ′) (or (q,q ′)) in the list L which can be matched. In Step 2, in
each iteration v has degree five, thus, p ′ should be a vertex of degree two or a leaf in Ti. If p ′ is a
leaf we run the modified version of PlaneMatching as in the previous section. If p ′ has degree
two, we remove all the edges of Mi and initialize Mi = (p,p ′). Then remove p ′ from Ti and run
PlaneMatching on the resulted subtrees. Finally, set M =

⋃k
i=1Mi.

lemma 5 .13. The matching M is planar.

Proof. Consider two edges e = (p,p ′) and e ′ = (q,q ′) in M. We distinguish between four cases:

1. e ∈ F|ej| and e ′ ∈ F|ej|. In this case, both e and e ′ belong to MST(P) and hence they do not
cross each other.

2. e /∈ F|ej| and e ′ ∈ F|ej|. If e and e ′ cross each other, then this contradicts the selection of
(q,q ′) in Step 2 (which prevents (p,p ′)).

3. e ∈ F|ej| and e ′ /∈ F|ej|. It leads to a contradiction as in the previous case.
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4. e /∈ F|ej| and e ′ /∈ F|ej|. If e and e ′ cross each other, then either min{|pq|, |pq ′|} < |pp ′| or
min{|qp|, |qp ′|} < |qq ′|, which contradicts the selection of p ′ or q ′. Note that p cannot be
the second closest point to q, because p and q are in different trees.

lemma 5 .14. The matching M can be computed in O(n log2 n) time.

Proof. Computing MST(P) and sorting its edges take O(n logn) [6]. Since we performed a binary
search on the edges of MST(P), we need logn iterations. In each iteration, for an edge ei, we
compute the forest F|ei| in O(n) and the number of the trees in the forest can be O(n) in the
worst case. We compute in advance the second order Voronoi diagram of the points together
with a corresponding point location data structure, in O(n logn) [6]. For each tree in the forest,
we perform a point location query to find the closest points p ′ and q ′, which takes O(logn) for
each query. Therefore the total running time is O(n log2 n).

theorem 5 .15. Let P be a set of n points in the plane, where n is even, and let λ∗ be the minimum
bottleneck length of any plane perfect matching of P. In O(n log2 n) time, a plane matching of P of size at
least n5 can be computed, whose bottleneck length is at most λ∗.

5.4.2 Second Approximation Algorithm

In this section we present another approximation algorithm which gives a plane matching M
of size |M| > 2

5n with bottleneck length λM 6 (
√
2 +
√
3)λ∗. Let DT(P) denote the Delaunay

triangulation of P. Let the edges of DT(P) be, in sorted order of their lengths, e1, e2, . . . . Initialize
a forest F consisting of n tress, each one being a single node for one point of P. Run Kruskal’s
algorithm on the edges of DT(P) and terminate as soon as every tree in F has an even number of
nodes. Let el be the last edge that is added by Kruskal’s algorithm. Observe that el is the longest
edge in F. Denote the trees in F by T1, . . . , Tk and for 1 6 i 6 k, let Pi be the vertex set of Ti and
let ni = |Pi|.

lemma 5 .16. λ∗ > |el|.

Proof. Let i be such that el is an edge in Ti. Let T ′i and T ′′i be the trees obtained by removing el
from Ti. Let P ′i be the vertex set of T ′i . Then |el| = min{|pq| : p ∈ P ′i,q ∈ P \ P ′i}. Consider the
optimal matching M∗ with bottleneck length λ∗. Since el is the last edge added, P ′i has odd size.
The matching M∗ contains an edge joining a point in P ′i with a point in P \ P ′i. This edge has
length at least |el|.

By Lemma 5.16 the length of the longest edge in F is at most λ∗. For each Ti ∈ F, where
1 6 i 6 k, our algorithm will compute a plane matching Mi of Pi of size at least 2ni5 with edges
of length at most (

√
2 +
√
3)λ∗ and returns

⋃k
i=1Mi. To describe the algorithm for tree Ti on

vertex set Pi, we will write P, T , n, M instead of Pi, Ti, ni, Mi, respectively. Thus, P is a set of n
points, where n is even, and T is a minimum spanning tree of Pi.

Consider the minimum spanning tree T of P having degree at most five, and let T ′ be the
skeleton tree of T . Suppose that T ′ has at least two vertices. We will use the following notation.
Let v ′ be a leaf in T ′, and let w ′ be the neighbor of v ′. Recall that v ′ and w ′ are copies of vertices
v and w in T . In T , we consider the clockwise ordering of the neighbors of v. Let this ordering be
w,u1,u2, . . . ,uk for some 1 6 k 6 4. Clearly u1, . . . ,uk are leaves in T . Consider two leaves ui
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and uj where i < j. We define cw(uivuj) as the clockwise angle from vui to vuj. We say that the
leaf v ′ (or its copy v) is an anchor if k = 2 and cw(u1vu2) > π. See Figure 5.5.

v′

v

u1

u2

u3

vi

u1

u2

w

w′

cw(u1vu2)

cw(u1viu2)

Figure 5.5: The vertices around v are sorted clockwise, and vi is an anchor vertex.

Now we describe how one can iteratively compute a plane matching of proper size with
bounded-length edges from T . We start with an empty matching M. Each iteration consists of
two steps, during which we add edges to M. As we prove later, the output is a plane matching
of P of size at least 25n with bottleneck at most (

√
2+
√
3)λ∗.

5.4.2.1 Step 1

We keep applying the following process as long as T has more than six vertices and T ′ has some
non-anchor leaf. Note that T ′ has at least two vertices.

Take a non-anchor leaf v ′ in T ′ and according to the number k of leaves connected to v in T do
the following:

k = 1 add (v,u1) to M, and set T = T \ {v,u1}.

k = 2 since v ′ is not an anchor, cw(u1vu2) < π. By Lemma 5.6 the triangle 4u1vu2 is empty. We
add (u1,u2) to M, and set T = T \ {u1,u2}.

k = 3 in this case v has degree four and at least one of cw(u1vu2) and cw(u2vu3) is less than
π. W.l.o.g. suppose that cw(u1vu2) < π. By Lemma 5.6 the triangle 4u1vu2 is empty. Add
(u1,u2) to M and set T = T \ {u1,u2}.

k = 4 this case is handled similarly as the case k = 3.

At the end of Step 1, T has at most six vertices or all the leaves of T ′ are anchors. In the former
case, we add edges to M as will be described in Section 5.4.2.3 and after which the algorithm
terminates. In the latter case we go to Step 2.

5.4.2.2 Step 2

In this step we deal with the case that T has more than six vertices and all the leaves of T ′ are
anchors. We define the second level skeleton tree T ′′ to be the skeleton tree of T ′. In other words, T ′′

is the tree which is obtained from T ′ by removing all the leaves. For clarity we use w to refer to a
leaf of T ′′, and we use w, w ′, and w ′′, respectively, to refer to the copies of vertex w in T , T ′, and
T ′′. For now suppose that T ′′ has at least two vertices. Consider a leaf w ′′ and its neighbor y ′′ in
T ′′. Note that in T , w is connected to y, to at least one anchor, and possibly to some leaves of T .
After Step 1, the copy of w ′′ in T ′, i.e. w ′, is connected to anchors v ′1, . . . , v ′k in T ′ (or v1, . . . , vk in



5.4 approximating bottleneck plane perfect matching 95

T ) for some 1 6 k 6 4, and connected to at most 4− k leaves of T . In T , we consider the clockwise
ordering of the non-leaf neighbors of w. Let this ordering be y, v1, v2, . . . , vk. We denote the pair
of leaves connected to anchor vi by ai and bi in clockwise order around vi; see Figure 5.6.

v1

v2

v3

wy

w′′y′′

a1
b1

a2

b2
a3

b3

wv1

a1

b1

x1

x2

Figure 5.6: Second level skeleton tree T ′′ is surrounded by dashed line. vi’s are ordered clockwise around
leaf vertex w ′′, as well as xi’s. ai and bi are ordered clockwise around vi.

In this step we pick an arbitrary leaf w ′′ ∈ T ′′ and according to the number of anchors incident
to w ′′, i.e. k, we add edges to M. Since 1 6 k 6 4, four cases occur and we discuss each case
separately. Before that, we state some lemmas.

vi

x

ai

bi

w

P1

Figure 5.7: Illustrating Lemma 5.17.

lemma 5 .17. Letw ′′ be a leaf in T ′′. Consider an anchor vi which is adjacent tow in T . For any neighbor
x of w for which x 6= vi, if cw(viwx) 6 π/2 (resp. cw(xwvi) 6 π/2), the polygon P1 = {vi, x,w,ai}
(resp. P2 = {vi,bi,w, x}) is convex and empty.

Proof. We prove the case when cw(viwx) 6 π/2; see Figure 5.7. The proof for the second case is
symmetric. To prove the convexity of P1 we show that the diagonals viw and aix of P1 intersect
each other. To show the intersection we argue that ai lies to the left of −→xvi and to the right of −→xw.

Consider −→xvi. According to Lemma 5.6, triangle 4vixw is empty so bi lies to the right of
−→xvi. On the other hand, vi is an anchor, so cw(aivibi) > π, and hence ai lies to the left of
−→xvi. Now consider −→xw. For the sake of contradiction, suppose that ai is to the left of −→xw. Since
cw(viwx) 6 π/2, the angle cw(aiwvi) is greater than π/2. This means that viai is the largest
side of 4aiwvi, which contradicts that viai is an edge of MST(P). So ai lies to the right of −→xw.
Therefore, viw intersects aix and P1 is convex. P1 is empty because by Lemma 5.6, the triangles
4viwx and 4viwai are empty.

lemma 5 .18. Let w ′′ be a leaf in T ′′ and consider the clockwise sequence v1, . . . , vk of anchors that are
incident on w. The sequence of vertices a1, v1,b1, . . . ,ak, vk,bk are angularly sorted in clockwise order
around w.
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vivj
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Figure 5.8: Proof of Lemma 5.18.

Proof. Using contradiction, consider two vertices vi and vj, and assume that vi comes before vj
and aj comes before bi in the clockwise order; see Figure 5.8. Either aj is in 4wvibi or bi is in
4wvjaj. However, by Lemma 5.6, neither of these two cases can happen.
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Figure 5.9: Illustrating Lemma 5.19.

lemma 5 .19. Let w ′′ be a leaf in T ′′ and consider the clockwise sequence v1, . . . , vk of anchors that are
adjacent to w. Let 1 6 i < j 6 k and let x be a neighbor of w for which x 6= vi and x 6= vj.

1. If x is between vi and vj in the clockwise order:

a) if ai is to the right of −→xw, then P1 = {x,w,ai, vi} is convex and empty.

b) if ai is not to the right of −→xw, then P2 = {w, x, vj,bj} is convex and empty.

2. If vj is between vi and x, or vi is between x and vj in the clockwise order:

a) if bi is to the left of −→xw, then P3 = {w, x, vi,bi} is convex and empty.

b) if bi is not to the left of −→xw, then P4 = {x,w,aj, vj} is convex and empty.

Proof. We only prove the first case, the proof for the second case is symmetric. Thus, we assume
that x is between vi and vj in the clockwise order. First assume that ai is to the right of −→xw. See
Figure 5.9(a). Consider

−−→
bivi. Since vi is an anchor, ai cannot be to the right of

−−→
bivi, and according

to Lemma 5.6, x cannot be to the right of
−−→
bivi. For the same reasons, both the vertices bj and x

cannot be to the left of −−→ajvj. Now consider −→xw. By assumption, ai is to the right of −→xw. Therefore
xai intersects wvi and hence P1 is convex.
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Now assume that ai is not to the right of −→xw; see Figure 5.9(b). By Lemma 5.18, bj is to the
left of −→xw. Therefore, xbj intersects wvj and hence P2 is convex. The emptiness of the polygons
follows directly from Lemma 5.6.
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Figure 5.10: Illustrating Lemma 5.20.

lemma 5 .20. Let w ′′ be a leaf in T ′′ and consider the clockwise sequence v1, . . . , vk of anchors that
are incident on w. If 4 6 k 6 5, then at least one of the pentagons P1 = {a1, v1, v2,b2,w} and P2 =

{ak−1, vk−1, vk,bk,w} is convex and empty.

Proof. We prove the case when k = 4; the proof for k = 5 is analogous. By Lemma 5.18, a1
comes before b4 in the clockwise order. Consider −−→a1w; see Figure 5.10. Let l(a1,b2) denote
the line through a1 and b2. If b2 is to the left of −−→a1w, then l(a1,b2) separates w from v1 and v2.
Otherwise, b2 is to the right of −−→a1w. Now consider

−−→
b4w. If a3 is to the right of

−−→
b4w, then l(a3,b4)

separates w from v3 and v4. The remaining case, i.e., when a3 is to the left of
−−→
b4w, cannot happen

by Lemma 5.18 (because, otherwise, a3 would come before b2 in the clockwise order).
Thus, we have shown that (i) l(a1,b2) separates w from v1 and v2 or (ii) l(a3,b4) separates w

from v3 and v4. Assume w.l.o.g. that (i) holds. Now to prove the convexity of P1 we show that all
internal angles of P1 are less than π. Since v1 is an anchor, cw(b1v1a1) 6 π. By Lemma 5.6, b1 is
to the left of of −−→v1v2. Therefore, cw(v2v1a1) < cw(b1v1a1) 6 π. On the other hand cw(wv1a1) >
π/3, so in 4a1v1w, cw(v1a1w) 6 2π/3. By a similar analysis cw(b2v2v1) and cw(wb2v2) are
less than π. In addition, cw(a1wb2) in 4a1wb2 is less than π. Thus, P1 is convex. Its emptiness
is assured from the emptiness of the triangles 4v2wb2, 4v1wa1 and 4v1wv2.

Now we are ready to present the details of Step 2. Recall that T has more than six vertices
and all leaves of T ′ are anchors. In this case T ′′ has at least one vertex. If T ′′ has exactly one
vertex, we add edges to M as will be described in Section 5.4.2.3 and after which the algorithm
terminates. Assume that T ′′ has at least two vertices. Pick a leaf w ′′ in T ′′. As before, let v1, . . . , vk
where 1 6 k 6 4 be the clockwise order of the anchors connected to w. Let x1, . . . , x` where
` 6 4− k 6 3 be the clockwise order of the leaves of T connected to w; see Figure 5.6. This means
that deg(w) = 1+ k+ `, where k+ ` 6 4. Now we describe different configurations that may
appear at w, according to k and `.

case 1 : assume k = 1. If ` = 0 or 1, add (a1, v1) and (b1,w) to M and set T = T \ {a1,b1, v1,w}.
If ` = 1 remove x1 from T as well. If ` = 2, consider αi as the acute angle between segments
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wv1 and wxi. W.l.o.g. assume α1 = min(α1,α2). Two cases may arise: (i) α1 6 π/2, (ii)
α1 > π/2. If (i) holds, w.l.o.g. assume that x1 comes before v1 in clockwise order around
w. According to Lemma 5.17 polygon P = {v1,b1,w, x1} is convex and empty. So we add
(v1,a1), (b1, x1) and (x2,w) to M. Other cases are handled in a similar way. If (ii) holds,
according to Lemma 5.6 triangle 4x1wx2 is empty. So we add (v1,a1), (b1,w) and (x1, x2)
to M. In both cases set T = T \ {a1,b1, v1, x1, x2,w}. If ` = 3, remove x3 from T and handle
the rest as ` = 2.

case 2 : assume k = 2. If ` = 0, we add (v1,a1), (b1,w), and (v2,a2) to M. If ` = 1 suppose
that x1 comes before v1 in clockwise ordering. According to Lemma 5.19 one of polygons
P3 and P4 is empty; suppose it be P3 = {w, x1, v1,b1} (where i = 1 and j = 2 in Lemma
5.19). Thus we add (v1,a1), (b1, x1), (v2,a2) and (b2,w) to M. In both cases set T = T \ {a1,
b1, v1,a2,b2, v2,w} and if ` = 1 remove x1 from T as well. If ` = 2, remove x2 from T and
handle the rest as ` = 1.

case 3 : assume k = 3. If ` = 0 then set M = M ∪ {(v1,a1), (b1,w), (v2,a2), (v3,a3)}. If ` = 1,
consider βi as the acute angle between segments wx1 and wvi. W.l.o.g. assume β2 has
minimum value among all βi’s and x1 comes after v2 in clockwise order. According to
Lemma 5.19 one of polygons P1 and P2 is empty; suppose it be P1 = {w, x1, v2,a2} (where
i = 2 and j = 3 in Lemma 5.19). Thus we set M = M ∪ {(v2,b2), (a2, x1), (v1,a1), (b1,w),
(v3,a3)}. In both cases set T = T \ {a1,b1, v1,a2,b2, v2,a3,b3, v3,w} and if ` = 1 remove x1
from T as well. Other cases can be handled similarly.

v1

v2
v3

v4
a1

b1

a2

b2 a3

b3

a4

b4

w

α1

α2

P1

P3

Figure 5.11: The vertex v1 is shared between P1 and P3.

case 4 : assume k = 4. According to Lemma 5.20 one of P1 = {a1, v1, v2,b2,w} and P2 =

{a3, v3, v4,b4,w} is convex and empty. Again by Lemma 5.20 one of P3 = {a4, v4, v1,b1,w}
and P4 = {a2, v2, v3,b3,w} is also convex and empty. Without loss of generality assume
that P1 and P3 are empty. See Figure 5.11. Clearly, these two polygons share a vertex (v1 in
Figure 5.11). Let α1 = cw(b1, v1,w) which is contained in P3 and α2 = cw(w, v1,a1) which
is contained in P1. We pick one of the polygons P1 and P3 which minimizes αi, i = 1, 2. Let
P1 be that polygon. So we set M =M∪ {(v1,b1), (v2,a2), (a1,b2), (v3,a3), (b3,w), (v4,a4)}
and set T = T \ {a1,b1, v1,a2,b2, v2,a3,b3, v3,a4,b4, v4,w}.

This concludes Step 2. Go back to Step 1.
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5.4.2.3 Base Cases

In this section we describe the base cases of our algorithm. As mentioned in Steps 1 and 2, we
may have two base cases: (a) T has at most t 6 6 vertices, (b) T ′′ has only one vertex.

(a) t6 6 Suppose that T has at most six vertices.

t = 2 it can happen only if t = n = 2, and we add the only edge to M.

t = 4 , 5 in this case we match four vertices. If t = 4, T could be a star or a path of length three,
and in both cases we match all the vertices. If t = 5, remove one of the leaves and match
other four vertices.

t = 6 in this case we match all the vertices. If one of the leaves connected to a vertex of degree
two, we match those two vertices and handle the rest as the case when t = 4, otherwise,
each leaf of T is connected to a vertex of degree more than two, and hence T ′ has at most
two vertices. Figure 5.12(a) shows the solution for the case when T ′ has only one vertex and
T is a star; note that at least two angles are less than π. Now consider the case when T ′ has
two vertices, v1 and v2 , which have degree three in T . Figure 5.12(b) shows the solution for
the case when neither v1 nor v2 is an anchor. Figure 5.12(c) shows the solution for the case
when v1 is an anchor but v2 is not. Figure 5.12(d) shows the solution for the case when both
v1 and v2 are anchors. Since v2 is an anchor in Figure 5.12(d), at least one of cw(b2v2v1)

and cw(v1v2a2) is less than or equal to π/2. W.l.o.g. assume cw(v1v2a2) 6 π/2. By
Lemma 5.17 polygon P = {v1 , a2 , v2 , a1 } is convex and empty. We add (v1 , b1), (v2 , b2),
and (a1 , a2) to M.

t = 1 , 3 this case could not happen. Initially t = n is even. Consider Step 1; before each iteration
t is bigger than six and during the iteration two vertices are removed from T . So, at the end
of Step 1, t is at least five. Now consider Step 2; before each iteration T ′′ has at least two
vertices and during the iteration at most one vertex is removed from T ′′. So, at the end of
Step 2, T ′′ has at least one vertex that is connected to at least one anchor. This means that t
is at least four. Thus, t could never be one or three before and during the execution of the
algorithm.

v

u1

u4

u2

u5

u3

v1

a1

v2

b1

b2

a2

v1

a1

v2

b1

b2

a2

v1

a1

v2

b1

b2

a2

(a) (b) (c) (d)

Figure 5.12: The bold (solid and dashed) edges are added to M and all vertices are matched. (a) a star, (b)
no anchor, (c) one anchor, and (d) two anchors.

(b) T ′′ has one vertex In this case, the only vertex w ′′ ∈ T ′′ is connected to at least two
anchors, otherwise w ′′ would have been matched in Step 1. So we consider different cases when
w is connected to k, 2 6 k 6 5 anchors and ` 6 5 − k leaves of T :
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k = 2 if ` = 0 , 1 , 2 we handle it as Case 2 in Step 2. If ` = 3, at least two leaves are consecutive,
say x1 and x2 . Since cw(x1wx2) < π we add (x1 , x2) to M and handle the rest like the
case when ` = 1.

k = 3 if ` = 2 remove x2 from T . Handle the rest as Case 3 in Step 2.

k = 4 if ` = 1 remove x1 from T . Handle the rest as Case 4 in Step 2.

k = 5 add (v5,a5) to M, remove a5, b5, v5 from T , and handle the rest as Case 4 in Step 2.

This concludes the algorithm.

lemma 5 .21. The convex empty regions that are considered in different iterations of the algorithm, do
not overlap.

Proof. In Step 1, Step 2 and the base cases, we used three types of convex empty regions; see
Figure 5.13. Using contradiction, suppose that two convex regions P1 and P2 overlap. Since the
regions are empty, no vertex of P1 is in the interior of P2 and vice versa. Then, one of the edges
in MST(P) that is shared with P1 intersects some edge in MST(P) that is shared with P2, which
is a contradiction.

Figure 5.13: Empty convex regions. Bold edges belong to MST(P).

theorem 5 .22. Let P be a set of n points in the plane, where n is even, and let λ∗ be the minimum
bottleneck length of any plane perfect matching of P. In O(n logn) time, a plane matching of P of size at
least 2n5 can be computed, whose bottleneck length is at most (

√
2+
√
3)λ∗.

Proof. Proof of planarity: In each iteration, in Step 1, Step 2, and in the base cases, the edges added
to M are edges of MST(P) or edges inside convex empty regions. By Lemma 5.21 the convex
empty regions in each iteration will not be intersected by the convex empty regions in the next
iterations. Therefore, the edges of M do not intersect each other and M is plane.

Proof of matching size: In Step 1, in each iteration, all the vertices which are excluded from T are
matched. In Step 2, when k = ` = 1 we match four vertices out of five, and when k = 3, ` = 0 we
match eight vertices out of ten. In base case (a) when t = 5 we match four vertices out of five. In
base case (b) when k = 3, ` = 0 we match eight vertices out of ten. In all other cases of Step 2 and
the base cases, the ratio of matched vertices is more than 4/5. Thus, in each iteration at least 4/5
of the vertices removed from T are matched and hence |Mi| >

2ni
5 . Therefore,

|M| =

k∑
i=1

|Mi| >
k∑
i=1

2ni
5

=
2n

5
.

Proof of edge length: By Lemma 5.16 the length of edges of T is at most λ∗. Consider an edge
e ∈M and the path δ between its end points in T . If e is added in Step 1, then |e| 6 2λ∗ because
δ has at most two edges. If e is added in Step 2, δ has at most three edges (|e| 6 3λ∗) except in
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Case 4. In this case we look at δ in more detail. We consider the worst case when all the edges
of δ have maximum possible length λ∗ and the angles between the edges are as big as possible;
see Figure 5.14. Consider the edge e = (a1,b2) added to M in Case 4. Since v2 is an anchor and
cw(wv2a2) > π/3, the angle cw(b2v2w) 6 2π/3. As our choice between P1 and P3 in Case 4,
cw(w, v1,a1) 6 π/2. Recall that e avoids w, and hence |e| 6 (

√
2+
√
3)λ∗. The analysis for the

base cases is similar.

v1

a1

v2

b1

b2

a2

w

90◦

120◦

√
3

√
2

Figure 5.14: Path δ (in bold) with four edges of length λ∗ between end points of edge (a1,b2).

Proof of complexity: The Delaunay triangulation of P can be computed in O(n logn) time. Using
Kruskal’s algorithm, the forest F of even components can be computed in O(n logn) time. In Step
1 (resp. Step 2) in each iteration, we pick a leaf of T ′ (resp. T ′′) and according to the number of
leaves (resp. anchors) connected to it we add some edges to M. Note that in each iteration we
can update T , T ′ and T ′′ by only checking the two hop neighborhood of selected leaves. Since the
two hop neighborhood is of constant size, we can update the trees in O(1) time in each iteration.
Thus, the total running time of Step 1, Step 2, and the base cases is O(n) and the total running
time of the algorithm is O(n logn).

5.5 conclusions

We considered the NP-hard problem of computing a bottleneck plane perfect matching of a
point set. Abu-Affash et al. [2] presented a 2

√
10-approximation for this problem. We used the

maximum plane matching problem in unit disk graphs (UDG) as a tool for approximating a
bottleneck plane perfect matching. In Section 5.3.1 we presented a polynomial time algorithm
which computes a plane matching of size n

6 in UDG. We also presented a 2
5 -approximation

algorithm for computing a maximum matching in UDG. By extending this algorithm we showed
how one can compute a bottleneck plane matching of size n

5 with edges of optimum-length. A
modification of this algorithm gives us a plane matching of size at least 2n5 with edges of length
at most

√
2+
√
3 times the optimum.
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6
B O T T L E N E C K P L A N E M AT C H I N G S I N B I PA RT I T E G R A P H S

Given a set of n red points and n blue points in the plane, we are interested to match the red
points with the blue points by straight line segments in such a way that the segments do not
cross each other and the length of the longest segment is minimized. In general, this problem in
NP-hard. We give exact solutions for some special cases of the input point set.

This chapter is published is published in the proceedings of the 26th Canadian Conference on
Computational Geometry (CCCG 2014) [3].

6.1 introduction

We study the problem of computing a bottleneck non-crossing matching of red and blue points
in the plane. Let R = {r1, . . . , rn} be a set of n red points and B = {b1, . . . ,bn} be a set of
n blue points in the plane. A RB-matching is a non-crossing perfect matching of the points by
straight line segments in such a way that each segment has one endpoint in B and one in R.
The length of the longest edge in an RB-matching M is known as bottleneck which we denote
by λM. The bottleneck bichromatic matching (BBM) problem is to find a non-crossing matching
M∗ with minimum bottleneck λ∗. Carlsson et al. [4] showed that the bottleneck bichromatic
matching problem is NP-hard. Moreover, when all the points have the same color, the bottleneck
non-crossing perfect matching problem is NP-hard [1].

Notice that, the bottleneck (possibly crossing) perfect matching of red and blue points can be
computed exactly in O(n1.5 logn) time [5]. In addition, a non-crossing perfect matching of red
and blue points always exists and can be computed in O(n logn) time by applying the ham
sandwich cut recursively. In [2] the authors considered the problem of non-crossing matching of
points with different geometric objects.

In this chapter we present exact solutions for some special cases of the BBM problem when the
points are arranged in convex position, boundary of a circle, and on a line. For simplicity, in the
rest of the chapter we refer to a RB-matching as a “matching”.

6.2 points in convex position

In this section we deal with the case when R∪B form the vertices of a convex polygon. Carlsson
et al. [4] presented anO(n4 logn)-time algorithm for points on convex position. We improve their
result to O(n3) time. Let P denote the union of R and B, that is P = {r1, . . . , rn,b1, . . . ,bn}. We
have the following observation:

observation 6 .1. Let (ri,bj) be an edge in any RB-matching of P, then there are the same number of
red and blue points on each side of the line passing through ri and bj.

Using Observation 6.1, we present a dynamic programming algorithm which solves the BBM
problem for P. For simplicity of notation, let P = {p1, . . . ,p2n} denote the sequence of the vertices
of the convex polygon in counter clockwise order, starting at an arbitrary vertex p1; see Figure
6.1. By Observation 6.1, we denote (pi,pj) as a feasible edge if pi and pj have different colors and

103
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the sequence pi+1, . . . ,pj−1 contains the same number of red and blue points. In other words we
say that pj is a feasible match for pi, and vice versa. Let Fi denote the set of feasible matches for pi.
Figure 6.1 shows that F1 = {p4,p8,p10}. Therefore, we define a weight function w which assigns
a weight wi,j to each pair (pi,pj), where

wi,j =

{
|pipj| : if (pi,pj) is a feasible edge

+∞ : otherwise

p1 p2
p3

p4

p5

p6

p7p8
p9

p10

p11

p12

Figure 6.1: Points arranged on convex position.

Consider any subsequence Pi,j = {pi, . . . ,pj} of P, where 1 6 i < j 6 2n. Let A[i, j] denote the
bottleneck of the optimal matching in Pi,j if Pi,j has an RB-matching; otherwise, A[i, j] = +∞. So
A[1, 2n] denotes the optimal solution for P. We use dynamic programming to compute A[1, 2n].
We derive a recurrence for A[i, j]. For a feasible edge (pi,pk) where i+ 1 6 k 6 j and pk ∈ Fi,
the values of the sub-problems to the left and right of (pi,pk) are A[i+ 1,k− 1] and A[k+ 1, j].
We match pi to a feasible point pk which minimizes the bottleneck. Thus,

A[i, j] = min
i+16k6j
pk∈Fi

{max{wi,k,A[i+ 1,k− 1],A[k+ 1, j]}}.

The size of A (which is the total number of sub-problems) is O(n2). For each sub-problem
A[i, j] we have at most k = j− i lookups in A. Therefore, the total running time is O(n3).

theorem 6 .2. Given a set B of n blue points and a set R of n red points in convex position, one can
compute a bottleneck non-crossing RB-matching in time O(n3) and in space O(n2).

Note that in [1] the authors showed that for points in convex position and when all the points
have the same color, a bottleneck plane matching can be computed in O(n3) time and O(n2)

space via dynamic programming. They obtained the same time and space complexities for the
bichromatic set of points.

6.2.1 Points on Circle

In this section we consider the BBM problem when the points in R and B are arranged on the
boundary of a circle. Clearly, we can use the same algorithm as for points in convex position
to solve this problem in O(n3) time. But for points on a circle we can do better; we present an
algorithm running in O(n2) time. Consider P = {p1, . . . ,p2n} as the sequence of the points in
counter clockwise order on a circle. We prove that there is an optimal matching M∗, such that
each point pi ∈ P is connected to its first feasible match in the clockwise or counter clockwise
order from pi.
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pk

pj

pi

(a) (b)

Figure 6.2: (a) illustrating the proof of Lemma 6.3, (b) the resulting graph of procedure CompareToOpt.

lemma 6 .3. There is an optimal RB-matching for a point set P on a circle, such that each pi ∈ P is
connected to its first feasible match in the clockwise or counter clockwise order from pi.

Proof. Consider an optimal matching M∗ with an edge (pi,pj). Consider two arcs p̂ipj and p̂jpi.
W.l.o.g. let p̂ipj be the smaller one. Clearly, the distance between any two points on p̂ipj is at
most |pipj|. If pi+1, . . . ,pj−1 contains no feasible match for pi, then pj is the first feasible match
to the right of pi. Otherwise, let pk be the first feasible match for pi in p̂ipj; see Figure 6.2(a). By
connecting pi to pk we have two smaller arcs ̂pi+1pk−1 and p̂k+1pj. Obviously, |pipk| < |pipj|,
and any matching of the vertices on ̂pi+1pk−1 and p̂k+1pj have the bottleneck smaller than |pipj|.
By repeating this process for all edges of M∗ and all new edges, we obtain a matching M which
satisfies the statement of the lemma and λM 6 λ∗.

As a result of Lemma 6.3, for each point pi ∈ P, we consider at most two feasible matches in Fi.
Thus, using the dynamic programming idea of the previous section, for each sub-problem A[i, j]
we have at most two lookups in A. Thus, it takes O(n2) time to fill the table A. By preprocessing
P, for each point pi ∈ P we can find its first matched points in O(n2) time. Thus, the total running
time of the algorithm is O(n2).

6.2.1.1 A Faster Algorithm

Let R = {r1, . . . , rn} be a set of n red points and B = {b1, . . . ,bn} be a set of n blue points on the
boundary of a circle C. Without loss of generality let P = {p1, . . . ,p2n} be the clockwise ordered
set of all the points. In this section we present an O(n logn) time algorithm which solves the
BBM problem for P.

Let Fi denote the first feasible matches of pi in clockwise and counter-clockwise order. Note
that |Fi| 6 2. We describe how one can compute Fi for all points in P in linear time. First, consider
the case that we are looking for the first clockwise-feasible match for each red point. We make
a copy P ′ of P. Consider an empty stack, and start from an arbitrary red point rstart and walk
on P ′ clockwise. If we see a red point, push it onto the stack. If we see a blue point pj and the
stack is not empty, we pop a red point pi from the stack and add pj to Fi, and delete pi and pj
from P ′. If we see a blue point pj and stack is empty, we do nothing. The process stops as soon
as we find the proper match for each red vertex. As we visit each point in P at most twice, this
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step takes linear time. We can do the same process for the counter-clockwise order. Therefore, Fi
for all 1 6 i 6 2n can be computed in O(n) time.

Let F denote the set of all feasible edges, in sorted order of their lengths. Let G be the graph
with vertex set P and edge set F. Note that the degree of each vertex in G is at most two and hence
the total number of edges is 2n. Let Gλ be the subgraph of G containing all the edges of length
at most λ. Our algorithm performs a binary search on the edges in G and for each considered
edge e, we use the following procedure to decide whether Gλ, where λ = |e|, has a non-crossing
perfect matching. The running time of the algorithm is O(n logn).

rt

`

Q rt

`

Ql

Qr

bk
`

+∞

(a) (b) (c)

Figure 6.3: (a) definition of a sub-problem, (b) possible matching edges for rt, and (c) Qr returns +∞ as it
does not contain a matching; recurse on Ql.

For each edge e = (pi,pj) in Gλ let Ie be the set of all vertices of P in the smaller arc between
pi and pj, including pi and pj. Let P0 and P1 be the lists of vertices of degree zero and one in
Gλ, respectively. If P0 is non-empty, then it is obvious that a perfect matching does not exist. If
P0 is empty and P1 is non-empty, then for each point p ∈ P1, do the following. Let e = (p,q) be
the only edge incident to p. It is obvious that any perfect matching in Gλ should contain e. In
addition, (p,q) is a feasible edge, and then all the points in Ie can be matched properly. Thus, we
can remove the points of Ie from Gλ. Note that this changes the lists P0 and P1. The algorithm
CompareToOpt receives Gλ as input and decides whether it has a perfect non-crossing matching.

Algorithm 5 CompareToOpt(Gλ)
Input: a graph Gλ
Output: TRUE, if Gλ has a non-crossing perfect matching, FALSE, otherwise

1: P0 ← vertices of degree zero in Gλ
2: P1 ← vertices of degree one in Gλ
3: while P0 6= ∅ or P1 6= ∅ do
4: if P0 6= ∅ then return FALSE
5: p← a vertex in P1
6: q← the vertex adjacent to p in Gλ
7: for each r in I(p,q) do
8: remove r and its adjacent edges from Gλ
9: update P0 and P1

10: return TRUE

The algorithm CompareToOpt consider each vertex and each edge once, so it executes in linear
in the size of Gλ. At the end of the while loop, we have P0 = P1 = ∅. All the vertices of the
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remaining part of Gλ have degree two and this case is the same as the problem that we started
with (BBM problem) and by Lemma 6.3, it has a perfect non-crossing matching, thus we return
TRUE. See Figure 6.2(b).

Notice that, if the procedure returns FALSE for some λ, then we know that λ < λ∗. Let e
be the shortest edge for which the procedure returns TRUE. Thus |e| > λ∗, and a bottleneck
RB-matching is contained in Gλ, where λ = |e|.

theorem 6 .4. Given a set B of n blue points and a set R of n red points on a circle, one can compute a
bottleneck non-crossing RB-matching in time O(n logn) and in space O(n).

6.3 blue points on straight line

In this section we deal with the case where the blue points are on a horizontal line and the red
points are on one side of the line. Formally, given a sequence B1,n = b1, . . . ,bn of n blue points
on a horizontal line ` and n red points above `, we are interested to find a non-crossing matching
M between the points in R and B, such that the length of the longest edge in M is minimized. We
show how to build dynamic programming algorithms that solve this problem. In Section 6.3.1 we
present a bottom-up dynamic programming algorithm that solves this problem in O(n5) time. In
Section 6.3.2 we present a top-down dynamic programming algorithm for this problem running
in O(n4) time.

6.3.1 First algorithm

In this section we present a dynamic programming algorithm for the problem. We define a
subproblem (R ′,B ′) in the following way: given a quadrilateral Q with one face on `, we are
looking for a bottleneck RB-matching in Q, where R ′ = R ∩Q and B ′ = B ∩Q. For simplicity,
we may refer to the sub-problem (R ′,B ′) as its bounding box Q. In the top level we imagine
a bounding quadrilateral which contains all the points of R and B. See Figure 6.3(a). Let b(Q)

denote the bottleneck of the sub-problem Q. If Q is empty, we set b(Q) = 0. If Q is not empty but
|R ′| 6= |B ′|, we set b(Q) = +∞, as it is not possible to have a RB-matching for (R ′,B ′). Otherwise,
we have |R ′| = |B ′| > 0; let rt be the topmost red point in R ′ in Q. It has at most |B ′| possible
matching edges. Each of the matching edges defines two new independent sub-problems Ql and
Qr to its left and right sides, respectively. See Figures 6.3(b) and 6.3(c). Thus, we can compute
the bottleneck of a sub-problem Q, using the following recursion:

b(Q) = min
bk∈B ′

{max{|rtbk|,b(Ql),b(Qr)}}.

Note that the y-coordinate of all the red points in Ql and Qr are smaller than y-coordinate of rt.
If we recurse this process on Ql and Qr, it is obvious that each sub-problem (R ′,B ′) is bounded
by the left and right sides of its corresponding quadrilateral. Thus, each sub-problem is defined
by a pair of edges (or possibly the edges of the outer bounding box).

Note that the total number of edges is n2 + 2 (including the edges of the outer box). The
dynamic programming table contains n2 + 2 rows and n2 + 2 columns, each corresponds to an
edge. The cells correspond to sub-problems. The dynamic programming table contains O(n4)
cells, and for each we have at most n pairs of possible sub-problems, which implies at most 2n
lookups in the table. Therefore, the algorithm runs in time O(n5) and space O(n4).
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6.3.2 Second algorithm

In this section we present a top-down dynamic programming algorithm that improves the result
of Section 6.3.1. Consider the problem (R,B), where B = B1,n = {b1, . . . ,bn}. Let rt be the topmost
red point. In any solution M to the problem, consider the edge (rt,bk) ∈ M which matches rt
to a point bk in B, then there is no edge in M that intersects (rt,bk). Thus, (rt,bk) is a feasible
edge if on each side of (rt,bk) the number of red points equals the number of blue points. In this
case, bk is a feasible match for rt. Recall that Ft denotes the set of all feasible matches for rt. See
Figure 6.4(a). In other words,

Ft = {k : (rt,bk) is a feasible edge}.

For a feasible edge (rt,bk), let Rl (resp. Rr) and Bl (resp. Br) be the red and blue points to the
left (resp. right) of (rt,bk), respectively. That is, the edge (rt,bk) divides the (R,B) problem into
two sub-problems (Rl,Bl) and (Rr,Br), where |Rl| = |Bl| and |Rr| = |Br|. Clearly, Bl = B1,k−1 =

{b1, . . . ,bk−1} and Br = Bk+1,n = {bk+1, . . . ,bn}. We develop the following recurrence to solve
the problem:

b(R,B) = min
k∈Ft

{max{|rtbk|,b(Bl,Rl),b(Br,Rr)}}.

Let lt denote the horizontal line passing through rt. Note that the y-coordinate of all red points
in Rl and Rr is smaller than the y-coordinate of rt, and hence they lie below lt. This implies that
the left (resp. right) sub-problem is contained in a trapezoidal region Tl (resp. Tr) with bounding
edges `, lt, and (rt,bk). See Figure 6.4(a). Since, in each step we have two sub-problems, in the
rest of this section we describe the process for the right sub-problem; the process for the left sub-
problem is symmetric. Note that rt is the top-left corner of the right sub-problem. Thus, given
Br and rt, we know that rt is connected to a blue point immediately to the left of Br. In addition,
we can find the red points assigned to the right sub-problem in the following way. Stand at a
blue point immediately to the right of Br and scan the plane clockwise, starting from `. Count
the red points in Tr while scanning, and stop as soon as the number of red points seen equals
the number of blue points in Br. These red points form the set Rr. See Figures 6.4(b) and 6.4(c).

Since, rt defines the right (resp. left) and top boundaries of Tl (resp. Tr) which contains the left
(resp. right) sub-problem, we call rt a “boundary vertex”. We define a sub-problem as a sequence
Bi,j = {bi, . . . ,bj} of blue points, a boundary vertex, rt, connected to bj+1 (resp. bi−1) for the left
(resp. right) sub-problem. More precisely, a sub-problem (Bi,j, rt,d) consists of an interval Bi,j,
a boundary vertex rt, and a direction d = {left, right} which indicates that rt is connected to a
point immediately to the left or to the right of Bi,j. For a sub-problem (Bi,j, t,d), where d = left

we find the vertex set Ri,j in the following way. Scan the plane by a clockwise rotating line s
anchored at bj+1. Count the red points in trapezoidal region formed by `, lt, and (rt,bi−1), and
stop as soon as j− i+ 1 red points have been encountered. These red points form the set Ri,j. See
Figures 6.4(b) and 6.4(c).

In the top level, we add points b0 and bn+1 on ` to the left and right of B, respectively. We add
a point r0 as the boundary vertex of the (R,B) problem in such a way that R and B are contained
in the trapezoid formed by `, l0, and the line segment r0b0. Thus in the top level we have the
sub-problem (B1,n, r0, left).

The dynamic programming table is a four-dimensional table A[1..n, 1..n, 0..n, 1..2], where the
first and second dimensions correspond to an interval of blue points, the third dimension corre-
sponds a boundary vertex, and the fourth dimension corresponds to the directions. For simplicity
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Figure 6.4: (a) feasible matches for rt, (b) scanning the red points in the trapezoidal region (shaded area),
and (c) the trapezoidal region which contains the same number of red and blue points.

we use l and r for left and right directions, respectively. Each cell A[i, j, t,d] stores the bottle-
neck of the sub-problem (Bi,j, rt,d), and we are looking for A[1,n, 0, l] which corresponds to the
bottleneck of M∗. We fill A in the following way:

A[i, j, t,d] = min
k∈Ft ′

{max{|rt ′bk|,A[i,k− 1, t ′, r],A[k+ 1, j, t ′, l]}},

where rt ′ is the topmost red point in the point set Ri,j assigned to (Bi,j, t,d).
Algorithm 6 computes the bottleneck of each subproblem using top-down dynamic program-

ming. In the top level, we execute LineMatching(1,n, 0, l). Before running algorithm LineMatch-
ing, for each point, we pre-sort the red points in the following way. For each red point r, we keep
a sorted list of all the red points below lr in clockwise order. For each blue point, we keep two
sorted lists of red points in clockwise and counter-clockwise orders. This step takes O(n2 logn)
time.

Algorithm 6 LineMatching(i, j, t,d)
Input: sequence Bi,j, top point rt, and direction d.
Output: bottleneck of M∗.

1: if A[i, j, t,d] > 0 then
2: return A[i, j, t,d]

3: if i > j then
4: return A[i, j, t,d]← 0

5: Ri,j ← j− i+ 1 red points assigned to Bi,j
6: t ′ ← top-index(Ri,j)
7: if i = j then
8: return A[i, j, t,d]← |rt ′bi|

9: b← +∞
10: Ft ′ ← indices of feasible blue points for rt ′
11: for each k ∈ Ft ′ do
12: A[i,k− 1, t ′, r]← LineMatching(i,k− 1, t ′, r)
13: A[k+ 1, j, t ′, l]← LineMatching(k+ 1, j, t ′, l)
14: m← max{|rt ′bk|,A[i,k− 1, t ′, r],A[k+ 1, j, t ′, l]}
15: if m < b then
16: b← m

17: return A[i, j, t,d]← b



110 bottleneck plane matchings in bipartite graphs

lemma 6 .5. Algorithm LineMatching computes the bottleneck of M∗ in O(n4) time.

Proof. Each cell A[i, j, t,d] corresponds to a sub-problem formed by an interval Bi,j, a boundary
vertex rt, and a direction d. The total number of possible Bi,j intervals is

(
n
2

)
+n (i can be equal

to j). For each interval, any of the n red points can be the corresponding boundary vertex, which
can be connected to the left or right side of the interval. Thus, the total number of subproblems
is 2n

(
n
2

)
+ 2n2 = O(n3). In order to compute Ri,j for each sub-problem, we use the sorted lists

assigned to bi−1 (or bj+1) and scan for the red points in the trapezoidal region. To compute the
feasible blue vertices for rt ′ ∈ Ri,j, we use the sorted list assigned to rt ′ and keep track of feasible
matches for rt ′ in Bi,j. Thus, for each sub-problem, we can compute Ri,j, rt ′ , and Ft ′ in linear
time. Therefore, the total running time of the algorithm is O(n4).

Finally, we reconstruct M∗ from A in linear time.

theorem 6 .6. Given a set B of n blue points on a horizontal line `, a set R of n red points above `, one
can compute a bottleneck non-crossing RB-matching in time O(n4) and in space O(n3).
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7
P L A N E M AT C H I N G S I N C O M P L E T E M U LT I PA RT I T E G R A P H S

Let P be a set of n points in general position in the plane which is partitioned into color classes.
P is said to be color-balanced if the number of points of each color is at most bn/2c. Given a color-
balanced point set P, a balanced cut is a line which partitions P into two color-balanced point
sets, each of size at most 2n/3+ 1. A colored matching of P is a perfect matching in which every
edge connects two points of distinct colors by a straight line segment. A plane colored matching
is a colored matching which is non-crossing. In this chapter, we present an algorithm which
computes a balanced cut for P in linear time. Consequently, we present an algorithm which
computes a plane colored matching of P optimally in Θ(n logn) time.

This chapter is published in the proceedings of the 14th International Symposium on Algo-
rithms and Data Structures (WADS’15) [8].

We also extended the results of this chapter to the case where the points are in a simple poly-
gon; the extension is not included in this thesis. However, the results have been published in
the Proceedings of the First international conference on Topics in Theoretical Computer Science
(TTCS’15) [6], and also published in the journal of Computational Geometry: Theory and Appli-
cations [7].

7.1 introduction

Let P be a set of n points in general position (no three points on a line) in the plane. Assume
P is partitioned into color classes, i.e., each point in P is colored by one of the given colors. P is
said to be color-balanced if the number of points of each color is at most bn/2c. In other words,
P is color-balanced if no color is in strict majority. For a color-balanced point set P, we define a
feasible cut as a line ` which partitions P into two point sets Q1 and Q2 such that both Q1 and Q2
are color-balanced. In addition, if the number of points in each of Q1 and Q2 is at most 2n/3+ 1,
then ` is said to be a balanced cut. The well-known ham-sandwich cut (see [13]) is a balanced cut:
given a set of 2m red points and 2m blue points in general position in the plane, a ham-sandwich
cut is a line ` which partitions the point set into two sets, each of them having m red points and
m blue points. Feasible cuts and balanced cuts are useful for convex partitioning of the plane
and for computing plane structures, e.g., plane matchings and plane spanning trees.

Assume n is an even number. Let {R,B} be a partition of P such that |R| = |B| = n/2. Let
Kn(R,B) be the complete bipartite geometric graph on P which connects every point in R to
every point in B by a straight-line edge. An RB-matching in P is a perfect matching in Kn(R,B).
Assume the points in R are colored red and the points in B are colored blue. An RB-matching
in P is also referred to as a red-blue matching or a bichromatic matching. A plane RB-matching is an
RB-matching in which no two edges cross. Let {P1, . . . ,Pk}, where k > 2, be a partition of P. Let
Kn(P1, . . . ,Pk) be the complete multipartite geometric graph on P which connects every point in
Pi to every point in Pj by a straight-line edge, for all 1 6 i < j 6 k. Imagine the points in P to be
colored, such that all the points in Pi have the same color, and for i 6= j, the points in Pi have a
different color from the points in Pj. We say that P is a k-colored point set. A colored matching of
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P is a perfect matching in Kn(P1, . . . ,Pk). A plane colored matching of P is a perfect matching in
Kn(P1, . . . ,Pk) in which no two edges cross. See Figure 7.1(a).

In this chapter we consider the problem of computing a balanced cut for a given color-balanced
point set in general position in the plane. We show how to use balanced cuts to compute plane
matchings in multipartite geometric graphs.

`

(a) (b)

Figure 7.1: (a) A plane colored matching. (b) Recursive ham sandwich cuts.

7.1.1 Previous Work

7.1.1.1 2-Colored Point Sets

Let P be a set of n = 2m points in general position in the plane. Let {R,B} be a partition of P such
that |R| = |B| = m. Assume the points in R are colored red and the points in B are colored blue. It is
well-known that Kn(R,B) has a plane RB-matching [1]. In fact, a minimum weight RB-matching,
i.e., a perfect matching that minimizes the sum of Euclidean length of the edges, is plane. A
minimum weight RB-matching in Kn(R,B) can be computed in O(n2.5 logn) time [16], or even
in O(n2+ε) time [2]. Consequently, a plane RB-matching can be computed in O(n2+ε) time. As a
plane RB-matching is not necessarily a minimum weight RB-matching, one may compute a plane
RB-matching faster than computing a minimum weight RB-matching. Hershberger and Suri [11]
presented an O(n logn) time algorithm for computing a plane RB-matching. They also proved a
lower bound of Ω(n logn) time for computing a plane RB-matching, by providing a reduction
from sorting.

Alternatively, one can compute a plane RB-matching by recursively applying the ham sandwich
theorem; see Figure 7.1(b). We say that a line ` bisects a point set R if both sides of ` have the same
number of points of R; if |R| is odd, then ` contains one point of R.

theorem 7 .1 (Ham Sandwich Theorem). For a point set P in general position in the plane which is
partitioned into sets R and B, there exists a line that simultaneously bisects R and B.

A line ` that simultaneously bisects R and B can be computed in O(|R|+ |B|) time, assuming R∪
B is in general position in the plane [13]. By recursively applying Theorem 7.1, we can compute
a plane RB-matching in Θ(n logn) time.

7.1.1.2 3-Colored Point Sets

Let P be a set of n = 3m points in general position in the plane. Let {R,G,B} be a partition of
P such that |R| = |G| = |B| = m. Assume the points in R are colored red, the points in G are
colored green, and the points in B are colored blue. A lot of research has been done to generalize
the ham sandwich theorem to 3-colored point sets, see e.g. [4, 5, 12]. It is easy to see that there
exist configurations of P such that there exists no line which bisects R, G, and B, simultaneously.
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Furthermore, for some configurations of P, for any k ∈ {1, . . . ,m− 1}, there does not exist any line
` such that an open half-plane bounded by ` contains k red, k green, and k blue points (see [5] for
an example). For the special case, where the points on the convex hull of P are monochromatic,
Bereg and Kano [5] proved that there exists an integer 1 6 k 6 m− 1 and an open half-plane
containing exactly k points from each color.

Bereg et al. [4] proved that if the points of P are on any closed Jordan curve γ, then for every
integer k with 0 6 k 6 m there exists a pair of disjoint intervals on γ whose union contains
exactly k points of each color. In addition, they showed that if m is even, then there exists a
double wedge that contains exactly m/2 points of each color.

Now, let P be a 3-colored point set of size n in general position in the plane, with n even.
Assume the points in P are colored red, green, and blue such that P is color-balanced. Let R, G,
and B denote the set of red, green, and blue points, respectively. Note that |R|, |G|, and |B| are at
most bn/2c, but, they are not necessarily equal. Kano et al. [12] proved the existence of a feasible
cut, when the points on the convex hull of P are monochromatic.

theorem 7 .2 (Kano et al. [12]). Let P be a 3-colored point set in general position in the plane, such
that P is color-balanced and |P| is even. If the points on the convex hull of P are monochromatic, then there
exists a line ` which partitions P into Q1 and Q2 such that both Q1 and Q2 are color-balanced and have
an even number of points and 2 6 |Qi| 6 |P|− 2, for i = 1, 2.

They also proved the existence of a plane perfect matching in Kn(R,G,B) by recursively apply-
ing Theorem 7.2. Their proof is constructive. Although they did not analyze the running time, it
can be shown that their algorithm runs in O(n2 logn) time as follows. If the size of the largest
color class is exactly n/2, then consider the points in the largest color class as R and the other
points as B, then compute a plane RB-matching; and we are done. If there are two adjacent points
of distinct colors on the convex hull, then match these two points and recurse on the remaining
points. Otherwise, if the convex hull is monochromatic, pick a point p ∈ P on the convex hull and
sort the points in P \ {p} around p. A line `—partitioning the point set into two color-balanced
point sets—is found by scanning the sorted list. Then recurse on each of the partitions. To find `
they spend O(n logn) time. The total running time of their algorithm is O(n2 logn).

Based on the algorithm of Kano et al. [12], we can show that a plane perfect matching in
Kn(R,G,B) can be computed in O(n log3 n) time. We can prove the existence of a feasible cut
for P, even if the points on the convex hull of P are not monochromatic. To find feasible cuts
recursively, we use the dynamic convex hull structure of Overmars and Leeuwen [14], which
uses O(log2 n) time for each insertion and deletion. Pick a point p ∈ P on the convex hull of
P and look for a point q ∈ P \ {p}, such that the line passing through p and q is a feasible cut.
Search for q, alternatively, in clockwise and counterclockwise directions around p. To do this,
we repeatedly check if the line passing through p and its (clockwise and counterclockwise in
turn) neighbor on the convex hull, say r, is a feasible cut. If the line through p and r is not
a feasible cut, then we delete r. At some point we find a feasible cut ` which divides P into
Q1 and Q2. Add the two points on ` to either Q1 or Q2 such that they remain color-balanced.
Let |Q1| = k and |Q2| > k. In order to compute the data structure for Q2, we use the current
data structure and undo the deletions on the side of ` which contains Q2. We rebuild the data
structure for Q1. Then, we recurse on Q1 and Q2. The running time can be expressed by T(n) =
T(n−k)+ T(k)+O(k log2 n), where k 6 n−k. This recurrence solves to O(n log3 n). Notice that,
because we undo the deletions on one side of ` and rebuild the data structure for the points on
the other side of `, any dynamic data structure that performs insertions and deletions in faster
amortized time may not be feasible.
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7.1.1.3 Multicolored Point Sets

Let {P1, . . . ,Pk}, where k > 2, be a partition of P and Kn(P1, . . . ,Pk) be the complete multipartite
geometric graph on P. A necessary and sufficient condition for the existence of a perfect matching
in Kn(P1, . . . ,Pk) follows from the following result of Sitton [15].

theorem 7 .3 (Sitton [15]). The size of a maximum matching in any complete multipartite graph
Kn1,...,nk , with n = n1 + · · ·+nk vertices, where n1 > · · · > nk, is

|Mmax| = min

{
k∑
i=2

ni,

⌊
1

2

k∑
i=1

ni

⌋}
.

Theorem 7.3 implies that if n is even and n1 6 n
2 , then Kn1,...,nk has a perfect matching. It is

obvious that if n1 > n
2 , then Kn1,...,nk does not have any perfect matching. Therefore,

corollary 7 .4. Let k > 2 and consider a partition {P1, . . . ,Pk} of a point set P, where |P| is even.
Then, Kn(P1, . . . ,Pk) has a colored matching if and only if P is color-balanced.

Aichholzer et al. [3], and Kano et al. [12] show that the same condition as in Corollary 7.4 is
necessary and sufficient for the existence of a plane colored matching in Kn(P1, . . . ,Pk):

theorem 7 .5 (Aichholzer et al. [3], and Kano et al. [12]). Let k > 2 and consider a partition
{P1, . . . ,Pk} of a point set P, where |P| is even. Then, Kn(P1, . . . ,Pk) has a plane colored matching if and
only if P is color-balanced.

In fact, they show something stronger. Aichholzer et al. [3] show that a minimum weight col-
ored matching in Kn(P1, . . . ,Pk), which minimizes the total Euclidean length of the edges, is
plane. Gabow [10] gave an implementation of Edmonds’ algorithm which computes a minimum
weight matching in general graphs in O(n(m+n logn)) time, where m is the number of edges in
G. Since P is color-balanced, Kn(P1, . . . ,Pk) has Θ(n2) edges. Thus, a minimum weight colored
matching in Kn(P1, . . . ,Pk), and hence a plane colored matching in Kn(P1, . . . ,Pk), can be com-
puted in O(n3) time. Kano et al. [12] extended their O(n2 logn)-time algorithm for the 3-colored
point sets to the multicolored case.

Since the problem of computing a plane RB-matching in Kn(R,B) is a special case of the prob-
lem of computing a plane colored matching in Kn(P1, . . . ,Pk), the Ω(n logn) time lower bound
for computing a plane RB-matching holds for computing a plane colored matching.

7.1.2 Our Contribution

Our main contribution, which is presented in Section 7.2, is the following: given any color-
balanced point set P in general position in the plane, there exists a balanced cut for P. Further, we
show that if n is even, then there exists a balanced cut which partitions P into two point sets each
of even size, and such a balanced cut can be computed in linear time. In Section 7.3, we present
a divide-and-conquer algorithm which computes a plane colored matching in Kn(P1, . . . ,Pk) in
Θ(n logn) time, by recursively finding balanced cuts in color-balanced subsets of P. In case P is
not color-balanced, then Kn(P1, . . . ,Pk) does not admit a perfect matching; we describe how to
find a plane colored matching with the maximum number of edges in Section 7.3.1. In addition,
we show how to compute a maximum matching in any complete multipartite graph in linear
time.
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7.2 balanced cut theorem

Given a color-balanced point set P with n > 4 points in general position in the plane, recall that
a balanced cut is a line which partitions P into two point sets Q1 and Q2, such that both Q1 and
Q2 are color-balanced and max{|Q1|, |Q2|} 6 2n

3 + 1. Let {P1, . . . ,Pk} be a partition of P, where
the points in Pi are colored Ci. In this section we prove the existence of a balanced cut for P.
Moreover, we show how to find such a balance cut in O(n) time.

If k = 2, the existence of a balanced cut follows from the ham sandwich cut theorem. If
k > 4, we reduce the k-colored point set P to a three colored point set. Afterwards, we prove the
statement for k = 3.

lemma 7 .6. Let P be a color-balanced point set of size n in the plane with k > 4 colors. In O(n) time
P can be reduced to a color-balanced point set P ′ with 3 colors such that any balanced cut for P ′ is also a
balanced cut for P.

Proof. We repeatedly merge the color families in P until we get a color-balanced point set P ′ with
three colors. Afterwards, we show that any balanced cut for P ′ is also a balanced cut for P.

Without loss of generality assume that C1, . . . ,Ck is a non-increasing order of the color classes
according to the number of points in each color class. That is, b|P|/2c > |P1| > · · · > |Pk| > 1 (note
that P is color-balanced). In order to reduce the k-colored problem to a 3-colored problem, we
repeatedly merge the two color families of the smallest cardinality. In each iteration we merge
the two smallest color families, Ck−1 and Ck, to get a new color class, C ′k−1, where P ′k−1 =

Pk−1 ∪ Pk. In order to prove that P ′ = P1 ∪ · · · ∪ Pk−2 ∪ P ′k−1 is color-balanced with respect to
the coloring C1, . . . ,Ck−2,C ′k−1 we have to show that |P ′k−1| 6 b|P ′|/2c. Note that before the
merge we have |P| = |P1| + · · · + |Pk−2| + |Pk−1| + |Pk|, while after the merge we have |P ′| =
|P1|+ · · ·+ |Pk−2|+ |P ′k−1|, where |P ′k−1| = |Pk−1|+ |Pk|. Since Pk−1 and Pk are the two smallest
and k > 4, |P ′k−1| 6 |P1|+ · · ·+ |Pk−2|. This implies that after the merge we have |P ′k−1| 6 b|P ′|/2c.
Thus P ′ is color-balanced. By repeatedly merging the points of the two smallest color families,
at some point we get a 3-colored point set P ′ which is color-balanced. Without loss of generality
assume that P ′ is colored by R, G, and B. Consider any balanced cut ` for P ′; ` partitions P ′ into
two sets Q1 and Q2, each of size at most 23n+ 1, such that the number points of each color in Qi
is at most b|Qi|/2c, where i = 1, 2. Note that the set of points in P colored Cj, for 1 6 j 6 k, is a
subset of points in P ′ colored either R, G, or B. Thus, the number of points colored Cj in Qi is at
most b|Qi|/2c, where j = 1, . . . ,k and i = 1, 2. Therefore, ` is a balanced cut for P.

In order to merge the color families, a monotone priority queue (see [9]) can be used, where the
priority of each color Cj is the number of points colored Cj. The monotone priority queue offers
insert and extract-min operations where the priority of an inserted element is greater than the
priority of the last element extracted from the queue. We store the color families in a monotone
priority queue of size n

2 (because all elements are in the range of 1 up to n
2 ). Afterwards, we

perform a sequence of O(k) extract-min and insert operations. Since k 6 n, the total time to merge
k color families is O(n).

According to Lemma 7.6, from now on we assume that P is a color-balanced point set consisting
of n points colored by three colors.

lemma 7 .7. Let P be a color-balanced point set of n > 4 points in general position in the plane with
three colors. In O(n) time we can compute a line ` such that

1. ` does not contain any point of P.
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2. ` partitions P into two point sets Q1 and Q2, where

a) both Q1 and Q2 are color-balanced,

b) both Q1 and Q2 contains at most 23n+ 1 points.

`

Q1

Q2

`Q1

Q2

r

x

(a) (b)

Figure 7.2: Illustrating the balanced cut theorem. The blue points in X are surrounded by circles. The line
` is a balanced cut where: (a) |R| is even, and (b) |R| is odd.

Proof. Assume that the points in P are colored red, green, and blue. Let R, G, and B denote the set
of red, green, and blue points, respectively. Without loss of generality assume that 1 6 |B| 6 |G| 6
|R|. Since P is color-balanced, |R| 6 bn2 c. Let X be an arbitrary subset of B such that |X| = |R|− |G|;
note that X = ∅ when |R| = |G|, and X = B when |R| = n

2 (where n is even). Let Y = B− X. Let `
be a ham sandwich cut for R and G∪X (pretending that the points in G∪X have the same color).
Let Q1 and Q2 denote the set of points on each side of `; see Figure 7.2(a). If |R| is odd, then
|G ∪ X| is also odd, and thus ` contains a point r ∈ R and a point x ∈ G ∪ X; see Figure 7.2(b). In
this case without loss of generality assume that the number of blue points in Q2 is at least the
number of blue points in Q1; slide ` slightly such that r and x lie in the same side as Q2, i.e. Q2
is changed to Q2 ∪ {r, x}. We prove that ` satisfies the statement of the theorem. The line ` does
not contain any point of P and by the ham sandwich cut theorem it can be computed in O(n)
time.

Now we prove that both Q1 and Q2 are color-balanced. Let R1, G1, and B1 be the set of red,
green, and blue points in Q1. Let X1 = X∩Q1 and Y1 = Y ∩Q1. Note that B1 = X1 ∪Y1. Similarly,
define R2, G2, B2, X2, and Y2 as subsets of Q2. Since |R| = |G∪X| and ` bisects both R and G∪X,
we have |R1| = b|R|/2c and |G1|+ |X1| = |R1|. In the case that |R| is odd, we add the points on ` to
Q2 (assuming that |B2| > |B1|). Thus, in either case (|R| is even or odd) we have |R2| = d|R|/2e and
|G2|+ |X2| = |R2|. Therefore,

|Q1| > |R1|+ |G1|+ |X1| = 2b|R|/2c,
|Q2| > |R2|+ |G2|+ |X2| = 2d|R|/2e. (7.1)
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Let t1 and t2 be the total number of red and green points in Q1 and Q2, respectively. Then, we
have the following inequalities:

t1 = |R1|+ |G1|

= 2|R1|− |X1|

> 2|R1|− |X|

= 2b|R|/2c− (|R|− |G|)

=

{
|G| if |R| is even

|G|− 1 if |R| is odd,

t2 = |R2|+ |G2|

= 2|R2|− |X2|

> 2|R2|− |X|

= 2d|R|/2e− (|R|− |G|)

=

{
|G| if |R| is even

|G|+ 1 if |R| is odd.

(7.2)

In addition, we have the following equations:

|Q1| = t1 + |B1| and |Q2| = t2 + |B2|. (7.3)

Note that |R1| = b|R|/2c and |G1| 6 |Q1 ∩ (G ∪ X)| = |R1|, thus, by Inequality (7.1) we have
|R1| 6 b|Q1|/2c and |G1| 6 b|Q1|/2c. Similarly, |R2| 6 b|Q2|/2c and |G2| 6 b|Q2|/2c. Therefore, in
order to argue that Q1 and Q2 are color-balanced, it only remains to show that |B1| 6 b|Q1|/2c
and |B2| 6 b|Q2|/2c. Note that |B1|, |B2| 6 |B| and by initial assumption |B| 6 |G|. We differentiate
between two cases where |R| is even and |R| is odd. If |R| is even, by Inequalities (7.2) we have
t1, t2 > |G|. Therefore, by the fact that max{|B1|, |B2|} 6 |B| 6 |G| and Equation (7.3), we have
|B1| 6 b|Q1|/2c and |B2| 6 b|Q2|/2c. If |R| is odd, we slide ` towards Q1; assuming that |B2| > |B1|.
In addition, since |B1|+ |B2| = |B| and |B| > 1, |B2| > 1. Thus, |B1| 6 |B|− 1 6 |G|− 1, while by
Inequality (7.2), t1 > |G|− 1. Therefore, Equality (7.3) implies that |B1| 6 b|Q1|/2c. Similarly, by
Inequality (7.2) we have t2 > |G|+ 1 while |B2| 6 |G|. Thus, Equality (7.3) implies that |B2| 6
b|Q2|/2c. Therefore, both Q1 and Q2 are color-balanced.

We complete the proof by providing the following upper bound on the size of Q1 and Q2.
Since we assume that R is the largest color class, |R| > dn3 e. By Inequality (7.1), min{|Q1|, |Q2|}
> 2b|R|/2c, which implies that

max{|Q1|, |Q2|} 6 n− 2

⌊
|R|

2

⌋
6 n− 2

(
|R|− 1

2

)
6 n−

n

3
+ 1 =

2n

3
+ 1.

Therefore, by Lemma 7.6 and Lemma 7.7, we have proved the following theorem:

theorem 7 .8 (Balanced Cut Theorem). Let P be a color-balanced point set of n > 4 points in general
position in the plane. In O(n) time we can compute a line ` such that

1. ` does not contain any point of P.

2. ` partitions P into two point sets Q1 and Q2, where

a) both Q1 and Q2 are color-balanced,

b) both Q1 and Q2 contains at most 23n+ 1 points.

By Theorem 7.5, if P has even number of points and no color is in strict majority, then P admits
a plane perfect matching. By Theorem 7.8, we partition P into two sets Q1 and Q2 such that
in each of them no point is in strict majority. But, in order to apply the balanced cut theorem,
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recursively, to obtain a perfect matching on each side of the cut, we need both Q1 and Q2 to have
an even number of points. Thus, we extend the result of Theorem 7.8 to a restricted version of
the problem where |P| is even and we are looking for a balanced cut which partitions P into Q1
and Q2 such that both |Q1| and |Q2| are even. The following theorem describes how to find such
a balanced cut.

`

Q1

Q2

x `

Q1

Q2

x

y

(a) (b)

Figure 7.3: Updating ` to make |Q1| and |Q2| even numbers, where: (a) ` passes over one point, and (b) `
passes over two points.

theorem 7 .9. Let P be a color-balanced point set of n > 4 points in general position in the plane with
n even and three colors. In O(n) time we can compute a line ` such that

1. ` does not contain any point of P.

2. ` partitions P into two point sets Q1 and Q2, where

a) both Q1 and Q2 are color-balanced,

b) both Q1 and Q2 have even number of points,

c) both Q1 and Q2 contains at most 23n+ 1 points.

Proof. Let ` be the balanced cut obtained in the proof of Lemma 7.7, which divides P into Q1 and
Q2. Note that ` does not contain any point of P. If |Q1| is even, subsequently |Q2| is even, thus `
satisfies the statement of the theorem and we are done. Assume that |Q1| and |Q2| are odd. Let
R1, G1, and B1 be the set of red, green, and blue points in Q1. Let X1 = X∩Q1 and Y1 = Y ∩Q1.
Note that B1 = X1 ∪Y1. Similarly, define R2, G2, B2, X2, and Y2 as subsets of Q2. Note that |Q1| =
|R1|+ |G1|+ |X1|+ |Y1| and |Q2| = |R2|+ |G2|+ |X2|+ |Y2|. Recall that |R1| = |G1|+ |X1| = b|R|/2c
and |R2| = |G2|+ |X2| = d|R|/2e. Thus, |R1|+ |G1|+ |X1| and |R2|+ |G2|+ |X2| are even. In order to
make |Q1| and |Q2| to be odd numbers, both |Y1| and |Y2| have to be odd numbers. Thus, |Y1| > 1
and |Y2| > 1, which implies that

|Q1| = |R1|+ |G1|+ |X1|+ |Y1| > 2b|R|/2c+ 1,
|Q2| = |R2|+ |G2|+ |X2|+ |Y2| > 2d|R|/2e+ 1. (7.4)

In addition,

|B1| = |B|− (|X2|+ |Y2|) 6 |B|− 1,

|B2| = |B|− (|X1|+ |Y1|) 6 |B|− 1. (7.5)

Note that Q1 is color-balanced. That is, |R1|, |G1|, |B1| 6 b|Q1|/2c, where |Q1| is odd. Thus, by
addition of one point (of any color) to Q1, it still remain color-balanced. Therefore, we slide `
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slightly towards Q2 and stop as soon as it passes over a point x ∈ Q2; see Figure 7.3(a). If ` passes
over two points x and y, rotate ` slightly, such that x lies on the same side as Q1 and y remains
on the other side; see Figure 7.3(b). We prove that ` satisfies the statement of the theorem. It is
obvious that updating the position of ` takes O(n) time. Let Q ′1 = Q1 ∪ {x} and Q ′2 = Q2 − {x}.
By the previous argument Q ′1 is color-balanced. Now we show that Q ′2 is color-balanced as well.
Note that |Q ′2| = |Q2|− 1, thus, by Inequality (7.4) we have

|Q ′2| > 2d|R|/2e.

Let R ′2, G ′2, and B ′2 be the set of red, green, and blue points inQ ′2, and let t ′2 be the total number
of red and green points in Q ′2. Then,

|Q ′2| = t
′
2 + |B ′2|. (7.6)

To prove that Q ′2 is color-balanced we differentiate between three cases, where x ∈ R2, x ∈ G2, or
x ∈ B2:

• x ∈ R2. In this case: (i) |R ′2| = |R2| − 1 = d|R|/2e − 1 6 b|Q ′2|/2c. (ii) |G ′2| = |G2| 6 |R2|

= d|R|/2e 6 b|Q ′2|/2c. (iii) t ′2 = t2 − 1 > |G| − 1, while |B ′2| = |B2| 6 |B| − 1 6 |G| − 1;
Inequality (7.6) implies that |B ′2| 6 b|Q ′2|/2c.

• x ∈ G2. In this case: (i) |R ′2| = |R2| = d|R|/2e 6 b|Q ′2|/2c. (ii) |G ′2| = |G2|− 1 6 |R2|− 1 =

d|R|/2e − 1 6 b|Q ′2|/2c. (iii) t ′2 = t2 − 1 > |G| − 1, while |B ′2| = |B2| 6 |B| − 1 6 |G| − 1;
Inequality (7.6) implies that |B ′2| 6 b|Q ′2|/2c.

• x ∈ B2. In this case: (i) |R ′2| = |R2| = d|R|/2e 6 b|Q ′2|/2c. (ii) |G ′2| = |G2| 6 |R2| = d|R|/2e 6
b|Q ′2|/2c. (iii) t ′2 = t2 > |G|, while |B ′2| = |B2|− 1 6 |B|− 2 6 |G|− 2; Inequality (7.6) implies
that |B ′2| 6 b|Q ′2|/2c.

In all cases |R ′2|, |G
′
2|, |B

′
2| 6 b|Q ′2|/2c, which imply that Q ′2 is color-balanced.

As for the size condition,

min{|Q ′1|, |Q
′
2|} = min{|Q1|+ 1, |Q2|− 1} > 2b|R|/2c,

where the last inequality resulted from Inequality (7.4). This implies that max{|Q ′1|, |Q
′
2|} 6

2n
3 + 1.

Thus, ` satisfies the statement of the theorem, with Q1 = Q ′1 and Q2 = Q ′2.

We note that the constant 23 in Theorem 7.9 is tight. Consider an equilateral triangle with
vertices a, b, and c. Consider a color-balanced point set P of n3 red points, n3 green points, and n

3

blue points such that the red points are located around a, the green points are located around b,
and the red points are located around c. Then, any feasible cut for P partitions it into two point
sets such that one of them has size at least 23n.

Note that both Theorem 7.9 and Theorem 7.2 prove the existence of a line ` which partitions a
color-balanced point set P into two color-balanced point sets Q1 and Q2. But, there are two main
differences: (i) Theorem 7.9 can be applied on any color-balanced point set P in general position.
Theorem 7.2 is only applicable on color-balanced point sets in general position, where the points
on the convex hull are monochromatic. (ii) Theorem 7.9 proves the existence of a balanced cut
such that n3 − 1 6 |Qi| 6

2n
3 + 1, while the cut computed by Theorem 7.2 is not necessarily

balanced, as 2 6 |Qi| 6 n− 2, where i = 1, 2. In addition, the balanced cut in Theorem 7.9 can be
computed in O(n) time, while the cut in Theorem 7.2 is computed in O(n logn) time.
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7.3 plane colored matching algorithm

Let P be a color-balanced point set of n points in general position in the plane with respect to a
partition {P1, . . . ,Pk}, where n is even and k > 2. In this section we present an algorithm which
computes a plane colored matching in Kn(P1, . . . ,Pk) in Θ(n logn) time.

Let {C1, . . . ,Ck} be a set of k colors. Imagine all the points in Pi are colored Ci for all 1 6 i 6 k.
Without loss of generality, assume that |P1| > |P2| > · · · > |Pk|. If k = 2, then we can compute
an RB-matching in O(n logn) time by recursively applying the ham sandwich theorem. If k > 4,
as in Lemma 7.6, in O(n) time, we compute a color-balanced point set P with three colors. Any
plane colored matching for P with respect to the three colors, say (R,G,B), is also a plane colored
matching with respect to the coloring C1, . . . ,Ck. Hereafter, assume that P is a color-balanced
point set which is colored by three colors.

By Theorem 7.9, in linear time we can find a line ` that partitions P into two sets Q1 and Q2,
where both Q1 and Q2 are color-balanced with an even number of points, such that max{|Q1|,
|Q2|} 6

2n
3 + 1. Since Q1 and Q2 are color-balanced, by Corollary 7.4, both Q1 and Q2 admit

plane colored matchings. Let M(Q1) and M(Q2) be plane colored matchings in Q1 and Q2,
respectively. Since Q1 and Q2 are separated by `, M(Q1) ∪M(Q2) is a plane colored matching
for P. Thus, in order to compute a plane colored matching in P, one can compute plane colored
matchings in Q1 and Q2 recursively, as described in Algorithm 7. The RGB-matching function
receives a colored point set P of n points, where n is even and the points of P are colored by
three colors, and computes a plane colored matching in P. The BalancedCut function partitions P
into Q1 and Q2 where both are color-balanced and have even number of points.

Algorithm 7 RGB-matching(P)
Input: a color-balanced point set P with respect to (R,G,B), where |P| is even.
Output: a plane colored matching in P.

1: if P is 2-colored then
2: return RB-matching(P)
3: else
4: `← BalancedCut(P)
5: Q1 ← points of P to the left of `
6: Q2 ← points of P to the right of `
7: return RGB-matching(Q1)∪RGB-matching(Q2)

Now we analyze the running time of the algorithm. If k = 2, then in O(n logn) time we
can find a plane RB-matching for P. If k > 4, then by Lemma 7.6, in O(n) time we reduce the
k-colored problem to a 3-colored problem. Then, the function RGB-matching computes a plane
colored matching in P. Let T(n) denote the running time of RGB-matching on the 3-colored point
set P, where |P| = n. As described in Theorem 7.8 and Theorem 7.9, in linear time we can find
a balanced cut ` in line 4 in Algorithm 7. The recursive calls to RGB-matching function in line 7

takes T(|Q1|) and T(|Q2|) time. Thus, the running time of RGB-matching can be expressed by the
following recurrence:

T(n) = T(|Q1|) + T(|Q2|) +O(n).

Since |Q1|, |Q2| 6 2n
3 + 1 and |Q1|+ |Q2| = n, this recurrence solves to T(n) = O(n logn).

theorem 7 .10. Given a color-balanced point set P of size n in general position in the plane with n even,
a plane colored matching in P can be computed in Θ(n logn) time.
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7.3.1 Maximum Matching

If P is not color-balanced, then Kn(P1, . . . ,Pk) does not admit a perfect matching. In this case we
compute a maximum matching.

theorem 7 .11. Given a colored point set P of size n in general position in the plane, a maximum plane
colored matching M in P can be computed optimally in Θ(n+ |M| log |M|) time.

Proof. Let {P1, . . . ,Pk}, where k > 2, be a partition of the points in P such that the points in Pi
colored Ci for 1 6 i 6 k. Without loss of generality assume that |P1| > · · · > |Pk|. If |P1| 6 b|P|/2c,
then P is color-balanced, and hence, by Theorem 7.10 we can compute a plane colored matching
in Θ(n logn) time. Assume |P1| > b|P|/2c. Then P is not color-balanced, and hence, P does not
admit a perfect matching. In this case, by Theorem 7.3, the size of any maximum matching, say
M, is

|M| =

k∑
i=2

|Pi|.

Let P ′1 be any arbitrary subset of P1 such that |P ′1| = |P2| + · · · + |Pk|. Imagine the points in
P2 ∪ · · · ∪Pk are colored red and the points in P ′1 are colored blue. Let P ′ = P ′1 ∪P2 ∪ · · · ∪Pk. Any
plane RB-matching in P ′ is a maximum plane colored matching in P, and has |P1|+ · · ·+ |Pk| = |M|

edges. An RB-matching of size |M| can be computed in Θ(|M| log |M|) time.

theorem 7 .12. Given any complete multipartite graph Kn(V1, . . . ,Vk) on n vertices and k > 2, a
maximum matching in Kn(V1, . . . ,Vk) can be computed optimally in Θ(n) time.

Proof. If n is odd, then by Theorem 7.3, we can remove a vertex from the largest vertex set,
without changing the size of a maximum matching. Thus, assume that n is even. Without loss of
generality assume that |V1| > |V2| > · · · > |Vk|. If |V1| > n/2, then let R be an arbitrary subset
of V1 such that |R| = |V2|+ · · ·+ |Vk|, and let B = V2 ∪ · · · ∪ Vk. Then, any maximal matching in
Kn(R,B)—which is also a perfect matching—is a maximum matching in Kn(V1, . . . ,Vk).

If |V1| < n/2, then by a similar argument as in Lemma 7.6, in O(n) time we merge V1, . . . ,Vk
to obtain a partition {R,G,B} of vertices, such that max{|R|, |G|, |B|} 6 n/2 and Kn(R,G,B) is a
subgraph of Kn(V1, . . . ,Vk). Now we describe how to compute a perfect matching in Kn(R,G,B).
Without loss of generality assume that |R| > |G| > |B|. Let m = n− 2 · |R|; observe that m is an
even number. Since m = n− 2 · |R| 6 n− (|R|+ |G|), we have m 6 |B|, and subsequently m 6 |G|.
Let G ′ (resp. B ′) be an arbitrary subset of G (resp. B) of size m/2. Thus, |B ′| = |G ′| = m/2. Let
G ′′ = G \G ′ and B ′′ = B \B ′. Thus,

|G ′′ ∪B ′′| = n− |R|− |G ′ ∪B ′| = n− |R|−m = n− |R|− (n− 2|R|) = |R|.

Thus, both Km(G ′,B ′) and Kn-m(R,G ′′ ∪ B ′′) have perfect matchings. Therefore, the union of
any maximal matching in Km(G ′,B ′) and any maximal matching in Kn-m(R,G ′′ ∪B ′′) is a perfect
matching in Kn(R,G,B), and subsequently in Kn(V1, . . . ,Vk).

Since a maximal matching in a complete bipartite graph is also a maximum matching and can
be computed in linear time, the presented algorithm takes O(n) time.
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8
PA C K I N G M AT C H I N G S I N T O A P O I N T S E T

Given a set P of n points in the plane, where n is even, we consider the following question: How
many plane perfect matchings can be packed into P? For points in general position we prove
the lower bound of blog2 nc− 1. For some special configurations of point sets, we give the exact
answer. We also consider some restricted variants of this problem.

This chapter is published in the journal of Discrete Mathematics & Theoretical Computer Sci-
ence [12].

8.1 introduction

Let P be a set of n points in general position in the plane (no three points on a line). A geometric
graph G = (P,E) is a graph whose vertex set is P and whose edge set E is a set of straight-line
segments with endpoints in P. We say that two edges of G cross each other if they have a point in
common that is interior to both edges. Two edges are disjoint if they have no point in common. A
subgraph S of G is said to be plane (non-crossing or crossing-free) if its edges do not cross. A plane
matching is a plane graph consisting of pairwise disjoint edges. Two subgraphs S1 and S2 are
edge-disjoint if they do not share any edge. A complete geometric graph K(P) is a geometric graph
on P which contains a straight-line edge between every pair of points in P.

We say that a set of subgraphs of K(P) is packed into K(P), if the subgraphs in the set are
pairwise edge-disjoint. In a packing problem, we ask for the largest number of subgraphs of a
given type that can be packed into K(P). Among all subgraphs of K(P), plane perfect matchings,
plane spanning trees, and plane spanning paths are of interest [2, 3, 4, 5, 9, 13, 29, 35]. That is, one
may look for the maximum number of plane spanning trees, plane Hamiltonian paths, or plane
perfect matchings that can be packed into K(P). Since K(P) has n(n−1)2 edges, at most n2 spanning
trees, at most n2 spanning paths, and at most n− 1 perfect matchings can be packed into it. In
this chapter we consider perfect matchings. A perfect matching in K(P) is a set of edges that do
not share any endpoint and cover all the points in P.

A long-standing open question is to determine if the edges of K(P) (where n is even) can be
partitioned into n

2 plane spanning trees. In other words, is it possible to pack n
2 plane spanning

trees into K(P)? If P is in convex position, the answer in the affirmative follows from the result of
Bernhart and Kanien [11]. For P in general position, Aichholzer et al. [5] prove that Ω(

√
n) plane

spanning trees can be packed into K(P). They also show the existence of at least 2 edge-disjoint
plane spanning paths.

In this chapter we consider a closely related question: How many plane perfect matchings can
be packed into K(P), where P is a set of n points in general position in the plane, with n even?
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8.1.1 Previous Work

8.1.1.1 Existence of Plane Subgraphs

The existence of certain plane subgraphs in a geometric graph on a set P of n points is one of the
classic problems in combinatorial and computational geometry.

One of the extremal problems in geometric graphs which was first studied by Avital and
Hanani [10], Kuptiz [32], Erdős [20], and Perles (see reference [44]) is the following. What is
the smallest number ek(n) such that any geometric graph with n vertices and more than ek(n)
edges contains k+ 1 pairwise disjoint edges, i.e., a plane matching of size at least k+ 1. Note that
k 6 bn/2c− 1. By a result of Hopf and Pannwitz [28], Sutherland [42], and Erdős [20], e1(n) = n,
i.e., any geometric graph with n+ 1 edges contains a pair of disjoint edges, and there are some
geometric graphs with n edges which do not contain any pair of disjoint edges.

Alon and Erdős [8] proved that e2(n) < 6n− 5, i.e., any geometric graph with n vertices and at
least 6n− 5 edges contains a plane matching of size three. This bound was improved to e2(n) 6
3n by Goddard et al. [23]. Recently Černý [15] proved that e2(n) 6 b2.5nc; while the lower
bound of e2(n) > d2.5ne− 3 is due to Perles (see [15]). For e3(n), Goddard et al. [23] showed that
3.5n− 6 6 e3(n) 6 10n, which was improved by Tóth and Valtr [44] to 4n− 9 6 e3(n) 6 8.5n.

For general values of k, Akiyama and Alon [7] gave the upper bound of ek(n) = O(n2−1/(k+1)).
Goddard et al. [23] improved the bound to ek(n) = O(n(logn)k−3). Pach and Törőcsik [37]
obtained the upper bound of ek(n) 6 k4n; which is the first upper bound that is linear in n. The
upper bound was improved to k3(n+ 1) by Tóth and Valtr [44]; they also gave the lower bound
of ek(n) > 3

2(k− 1)n− 2k2. Tóth [43] improved the upper bound to ek(n) 6 29k2n, where the
constant has been improved to 28 by Felsner [21]. It is conjectured that ek(n) 6 ckn for some
constant c.

For the maximum value of k, i.e., k = n
2 − 1, with n even, Aichholzer et al. [4] showed that

en/2−1(n) =
(
n
2

)
− n
2 =

n(n−2)
2 . That is, by removing n

2 − 1 edges from any complete geometric
graph, the resulting graph has k+ 1 = n

2 disjoint edges, i.e., a plane perfect matching. This bound
is tight; there exist complete geometric graphs, such that by removing n

2 edges, the resulting
graph does not have any plane perfect matching. Similar bounds were obtained by Kupitz and
Perles for complete convex graphs, i.e., complete graphs of point sets in convex position. Kupitz
and Perles showed that any convex geometric graph with n vertices and more than kn edges
contains k+ 1 pairwise disjoint edges; see [23] (see also [7] and [8]). In particular, in the convex
case, 2n+ 1 edges guarantee a plane matching of size three. In addition, Keller and Perles [30]
gave a characterization of all sets of n2 edges whose removal prevents the resulting graph from
having a plane perfect matching.

Černý et al. [16] considered the existence of Hamiltonian paths in geometric graphs. They
showed that after removing at most

√
n/(2

√
2) edges from any complete geometric graph of n

vertices, the resulting graph still contains a plane Hamiltonian path. Aichholzer et al. [4] obtained
tight bounds on the maximum number of edges that can be removed from a complete geometric
graph, such that the resulting graph contains a certain plane subgraph; they considered plane
perfect matchings, plane subtrees of a given size, and triangulations.

8.1.1.2 Counting Plane Graphs

The number of plane graphs of a given type in a set of n points is also of interest. In 1980,
Newborn and Moser [36] asked for the maximal number of plane Hamiltonian cycles; they give
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an upper bound of 2 · 6n−2bn2 c!, but conjecture that it should be of the form cn, for some constant
c. In 1982, Ajtai et al. [6] proved that the number of plane graphs is at most 1013n. Every plane
graph is a subgraph of some triangulation (with at most 3n−6 edges). Since a triangulation has at
most 23n−6 plane subgraphs, as noted in [22], any bound of αn on the number of triangulations
implies a bound of 23n−6αn < (8α)n on the number of plane graphs. The best known upper
bound of 30n, for the number of triangulations is due to Sharir and Sheffer [38]. This implies the
bound 240n for plane graphs. As for plane perfect matchings, since a perfect matching has n

2

edges, Dumitrescu [19] obtained an upper bound of
(
3n−6
n/2

)
αn 6 (3.87α)n, where α = 30. Sharir

and Welzl [39] improved this bound to O(10.05n). They also showed that the number of all (not
necessarily perfect) plane matchings is at most O(10.43n).

García et al. [22] showed that the number of plane perfect matchings of a fixed size set of
points in the plane is minimum when the points are in convex position. Motzkin [34] showed
that points in convex position have Cn/2 many perfect matchings (classically referred to as non-
crossing configurations of chords on a circle), where Cn/2 is the (n/2)th Catalan number; Cn/2 =
Θ(n−3/22n). Thus, the number of plane perfect matchings of n points in the plane is at least
Cn/2. García et al. [22] presented a configuration of n points in the plane which has Ω(n−43n)

many plane perfect matchings. See Table 8.1.

8.1.1.3 Counting Edge-Disjoint Plane Graphs

The number of edge-disjoint plane graphs of a given type in a point set P of n points is also
of interest. Nash-Williams [35] and Tutte [45] independently considered the number of (not nec-
essarily plane) spanning trees. They obtained necessary and sufficient conditions for a graph
to have k edge-disjoint spanning trees. Kundu [31] showed that any k-edge-connected graph
contains at least dk−12 e edge-disjoint spanning trees.

As for the plane spanning trees a long-standing open question is to determine if the edges
of K(P) (where n is even) can be partitioned into n

2 plane spanning trees. In other words, is it
possible to pack n

2 plane spanning trees into K(P)? If P is in convex position, the answer in the
affirmative follows from the result of Bernhart and Kanien [11]. In [13], the authors characterize
the partitions of the complete convex graph into plane spanning trees. They also describe a
sufficient condition, which generalizes the convex case, for points in general position. Aichholzer
et al. [5] showed that if the convex hull of P contains h vertices, then K(P) contains at least
bh2 c edge-disjoint plane spanning trees, and if P is in a “regular wheel configuration”, K(P) can
be partitioned into n

2 spanning trees. For P in general position they showed that K(P) contains
Ω(
√
n) edge-disjoint plane spanning trees. They obtained the following trade-off between the

number of edge-disjoint plane spanning trees and the maximum vertex degree in each tree: For
any k 6

√
n/12, K(P) has k edge-disjoint plane spanning trees with maximum vertex degree

O(k2) and diameter O(log(n/k2)). They also showed the existence of at least 2 edge-disjoint
plane Hamiltonian paths.

8.1.2 Our Results

Given a set P of n points in the plane, with n even, we consider the problem of packing plane
perfect matchings into K(P). From now on, a matching will be a perfect matching.

In Section 8.3 we prove bounds on the number of plane matchings that can be packed into
K(P). In Section 8.3.1 we show that if P is in convex position, then n

2 plane matchings can be
packed into K(P); this bound is tight.
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Table 8.1: Number of plane perfect matchings in a point set P of n points (n is even).

Matching ∀P :> ∃P :6 ∃P :> ∀P :6

total 2n[22, 34] 2n[34] 3n[22] O(10.05n)[39]

edge-disjoint blog2 nc− 1 dn3 e n
2 n− 1

plane edge-disj. 2 2 5 5

The points in wheel configurations are considered in Section 8.3.2. We show that if P is in
regular wheel configuration, then n

2 − 1 edge-disjoint plane matchings can be packed into K(P);
this bound is tight as well. In addition, for a fixed size set of points, we give a wheel configuration
of the points which contains at most dn3 e edge-disjoint plane matchings.

Point sets in general position are considered in Section 8.3.3. We show how to find three edge-
disjoint plane matchings in any set of at least 8 points. If n is a power of two, we prove that K(P)
contains at least log2 n many edge-disjoint plane matchings. For the general case, where n is an
even number, we prove that K(P) contains at least dlog2 ne− 2 edge-disjoint plane matchings.

In Section 8.3.4 we count the number of pairwise non-crossing plane matchings. Two plane
matchings M1 and M2 are called non-crossing (or compatible) if the edges of M1 and M2 do not
cross each other. We show that K(P) contains at least two and at most five non-crossing plane
matchings; these bounds are tight. Table 8.1 summarizes the results.

In Section 8.4 we study the concept of matching persistency in a graph. A graph G is called
matching-persistent, if by removing any perfect matching M from G, the resulting graph, G−M,
still contains a perfect matching. We define the plane matching persistency of a point set P, denoted
by pmp(P), to be the smallest number of edge-disjoint plane matchings such that, if we remove
them from K(P) the resulting graph does not have any plane perfect matching. In other words,
pmp(P) = |M|, where M is the smallest set of edge-disjoint plane matchings such that K(P) −⋃
M∈MM does not have any plane perfect matching. Here, the challenge is to find point sets

with high plane matching persistency. We show that pmp(P) > 2 for all point sets P. We give a
configuration of P with pmp(P) > 3. Concluding remarks and open problems are presented in
Section 8.5.

8.2 preliminaries

8.2.1 Graph-Theoretical Background

Consider a graph G = (V ,E) with vertex set V and edge set E. If G is a complete graph on a
vertex set V of size n, then G is denoted by Kn. A k-factor is a regular graph of degree k. If G is
the union of pairwise edge-disjoint k-factors, their union is called a k-factorization and G itself is
k-factorable [25]. A matching in a graph G is a set of edges that do not share vertices. A perfect
matching of G is a 1-factor of G. In this chapter only perfect matchings are considered and they
are simply called matchings. Since a perfect matching is a regular graph of degree one, it is a
1-factor. It is well-known that for n even, the complete graph Kn is 1-factorable (See [25]). Note
that Kn has n(n−1)2 edges and every 1-factor has n2 edges. Thus, Kn can be partitioned into at
most n− 1 edge-disjoint perfect matchings.

On the other hand it is well-known that the edges of a complete graph Kn, where n is even,
can be colored by n− 1 colors such that any two adjacent edges have a different color. Each color
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is assigned to n
2 edges, so that each color defines a 1-factor. The following geometric construction

of a coloring, which uses a “regular wheel configuration”, is provided in [41]. In a regular wheel
configuration, n− 1 equally spaced points are placed on a circle and one point is placed at the
center of the circle. For each color class, include an edge e from the center to one of the boundary
vertices, and all of the edges perpendicular to the line through e, connecting pairs of boundary
vertices.

The number of perfect matchings in a complete graph Kn (with n even), denoted by M(n), is
given by the double factorial; M(n) = (n− 1)!! [14], where (n− 1)!! = 1 · 3 · 5 · · · (n− 3) · (n− 1).

8.2.2 Plane Matchings in Colored Point Sets

Let P be a set of n colored points in general position in the plane with n even. A colored matching
of P, is a perfect matching such that every edge connects two points of distinct colors. A plane
colored matching is a colored matching which is non-crossing. A special case of a plane colored
matching, where P is partitioned into a set R of n2 red points and a set B of n2 blue points, is
called plane bichromatic matching, also known as red-blue matching (RB-matching). In other words,
an RB-matching of P is a non-crossing perfect matching such that every edge connects a red
point to a blue point. It is well-known that if no three points of P are collinear, then P has an RB-
matching [1]. As shown in Figure 8.1(a), some point sets have a unique RB-matching. Hershberger
and Suri [27] construct an RB-matching in O(n logn) time, which is optimal.

`

(a) (b)

Figure 8.1: (a) A point set with a unique RB-matching, (b) Recursive ham sandwich cuts: first cut is in
solid, second-level cuts are in dashed, and third-level cuts are in dotted lines.

We review some proofs for the existence of a plane perfect matching between R and B:

• Min(R,B): Consider a matching M between R and B which minimizes the total Euclidean
length of the edges. The matchingM is plane. To prove this, suppose that two line segments
r1b1 and r2b2 in M intersect. By the triangle inequality, |r1b2| + |r2b1| < |r1b1| + |r2b2|.
This implies that by replacing r1b1 and r2b2 in M by r1b2 and r2b1, the total length of the
matching is decreased; which is a contradiction.

• Cut(R,B): The ham sandwich theorem implies that there is a line `, known as a ham sandwich
cut, that splits both R and B exactly in half; if the size of R and B is odd, the line passes
through one of each. Match the two points on ` (if there are any) and recursively solve the
problem on each side of `; the recursion stops when each subset has one red point and
one blue point. By matching these two points in all subsets, a plane perfect matching for
P is obtained. See Figure 8.1(b). A ham sandwich cut can be computed in O(n) time [33],
and hence the running time can be expressed as the recurrence T(n) = O(n) + 2 · T(bn2 c).
Therefore, an RB-matching can be computed in O(n logn) time.
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• Tangent(R,B): If R and B are separated by a line, we can compute an RB-matching in the
following way. W.l.o.g. assume that R and B are separated by a vertical line `. Let CH(R) and
CH(B) denote the convex hulls of R and B. Compute the upper tangent rb of CH(R) and
CH(B) where r ∈ R and b ∈ B. Match r and b, and recursively solve the problem for R− {r}

and B− {b}; the recursion stops when the two subsets are empty. In each iteration, all the
remaining points are below the line passing through r and b, thus, the line segments repre-
senting a matched pair in the successor iterations do not cross rb. Therefore, the resulting
matching is plane.

Consider a set P of n points where n is even, and a partition {P1, . . . ,Pk} of P into k color
classes. Sufficient and necessary conditions for the existence of a colored matching in P follows
from the following theorem by Sitton [40]:

theorem 8 .1 (Sitton [40]). Let Kn1,...,nk be a complete multipartite graph with n vertices, where
n1 6 · · · 6 nk. If nk 6 n1 + · · ·+nk−1, then Kn1,...,nk has a matching of size bn2 c.

Aichholzer et al. [4] showed that if Kn1,...,nk is a geometric graph corresponding to a colored
point set P, then the minimum-weight colored matching of P is non-crossing. Specifically, they
extend the proof of 2-colored point sets to multi-colored point sets:

theorem 8 .2 (Aichholzer et al. [4]). Let P be a set of colored points in general position in the plane
with |P| even. Then P admits a non-crossing perfect matching such that every edge connects two points of
distinct colors if and only if at most half the points in P have the same color.

8.3 packing plane matchings into point sets

Let P be a set of n points in the plane with n even. In this section we prove lower bounds on
the number of plane matchings that can be packed into K(P). It is obvious that every point set
has at least one plane matching, because a minimum weight perfect matching in K(P), denoted
by Min(P), is plane. A trivial lower bound of 2 (for n > 4) is obtained from a minimum weight
Hamiltonian cycle in K(P), because this cycle is plane and consists of two edge-disjoint matchings.
We consider points in convex position (Section 8.3.1), wheel configuration (Section 8.3.2), and
general position (Section 8.3.3).

8.3.1 Points in Convex Position

In this section we consider points in convex position. We show that if P is in convex position, n2
plane matchings can be packed into K(P); this bound is tight.

lemma 8 .3. If P is in convex position, where |P| is even and |P| > 4, then every plane matching in P
contains at least two edges of CH(P).

Proof. Let M be a plane matching in P. We prove this lemma by induction on the size of P. If
|P| = 4, then |M| = 2. None of the diagonals of P can be in M, thus, the two edges in M belong
to CH(P). If |P| > 4 then |M| > 3. If all edges of M are edges of CH(P), then the claim in the
lemma holds. Assume that M contains a diagonal edge pq, where pq is not an edge of CH(P).
Let P1 and P2 be the sets of points of P on each side of `(p,q) (both including p and q). Let M1

and M2 be the edges of M in P1 and P2, respectively. It is obvious that P1 (resp. P2) is in convex
position and M1 (resp. M2) is a plane matching in P1 (resp. P2). By the induction hypothesis M1
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(resp. M2) contains two edges of CH(P1) (resp. CH(P2)). Since CH(P) = CH(P1) ∪CH(P2) and
|M1 ∩M2| = 1, M contains at least two edges of CH(P).

theorem 8 .4. For any set P of n points in convex position in the plane, with n even, the maximum
number of plane matchings that can be packed into K(P) is n2 .

Proof. By Lemma 8.3, every plane matching in P contains at least two edges of CH(P). On the
other hand, CH(P) has n edges. Therefore, the number of plane matchings that can be packed
into K(P) is at most n2 . Bernhart and Kainen [11, Theorem 3.4] showed that the book thickness
of the complete graph is n2 . Their construction of n2 edge-disjoint paths directly carries over to
packing the same amount of plane matchings into K(P).

In order to be self-contained, we show how to pack n
2 plane matchings into K(P). Let P =

{p0, . . . ,pn−1}, and w.l.o.g. assume that p0,p1, . . . ,pn−1 is the radial ordering of the points in P
with respect to a fixed point in the interior of CH(P). For each pi in the radial ordering, where
0 6 i < n

2 , let Mi = {pi+j−1pn+i−j : j = 1, . . . , n2 } (all indices are modulo n). Informally speaking,
Mi is a plane perfect matching obtained from edge pipi−1 and all edges parallel to pipi−1; see
Figure 8.2. Let M = {Mi : i = 0, . . . , n2 − 1}. The matchings in M are plane and pairwise edge-
disjoint. Thus, M is a set of n2 plane matchings that can be packed into K(P).

p0 p1

p2

p3

p4p5

p6

p7

Figure 8.2: Points in convex position.

8.3.2 Points in Wheel Configurations

A point set P of n points is said to be in “regular wheel configuration” in the plane, if n − 1

points of P are equally spaced on a circle C and one point of P is at the center of C. We introduce
a variation of the regular wheel configuration as follows. Let the point set P be partitioned into X
and Y such that |X| > 3 and |X| is an odd number. The points in X are equally spaced on a circle
C. For any two distinct points p,q ∈ X let `(p,q) be the line passing through p and q. Since X is
equally spaced on C and |X| is an odd number, `(p,q) does not contain the center of C. Let H(p,q)
and H ′(p,q) be the two half planes defined by `(p,q) such that H ′(p,q) contains the center of C.
Let C ′ =

⋂
p,q∈XH

′(p,q). The points in Y are in the interior of C ′; see Figure 8.3(a). For any two
points p,q ∈ X, the line segment pq does not intersect the interior of C ′. The special case when
|Y| = 1 is the regular wheel configuration.

lemma 8 .5. Let P be a set of points in the plane where |P| is an even number and |P| > 6. Let {X, Y}
be a partition of the points in P such that |X| is an odd number and |Y| 6 2b |P|6 c− 1. If P is in the wheel
configuration described above, then any plane matching in P contains at least two edges of CH(P).
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C

C ′

p0

p1

p2

p3

p4
p5

p6

p7

p8

H ′(p3, p3)

H(p3, p8)
C

C ′

pi

pj

H(pi, pj)
H ′(pi, pj)

H(pk, pl)

pk

pl

(a) (b)

Figure 8.3: (a) A variation of the regular wheel configuration. (b) Illustration of Lemma 8.5. The points of
A and the edges of M(A) are in blue, and the points of B and the edges of M(B) are in red.

Proof. Consider a plane matching M of P. It is obvious that CH(P) = CH(X); we show that M
contains at least two edges of CH(X). Note that |X| = |P| − |Y|, and both |X| and |Y| are odd
numbers. Observe that |X| > 4b |P|6 c+ 1 = 2|Y|+ 3 > 5; which implies that |Y| 6 |X|−1

2 − 1. Thus,
|X| > |Y|, and hence there is at least one edge in M with both endpoints in X. Let pipj be
the longest such edge. Recall that C ′ ⊂ H ′(pi,pj). Let A be the set of points of P in H(pi,pj)
(including pi and pj), and let A ′ be the set of points of P in H ′(pi,pj) (excluding pi and pj). By
definition, H(pi,pj) ∪ `(pi,pj) does not contain any point of Y. Thus, A ⊂ X and A is in convex
position with |A| 6 |X|−1

2 (note that |X| is an odd number). Let M(A) and M(A ′) be the edges of
M induced by the points in A and A ′, respectively. Clearly, {M(A),M(A ′)} is a partition of the
edges of M, and hence M(A) (resp. M(A ′)) is a plane perfect matching for A (resp. A ′). We show
that each of M(A) and M(A ′) contains at least one edge of CH(X). First we consider M(A). If
|A| = 2, then pipj is the only edge in M(A) and it is an edge of CH(X). Assume that |A| > 4. By
Lemma 8.3, M(A) contains at least two edges of CH(A). On the other hand each edge of CH(A),
except for pipj, is also an edge of CH(X); see Figure 8.3(b). This implies that M(A) − {pipj}

contains at least one edge of CH(X). Now we consider M(A ′). Let X ′ = A ′ ∩ X, that is, {A,X ′} is
a partition of the points in X. Since |A| 6 |X|−1

2 , we have |X ′| > |X|+1
2 . Recall that |Y| 6 |X|−1

2 − 1.
Thus, |Y| < |X ′|, and hence there is an edge pkpl ∈ M(A ′) with both pk and pl in X ′. Let B be
the set of points of P in H(pk,pl) (including pk and pl). By definition, H(pk,pl)∪ `(pk,pl) does
not contain any point of Y. Thus, B ⊂ X and B is in convex position. On the other hand, by the
choice of pipj as the longest edge, A cannot be a subset of B and hence B ⊂ X ′. Let M(B) be
the edges of M(A ′) induced by the points in B. We show that M(B) contains at least one edge
of CH(X). If |B| = 2, then pkpl is the only edge in M(B) and it is an edge of CH(X). Assume
that |B| > 4. By Lemma 8.3, M(B) contains at least two edges of CH(B). On the other hand, each
edge of CH(B), except for pkpl, is also an edge of CH(X); see Figure 8.3(b). This implies that
M(B) − {pkpl} contains at least one edge of CH(X). This completes the proof.
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Figure 8.4: Points in the regular configuration with (a) n = 4k and (b) n = 4k+ 2; one of the edges in
CH(P) cannot be matched.

theorem 8 .6. For a set P of n > 6 points in the regular wheel configuration in the plane with n even,
the maximum number of plane matchings that can be packed into K(P) is n2 − 1.

Proof. In the regular wheel configuration, P is partitioned into a point set X of size n− 1 and a
point set Y of size 1. The points of X are equally spaced on a circle C and the (only) point of Y is
the center of C. By Lemma 8.5, every plane matching in P contains at least two edges of CH(P).
On the other hand, CH(P) has n− 1 edges. Therefore, the number of plane matchings that can be
packed into K(P) is at most n−12 . Since n is an even number and the number of plane matchings
is an integer, we can pack at most n2 − 1 plane matchings into K(P).

Now we show how to pack n
2 − 1 plane matchings into K(P). Let P = {p0, . . . ,pn−1}, and

w.l.o.g. assume that pn−1 is the center of C. Let P ′ = P − {pn−1}, and let p0,p1, . . . ,pn−2 be the
radial ordering of the points in P ′ with respect to pn−1. For each pi in the radial ordering, where
0 6 i 6 n

2 − 2, let
Ri = {pi+jpi+2d(n−2)/4e−j+1 : j = 1, . . . , d(n− 2)/4e},

and
Li = {pi−jpi−2b(n−2)/4c+j−1 : j = 1, . . . , b(n− 2)/4c}

(all indices are modulo n− 1). Let Mi = Ri ∪ Li ∪ {pipn−1}; informally speaking, Mi is a plane
perfect matching obtained from edge pipn−1 and edges parallel to pipn−1. See Figure 8.4(a) for
the case where n = 4k and Figure 8.4(b) for the case where n = 4k + 2. Let M = {Mi : i =

0, . . . , n2 − 2}. The matchings in M are plane and pairwise edge-disjoint. Thus, M is a set of n2 − 1

plane matchings that can be packed into K(P).

In the following theorem we use the wheel configuration to show that for any even integer
n > 6, there exists a set P of n points in the plane, such that no more than dn3 e plane matchings
can be packed into K(P).

theorem 8 .7. For any even number n > 6, there exists a set P of n points in the plane such that no
more than dn3 e plane matchings can be packed into K(P).

Proof. The set P of n points is partitioned into X and Y, where |Y| = 2bn6 c− 1 and |X| = n− |Y|. The
points in X are equally spaced on a circle C and the points in Y are in the interior

⋂
p,q∈XH

′(p,q).
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By Lemma 8.5, any plane matching in P contains at least two edges of CH(P). Since CH(P) =

CH(X), any plane matching of P contains at least two edges of CH(X). Thus, if M denotes any
set of plane matchings which can be packed into K(P), we have (note that |X| is odd)

|M| 6
|X|− 1

2
=
n− 2bn/6c

2
=
n

2
− bn

6
c 6 n

2
−
n− 5

6
6 dn

3
e.

8.3.3 Points in General Position

In this section we consider the problem of packing plane matchings for point sets in general
position (no three points on a line) in the plane. Let P be a set of n points in general position in
the plane, with n even. Let M(P) denote the maximum number of plane matchings that can be
packed into K(P). As mentioned earlier, a trivial lower bound of 2 (when n > 4) is obtained from
a minimum weight Hamiltonian cycle, which is plane and consists of two edge-disjoint perfect
matchings.

In this section we show that at least blog2 nc− 1 plane matchings can be packed into K(P). As
a warm-up, we first show that if n is a power of two, then log2 n plane matchings can be packed
into K(P). Then we extend this result to get a lower bound of blog2 nc− 1 for every point set with
an even number of points. We also show that if n > 8, then at least three plane matchings can
be packed into K(P), which improves the result for n = 10, 12, and 14. Note that, as a result of
Theorem 8.7, there exists a set of n = 6 points such that no more than dn3 e = 2 plane matchings
can be packed into K(P). First consider the following observation.

observation 8 .8. Let P = {P1, . . . ,Pk} be a partition of the point set P, such that |Pi| is even and
CH(Pi)∩CH(Pj) = ∅ for all 1 6 i, j 6 k where i 6= j. Let i be an index such that,M(Pi) = min{M(Pj) :

1 6 j 6 k}. Then, M(P) >M(Pi).

lemma 8 .9. For a set P of n points in general position in the plane, where n is a power of 2, at least
log2 n plane matchings can be packed into K(P).

Proof. We prove this lemma by induction. The statement of the lemma holds for the base case,
where n = 2. Assume that n > 4. Recall that M(P) denotes the maximum number of plane
matchings that can be packed into K(P). W.l.o.g. assume that a vertical line ` partitions P into sets
R and B, each of size n2 . By the induction hypothesis, M(R),M(B) > log2 (

n
2 ). By Observation 8.8,

M(P) > min{M(R),M(B)} > log2 (
n
2 ). That is, by pairing a matching MR in R with a matching

MB in B we get a plane matching MP in K(P), such that each edge in MP has both endpoints
in R or in B. If we consider the points in R as red and the points in B as blue, Cut(R,B) (see
Section 8.2.2) gives us a plane perfect matching M ′P in K(P), such that each edge in M ′P has one
endpoint in R and one endpoint in B. That is M ′P ∩MP = ∅. Therefore, we obtain one more plane
matching in K(P), which implies that M(P) > log2 (

n
2 ) + 1 = log2 n.

Let R and B be two point sets which are separated by a line. A crossing tangent between R and
B is a line l touching CH(R) and CH(B) such that R and B lie on different sides of l. Note that
l contains a point r ∈ R, a point b ∈ B, and consequently the line segment rb; we say that l is
subtended from rb. It is obvious that there are two (intersecting) crossing tangents between R
and B; see Figure 8.5.
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Figure 8.5: (a) The crossing tangents intersect at a point c /∈ P: R and B are sorted clockwise around c, (b)
The crossing tangents intersect at a point r ∈ R: B is sorted clockwise around r. M1 and M2
are shown by green and gray line segments.

lemma 8 .10. For a set P of n > 8 points in general position in the plane with n even, at least three
plane matchings can be packed into K(P).

Proof. We describe how to extract three edge-disjoint plane matchings, M1,M2,M3, from K(P).
Let ` be a vertical line which splits P into sets R and B, each of size n2 . Consider the points in R as
red and the points in B as blue. We differentiate between two cases: (a) n = 4k and (b) n = 4k+ 2,
for some integer k > 1.

In case (a), both R and B have an even number of points. Let M1(R) and M2(R) (resp. M1(B)

and M2(B)) be two edge-disjoint plane matchings in R (resp. B) obtained by a minimum length
Hamiltonian cycle in R (resp. B). Let M1 = M1(R) ∪M1(B) and M2 = M2(R) ∪M2(B). Clearly
M1 and M2 are edge-disjoint plane matchings for P. Let M3 = Cut(R,B). It is obvious that M3 is
edge-disjoint from M1 and M2, which completes the proof in the first case.

In case (b), both R and B have an odd number of points and we cannot get a perfect matching
in each of them. Let l and l ′ be the two crossing tangents between R and B, subtended from rb

and r ′b ′, respectively. We differentiate between two cases: (i) l and l ′ intersect in the interior of
rb and r ′b ′, (ii) l and l ′ intersect at an endpoint of both rb and r ′b ′; see Figure 8.5.

• In case (i), let c be the intersection point; see Figure 8.5(a). Let r1, r2, . . . , rm and b1,b2,
. . . ,bm be the points of R and B, respectively, sorted clockwise around c, where m = n

2 ,
r1 = r, rm = r ′,b1 = b,bm = b ′. Consider the Hamiltonian cycle H = {riri+1 : 1 6
i < m} ∪ {bibi+1 : 1 6 i < m} ∪ {r1b1, rmbm}. Let M1 and M2 be the two edge-disjoint
matchings obtained from H. Note that r1b1 and rmbm cannot be in the same matching,
thus, M1 and M2 are plane. Let M3 = Tangent(R,B). As described in Section 8.2.2, M3 is
a plane matching for P. In order to prove that M3 ∩ (M1 ∪M2) = ∅, we show that rb and
r ′b ′—which are the only edges in M1 ∪M2 that connect a point in R to a point in B—do
not belong to M3. Note that Tangent(R,B) iteratively selects an edge which has the same
number of red and blue points below its supporting line, whereas the supporting lines of
rb and r ′b ′ have different numbers of red and blue points below them. Thus rb and r ′b ′

are not considered by Tangent(R,B). Therefore M3 is edge-disjoint from M1 and M2.

• In case (ii), w.l.o.g. assume that l and l ′ intersect at the red endpoint of rb and r ′b ′, i.e.,
r = r ′; See Figure 8.5(b). Let R ′ = R \ {r} and B ′ = B∪ {r}. Note that both R ′ and B ′ have an
even number of points and |R ′|, |B ′| > 4. Let M1(R

′) and M2(R
′) be two edge-disjoint plane

matchings in R ′ obtained by a minimum length Hamiltonian cycle in R ′. Let b1,b2, . . . ,bm
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be the points of B sorted clockwise around r, where m = n
2 , b1 = b,bm = b ′. Consider the

Hamiltonian cycle H(R ′) = {bibi+1 : 1 6 i < m}∪ {rb1, rbm}. LetM1(B
′) andM2(B

′) be the
two edge-disjoint plane matchings in B ′ obtained from H(B ′). Let M1 =M1(R

′) ∪M1(B
′)

and M2 = M2(R
′) ∪M2(B

′). Clearly M1 and M2 are edge-disjoint plane matchings in
P. Let M3 = Tangent(R,B). As described in case (i), M3 is a plane matching in P and
M3 ∩ (M1 ∪M2) = ∅. Therefore, M3 is edge-disjoint from M1 and M2.

As a direct consequence of Lemma 8.9 and Lemma 8.10 we have the following theorem.

theorem 8 .11. For a set P of n = 2i ·m points in general position in the plane with n even, m > 4,
i > 0 , at least i+ 2 plane matchings can be packed into K(P).

Proof. If i = 0, then a minimum weight Hamiltonian cycle in K(P) consists of two plane matchings.
Assume i > 1. Partition P by vertical lines, into 2i−1 point sets, each of size 2m. By Lemma 8.10,
at least three plane matchings can be packed into each set. Considering these sets as the base
cases in Lemma 8.9, we obtain i − 1 plane matchings between these sets. Thus, in total, i + 2
plane matchings can be packed into K(P).

theorem 8 .12. For a set P of n points in general position in the plane, with n even, at least blog2 nc− 1
plane matchings can be packed into K(P).

Proof. If n is a power of two, then by Lemma 8.9 at least log2 n > blog2 nc− 1 matchings can
be packed into K(P). Assume n is not a power of two. We describe how to pack a set M of
blog2 nc− 1 plane perfect matchings into K(P). The construction consists of the following three
main steps which we will describe in detail.

1. Building a binary tree T .

2. Assigning the points of P to the leaves of T .

3. Extracting M from P using internal nodes of T .

1 . building the tree t. In this step we build a binary tree T such that each node of T stores an
even number, and each internal node of T has a left and a right child. For an internal node u,
let left(u) and right(u) denote the left child and the right child of u, respectively. Given an even
number n, we build T in the following way:

• The root of T stores n.

• If a node of T stores 2, then that node is a leaf.

• For a node u storing m, with m even and m > 4, we store the following even numbers into
left(u) and right(u):

– If m is divisible by 4, we store m2 in both left(u) and right(u); see Figure 8.6(a).

– If m is not divisible by 4 and u is the root or the left child of its parent then we store
2bm4 c in left(u) and m− 2bm4 c in right(u); see Figure 8.6(b).

– If m is not divisible by 4 and u is the right child of its parent then we store m− 2bm4 c
in left(u) and 2bm4 c in right(u); see Figure 8.6(c).

Note that in the last two cases—where m is not divisible by four—the absolute difference
between the values stored in left(u) and right(u) is exactly 2. See Figure 8.7.
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Figure 8.6: (a) m is divisible by four, (b) m is not divisible by four and u is a left child, and (c) m is not
divisible by four and u is a right child.

2 . assigning the points to the leaves of the tree. In this step we describe how to assign the points
of P, in pairs, to the leaves of T . We may assume without loss of generality that no two points
of P have the same x-coordinate. Sort the points of P in a increasing order of their x-coordinate.
Assign the first two points to the leftmost leaf, the next two points to the second leftmost leaf,
and so on. Note that T has n2 leaves, and hence all the points of P are assigned to the leaves of T .
See Figure 8.7.

3 . extracting the matchings. Let L be the number of edges in a shortest path from the root to
any leaf in T ; in Figure 8.7, L = 3. For an internal node u ∈ T , let Tu be the subtree rooted at u.
Let Lu and Ru be the set of points assigned to the left and right subtrees of Tu, respectively, and
let Pu = Lu ∪ Ru. Consider the points in Lu as red and the points in Ru as blue. Since the points
in Lu have smaller x-coordinates than the points in Ru, we say that Lu and Ru are separated by a
vertical line `(u). For each internal node u where u is in level 0 6 i < L in T—assuming the root
is in level 0—we construct a plane perfect matching Mu in Pu in the following way. Let m be the
even number stored at u.

• If m is divisible by 4 (Figure 8.6(a)), then let Mu = Min(Lu,Ru); see Section 8.2.2. Since
|Lu| = |Ru|, Mu is a plane perfect matching for Pu. See vertices u2,u3 in Figure 8.7.

• If m is not divisible by 4 and u is the root or a left child (Figure 8.6(b)), then |Ru|− |Lu| = 2.
Let a,b be the two points assigned to the rightmost leaf in Tu, and let Mu = {ab}∪
Min(Lu,Ru − {a,b}). Since |Lu| = |Ru − {a,b}|, Mu is a perfect matching in Pu. In addition,
a and b are the two rightmost points in Pu, thus, ab does not intersect any edge in
Min(Lu,Ru − {a,b}), and hence Mu is plane. See vertices u0,u1,u5 in Figure 8.7.

• Ifm is not divisible by 4 and u is a right child (Figure 8.6(c)), then |Lu|− |Ru| = 2. Let a,b be
the two points assigned to the leftmost leaf in Tu and let Mu = {ab} ∪Min(Lu − {a,b},Ru).
Since |Lu − {a,b}| = |Ru|, Mu is a perfect matching in Pu. In addition, a and b are the
two leftmost points in Pu, thus, ab does not intersect any edge in Min(Lu − {a,b},Ru), and
hence Mu is plane. See vertices u4,u6 in Figure 8.7.

For each i, where 0 6 i < L, let S(i) be the set of vertices of T in level i; see Figure 8.7. For each
level i let Mi =

⋃
u∈S(i)Mu. Let M = {Mi : 0 6 i < L}. In the rest of the proof, we show that M

contains blog2 nc− 1 edge-disjoint plane matchings in P.
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Figure 8.7: The points in P are assigned, in pairs, to the leaves of T , from left to right. The point set P
with the edge-disjoint plane matchings is shown as well. M0 contains the bold red edge and
the red edges crossing `(u0). M1 contains the bold green edge and the green edges crossing
`(u1), `(u2). M2 contains the bold blue edges and the blue edges crossing `(u3), `(u4), `(u5),
`(u6).

claim 1 . For each i, where 0 6 i < L, Mi is a plane perfect matching in P.
Note that if u is the root of the tree, then Pu = P. In addition, for each internal node u

(including the root), {Lu,Ru} is a partition of the point set Pu. This implies that in each level i
of the tree, where 0 6 i < L, we have P =

⋃
u∈S(i) Pu. Moreover, the points in P are assigned

to the leaves of T in non-decreasing order of their x-coordinate. Thus, Pi = {Pu : u ∈ S(i)} is a
partition of the point set P; the sets Pu with u ∈ S(i) are separated by vertical lines; see Figure 8.7.
Therefore, Mi is a perfect plane matching in P; which proves the claim.

claim 2 . For all Mi,Mj ∈M, where 0 6 i, j < L and i 6= j, Mi ∩Mj = ∅.
In order to prove that Mi and Mj are edge-disjoint, we show that for each pair of distinct

internal nodes u and v, Mu ∩Mv = ∅. If u and v are in the same level, then Pu and Pv are
separated by `(u), thus, Mu and Mv do not share any edge. Thus, assume that u ∈ S(i) and
v ∈ S(j) such that 0 6 i, j < L, i 6= j, and w.l.o.g. assume that i < j. If v /∈ Tu, then Pu and Pv are
separated by line `(w), where w is the lowest common ancestor of u and v; this implies that Mu

and Mv do not share any edge. Therefore, assume that v ∈ Tu, and w.l.o.g. assume that v is in
the left subtree of Tu. Thus, Pv—and consequently Mv—is to the left of `(u). The case where v
is in the right subtree of Tu is symmetric. Let m > 4 be the number stored at u. We differentiate
between three cases:
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• If m is divisible by 4, then all the edges in Mu cross `(u), while the edges in Mv are to the
left of `(u). This implies that Mu and Mv are disjoint.

• If m is not divisible by 4 and u is the root or a left child, then all the edges of Mu cross `(u),
except the rightmost edge ab which is to the right of `(u). Since Mv is to the left of `(u), it
follows that Mu and Mv are disjoint.

• If m is not divisible by 4 and u is a right child, then all the edges of Mu cross `(u), except
the leftmost edge ab. If a,b /∈ Pv, then ab /∈ Mv, and hence Mu and Mv are disjoint. If
a,b ∈ Pv then v is the left child of its parent and all the edges in Mv cross `(v) (possibly
except one edge which is to the right of `(v)), while ab is to the left of `(v). Therefore Mu

and Mv do not share any edge. This completes the proof of the claim.

claim 3 . For every two nodes u and v in the same level of T which store m and m ′, respectively,
|m−m ′| 6 2.

We prove the claim inductively for each level i of T . For the base case, where i = 1: (a) if n
is divisible by four, then both u and v store n

2 and the claim holds, (b) if n is not divisible by
four then u stores 2bn4 c and v stores n− 2bn4 c; as 0 6 n− 2bn4 c− 2bn4 c 6 2, the claim holds for
i = 1. Now we show that if the claim is true for the ith level of T , then the claim is true for
the (i+ 1)th level of T . Let u and v, storing m and m ′, respectively, be in the ith level of T . By
the induction hypothesis, the claim holds for the ith level, i.e., |m−m ′| 6 2. We prove that the
claim holds for the (i+ 1)th level of T , i.e., for the children of u and v. Since m and m ′ are even
numbers, |m−m ′| ∈ {0, 2}. If |m−m ′| = 0, then m = m ′, and by a similar argument as in the
base case, the claim holds for the children of u and v. If |m−m ′| = 2, then w.l.o.g. assume that
m ′ = m+ 2. Let α be the smallest number and β be the largest number stored at the children of
u and v (which are at the (i+ 1)th level). We show that β− α 6 2. It is obvious that α = 2bm4 c
and β = m ′ − 2bm ′4 c. Thus,

β−α = m ′ − 2
⌊
m ′

4

⌋
− 2

⌊m
4

⌋
= m+ 2− 2

⌊
m+ 2

4

⌋
− 2

⌊m
4

⌋
(8.1)

Now, we differentiate between two cases, where m = 4k or m = 4k + 2. If m = 4k, then by
Equation 8.1,

β−α = 4k+ 2− 2

⌊
4k+ 2

4

⌋
− 2

⌊
4k

4

⌋
= 4k+ 2− 2k− 2k = 2.

If m = 4k+ 2, then by Equation 8.1,

β−α = 4k+ 4− 2

⌊
4k+ 4

4

⌋
− 2

⌊
4k+ 2

4

⌋
= 4k+ 4− 2(k+ 1) − 2k = 2

which completes the proof of the claim.

claim 4 . L > blog2 nc− 1.
It follows from Claim 3 that all the leaves of T are in the last two levels. Since T has n2 leaves, T

has n− 1 nodes. Recall that L is the number of edges in a shortest path from the root to any leaf
in T . Thus, L > h− 1, where h is the height of T . To give a lower bound on h, one may assume
that the last level of T is also full, thus,
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n− 1 6 20 + 21 + 22 + · · ·+ 2h 6 2h+1 − 1

and hence, h > log2 n− 1. Therefore, L > h− 1 > log2 n− 2. Since L is an integer and n is not a
power of two, L > dlog2 ne− 2 = blog2 nc− 1; which proves the claim.

Claim 1 and Claim 2 imply that M contains L edge-disjoint plane perfect matchings. Claim 4

implies that L > blog2 nc− 1, which proves the statement of the theorem.

8.3.4 Non-crossing Plane Matchings

In this section we consider the problem of packing plane matchings into K(P) such that any two
different matchings in the packing are non-crossing. Two edge-disjoint plane matchings M1 and
M2 are non-crossing (or compatible), if no edge in M1 crosses any edge in M2. For a set P of n
points in general position in the plane, with n even, we give tight lower and upper bounds on
the number of pairwise non-crossing plane perfect matchings that can be packed into K(P). The
union of k disjoint perfect matchings in K(P) has kn2 edges. By Euler’s formula for planar graphs
we know that the number of edges of a planar graph is at most 3n− 6. This implies the following
lemma.

lemma 8 .13. For a set P of n points in general position in the plane, with n even, at most five pairwise
non-crossing plane matchings can be packed into K(P).

Figure 8.8: A point set with five non-crossing edge-disjoint plane perfect matchings.

Figure 8.8 shows a 5-regular geometric graph on a set of 12 points in the plane which contains
five non-crossing edge-disjoint plane matchings. In [26], the authors showed how to generate
an infinite family of 5-regular planar graphs using the graph in Figure 8.8. By an extension of
the five matchings shown in Figure 8.8, five non-crossing matchings for this family of graphs is
obtained. Thus, the bound provided by Lemma 8.13 is tight.

It is obvious that if P contains at least four points, the minimum length Hamiltonian cycle in
K(P) contains two non-crossing edge-disjoint plane matchings. Alternatively, in [29] the following
result is proved. Given a plane perfect matching M1 in K(P), we can always find another plane
perfect matching M2 that is disjoint from M1 and for which M1 ∪M2 is plane. In the following
lemma we show that there exist point sets which contain at most two non-crossing edge-disjoint
plane matchings.
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lemma 8 .14. For a set P of n > 4 points in convex position in the plane, with n even, at most two
pairwise non-crossing plane matchings can be packed into K(P).

Proof. The proof is by contradiction. Consider three pairwise non-crossing plane matchings M1,
M2, M3 in K(P). Let G be the induced subgraph of K(P) by M1 ∪M2 ∪M3. Note that G is a 3-
regular plane graph. Moreover, G is an outerplanar graph. It is well known that every outerplanar
graph has a vertex of degree at most 2. This contradicts that every vertex in G has degree 3.

We conclude this section with the following theorem.

theorem 8 .15. For a set P of n > 4 points in general position in the plane, with n even, at least two
and at most five pairwise non-crossing plane matchings can be packed into K(P). These bounds are tight.

8.4 matching removal persistency

In this section we define the matching persistency of a graph. A graph G is matching persistent if
by removing any perfect matching M from G, the resulting graph, G−M, has a perfect matching.
We define the matching persistency of G, denoted by mp(G), as the size of the smallest set M of
edge-disjoint perfect matchings that can be removed from G such that G−M does not have any
perfect matching. In other words, if mp(G) = k, then

1. by removing an arbitrary set of k− 1 edge-disjoint perfect matchings from G, the resulting
graph still contains a perfect matching, and

2. there exists a set of k edge-disjoint perfect matchings such that by removing these matchings
from G, the resulting graph does not have any perfect matching.

In particular, G is matching persistent iff mp(G) > 2.

u v

x
H

(a) (b)

Figure 8.9: (a) By removing any matching (red, green, or blue) from Kn, at most two paths between u and
v disappear. (b) The edges of H are partitioned to n

2 perfect matchings, thus, Kn −H does not
have any perfect matching.

lemma 8 .16. Let Kn be a complete graph with n vertices, where n is even, and let M be a set of k edge-
disjoint perfect matchings in Kn. Then, Kn −M is an (n− 1− k)-regular graph which is (n− 1− 2k)-
connected.

Proof. The regularity is trivial, because Kn is (n− 1)-regular and every vertex has degree k in
M, thus, Kn −M is an (n− 1− k)-regular graph. Now we prove the connectivity. Consider two
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vertices u and v in V(Kn). There are n− 1 many edge-disjoint paths between u and v in Kn: n− 2

many paths of length two of the form (u, x, v), where x ∈ V(Kn)− {u, v} and a path (u, v) of length
one; see Figure 8.9(a). By removing any matching in M from Kn, at most two paths disappear,
because u and v have degree one in each matching. Thus in G−M, there are (n− 1− 2k) many
edge-disjoint paths between u and v, which implies that Kn −M is (n− 1− 2k)-connected.

lemma 8 .17. Let n to be an even number. Then, mp(Kn) > n
2 .

Proof. We show that by removing any set M of k edge-disjoint perfect matchings from Kn, where
0 6 k < n

2 , the resulting graph still has a perfect matching. By Lemma 8.16, the graph Kn −M is
an (n− 1− k)-regular graph which is (n− 1− 2k)-connected. Since k < n

2 , Kn−M is a connected
graph and the degree of each vertex is at least n2 . Thus, by a result of Dirac [18], Kn −M has
a Hamiltonian cycle and consequently a perfect matching. Therefore, by removing k arbitrary
perfect matchings from Kn, where k < n

2 , the resulting graph still has a perfect matching, which
proves the claim.

lemma 8 .18. If n ≡ 0 mod 4, then mp(Kn) > n
2 + 1.

Proof. By Lemma 8.17, mp(Kn) > n
2 . Let M be any set of n2 edge-disjoint perfect matchings in

Kn. We will show that Kn −M contains a perfect matching. If Kn −M contains a Hamiltonian
cycle then it has a perfect matching and we are done. Assume Kn −M does not contain any
Hamiltonian cycle, while it is a (n2 − 1)-regular graph. A result of Cranston and O [17] implies
that Kn −M is disconnected. In order for Kn −M to be (n2 − 1)-regular each component has
to have at least n2 vertices. Thus, Kn −M consists of two disjoint copies of Kn

2
. Each of these

components has a Hamiltonian cycle, and hence a perfect matching. Therefore, the union of
these two components has a perfect matching.

theorem 8 .19. If n ≡ 2 mod 4, then mp(Kn) = n
2 .

Proof. By Lemma 8.17, mp(Kn) > n
2 . In order to complete the proof, we show that mp(Kn) 6 n

2 .
Let H = Kn

2 ,n2 be a complete bipartite subgraph of Kn. Note that n2 is an odd number and H is an
n
2 -regular graph. According to Hall’s marriage theorem [24], for k > 1, every k-regular bipartite
graph contains a perfect matching [25]. Since by the iterative removal of perfect matchings from
H the resulting graph is still regular, the edges of H can be partitioned into n

2 perfect matchings;
see Figure 8.9(a). It is obvious that Kn −H consists of two connected components of odd size.
Thus, by removing the n2 matchings in H, the resulting graph, Kn −H, does not have any perfect
matching. This proves the claim.

theorem 8 .20. If n ≡ 0 mod 4, then mp(Kn) = n
2 + 1.

Proof. By Lemma 8.18, mp(Kn) > n
2 + 1. In order to complete the proof, we show that mp(Kn) 6

n
2 + 1. Assume n = 4k. Let A = {a1, . . . ,a2k−1} and B = {b1, . . . ,b2k+1} be a partition of vertices
of Kn. Let Mi be a matching consisting of the edges bibi+1 and ajbj+i+1, where + is modulo
2k + 1 and j runs from 1 to 2k − 1. It is easy to see that M1, . . . ,M2k+1 are disjoint perfect
matchings, and after removing them we have a complete graph on A and a graph on B, which are
disjoint. Since each of A and B has an odd number of points, there is no more perfect matching.
This proves the claim.
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In the rest of this section we consider plane matching removal from geometric graphs.
Let P be a set of n points in general position in the plane, with n even. Given a geometric graph

G on P, we say that G is plane matching persistent if by removing any plane perfect matching M
from G, the resulting graph, G−M, has a plane perfect matching. We define the plane matching
persistency of G, denoted by pmp(G) as the size of the smallest set M of edge-disjoint plane
perfect matchings that can be removed from G such that G−M does not have any plane perfect
matching. In particular, G is plane matching persistent iff pmp(G) > 2.

Aichholzer et al. [4] and Perles (see [30]) showed that by removing any set of at most n2 − 1

edges from K(P), the resulting graph has a plane perfect matching. This bound is tight [4]; that
is, there exists a point set P such that by removing a set H of n2 edges from K(P) the resulting
graph does not have any plane perfect matching. In the examples provided by [4], the n

2 edges
in H form a connected component which has n2 + 1 vertices.

Thus, one may think if the removed edges are disjoint, it may be possible to remove more than
n
2 − 1 edges while the resulting graph has a plane perfect matching. In the following lemma we
show that by removing any plane perfect matching, i.e., a set of n2 disjoint edges, from K(P), the
resulting graph still has a perfect matching.

lemma 8 .21. Let P be a set of n points in general position in the plane with n even, then pmp(K(P)) >
2.

Proof. Let M be any plane perfect matching in K(P). Assign n
2 distinct colors to the points in P

such that both endpoints of every edge in M have the same color. By Theorem 8.2, P has a plane
colored matching, say M ′. Since both endpoints of every edge in M have the same color while
the endpoints of every edge in M ′ have distinct colors, M and M ′ are edge-disjoint. Therefore,
by removing any plane perfect matching from K(P), the resulting graph still has a plane perfect
matching, which implies that pmp(K(P)) > 2.

theorem 8 .22. For a set P of n > 4 points in convex position in the plane with n even, pmp(K(P)) = 2.

Proof. By Lemma 8.21, pmp(K(P)) > 2. In order to prove the theorem, we need to show that
pmp(K(P)) 6 2. Let M1 and M2 be two edge-disjoint plane matchings obtained from CH(P).
By Lemma 8.3, any plane perfect matching in K(P) contains at least two edges of CH(P), while
K(P) − {M1 ∪M2} does not have convex hull edges, and hence does not have any plane perfect
matching. Therefore, pmp(K(P)) 6 2.

observation 8 .23. The union of two edge-disjoint perfect matchings in any graph is a set of even
cycles.

lemma 8 .24. There exists a point set P in general position such that pmp(K(P)) > 3.

Proof. We prove this lemma by providing an example. Figure 8.10(a) shows a set P = {a1, . . . ,an,
b1, . . . ,bn, c1, . . . , cn} of 3n points in general position, where n is an even number. In order to
prove that pmp(K(P)) > 3, we show that by removing any two edge-disjoint plane matchings
from K(P), the resulting graph still has a plane perfect matching. Let M1 and M2 be any two
plane perfect matchings in K(P). Let G be the subgraph of K(P) induced by the edges inM1 ∪M2.
Note that G is a 2-regular graph and by Observation 8.23 does not contain any odd cycle. For
each 1 6 i 6 n, let ti be the triangle which is defined by the three points ai, bi, and ci. Let T
be the set of these n (nested) triangles. Since G does not have any odd cycle, for each ti ∈ T, at
least one edge of ti is not in G. Let M3 be the matching containing an edge ei from each ti ∈ T
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such that ei /∈ G. See Figure 8.10(b). Now we describe how to complete M3, i.e., complete it to
a perfect matching. Partition the triangles in T into n

2 pairs of consecutive triangles. For each
pair (ti, ti+1) of consecutive triangles we complete M3 locally—on ai,bi, ci,ai+1,bi+1, ci+1—in
the following way. Let ti = (ai,bi, ci) and ti+1 = (ai+1,bi+1, ci+1). See Figure 8.10(c). W.l.o.g.
assume that M3 contains aibi and ai+1ci+1, that is aibi /∈ G and ai+1ci+1 /∈ G. If cibi+1 /∈ G,
then we complete M3 by adding cibi+1. If cibi+1 ∈ G, then ai+1bi+1 /∈ G or ci+1bi+1 /∈ G
because bi+1 has degree two in G. W.l.o.g. assume that ai+1bi+1 /∈ G. Then we modify M3 by
removing ai+1ci+1 and adding ai+1bi+1. Now, if cici+1 /∈ G, then we complete M3 by adding
cici+1. If cici+1 ∈ G, then by Observation 8.23, bi+1ci+1 /∈ G. We modify M3 by removing
ai+1bi+1 and adding bi+1ci+1. At this point, since cibi+1 and cici+1 are in G, ciai+1 /∈ G and
we complete M3 by adding ciai+1.

a1

b1 c1

an

bn cn

a1

b1 c1

an

bn cn

ai

ai+1

bi

bi+1

ci

ci+1

(a) (b) (c)

Figure 8.10: (a) Set P of 3n points in general position. (b) M3 contains one edge from each triangle. (c)
Locally converting M3 to a perfect matching, for ti and ti+1.

8.5 conclusions

We considered the problem of packing edge-disjoint plane perfect matchings into a set P of n
points in the plane. If P is in general position, we showed how to pack blog2 nc− 1 matchings.
We also looked at some special cases and variants of this problem. We believe that the number of
such matchings is linear. A natural open problem is to improve either the provided lower bound
or the trivial upper bound of n− 1, where n > 6. Another problem is to provide point sets with
large plane matching persistency.
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[15] J. Černý. Geometric graphs with no three disjoint edges. Discrete & Computational Geometry,
34(4):679–695, 2005.
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[37] J. Pach and J. Törőcsik. Some geometric applications of Dilworth’s theorem. Discrete &
Computational Geometry, 12:1–7, 1994.

[38] M. Sharir and A. Sheffer. Counting triangulations of planar point sets. The Electronic Journal
of Combinatorics, 18(1), 2011.

[39] M. Sharir and E. Welzl. On the number of crossing-free matchings, cycles, and partitions.
SIAM Journal on Computing, 36(3):695–720, 2006.

[40] D. Sitton. Maximum matchings in complete multipartite graphs. Furman University Electronic
Journal of Undergraduate Mathematics, 2:6–16, 1996.

[41] A. Soifer. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its
Creators. New York: Springer, 2009.

[42] J. W. Sutherland. Lösung der aufgabe 167. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 45:33–35, 1935.

[43] G. Tóth. Note on geometric graphs. Journal of Combinatorial Theory, Series A, 89(1):126–132,
2000.

[44] G. Tóth and P. Valtr. Geometric graphs with few disjoint edges. Discrete & Computational
Geometry, 22(4):633–642, 1999.

[45] W. T. Tutte. On the problem of decomposing a graph into n connected factors. Journal of the
London Mathematical Society, 36(1):221–230, 1961.



148



colophon

This document was typeset using the typographical look-and-feel classicthesis developed by
André Miede. The style was inspired by Robert Bringhurst’s seminal book on typography “The
Elements of Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection of post-
cards received so far is featured here:

http://postcards.miede.de/

Final Version as of October 20, 2016 (classicthesis version 4.1).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Preface
	1 Introduction
	1.1 Geometric Graphs
	1.2 Matching Problems
	1.3 Previous Work
	1.4 Obtained Results
	1.5 Summary of the thesis
	1.5.1 Maximum Matchings
	1.5.2 Strong Matchings
	1.5.3 Bottleneck Matchings
	1.5.4 Plane Matchings
	1.5.5 Matching Packing


	2 Matching in Gabriel Graphs
	2.1 Introduction
	2.1.1 Previous Work
	2.1.2 Our Results

	2.2 Preliminaries
	2.3 Euclidean Bottleneck Matching
	2.3.1 Proof of Theorem 2.4
	2.3.2 Proof of Proposition 1
	2.3.3 Proof of Proposition 2

	2.4 Maximum Matching
	2.4.1 Proof of Theorem 2.12
	2.4.2 Lower Bounds

	2.5 Blocking Higher-Order Gabriel Graphs
	2.6 Conclusions

	3 Matching in TD-Delaunay Graphs
	3.1 Introduction
	3.1.1 Previous Work
	3.1.2 Our Results

	3.2 Preliminaries
	3.3 Connectivity
	3.3.1 (k+1)-connectivity
	3.3.2 Bottleneck Biconnected Spanning Graph

	3.4 Hamiltonicity
	3.5 Perfect Matching Admissibility
	3.5.1 Bottleneck Perfect Matching
	3.5.2 Perfect Matching

	3.6 Blocking TD-Delaunay graphs
	3.7 Conclusions

	4 Strong Matching of Points with Geometric Shapes
	4.1 Introduction
	4.1.1 Previous Work
	4.1.2 Our results

	4.2 Preliminaries
	4.3 Strong Matching in GS(P)
	4.4 Strong Matching in G(P)
	4.5 Strong Matching in G(P)
	4.6 Strong Matching in G (P)
	4.7 Strong Matching in G(P)
	4.8 A Conjecture on Strong Matching in G(P)
	4.9 Conclusions

	5 Bottleneck Plane Matchings in a Point Set
	5.1 Introduction
	5.1.1 Previous Work
	5.1.2 Our Results

	5.2 Preliminaries
	5.3 Plane Matching in Unit Disk Graphs
	5.3.1 13-approximation algorithm
	5.3.2 25-approximation algorithm for connected unit disk graphs

	5.4 Approximating Bottleneck Plane Perfect Matching
	5.4.1 First Approximation Algorithm
	5.4.2 Second Approximation Algorithm

	5.5 Conclusions

	6 Bottleneck Plane Matchings in Bipartite Graphs
	6.1 Introduction
	6.2 Points in Convex Position
	6.2.1 Points on Circle

	6.3 Blue Points on Straight Line
	6.3.1 First algorithm
	6.3.2 Second algorithm


	7 Plane Matchings in Complete Multipartite Graphs
	7.1 Introduction
	7.1.1 Previous Work
	7.1.2 Our Contribution

	7.2 Balanced Cut Theorem
	7.3 Plane Colored Matching Algorithm
	7.3.1 Maximum Matching


	8 Packing Matchings into a Point Set
	8.1 Introduction
	8.1.1 Previous Work
	8.1.2 Our Results

	8.2 Preliminaries
	8.2.1 Graph-Theoretical Background
	8.2.2 Plane Matchings in Colored Point Sets

	8.3 Packing Plane Matchings into Point Sets
	8.3.1 Points in Convex Position
	8.3.2 Points in Wheel Configurations
	8.3.3 Points in General Position
	8.3.4 Non-crossing Plane Matchings

	8.4 Matching Removal Persistency
	8.5 Conclusions

	Colophon

