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Abstract

Given a point setP and a classC of geometric objects,GC (P) is a geometric graph with vertex setP such that any two
verticesp andq are adjacent if and only if there is someC ∈ C containing bothp andq but no other points fromP.
We studyG▽(P) graphs where▽ is the class of downward equilateral triangles (ie. equilateral triangles with one of
their sides parallel to thex-axis and the corner opposite to this side below that side). For point sets in general position,
these graphs have been shown to be equivalent to half-Θ6 graphs and TD-Delaunay graphs.

The main result in our paper is that for point setsP in general position,G▽(P) always contains a matching of size

at least
⌈

|P|−1
3

⌉

and this bound is tight. We also give some structural properties ofGC(P) graphs, whereC is the class

which contains both upward and downward equilateral triangles. We show that for point sets in general position, the
block cut point graph ofGC(P) is simply a path. Through the equivalence ofGC(P) graphs withΘ6 graphs, we also
derive that anyΘ6 graph can have at most 5n−11 edges, for point sets in general position.

Keywords: Geometric Graphs, Delaunay Graphs, Half-Θ6 Graphs, Matching

1. Introduction

In this work, we study the structural properties of some special geometric graphs defined on a setP of n points on
the plane. An equilateral triangle with one side parallel tothex-axis and the corner opposite to this side below (resp.
above) that side as in▽ (resp.△) will be called a down (resp. up)-triangle. A point setP is said to be in general
position, if the line passing through any two points fromP does not make angles 0◦, 60◦ or 120◦ with the horizontal
[1, 2]. In this paper, we consider only point sets that are in general position and our results assume this pre-condition.

Given a point setP, G▽(P) (resp. G△(P)) is defined as the graph whose vertex set isP and that has an edge
between any two verticesp andq if and only if there is a down-(resp. up-)triangle containing both pointsp andq but
no other points fromP (See Figure 1). We also define another graphGC(P) as the graph whose vertex set isP and
that has an edge between any two verticesp andq if and only if there is a down-triangle or an up-triangle containing
both pointsp andq but no other points fromP. In Section 3 we will see that, for any point setP in general position, its
G▽(P) graph is the same as the well known Triangle Distance Delaunay (TD-Delaunay) graph ofP and the half-Θ6

graph ofP on so-called negative cones. Moreover,GC(P) is the same as theΘ6 graph ofP [1, 3].
Given a point setP and a classC of geometric objects, the maximumC -matching problem is to compute a

subclassC ′ of C of maximum cardinality such that no point fromP belongs to more than one element ofC ′ and for
eachC ∈ C ′, there are exactly two points fromP which lie insideC. Dillencourt [4] proved that every point set admits
a perfect circle-matching.́Abrego et al. [5] studied the isothetic square matching problem. Bereg et al. concentrated
on matching points using axis-aligned squares and rectangles [6].

Email addresses: jasine@csa.iisc.ernet.in (Jasine Babu),ahmad.biniaz@gmail.com (Ahmad Biniaz),anil@scs.carleton.ca
(Anil Maheshwari),michiel@scs.carleton.ca (Michiel Smid)

Preprint submitted to Theoretical Computer Science October 25, 2013



Edges of G△(P )

Edges of G▽(P )
Edges of G▽(P )

(a) (b)

Figure 1: A point setP and its (a)G▽(P) and (b)GC(P).

A matching in a graphG is a subsetM of the edge set ofG such that no two edges inM share a common end-point.
A matching is called a maximum matching if its cardinality isthe maximum among all possible matchings inG. If all
vertices ofG appear as end-points of some edge in the matching, then it is called a perfect matching. It is not difficult
to see that for a classC of geometric objects, computing the maximumC -matching of a point setP is equivalent to
computing the maximum matching in the graphGC (P).

The maximum△-matching problem, which is the same as the maximum matchingproblem onG△(P), was
previously studied by Panahi et al. [2]. It was claimed that,for any point setP of n points in general position, any
maximum matching ofG△(P) (andG▽(P)) will match at least

⌊

2n
3

⌋

vertices. But we found that their proof of Lemma
7, which is very crucial for their result, has gaps. By a completely different approach, we show that for any point set
P in general position,G▽(P) (and by symmetric arguments,G△(P)) will have a maximum matching of size at least
⌈

n−1
3

⌉

; i.e, at least 2
(⌈

n−1
3

⌉)

vertices are matched. We also give examples of point sets, where our bound is tight.
We also prove some structural and geometric properties of the graphsG▽(P) (and by symmetric arguments,

G△(P)) andGC(P). It will follow that for point sets in general position,Θ6 graphs can have at most 5n−11 edges
and their block cut point graph is a simple path.

2. Notations

Our notations are similar to those used in [1], with some minor modifications adopted for convenience. Acone
is the region in the plane between two rays that emanate from the same point, its apex. Consider the rays obtained
by a counter-clockwise rotation of the positivex-axis by angles ofiπ3 with i = 1, . . . ,6 around a pointp. (See Figure

2). Each pair of successive rays,(i−1)π
3 and iπ

3 , defines a cone, denoted byAi(p), whose apex isp. For i ∈ {1, . . . ,6},
wheni is odd, we denoteAi(p) usingC i+1

2
(p) and the cone opposite toCi(p) usingCi(p). We callCi(p) a positive

cone aroundp andCi(p) a negative cone aroundp. For each coneCi(p) (resp.Ci(p)), let ℓCi(p) (resp. ℓCi(p)) be its

bisector. Ifp′ ∈Ci(p), then letci(p, p′) denote the distance betweenp and the orthogonal projection ofp′ ontoℓCi(p).
Similarly, if p′ ∈Ci(p), then letci(p, p′) denote the distance betweenp and the orthogonal projection ofp′ ontoℓCi(p).
For 1≤ i ≤ 3, letVi(p) = {p′ ∈ P | p′ ∈ Ci(p), p′ , p} andVi(p) = {p′ ∈ P | p′ ∈ Ci(p), p′ , p}. For any two points
p andq, the smallest down-triangle containingp andq is denoted by▽pq and the smallest up-triangle containingp
andq is denoted by△pq. If G1 andG2 are graphs on the same vertex set,G1∩G2 (resp.G1∪G2) denotes the graph
on the same vertex set whose edge set is the intersection (resp. union) of the edge sets ofG1 andG2.
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Figure 2: Six angles around a pointp.
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Figure 3: Proof of Property 1.

3. Preliminaries

In this section, we describe some basic properties of the geometric graphs described earlier and their equivalence
with other geometric graphs which are well known in the literature.

The class of down-triangles (and up-triangles) admits a shrinkability property [5]: each triangle object in this class
that contains two pointsp andq, can be shrunk such thatp andq lie on its boundary. It is also clear that we can
continue the shrinking process—from the edge that does not contain neitherp or q—until at least one of the points,p
or q, becomes a triangle vertex and the other point lies on the edge opposite to this vertex. After this, if we shrink the
triangle further, it cannot containp andq together. Therefore, for any pair of pointsp andq, ▽pq (△pq) has one of
the pointsp or q at a vertex of▽pq (△pq) and the other point lies on the edge opposite to this vertex.In Figure 1,
triangles are shown after shrinking.

By the shrinkability property, for the▽-matching problem, it is enough to consider the smallest down-triangle for
every pair of points(p,q) from P. Thus,G▽(P) is equivalent to the graph whose vertex set isP and that has an edge
between any two verticesp andq if and only if▽pq contains no other points fromP. Notice that if▽pq hasp as one
of its vertices, thenq ∈C1(p)∪C2(p)∪C3(p). The following two properties are simple, but useful.

Property 1. Let p and p′ be two points in the plane. Let i ∈ {1,2,3}. The point p is in the cone Ci(p′) if and only if
the point p′ is in the cone Ci(p). Moreover, if p is in the cone Ci(p′), then ci(p′, p) = ci(p, p′).
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PROOF. The first part of the claim is obvious. Now, without loss of generality, assume thati = 1 andp ∈C1(p′). (See
Figure 3). SinceℓC1(p) is the bisector ofC1(p) andℓC1(p′) is the bisector ofC1(p′), ℓC1(p) andℓC1(p′) are parallel lines.
Hence,c1(p, p′) is the perpendicular distance ofp′ to the lineℓ1, which makes an angle 120◦ with the horizontal and
passes thoughp. Similarly, c1(p′, p) is the perpendicular distance ofp to the lineℓ2, which makes an angle 120◦

with the horizontal and passes thoughp′. Hence bothc1(p, p′) andc1(p′, p) are equal to the perpendicular distance
between the linesℓ1 andℓ2. 2

Property 2. Let P be a point set, p ∈ P and i ∈ {1,2,3}. If V i(p) is non-empty, then, in G▽(P), the vertex p′

corresponding to the point in V i(p) with the minimum value of ci(p, p′) is the unique neighbour of vertex p in V i(p).

PROOF. AssumeV i(p) , /0. For any pointp′ in V i(p), it is easy to see that▽pp′ contains no points outside the cone
Ci(p). Let p′ be the point with the minimum value ofci(p, p′). The minimality ensures that▽pp′ does not contain
any other point other thanp andp′ from P. Therefore,p andp′ are neighbours inG▽(P).

In order to prove uniqueness, consider any pointq in P∩V i(p) other thanp and p′. It can be seen that▽pq
contains the pointp′ and therefore,p andq are not adjacent inG▽(P). Thusp′ is the only neighbour ofp in V i(p). 2

Consider a point setP and letp,q ∈ P be two distinct points. By Property 1,∃i ∈ {1,2,3} such thatp ∈ Ci(q) or
q ∈ Ci(p); by the general position assumption, both conditions cannot hold simultaneously. Since▽pq has eitherp
or q as a vertex, Property 2 implies that we can constructG▽(P) as follows. For every pointp ∈ P, and for each of
the three cones,Ci, for i ∈ {1,2,3}, add an edge fromp to the pointp′ in Vi(p) with the minimum value ofci(p, p′),
if Vi(p) , /0. This definition ofG▽(P) is the same as the definition of the half-Θ6-graph on negative cones (Ci), given
by Bonichon et al. [1]. We can similarly define the graphG▽(P) using the conesCi instead ofCi, for i ∈ {1,2,3}, and
show that it is equivalent to the half-Θ6 graph on positive cones (Ci), given by Bonichon et al. [1]. In Bonichon et al.
[1], it was shown that for point sets in general position, thehalf-Θ6-graph, thetriangular distance-Delaunay graph
(TD-Del) [3], which are 2-spanners, and thegeodesic embedding of P, are all equivalent.

The Θk-graphs discovered by Clarkson [7] and Keil [8] in the late 80’s, are also used as spanners [9]. In these
graphs, adjacency is defined as follows: the space around each point p is decomposed intok > 2 regular cones, each
with apexp, and a pointq of a given coneC is linked top if, from p, the orthogonal projection ofq ontoC’s bisector1

is the nearest point inC. In Bonichon et al. [1], it was shown that everyΘ6-graph is the union of two half-Θ6-graphs,
defined byCi andCi cones. In our notation this is same as the graphG▽(P)∪G△(P), which by definition, is equivalent
to GC(P). Thus, for a point set in general position,Θ6(P) = GC(P).

4. Some properties ofG▽(P)

4.1. Planarity
Chew defined [3] TD-Delaunay graph to be a planar graph and itsequivalence withG▽(P) graph implies that

G▽(P) is planar. This also follows from the general result that Delaunay graph of any convex distance function is a
planar graph [10]. For the sake of completeness, we include adirect proof here.

Lemma 1. For a point set P, its G▽(P) is a plane graph, where its edges are straight line segments between the
corresponding end-points.

PROOF. Whenever there is an edge betweenp andq in G▽(P), we draw it as a straight line segment fromp to q.
Notice that this segment always lies within▽pq. We will show that this gives a planar embedding ofG▽(P). Consider
two edgespq andp′q′ of G▽(P). If the interiors of▽pq and▽p′q′ have no point in common, the line segmentspq
andp′q′ can not cross each other. Suppose the interiors of▽pq and▽p′q′ share some common area. The case that
▽pq ⊆▽p′q′ (or vice versa) is not possible, because in this case▽p′q′ containsp andq (or ▽pq containsp′ and
q′), which contradicts its emptiness. Since▽pq and▽p′q′ have parallel sides, this implies that one corner of▽pq
infiltrates into▽p′q′ or vice versa (see Figure 4). Thus their boundaries cross at two distinct points,a andb. Since
P∩▽p′q′ ∩▽p′q′ = /0, the pointsp andq must be on that portion of the boundary of▽pq that does not lie inside
▽p′q′. So the line throughab separatespq from p′q′. 2

1Sometimes the definition ofΘk-graphs allows the orthogonal projection to be made to any ray in the coneC. But in our definition, we stick to
the convention that the orthogonal projection is made to thebisector ofC.
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Figure 4: Intersection of▽pq and▽p′q′ does not lead to crossing of edgespq andp′q′.

Throughout this paper, we useG▽(P) to represent both the abstract graph and its planar embedding described in
Lemma 1. The meaning will be clear from the context.

4.2. Connectivity

In this section, we prove that for a point setP, its G▽(P) is connected. As stated in the following lemma, between
every pair of vertices, there exist a path with a special structure.

Lemma 2. Let P be a point set with p,q ∈ P. Then, in G▽(P), there is a path between p and q which lies fully in
▽pq and hence G▽(P) is connected.

PROOF. We will prove this using induction on the rank of the area of▽pq. For any pair of distinct pointsp,q ∈ P,
if the interior of▽pq does not contain any point fromP, by definition, there is an edge fromp to q in G▽(P). By
induction, assume that for pairs of pointsx,y ∈ P such that the area of▽xy is less than the area of▽pq, in the graph
in G▽(P), there is a path which lies fully in▽xy betweenx andy.

If the interior of▽pq does not contain any point fromP, there is an edge fromp to q in G▽(P). Otherwise, there
is a pointx ∈ P which is in the interior of▽pq. This implies▽px ⊂▽pq and▽xq ⊂▽pq. Since the area of▽px
and the area of▽xq are both less than the area of▽pq, by the induction hypothesis, there is a path that lies in▽px
betweenp andx and there is a path that lies in▽xq betweenx andq. By concatenating these two paths, we get a path
which lies in▽pq betweenp andq. 2

4.3. Number of degree-one vertices

In this section, we prove for a point setP, itsG▽(P) has at most three vertices of degree one. This fact is important
for our proof of the lower bound of the cardinality of a maximum matching inG▽(P).

Definition 1. Let x be a degree-one vertex inG▽(P) and letp be the unique neighbor ofx. We say thatx uses the
horizontal line, ifx is below the horizontal line passing throughp and points inP\ {p,x} are all above the horizontal
line passing throughp. We say thatx uses the 120◦ line, if x lies to the right of the 120◦ line passing throughp and all
points inP\{p,x} lie to the left of this line. We say thatx uses the 60◦ line, if x lies to the left of the 60◦ line passing
throughp and all points inP\ {p,x} lie to the right of this line.

Property 3. Let x be a degree-one vertex in G▽(P) and let p be the unique neighbor of x such that x ∈ Vi(p) for
i ∈ {1,2,3}.

• If x ∈V1(p), then x uses the 120◦ line.

• If x ∈V2(p), then x uses the 60◦ line.

• If x ∈V3(p), then x uses the horizontal line.
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PROOF. To get a pictorial understaning of the property, the readermay refer to Figure 5. Let us consider the case
whenx ∈V1(p). It is clear thatx lies to the right of the 120◦ line passing throughp. Consider a pointy ∈ P\ {p,x}.
By the general position assumption,y cannot lie on the 120◦ line passing throughp. If y lies to the right of the 120◦

line passing throughp, sincex is already to the right side of the 120◦ line passing throughp, the triangle▽xy will be
lying completely to the right side of the 120◦ line passing throughp and thereforep <▽xy. Hence, by Lemma 2, in
G▽(P) there is a path betweenx andy, which does not pass throughp. This contradicts our assumption thatp was
the unique neighbor ofx. Therefore, any pointy ∈ P\ {p,x} should lie to the left of the 120◦ line passing throughp.
Hence,x uses the 120◦ line.

Whenx ∈V2(p) or x ∈V3(p), the proofs are similar. 2

C1(p)C2(p)

C3(p)

C3(p)

C1(p) C2(p)

p

x

x ∈ V1(p), x uses the 120◦ line

C1(p)C2(p)

C3(p)
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C1(p)
C2(p)

p
x

x ∈ V2(p), x uses the 60◦ line

C1(p)C2(p)

C3(p)

C3(p)

C1(p) C2(p)

p

x

x ∈ V3(p), x uses the horizontal line

Figure 5: Illustration of Property 3. The cones aroundp which are allowed to have points fromP \{p,x} are marked withXand the other cones
aroundp are marked with×.
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C3(p)

C1(p)
C2(p)
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x ∈ V 1(p). x uses the horizontal line
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x

and the 120◦ line.

C1(p)C2(p)

C3(p)

C3(p)

C1(p) C2(p)
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x

and the 60◦ line.and the 60◦ line.

x ∈ V 2(p). x uses the horizontal line x ∈ V 3(p). x uses the 120◦ line

Figure 6: Illustration of Property 4. The cones aroundp which are allowed to have points fromP \{p,x} are marked withXand the other cones
aroundp are marked with×.

Property 4. Let x be a degree-one vertex in G▽(P) and let p be the unique neighbor of x such that x ∈ V i(p) for
i ∈ {1,2,3}.

• If x ∈V 1(p), then x uses the horizontal line and the 60◦ line.

• If x ∈V 2(p), then x uses the horizontal line and the 120◦ line.

• If x ∈V 3(p), then x uses the 60◦ line and the 120◦ line.

PROOF. To get a pictorial understaning of this property, the reader may refer to Figure 6. This property can be proved
using similar arguments as in the proof of Property 3. We omitthe proof here, to avoid redundancy. 2

Property 5. Let x be a degree-one vertex in G▽(P) and p be the unique neighbor of x. Let x′ ∈ P \ {x} be another
degree-one vertex in G▽(P).
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Figure 7: Case 1.q ∈C1(p) andr ∈C2(p), Case 2.q ∈C1(p) andr ∈C3(p), Case 3.r ∈C2(p) andq ∈C3(p), Case 4.q,r ∈C3(p).

• If x uses the horizontal line, then, x′ cannot use the horizontal line.

• If x uses the 60◦ line, then, x′ cannot use the 60◦ line.

• If x uses the 120◦ line, then, x′ cannot use the 120◦ line.

PROOF. We prove only the first part. Proofs of the other parts are similar.
Supposex uses the horizontal line. By definition,x lies below the horizontal line passing throughp andx′ ∈P\{x}

lies on or above above this line. This implies thatx lies below the horizontal line throughx′. If x′ also uses the
horizontal line, sincex ∈ P \ {x′}, by a symmetric argument, we can show thatx′ lies below the horizontal line
throughx. Since these two conditions are not simultaneously possible, we can conclude that ifx uses the horizontal
line, thenx′ cannot use the horizontal line. 2

Lemma 3. For a point set P, its G▽(P) has at most three vertices of degree one.

PROOF. For contradiction, assume that there are four degree-one verticesx1, x2, x3 andx4 in G▽(P). From Property
3 and Property 4, we can see that eachxi uses at least one of the three types of reference lines: either the horizontal
line, or the 60◦ line or the 120◦ line. By pigeonhole principle, at least two among these fourdegree-one vertices use
the same type of reference line.

Without loss of generality, assume thatx1 andx2 uses the same type of reference line. Ifx1 andx2 are adjacent to
each other, these two degree-one vertices will form a connected component inG▽(P), which will contradict the fact
thatG▽(P) is connected. Therefore,x1 andx2 are non-adjacent. Hence, by Property 5,x1 andx2 cannot use the same
type of reference line.

Therefore, we can conclude thatG▽(P) has at most three vertices of degree one. 2

4.4. Internal triangulation

If all the internal faces of a plane graph are triangles, we call it an internally triangulated plane graph. In this
section, we will prove that for a point setP, the plane graphG▽(P) is internally triangulated. This property will be
used in Section 5 to derive the lower bound for the cardinality of maximum matchings inG▽(P).

Lemma 4. For a point set P, all the internal faces of G▽(P) are triangles.

PROOF. Consider an internal facef of G▽(P). We need to show thatf is a triangle. Letp be the vertex with the
highesty-coordinate among the vertices on the boundary off . Sincef is an internal face,p has at least two neighbours
on the boundary off . Let q andr be the neighbours ofp on the boundary off such thatr is to the right of the line
passing throughq and making an angle of 120◦ with the horizontal and any other neighbour ofp on the boundary of
f is to the right of the line passing throughr and making an angle 120◦ with the horizontal. Because of the general
position assumption,q andr can be uniquely determined.

We will prove thatqr is also an edge on the boundary off and there is no point fromP in the interior of the
triangle whose vertices arep,q andr. This will imply that the facef is the triangle whose vertices arep,q andr.

We know thatq,r ∈ C1(p)∪C2(p)∪C3(p). By Property 2, it cannot happen that bothq,r ∈ Ci(p), for any
i ∈ {1,2}. Other possibilities are shown in Figure 7, whereq is assumed to be abover. An analogous argument can
be made whenr is aboveq as well. Sincepq andpr are edges inG▽(P), we know that▽pq∩ (P\ {p,q}) = /0 and
▽pr∩ (P\ {p,r}) = /0.
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Notice that, the area bounded by the lines (1) the horizontalline passing throughp, (2) the line passing throughq
and making an angle of 120◦ with the horizontal, and (3) the line passing throughr and making an angle of 60◦ with
the horizontal, will define an equilateral down triangle with p, q andr on its boundary. Let us denote this triangle by
▽pqr.

Claim 1. ▽pqr∩ (P\ {p,q,r}) = /0 .

PROOF. For contradiction, let us assume that there exists a pointx ∈ ▽pqr∩ (P \ {p,q,r}). Because of the general
position assumption,x cannot be on the boundary of▽pqr. Therefore,▽px does not containq andr. By Lemma 2,
in G▽(P), there exists a path betweenp andx which lies inside▽px. Let this path beX = v1v2, . . . ,vk = x. Since
▽pq∩P\ {p,q}= /0,▽pr∩P\ {p,r}= /0 andq,r <▽px, we know that all vertices in the pathX = v1v2, . . . ,vk = x
lie inside the regionR = (▽px\ (▽pq∪▽pr))∪{p}.

Let C be the cone with apexp bounded by the rayspq andpr. Observe that for any pointv ∈ R, the line segment
pv lies inside the coneC. Sincev2 ∈ R andpv2 is an edge (in the path fromp to x), the line segment corresponding to
the edgepv2 lies insideC in G▽(P).

If the pointv2 is outside the facef , edgepv2 will cross the boundary off , which is contradicting the planarity
of G▽(P). Sincev2 cannot be outside the facef , the edgepv2 belongs to the boundary off . Sincev2 lies inside the
coneC andv2 ∈ R, this means thatv2 is a neighbour ofp on the boundary off such thatv2 is to the left of the the line
passing throughr and making an angle of 120◦ with the horizontal. This is a contradiction to our assumption thatq is
the only neighbour ofp on the boundary off , lying to the left of the the line passing throughr and making an angle
of 120◦ with the horizontal. 2

Let us continue with the proof of Lemma 4. Since the triangle with verticesp,q andr is inside the triangle▽pqr,
from the above claim, it is clear that there is no point fromP, other than the pointsp,q andr, inside the triangle whose
vertices arep,q andr. Since the edgespq andpr belong to the boundary off , to show thatf is a triangle, it is now
enough to prove thatqr is also an edge inG▽(P). This fact also follows from the above claim as explained below.

Since▽qr ⊆▽pqr, by the claim above,▽qr cannot contain any point fromP other thanp,q andr. Moreover,
sincep lies aboveq andr, we know thatp <▽qr. Therefore,▽qr ∩ (P \ {q,r}) = /0. Therefore,qr is an edge in
G▽(P).

Thus, f has to be a triangle bounded by the edgespq, qr andpr. 2

Corollary 1. For a point set P, all the cut vertices of G▽(P) lie on its outer face.

PROOF. Consider any vertexv of G▽(P) which is not on its outer face. SinceG▽(P) is internally triangulated, each
neighbour ofv in G▽(P) lies on a cycle in the graphG▽(P) \ v. SinceG▽(P) is connected,G▽(P) \ v remains
connected. Thus,v cannot be a cut vertex. 2

Combining Lemma 1, Lemma 2, Lemma 3 and Lemma 4, we get:

Theorem 1. For a point set P, G▽(P) is a connected and internally triangulated plane graph, having at most three
degree-one vertices.

5. Maximum matching in G▽(P)

In this section, we show that for any point setP of n points,G▽(P) contains a matching of size
⌈

n−1
3

⌉

; i.e, at least
2
(⌈

n−1
3

⌉)

vertices are matched. In order to do this, we will prove the following general statement:

Lemma 5. Let G be a connected and internally triangulated plane graph, having at most three vertices of degree one.

Then, G contains a matching of size at least
⌈

|V (G)|−1
3

⌉

.
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An overview of the proof. Let G be a graph onn vertices, satisfying the assumptions of Lemma 5. SinceG is a
connected graph, the lemma holds trivially whenn ≤ 4. Therefore, we assume thatn ≥ 5. We construct an auxiliary
graphG′ such that it is a 2-connected planar graph of minimum degree at least 3, and then make use of the following
theorem of Nishizeki [11] to get a lower bound on the size of a maximum matching ofG′.

Theorem 2 ([11]). Let G′ be a connected planar graph with n′ vertices having minimum degree at least 3 and let M′

be a maximum matching in G′. Then,

|M′| ≥











⌈ n′+2
3 ⌉ when n′ ≥ 10 and G′ is not 2-connected

⌈ n′+4
3 ⌉ when n′ ≥ 14 and G′ is 2-connected
⌊ n′

2 ⌋ otherwise

Using the above result, we will derive a lower bound on the size of a maximum matching ofG.

Pre-processing. Let the degree-one vertices ofG be denoted byp0, p1, . . . , pk−1. By our assumption,k ≤ 3. If k = 3,
and for each 0≤ i ≤ 2 the unique neighbor ofpi is a degree two vertex inG, we do some pre-processing to convert
it into a graph in which this condition does not hold. To understand this pre-processing easily, the reader may refer
to Figure 8. LetP be the path(p0 = v1,v2, . . . ,v2t) of maximum length inG such thatP contains an even number
of vertices andv2, . . . ,v2t are of degree two inG. We havet ≥ 1. Letv2t+1 be the neighbor ofv2t , other thanv2t−1 in
G. Let H be the plane graph obtained from the plane graphG, by deleting the verticesv1,v2, . . . ,v2t , along with their
incident edges. It is clear thatP has a unique maximum matching of sizet and a maximum matching ofG can be
obtained by taking the union of a maximum matching inH and the maximum matching inP.

v1 = p0

v2

v3

p1

p2

v4

v5

(a) (b)

G
p1

p2

v5

H

v1 = p0

v2

v3

p1

p2

v4
v5

G
p1

p2

v5

H

Figure 8: Pre-processing step constructingH from G. In both the cases above, the pathP=(v1,v2, . . . ,v4). The union of a maximum matching in
H and the matching{(v1,v2),v3,v4)} in P gives a maximum matching ofG. (a) In G, the vertexv5 is of degree two. It becomes a degree-one
vertex inH and its neighbor has degree at least three inH. (b) In G, the vertexv5 has degree greater than two.H has only two vertices of degree
one.

Sincek = 3 andG is connected, it is easy to see that the vertexv2t+1 is not a degree-one vertex inG. Since the
degree ofv2t+1 in H is one less than its degree inG, the degree ofv2t+1 is at least one inH. By the maximality ofP,
we can conclude that one of the following is true. Ifv2t+1 is a degree-one vertex inH, then, the unique neighbor of
v2t+1 has degree at least 3 inH (as in Figure 8(a)). Ifv2t+1 has degree greater than one inH, then,H has at most two
degree-one vertices,p1 andp2 (as in Figure 8(b)).

The properties of the pathP ensures thatH is connected. Since all the removed verticesv1, . . . ,v2t were of degree
less than three, they were all on the outer face of the internally triangulated graphG. Therefore,H remains internally
triangulated as well.

When at least one of the degree-one vertices ofG has a neighbor of degree greater than two or whenk ≤ 2 we
initialize H = G.

From the construction ofH, we can make the following observation.
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Property 6. H is a connected and internally triangulated plane graph. H has at most three degree-one vertices. If H
has three degree-one vertices, then, one of the degree-one vertices has a neighbor of degree at least three. If MH is a
maximum matching in H, then, G has a matching of size |MH |+ t, where t is an integer given by |V (G)|−|V (H)|

2 .

Construction of the auxiliary graph G′. Now we describe the construction of a supergraphG′ of H such thatG′ will
satisfy the assumptions of Theorem 2; i.e. we wantG′ to be a bi-connected planar graph of minimum degree at least
3. Our construction will also ensure that there exist eithera single vertexv or two verticesu andv in G′, such that
every edge inE(G′)\E(H) has one of its end points atu or v. Since a matchingM′ of G′ can have at most one edge
incident at each ofu andv, this implies thatH has a matching of size at leastM′−2.

We initializeG′ to be the same asH. Let the degree-one vertices ofH be denoted byq0,q1, . . . ,qh−1. If H has no
degree-one vertices, we considerh to be zero. By Property 6, we haveh ≤ 3. If h = 0 or 1, the modification ofG′ is
simple. We insert a new vertexx in the outer face ofG′ and add edges betweenx and all other vertices which were
already on the outer face ofG′ (i.e, add edges between the new vertexx and vertices which were on the outer face of
H). This transformation maintains planarity. All vertices in G′ except the vertexq0 (present only whenh = 1) have
degree at least three now. Ifh = 1, the degree ofq0 has become two inG′ at this stage. In this case, letf be a face
of the current graphG′, containing bothq0 andx. Modify G′ by inserting a new vertexy inside f and adding edges
from this new vertex to all other vertices belonging tof . As earlier, this transformation maintains planarity. Now, the
degree ofq0 becomes 3 and thusG′ achieves minimum degree 3. Notice that, whenh = 0 every edge inE(G′)\E(H)
is incident atx and whenh = 1 every edge inE(G′)\E(H) is incident atx or y.

If h= 2 orh = 3, consider a simple closed curveC in the plane such that (1) the entire graphH (all its vertices and
edges) lies inside the bounded region enclosed byC , (2) the vertices ofH which lie onC are precisely the degree-one
vertices ofH, (3) except for the end points, every edge ofH lies in the interior of the bounded region enclosed byC .
The region of the outer face ofH, bounded by the curveC , can be divided intoh regionsR0, . . . ,Rh−1, whereRi is
the region bounded by the edge atqi, the edge atq(i+1) modh and the boundary of the outer face ofH and the curve
C . (Here onwards, in this subsection we assume that indices ofvertices and regions are taken moduloh). Notice that
every vertex on the outer-face ofH lies on at least one of these regions andqi lies on the regionsRi andRi−1, for
0≤ i ≤ h−1.

Whenh = 2, we insert two new verticesx,y into G′. (See Figure 9(a)). Three types of new edges are added inG′:
(1) betweenx andy (2) between the vertexx and all the vertices ofH which lie on the regionR0 and (3) betweeny
and all the vertices ofH which lie on the regionR1. This transformation maintains planarity. (We can imaginex andy
to be points on the boundary of the regionsR0 andR1 respectively, but distinct from any point on the boundary ofthe
outer face ofH. Edges between the new vertexx and old vertices onR0 can be drawn insideR0 and edges betweeny
and the old vertices onR1 can be drawn insideR1. The edges among the new verticesx andy can be drawn outside
these regions, except at their end points). Both of the verticesq0 andq1 lie in both the regionsR0 andR1. Therefore,
q0 andq1 becomes adjacent to bothx andy in G′ and hence degrees of verticesq0, q1, x, y are all at least 3 inG′. Since
H was an internally triangulated planar graph, all the degreetwo vertices ofH were on the outer face ofH. Therefore,
each of them gets at least one new neighbor (x or y) in G′. Therefore, minimum degree ofG′ is at least 3. In this
case also, every edge inE(G′)\E(H) is incident atx or y. Whenh = 3, Property 6 ensures that the neighbor of one
of the degree-one vertices ofH has degree at least 3. Without loss of generality, assume that the neighbor ofq0 has
degree at least 3 inH. In this case, we insert one new vertexx into G′. (See Figure 9(b)). Three types of new edges
are added inG′: (1) betweenx andq0 (2) betweenq0 and all the other vertices ofH which were on the regionsR0 and
R2 (3) betweenx and all the vertices ofH which were on the regionR1. This transformation also maintains planarity.
(We can imaginex to be a point on the boundary of the regionR1, but distinct from any point on the boundary of the
outer face ofH. Edges betweenq0 and the other vertices onR0 can be drawn insideR0 and edges betweenq0 and the
other vertices onR2 can be drawn insideR2. Edges betweenx and the other vertices onR1 can be drawn insideR1.
The edges among the new verticesx andq0 can be drawn outside these regions, except at their end points). Vertices
q1 andq2 become adjacent to bothq0 andx in G′. Therefore, degrees ofq0, q1, q2 are at least 3. In addition,q0 is
also adjacent tox. Therefore, degree ofx is also at least three inG′. Suppose vertexv was the (unique) neighbor of
q0 in H. By Property 6,v has degree at least three inH and hence also inG′. All degree two vertices ofH, which
belonged toR0 or R2 were non-adjacent toq0 in H; but are adjacent toq0 in G′. Thus, they attain degree at least 3 in
G′. All degree two vertices ofH, which belonged toR2 gets a new neighborx in G′ and attain degree three. Thus, the
minimum degree ofG′ is at least 3 in this case as well. Every edge inE(G′)\E(H) is incident atx or q0.
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q1

q2

q0

R1

R2

R0 x

q1

q0

R1R0

x

y

q1

q2

q0

R1

R2

R0

q1

q0

R1R0

(b)

(a)

Figure 9: (a) Modification done whenH has two degree-one vertices. Every edge inE(G′)\E(H) is incident atx or y. (b) Modification done when
H has three degree-one vertices. Every edge inE(G′)\E(H) is incident atq0 or x.

From the description above, we can make the following observation.

Property 7. G′ is a planar graph of minimum degree at least three, with |V (H)|+1≤ |V (G′)| ≤ |V (H)|+2. There
exist either a single vertex u or two vertices u and v in G′, such that every edge in E(G′) \E(H) has one of its end
points at u or v.

Claim 2. The graph G′ is 2-connected.

PROOF. In all the different cases above, it is easy to observe that none of the newly inserted vertices can be a cut
vertex ofG′.

Consider an arbitrary vertexv ∈ V (H). If v is not a cut vertex ofH, then,H \ v is connected. SinceG′ has
minimum degree at least 3, any newly added vertex has a neighbor in V (H) \ {v} in the graphG′. Therefore,G′ \ v
remains connected. Therefore, none of the non-cut verticesof H can be a cut vertex ofG′. In particular, none of the
degree-one vertices ofH can be a cut vertex ofG′.

If v is a cut vertex inH, v was on the outer face ofH, becauseH was internally triangulated. It is clear that if
two verticesv1,v2 ∈V (H) are in the same connected component ofH \ v, they are in the same connected component
of G′ \ v as well. If C1 andC2 are two components ofH \ v, then we know that there are verticesv1 ∈ V (C1) and
v2 ∈V (C2), such thatv1 andv2 are neighbors ofv on the outer face ofH.

When h ≤ 2, verticesv1 and v2 have an edge to at least one of the newly inserted vertices inG′. Since the
induced subgraph ofG′ on the newly inserted vertices is connected, inG′ we get a path fromv1 to v2 in which all the
intermediate vertices are newly inserted vertices inG′. Whenh = 3, we have two cases to consider. It is possible that
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v1 or v2 is same as the vertexq0 itself. If this is not the case,v1 andv2 have edges to eitherq0 or the new vertexx in
G′. In either case, since there is an edge betweenq0 andx in G′, we get a path fromv1 to v2 in G′ \ v. Thus, in all
cases whenh ≥ 3, any two componentsC1 andC2 of H \ v become part of the same connected component ofG′ \ v.
Moreover, by the construction ofG′, the degree-one vertices ofH and the vertices inV (G′) \V(H) are part of the
same component ofG′ \ v. This implies thatG′ \ v has only a single connected component and hence,v is not a cut
vertex ofG′.

Thus,G′ is 2-connected. 2

A lower bound for the cardinality of a maximum matching in G. By Property 7 and Claim 2, the auxiliary graph
G′ is a 2-connected planar graph of minimum degree at least 3. Let n′ = |V (H)|+ t1 be the number of vertices of
G′, wheret1 = 1 or t1 = 2 by Property 7. By Theorem 2, the cardinality of a maximum matchingM′ in G′ is at least
⌈

n′+4
3

⌉

whenn′ ≥ 14 and|M′| ≥ ⌊ n′
2 ⌋, otherwise. SinceH is a subgraph ofG′, if we delete the edges inM′ which

belong toE(G′) \E(H), we get a matchingMH of H. SinceM′ is a matching inG′, M′ can have at most one edge
incident at any vertex ofG′. Hence, by Property 7, there can be at most two edges inM′∩ (E(G′)\E(H)). Therefore,
we have|MH | ≥ |M′|−2. From this, we get,

|MH | ≥















⌈

|V (H)|+t1+4
3

⌉

−2, when|V (H)|+ t1 ≥ 14

⌊

|V (H)|+t1
2

⌋

−2, otherwise

By Property 6,G has a matchingM of size|MH |+ t, wheret is an integer, given by|V (G)|−|V (H)|
2 . By substituting the

lower bound for|MH |, we get,

|M| ≥















⌈

|V (H)|+t1+4
3

⌉

−2+ t, when|V (H)|+ t1 ≥ 14

⌊

|V (H)|+t1
2

⌋

−2+ t, otherwise

Sincet1 = 1 or 2 andt = |V (G)|− |V(H)| ≥ 0, this gives

|M| ≥















⌈

|V (G)|−1
3

⌉

, when|V (H)| ≥ 13

⌊

|V (G)|−3
2

⌋

, otherwise

Whenever|V (G)| ≥ 7, from the above inequality, we get|M| ≥
⌈

|V (G)|−1
3

⌉

≥ 2. SinceG has at most three vertices

of degree one, when|V (G)| ≥ 5, G cannot be a star with|V (G)|−1 leaves. Therefore, when|V (G)| ≥ 5, |M| ≥ 2.
When|V (G)| > 1, sinceG is connected, we get|M| ≥ 1. From this discussion, we can conclude that, in all cases,

|M| ≥
⌈

|V (G)|−1
3

⌉

. This concludes the proof of Lemma 5.

As an immediate corollary of Lemma 5 and Theorem 1, we get:

Theorem 3. For any point set P of n points in general position, G▽(P) contains a matching of size
⌈

n−1
3

⌉

.

Some graphs for which our bound is tight. In Figure 10 (a), a point setP consisting of 15 points and the corresponding

graphG▽(P) is given. This graph has a maximum matching (shown in thick lines) of size
⌈

|P|−1
3

⌉

= 5. This is the

same example as given by Panahi et al. [2]. By adding more triplets of points(ai,bi,ci), i > 4, intoP, following the
same pattern, we can show that for anyn ≥ 15 which is a multiple of 3, there is a point setP of n points in general

position, such that a maximum matching inG▽(P) is of cardinality
⌈

|P|−1
3

⌉

. We can also show that, for anyn ≥ 13,

which is one more than a multiple of three, there is a point setP′ onn points in general position, such that a maximum

matching inG▽(P′) is of cardinality
⌈

|P′|−1
3

⌉

. For example, take the point setP′ = P\ {a0,b0} whereP is the point
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c0(667, 278)

c1(665, 396)

c2(667, 527)

c3(665, 683)

c4(662, 846)

a1(611, 410)
b1(711, 428)

a2(598, 550)
b2(723, 563)

a3(586, 699)
b3(726, 709)

a4(572, 881)
b4(750, 894)

b0(705, 308)a0(628, 297)
c0(667, 278)

c1(665, 396)

c2(667, 527)

c3(665, 683)

c4(662, 846)

a1(611, 410)
b1(711, 428)

a2(598, 550)
b2(723, 563)

a3(586, 699)
b3(726, 709)

a4(572, 881)
b4(750, 894)

(a) (b)

Figure 10: (a) A point setP with 15 points in general position, whereG▽(P) has a maximum matching of size
⌈

n−1
3

⌉

= 5 [2]. (b) A point setP
with 13 points in general position, whereG▽(P) has a maximum matching of size

⌈

n−1
3

⌉

= 4.

set of triplets described in the paragraph above. Figure 10 (b) illustrates this forn = 13, in which case a maximum

matching inG▽(P′) has cardinality
⌈

|P′|−1
3

⌉

= 4. Similarly, for anyn ≥ 14, which is two more than a multiple of

three, there is a point setP′ onn points in general position, such that a maximum matching inG▽(P′) is of cardinality
⌈

|P′|−1
3

⌉

. For example, take the point setP′ = P\ {a0} whereP is the point set of triplets described in the paragraph

above. From the examples above, it is clear that the bound given in Theorem 3 is tight.

5.1. A 3-connected down triangle graph without perfect matching

The example given by Panahi et al. [2], for a point setP for which G▽(P) has a maximum matching of size
⌈

n−1
3

⌉

, contained many cut vertices. However, for general planar graphs, we get a better lower bound for the size of
a maximum matching, when the connectivity of the graph increases. By Theorem 2, we know that any 3-connected
planar graph onn vertices has a matching of size

⌈

n+4
3

⌉

, if n ≥ 14 and has a matching of size
⌊

n
2

⌋

if n < 14 or it is
4-connected. Hence, it was interesting to see whether thereexist a point setP in general position, with an even number
of points, such thatG▽(P) is 3-connected but does not contain a perfect matching. The answer is positive. Consider
the graph given in Figure 11 (a), which shows a point setP of 18 points in general position and the corresponding
graphG▽(P). This graph has a maximum matching (shown in thick lines) of size 8. We can follow the pattern and
go on adding pointsai, bi andci, for i > 4 to the point set such that whenP = {a0,b0,c0, . . . ,ak, bk, ck, p1, p2, p3},

G▽(P) is a 3-connected graph with a maximum matching of size
⌈

|P|+5
3

⌉

. It can be verified thatG▽(P\ {a0}) and

G▽(P \ {a0,b0}) are also 3-connected and their maximum matchings have size
⌈

|P|+5
3

⌉

. (See Figure 11 (b) for the

case when|P|= 16). Thus, for 3-connected down triangle graphs corresponding to point sets in general position, the
best known lower bound for maximum matching is

⌈

n+4
3

⌉

and the examples we discussed above show that it is not
possible to improve the bound above

⌈

n+5
3

⌉

.

6. Some properties ofGC(P)

In this section, we prove that for a point setP, the 2-connectivity structure ofGC(P) is simple andGC(P) can
have at most 5n−11 edges.
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a0 b0

c0

a1 b1c1

a2 b2c2

a3 b3
c3

a4 b4

c4

c0

a1 b1c1

a2 b2c2

a3 b3
c3

a4 b4

c4

p2
(1143.33, 240.911)

p3(661.507, 1100.74)

(a) (b)

(150.403, 252.89)

p3(661.507, 1100.74)

p2

(1143.33, 240.911)
p1

(150.403, 252.89)

p1

Figure 11: (a) A point setP with 18 points in general position, whereG▽(P) is 3-connected and has a maximum matching of size
⌈

n+5
3

⌉

. (b) A
point setP with 16 points in general position, whereG▽(P) is 3-connected and has a maximum matching of size

⌈

n+5
3

⌉

. The points with their
co-ordinates unspecified have the same co-ordinates as in Figure 10.

6.1. Block cut point graph

Let G(V,E) be a graph. A block ofG is a maximal connected subgraph having no cut vertex. The block cut point
graph ofG is a bipartite graphB(G) whose vertices are cut-vertices ofG and blocks ofG, with a cut-vertexx adjacent
to a blockX if x is a vertex of blockX . The block cut point graph ofG gives information about the 2-connectivity
structure ofG.

SinceGC(P) is the union of two connected graphsG▽(P) andG△(P) (Lemma 2), it is connected and hence its
block-cut point graph is a tree [12]. We will show that the block cut point graph ofGC(P) is a simple path. We use
the following lemma in our proof.

Lemma 6. Let P be a point set and p ∈ P be a cut vertex of GC(P). Then, there exists an i ∈ {1,2,3} such that
Vi(p) , /0, Vi(p) , /0 and for all j ∈ {1,2,3} \ {i}, V j(p) = /0 and V j(p) = /0. Moreover, GC(P) \ p has exactly two
connected components, one containing all vertices in Vi(p) and the other containing all vertices of Vi(p).

PROOF. Sincep is a cut vertex ofGC(P), we know that there existv1,v2 ∈ P that are in different components of
GC(P)\ p. We will show thatv1 andv2 should be in opposite cones with reference to the apex pointp.

Without loss of generality, assume thatv1 ∈ A1(p)∩P \ {p}. If v2 ∈ (A1(p)∪A2(p)∪A6(p))∩ (P \ {p}), then,
p <▽v1v2 and hence by Lemma 2, there is a path inG▽(P) betweenv1 andv2 that does not pass throughp, which is
not possible. Similarly, ifv2 ∈ (A3(p)∪A5(p))∩ (P\ {p}), then,p <△v1v2 and there is a path inG△(P) betweenv1

andv2 that does not pass throughp, which is not possible. Therefore,v2 ∈ A4(p), the cone which is opposite toA1(p)
which containsv1. Thus any two pointsv1 andv2 which are in different connected components ofGC(P)\ p, are in
opposite cones aroundp.

Let C1 andC2 be two connected components ofGC(P)\ p with v1 ∈ C1 andv2 ∈ C2. Without loss of generality,
assume that suchv1 ∈ V1(p) andv2 ∈ V1(p). From the paragraph above, we know that every vertex ofGC(P) \ p
which is not inC1 is in V1(p) and every vertex ofGC(P) \ p which is not inC2 is in V1(p). This implies that for all
j ∈ {2,3}, V j(p) = /0 andV j(p) = /0. This proves the first part of our lemma.

For anyv1,v2 ∈ Vi(p), we havep <▽v1v2 and hence by Lemma 2, there is a path inG▽(P) betweenv1 andv2

that does not pass throughp. Similarly, for anyv1,v2 ∈Vi(p), p <△v1v2 and there is a path inG△(P) betweenv1 and
v2 that does not pass throughp. Therefore, there are exactly two connected components inGC(P)\ p, one containing
all vertices inVi(p) and the other containing all vertices ofVi(p). 2
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Theorem 4. Let P be a point set in general position and let k be the number of blocks of GC(P). Then, the blocks of
GC(P) can be arranged linearly as B1,B2, . . .Bk such that, for i > j, Bi ∩B j contains a single (cut) vertex pi when
j = i+1 and Bi ∩B j is an empty graph otherwise. That is, the block cut point graph of GC(P) is a path.

PROOF. If GC(P) is two-connected, there is only a single block and the lemma is trivially true.
SinceGC(P) is a connected graph, its block cut point graph is a tree. Any two blocks can have at most one vertex

in common and the common vertex is a cut vertex. From Lemma 6, we also know that three or more blocks cannot
share a common (cut) vertex. If a blockBi of GC(P) is such that, in the block cut point graph ofGC(P), the node
corresponding to blockBi is a leaf node,Bi is adjacent to only one another block and they share a single (cut) vertex.

If the node corresponding toBi is not a leaf node of the block cut point graph, we know thatBi shares (distinct)
common vertices with at least two other blocksBi′ andBi′′ . Therefore, two vertices inBi are cut vertices ofGC(P).
Let v1,v2 be these cut vertices. We will show that there cannot be a third such cut vertex inBi.

By Lemma 6, we know thatGC(P) \ v1 has exactly two components and sinceBi is 2-connected initially, all
vertices ofBi exceptv1 are in the same connected component ofGC(P) \ v1. By Lemma 6, all vertices ofBi lie
in the same (designated) cone with apexv1. Without loss of generality, assume that all vertices inBi \ v1 are in
V1(v1). In particular,v2 ∈V1(v1) and hencev1 ∈V1(v2). Similarly, sincev2 is a cut vertex, all vertices ofBi lie in the
same (designated) cone with apexv2. Sincev1 ∈ V1(v2), all vertices inBi \ v2 are inV1(v2). If v3 is a vertex inBi,
distinct fromv1 andv2, then from the discussion above, we getv3 ∈ V1(v1) andv3 ∈ V1(v2). Hencev1 ∈ V1(v3) and
v2 ∈V1(v3). Supposev3 is a cut vertex inGC(P). Sincev1 andv2 are in the same connected component ofGC(P)\v3,
it is a contradiction to Lemma 6, thatv1 ∈V1(v3) andv2 ∈V1(v3).

Thus, if the node corresponding toBi is not a leaf node of the block cut point graph ofGC(P), then exactly two
vertices inBi are cut vertices ofGC(P). Since no three blocks can share a common vertex by Lemma 6, weare done.

2

6.2. Number of Edges of GC(P)

SinceG▽(P) andG△(P) are planar graphs andGC(P) = G▽(P)∪G△(P), using Euler’s theorem, it is obvious
thatGC(P) has at most 2× (3n−6) = 6n−12 edges, wheren = |P| [12]. In this section, we show that for any point
setP, its GC(P) has a spanning tree of a special structure, which will imply that GC(P) can have at most 5n− 11
edges.

Lemma 7. For a point set P, the intersection of G▽(P) and G△(P) is a connected graph.

PROOF. We will prove this algorithmically. At any point of execution of this algorithm, we maintain a partition ofP
into two setsS andP\ S such that the induced subgraph ofG▽(P)∩G△(P) on S is connected. When the algorithm
terminates, we will haveS = P, which will prove the lemma.

We start by adding any arbitrary pointp1 ∈ P to S. The induced subgraph ofG▽(P)∩G△(P) on S is trivially
connected now.

At any intermediate step of the algorithm, letS = {p1, p2, . . . , pk} , P, such that the invariant is true. We will
show that we can add a pointpk+1 from P\ S into S, and still maintain the invariant.

For any pointp ∈ S, let
d1(p) = min

i∈{1,2,3},p′∈Vi(p)∩P\S
ci(p, p′)

d2(p) = min
i∈{1,2,3},p′∈Vi(p)∩P\S

ci(p, p′)

and
d(p) = min(d1(p),d2(p))

Since|P\ S| ≥ 1, d(p)< ∞. Let d = min
p∈S

d(p).

Considerp ∈ S such thatd(p) = d. By definition ofd, such a point exists. Consider the area enclosed by the

hexagon aroundp which is defined byHp =
3
⋃

i=1

{p′ ∈ Ci(p) | ci(p, p′) ≤ d}∪
3
⋃

i=1

{p′ ∈ Ci(p) | ci(p, p′) ≤ d}. (See
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Figure 12: (a) Closest point top. (b) Hexagons around closest pairs.

Figure 12 (a)). We know that there exists a pointq ∈ P\ S such thatq is on the boundary ofHp. We claim thatpq is
an edge inG▽(P)∩G△(P).

Let Hq =
3
⋃

i=1

{p′ ∈Ci(q) | ci(q, p′)≤ d}∪
3
⋃

i=1

{p′ ∈Ci(q) | ci(q, p′)≤ d}, which is a hexagonal area aroundq. (See

Figure 12 (b)). Without loss of generality, assume thatq ∈ C1(p). Note that, by Property 1,c1(p,q) = c1(q, p) = d
and hence,▽pq∪△pq ⊆ Hp ∩Hq.

If there exists a pointq′ ∈ (P\{q})\S such thatq′ lies in the interior ofHp, thend(p)< d, which is a contradiction.
Similarly, if there exists a pointp′ ∈ (P \ {p})∩ S such thatp′ lies in the interior ofHq, thend(p) < d. This is also
a contradiction. Therefore,Hp ∩Hq ∩ (P \ {p,q}) = /0. Since,▽pq∪△pq ⊆ Hp ∩Hq, this implies that▽pq∩ (P \
{p,q}) = /0 and△pq∩ (P\ {p,q}) = /0. This implies thatpq is an edge inG▽(P) as well as inG△(P).

Sincepq is an edge inG▽(P)∩G△(P), we can addpk+1 = q to the setS, thus increasing the cardinality ofS by
one, and still maintaining the invariant that the induced subgraph ofG▽(P)∩G△(P) onS is connected. Since we can
keep on doing this untilS = P, we conclude thatG▽(P)∩G△(P) is connected. 2

Theorem 5. For a set P of n points in general position, GC(P) has at most 5n− 11 edges and hence its average
degree is less than 10.

PROOF. SinceG▽(P) andG△(P) are both planar graphs we know that each of them can have at most 3n−6 edges.
From Lemma 7, we know that the intersection ofG▽(P) andG△(P) contains a spanning tree and hence they have
at leastn−1 edges in common. From this, we conclude that the number of edges inGC(P) = G▽(P)∪G△(P) is at
most(3n−6)+ (3n−6)− (n−1)= 5n−11. Hence,the average degree ofGC(P) is less than 10. 2

Corollary 2. For a set P of n points in general position, its Θ6 graph has at most 5n−11edges.

It is still an open problem to decide whether the upper bound on the number of edges, stated in Theorem 5 and
Corollary 2, is tight. Here we give an example showing that this upper bound cannot be improved below

(

4+ 1
3

)

n−13.
In Figure 13, a point setP of 18 points and the correspondingGC(P) graph is shown. This graph has 65 edges. By
varying the number of triplets of points(ai,bi,ci), i ≥ 0, in P, following the same pattern, we can show that for any
n ≥ 6 which is a multiple of 3, there is a point setP of n points in general position, such thatGC(P) has exactly
(

4+ 1
3

)

n−13 edges.

7. Conclusions

We have shown that for any setP of n points in general position, any maximum▽ (resp.△) matching ofP will

match at least 2
(⌈

|P|−1
3

⌉)

points. This also implies that any half-Θ6 graph for point sets in general position has a

matching of size at least
⌈

|P|−1
3

⌉

. We have also given examples for which this bound is tight. Wealso proved that

whenP is in general position, the block cut point graph of itsΘ6 graph is a simple path and that theΘ6 graph has at
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Figure 13: A point setP of n = 18 points and the correspondingGC(P) graph with
(

4+ 1
3

)

n−13= 65 edges.

most 5n−11 edges. It is an interesting question to see whether for every point set in general position, itsΘ6 graph

contains a matching of size
⌊

|P|
2

⌋

. So far, we were not able to get any counter examples for this claim and hence we

conjecture the following.

Conjecture 1. For every set of n points in general position, its Θ6 graph contains a matching of size
⌊

n
2

⌋

.
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