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Abstract

Given a point seP and a clasg’ of geometric objectsG, (P) is a geometric graph with vertex desuch that any two
verticesp andq are adjacent if and only if there is sor@ec 4" containing bothp andq but no other points fron®.
We studyGg, (P) graphs wherey is the class of downward equilateral triangles (ie. eqeilttriangles with one of
their sides parallel to theaxis and the corner opposite to this side below that sid&)pbint sets in general position,
these graphs have been shown to be equivalent tahadfraphs and TD-Delaunay graphs.

The main result in our paper is that for point setis general positionG, (P) always contains a matching of size

at least ‘P‘T’l and this bound is tight. We also give some structural prigeedf Gy (P) graphs, where: is the class

which contains both upward and downward equilateral tliesigWWe show that for point sets in general position, the
block cut point graph 06 (P) is simply a path. Through the equivalence@ (P) graphs with®g graphs, we also
derive that any®g graph can have at mosh5- 11 edges, for point sets in general position.

Keywords: Geometric Graphs, Delaunay Graphs, Half-Graphs, Matching

1. Introduction

In this work, we study the structural properties of some Edgeometric graphs defined on a §abf n points on
the plane. An equilateral triangle with one side parallehtox-axis and the corner opposite to this side below (resp.
above) that side as ity (resp. AA) will be called a down (resp. up)-triangle. A point $ets said to be in general
position, if the line passing through any two points fréndoes not make angles,060° or 120" with the horizontal
[1, 2]. In this paper, we consider only point sets that aregnegal position and our results assume this pre-condition.

Given a point seP, G, (P) (resp. GA (P)) is defined as the graph whose vertex se iand that has an edge
between any two verticgsandq if and only if there is a down-(resp. up-)triangle contagboth pointsp andq but
no other points fronP (See Figure 1). We also define another gr&ph(P) as the graph whose vertex seFisnd
that has an edge between any two vertigesdq if and only if there is a down-triangle or an up-triangle aining
both pointsp andq but no other points fror®. In Section 3 we will see that, for any point $&in general position, its
Gy (P) graph is the same as the well known Triangle Distance Deja(ifia-Delaunay) graph o and the hali©s
graph ofP on so-called negative cones. Moreov@, (P) is the same as th®s graph ofP [1, 3].

Given a point seP and a clas¥’ of geometric objects, the maximuf#i-matching problem is to compute a
subclas%” of ¢ of maximum cardinality such that no point frofnbelongs to more than one elementdfand for
eachC € ¢, there are exactly two points frowhich lie insideC. Dillencourt [4] proved that every point set admits
a perfect circle-matching@\brego et al. [5] studied the isothetic square matching lermb Bereg et al. concentrated
on matching points using axis-aligned squares and reaarig].
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—— Edges of Go(P) —— Edges of GAEP;
------- Edges of Gy, (P

Figure 1: A point seP and its (a)G (P) and (b)Gg (P).

A matching in a grapke is a subseM of the edge set db such that no two edges M share a common end-point.
A matching is called a maximum matching if its cardinalityie maximum among all possible matching&inlf all
vertices ofG appear as end-points of some edge in the matching, theraliézla perfect matching. It is not difficult
to see that for a clasé of geometric objects, computing the maximaamatching of a point se® is equivalent to
computing the maximum matching in the gra@h(P).

The maximumA-matching problem, which is the same as the maximum matcpinglem onGx (P), was
previously studied by Panahi et al. [2]. It was claimed tifiat,any point seP of n points in general position, any
maximum matching oG (P) (andG, (P)) will match at Ieasl[%J vertices. But we found that their proof of Lemma
7, which is very crucial for their result, has gaps. By a castgdy different approach, we show that for any point set
P in general positionG, (P) (and by symmetric argumentS,, (P)) will have a maximum matching of size at least
[221];i.e, atleast 2[251]) vertices are matched. We also give examples of point sesendur bound is tight.

We also prove some structural and geometric propertieseofytaphsG, (P) (and by symmetric arguments,
GA(P)) andGg(P). It will follow that for point sets in general positio®s graphs can have at most 5 11 edges
and their block cut point graph is a simple path.

2. Notations

Our notations are similar to those used in [1], with some mmodifications adopted for convenience.céne
is the region in the plane between two rays that emanate fnensame point, its apex. Consider the rays obtained
by a counter-clockwise rotation of the positixexis by angles 01%T withi=1,... 6 around a poinp. (See Figure
2). Each pair of successive raygs’,d,'}lT and %T defines a cone, denoted By p), whose apex i®. Fori € {1,...,6},
wheni is odd, we denoté; (p) usingCHTl(p) and the cone opposite @(p) usingCi(p). We callCi(p) a positive
cone aroung andCi(p) a negative cone arourfl For each con€;(p) (resp.Ci(p)), let e@(p) (resp. lc,(p)) be its
bisector. Ifp’ € Ci(p), then letci(p, p') denote the distance betweprand the orthogonal projection of ontoéap).
Similarly, if p’ € Ci(p), then letci(p, p') denote the distance betwepand the orthogonal projection pf onto/g, ().
For1<i<3, letVi(p)={p €P|p €Ci(p),p = p}andVi(p) = {p' € P| p' € Ci(p), P # p}. For any two points
p andq, the smallest down-triangle containipgandq is denoted by pg and the smallest up-triangle containipg

andq is denoted by\ pg. If G; andG; are graphs on the same vertex &t G, (resp.G; U G) denotes the graph
on the same vertex set whose edge set is the intersectign (r@isn) of the edge sets & andG..



Figure 3: Proof of Property 1.

3. Preliminaries

In this section, we describe some basic properties of thenga@ graphs described earlier and their equivalence
with other geometric graphs which are well known in the &tere.

The class of down-triangles (and up-triangles) admits enkability property [5]: each triangle object in this class
that contains two pointp andq, can be shrunk such thatandq lie on its boundary. It is also clear that we can
continue the shrinking process—from the edge that doesamtai neitheip or g—until at least one of the pointg,
or g, becomes a triangle vertex and the other point lies on the edgosite to this vertex. After this, if we shrink the
triangle further, it cannot contaip andq together. Therefore, for any pair of poirgsandg, 7 pq (A pg) has one of
the pointsp or g at a vertex o7 pg (A pg) and the other point lies on the edge opposite to this vettekigure 1,
triangles are shown after shrinking.

By the shrinkability property, for thgz-matching problem, it is enough to consider the smallestrdovangle for
every pair of pointgp,q) from P. Thus,G, (P) is equivalent to the graph whose vertex se? isnd that has an edge
between any two verticgsandq if and only if 57 pq contains no other points frof Notice that ifs;pg hasp as one
of its vertices, thenj € C;(p) UC,(p) UC3(p). The following two properties are simple, but useful.

Property 1. Let p and p’ be two pointsin the plane. Leti € {1,2,3}. The point p isin the cone Ci(p’) if and only if
the point p’ isin the cone Cj(p). Moreover, if pisin the coneCi(p'), then ¢i(p', p) =Ti(p, ).



PrROOF The first part of the claim is obvious. Now, without loss ohgeality, assume that= 1 andp € Cy(p'). (See
Figure 3). Sincég;y, is the bisector o€ (p) and/(c, () is the bisector o€y (p'), U7 (p) @ndlc, () are parallel lines.
Henceci(p, p') is the perpendicular distance pfto the line/;, which makes an angle 12@ith the horizontal and
passes though. Similarly, c;(p’, p) is the perpendicular distance pfto the line/,, which makes an angle 120
with the horizontal and passes though Hence bottei(p, p’') andci (P, p) are equal to the perpendicular distance
between the lines; and/s. O

Property 2. Let P be a point set, pc P and i € {1,2,3}. If Vi(p) is non-empty, then, in G, (P), the vertex p/
corresponding to the point in V;(p) with the minimum value of G(p, p') is the unique neighbour of vertex p in Vi (p).

PROOF AssumeéVi(p) # 0. For any poin in Vi(p), it is easy to see thay pp’ contains no points outside the cone
Ci(p). Let p' be the point with the minimum value @f(p, p’). The minimality ensures thag pp’ does not contain
any other point other thapandp’ from P. Thereforep andp’ are neighbours iG, (P).

In order to prove uniqueness, consider any pgjim PN V;(p) other thanp and p’. It can be seen that pq
contains the poinp’ and thereforep andq are not adjacent i, (P). Thusp' is the only neighbour op in Vi (p). O

Consider a point se® and letp,q € P be two distinct points. By Property Bj € {1,2,3} such thatp € Ci(q) or

q € Gi(p); by the general position assumption, both conditions cahalal simultaneously. Sincg pq has eitherp
or g as a vertex, Property 2 implies that we can const@igtP) as follows. For every poinp € P, and for each of
the three cones;, fori € {1,2,3}, add an edge from to the pointp’ in Vi(p) with the minimum value o€;(p, p'),

if Vi(p) # 0. This definition ofG, (P) is the same as the definition of the h&l§-graph on negative cone§j, given
by Bonichon et al. [1]. We can similarly define the graph(P) using the cone§; instead ofG;, fori € {1,2,3}, and
show that it is equivalent to the habiz graph on positive cone€), given by Bonichon et al. [1]. In Bonichon et al.
[1], it was shown that for point sets in general position, lla¢f-Og-graph, thetriangular distance-Delaunay graph
(TD-Del) [3], which are 2-spanners, and th@desic embedding of P, are all equivalent.

The ©k-graphs discovered by Clarkson [7] and Keil [8] in the latés8@re also used as spanners [9]. In these
graphs, adjacency is defined as follows: the space aroutdpeaat p is decomposed intk > 2 regular cones, each
with apexp, and a point of a given con& is linked top if, from p, the orthogonal projection @fontoC’s bisectort
is the nearest point i@. In Bonichon et al. [1], it was shown that eve®g-graph is the union of two hal®g-graphs,
defined byC; andC; cones. In our notation this is same as the gi@pliP) UG (P), which by definition, is equivalent
to Gy (P). Thus, for a point set in general positi@®g(P) = G (P).

4. Some properties oG, (P)

4.1. Planarity

Chew defined [3] TD-Delaunay graph to be a planar graph anegjitsvalence withG, (P) graph implies that
Gy/(P) is planar. This also follows from the general result thateDeky graph of any convex distance function is a
planar graph [10]. For the sake of completeness, we includieeat proof here.

Lemma 1. For a point set P, its G, (P) is a plane graph, where its edges are straight line segments between the
corresponding end-points.

PrROOF. Whenever there is an edge betwgeandq in G, (P), we draw it as a straight line segment frqorio g.
Notice that this segment always lies withjrpg. We will show that this gives a planar embedding®f(P). Consider
two edgespg andp'q’ of G, (P). If the interiors of\y pg ands7p'g’ have no point in common, the line segmepts
andp’g’ can not cross each other. Suppose the interioks jad and</p'q’ share some common area. The case that
vpq C vpP'd (or vice versa) is not possible, because in this capéy containsp andq (or 7 pg containsp’ and

q), which contradicts its emptiness. Singgqg andsyp'q have parallel sides, this implies that one corneradq
infiltrates intos/ p'q’ or vice versa (see Figure 4). Thus their boundaries crosgaatlistinct pointsa andb. Since

PNy pdNnsyp'd =0, the pointsp andg must be on that portion of the boundarygfpq that does not lie inside
vP'd. So the line throughb separatepq from p'q’. O

1Sometimes the definition @y-graphs allows the orthogonal projection to be made to apyrréhe coneC. But in our definition, we stick to
the convention that the orthogonal projection is made tdtbector ofC.
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Figure 4: Intersection ofy pg andsyp'q does not lead to crossing of edgesandp'q’.

Throughout this paper, we ugg; (P) to represent both the abstract graph and its planar emigpdeiscribed in
Lemma 1. The meaning will be clear from the context.

4.2. Connectivity

In this section, we prove that for a point $&tits G, (P) is connected. As stated in the following lemma, between
every pair of vertices, there exist a path with a speciatstine.

Lemma 2. Let P be a point set with p,q € P. Then, in G, (P), there is a path between p and g which lies fully in
v pg and hence G, (P) is connected.

PrRooF We will prove this using induction on the rank of the areajgig. For any pair of distinct pointp,q € P,
if the interior of <7 pg does not contain any point frof, by definition, there is an edge fromto g in G, (P). By
induction, assume that for pairs of poity € P such that the area gfxy is less than the area gfpq, in the graph
in Gy (P), there is a path which lies fully iryxy betweerx andy.

If the interior of\7 pg does not contain any point froR there is an edge fromto qin G, (P). Otherwise, there
is a pointx € P which is in the interior of7pg. This impliessypx C s7pg andsyxq C 7 pg. Since the area of7 px
and the area ofyxq are both less than the areawgfq, by the induction hypothesis, there is a path that lies7jox
betweenp andx and there is a path that lies ipxq betweernx andg. By concatenating these two paths, we get a path
which lies insy pg betweenp andg. a

4.3. Number of degree-one vertices

In this section, we prove for a point fetits G, (P) has at most three vertices of degree one. This fact is importa
for our proof of the lower bound of the cardinality of a maximmatching inG, (P).

Definition 1. Let x be a degree-one vertex @, (P) and letp be the unique neighbor of We say thak uses the
horizontal line, ifx is below the horizontal line passing througland points irP\ {p,x} are all above the horizontal
line passing througp. We say thak uses the 120line, if x lies to the right of the 120line passing througp and all
points inP\ {p,x} lie to the left of this line. We say thatuses the 60line, if x lies to the left of the 6Dline passing
throughp and all points irP\ {p,x} lie to the right of this line.

Property 3. Let x be a degree-one vertex in G, (P) and let p be the unique neighbor of x such that x € Vi(p) for
ie{1,2,3}.

o IfxeVi(p), then x usesthe 120 line.
o Ifx e Vo(p), then x usesthe 60° line.

o Ifx € Va(p), then x uses the horizontal line.



PROOFE To get a pictorial understaning of the property, the readay refer to Figure 5. Let us consider the case
whenx € V1(p). Itis clear thaix lies to the right of the 120line passing througp. Consider a poiny € P\ {p,x}.
By the general position assumptigngannot lie on the 120line passing throughp. If y lies to the right of the 120
line passing throughp, sincex is already to the right side of the 12line passing throughp, the triangles,xy will be
lying completely to the right side of the 120ne passing througlp and therefore ¢ <yxy. Hence, by Lemma 2, in
Gy (P) there is a path betweenandy, which does not pass through This contradicts our assumption thatvas
the unique neighbor of. Therefore, any poing € P\ {p,x} should lie to the left of the 120ine passing throughp.
Hencex uses the 120line.

Whenx € Vo(p) or x € V3(p), the proofs are similar. O

x € Vi(p), @ uses the 120° line x € Va(p), = uses the 60° line x € V3(p), = uses the horizontal line

Figure 5: lllustration of Property 3. The cones aroymdhich are allowed to have points frof\ { p,x} are marked with/and the other cones
aroundp are marked withx .

x € Vi(p). @ uses the horizontal line x € Vy(p). = uses the horizontal line = € V3(p). z uses the 120° line
and the 60° line. and the 120° line. and the 60° line.

Figure 6: lllustration of Property 4. The cones aroymdhich are allowed to have points frof\ { p,x} are marked with/and the other cones
aroundp are marked withx .

Property 4. Let x be a degree-one vertex in G, (P) and let p be the unique neighbor of x such that x € V;(p) for
i€{1,2,3}.

e If x € V1(p), then x uses the horizontal line and the 60° line.
o If x € V(p), then x uses the horizontal line and the 120" line.

e If x € V3(p), then x uses the 60° line and the 120" line.

PROOFE To get a pictorial understaning of this property, the readey refer to Figure 6. This property can be proved
using similar arguments as in the proof of Property 3. We dhatproof here, to avoid redundancy. ]

Property 5. Let x be a degree-one vertex in G, (P) and p be the unique neighbor of x. Let X' € P\ {x} be another
degree-onevertex in G, (P).



Figure 7: Case 1q e Cy(p) andr € Cy(p), Case 2q € Cy(p) andr € Cz(p), Case 3r € Co(p) andq € Ca(p), Case 4q,r € Cz(p).

e If x usesthe horizontal line, then, X' cannot use the horizontal line.
o If x usesthe 60° line, then, X' cannot use the 60° line.

e If x usesthe 120 line, then, X' cannot use the 12C° line.

PROOF We prove only the first part. Proofs of the other parts arélaim

Suppose uses the horizontal line. By definitioxlies below the horizontal line passing throughndx' € P\ {x}
lies on or above above this line. This implies tixdies below the horizontal line throughi. If X' also uses the
horizontal line, sincex € P\ {X'}, by a symmetric argument, we can show tKaties below the horizontal line
throughx. Since these two conditions are not simultaneously passiz can conclude that ¥ uses the horizontal
line, thenx’ cannot use the horizontal line. m]

Lemma 3. For a point set P, its G, (P) has at most three vertices of degree one.

PrROOF. For contradiction, assume that there are four degree-erie@sxy, xo, X3 andx4 in G, (P). From Property
3 and Property 4, we can see that egchses at least one of the three types of reference lines:r ¢itdorizontal
line, or the 60 line or the 120 line. By pigeonhole principle, at least two among these firgree-one vertices use
the same type of reference line.

Without loss of generality, assume thatandx, uses the same type of reference linexlindx, are adjacent to
each other, these two degree-one vertices will form a caedemmponent i, (P), which will contradict the fact
thatG, (P) is connected. Thereforg; andx, are non-adjacent. Hence, by Propertxbandx, cannot use the same
type of reference line.

Therefore, we can conclude that, (P) has at most three vertices of degree one. a

4.4. Internal triangulation

If all the internal faces of a plane graph are triangles, weitcan internally triangulated plane graph. In this
section, we will prove that for a point sBf the plane grap, (P) is internally triangulated. This property will be
used in Section 5 to derive the lower bound for the cardipalfitmaximum matchings iG, (P).

Lemma 4. For apoint set P, all the internal faces of G, (P) are triangles.

PrOOF Consider an internal face of G, (P). We need to show thélt is a triangle. Letp be the vertex with the
highesty-coordinate among the vertices on the boundarfy. @incef is an internal facep has at least two neighbours
on the boundary of. Letqg andr be the neighbours gf on the boundary of such that is to the right of the line
passing througly and making an angle of 12@vith the horizontal and any other neighbourpbn the boundary of
f is to the right of the line passing througltand making an angle 12@vith the horizontal. Because of the general
position assumptiorg andr can be uniquely determined.

We will prove thatgr is also an edge on the boundary fofand there is no point fror® in the interior of the
triangle whose vertices age g andr. This will imply that the facef is the triangle whose vertices apeq andr.

We know thatg,r € C1(p) UC,(p) UCs(p). By Property 2, it cannot happen that baifr € C(p), for any
i € {1,2}. Other possibilities are shown in Figure 7, whers assumed to be above An analogous argument can
be made when is aboveq as well. Sincepg andpr are edges i, (P), we know thatypgn (P\ {p,q}) = 0 and

vern(P\{p,r})=0.



Notice that, the area bounded by the lines (1) the horizdingpassing throughp, (2) the line passing through
and making an angle of 12@vith the horizontal, and (3) the line passing througdnd making an angle of 8Qvith
the horizontal, will define an equilateral down triangletwit, g andr on its boundary. Let us denote this triangle by

v par.
Claim 1. syparn(P\{p,q,r})=0.

PrROOF For contradiction, let us assume that there exists a paintypgr N (P\ {p,q,r}). Because of the general
position assumptions cannot be on the boundary gfpgr. Thereforesy px does not contaig andr. By Lemma 2,
in Gy, (P), there exists a path betwegrandx which lies insides;px. Let this path beX = vyvo, ..., v = x. Since
vpPANP\{p,q} =0,vprNP\ {p,r} =0 andq,r ¢ 7 px, we know that all vertices in the path=vyivy,...,Vx = X
lie inside the regiolR = (7 px\ (7 pquUs/pr)) U{p}.

Let C be the cone with apeg bounded by the raypg and pr. Observe that for any poimte R, the line segment
pv lies inside the con€. Sincev, € Randpv, is an edge (in the path fromto x), the line segment corresponding to
the edgepv, lies insideC in G, (P).

If the pointv, is outside the facé, edgepv, will cross the boundary of, which is contradicting the planarity
of Gy (P). Sincev, cannot be outside the fade the edgepv, belongs to the boundary df Sincev, lies inside the
coneC andv; € R, this means that, is a neighbour op on the boundary of such that. is to the left of the the line
passing through and making an angle of 12@vith the horizontal. This is a contradiction to our assumpthatq is
the only neighbour op on the boundary of, lying to the left of the the line passing througland making an angle
of 120° with the horizontal. |

Let us continue with the proof of Lemma 4. Since the triangithwerticesp, g andr is inside the triangley par,
from the above claim, itis clear that there is no point flepother than the pointg, g andr, inside the triangle whose
vertices arep,q andr. Since the edgepq andpr belong to the boundary df, to show thatf is a triangle, it is now
enough to prove thajr is also an edge i, (P). This fact also follows from the above claim as explainedwel
Sincesyar C v/ par, by the claim abovesygr cannot contain any point froifd other thanp, q andr. Moreover,

sincep lies aboveq andr, we know thatp ¢ syqr. Thereforesyar N (P\ {qg,r}) = 0. Thereforegr is an edge in
Gy (P).

vThus,f has to be a triangle bounded by the edpgesgr andpr. ]

Corollary 1. For a point set P, all the cut vertices of G, (P) lie on its outer face.

ProoF. Consider any vertex of G, (P) which is not on its outer face. Sin€&, (P) is internally triangulated, each
neighbour ofv in G, (P) lies on a cycle in the grapB,(P) \v. SinceG,(P) is connectedG,(P) \ v remains
connected. Thus,cannot be a cut vertex. 0

Combining Lemma 1, Lemma 2, Lemma 3 and Lemma 4, we get:

Theorem 1. For a point set P, G, (P) is a connected and internally triangulated plane graph, having at most three
degree-one vertices.

5. Maximum matching in G, (P)

In this section, we show that for any point $0f n points,G, (P) contains a matching of siz[é‘g—l] ;i.e, at least
2 ([%1]) vertices are matched. In order to do this, we will prove tHifang general statement:

Lemma 5. Let G bea connected and internally triangulated plane graph, having at most three vertices of degree one.
Then, G contains a matching of size at least {%W .



An overview of the proof. Let G be a graph om vertices, satisfying the assumptions of Lemma 5. Si@ds a
connected graph, the lemma holds trivially whesa 4. Therefore, we assume that- 5. We construct an auxiliary
graphG’ such that it is a 2-connected planar graph of minimum degrieast 3, and then make use of the following
theorem of Nishizeki [11] to get a lower bound on the size ofaximum matching o6'.

Theorem 2 ([11]). Let G’ be a connected planar graph with n” vertices having minimum degree at least 3 and let M’
be a maximum matching in G'. Then,

[M+2]  whenn' > 10and G isnot 2-connected
IM'| > ¢ [744] whenn' > 14and G’ is 2-connected
[%J otherwise
Using the above result, we will derive a lower bound on the siza maximum matching d.

Pre-processing. Let the degree-one vertices@fbe denoted by, ps, ..., pk_1- By our assumptiork < 3. If k=3,

and for each X i < 2 the unique neighbor gf; is a degree two vertex iG, we do some pre-processing to convert
it into a graph in which this condition does not hold. To ursi@nd this pre-processing easily, the reader may refer
to Figure 8. Let? be the path{pp = v1, V2, ...,Vva) of maximum length inG such that#” contains an even number
of vertices ands,, ..., vy are of degree two iG. We have > 1. Letvy 1 be the neighbor ofy, other thansy_1 in

G. LetH be the plane graph obtained from the plane gr@phy deleting the verticeg, Vo, ..., Vs, along with their
incident edges. It is clear tha? has a unique maximum matching of sizand a maximum matching @ can be
obtained by taking the union of a maximum matchinddimnd the maximum matching i¢’.

V1 = Po
U1 = Po

P2 P2

Vs

P P

(a) (b)

Figure 8: Pre-processing step constructiidrom G. In both the cases above, the pa#v(vi,vs,...,v4). The union of a maximum matching in
H and the matching (v1,Vv2),vs,v4)} in &2 gives a maximum matching @. (a) InG, the vertexvs is of degree two. It becomes a degree-one
vertex inH and its neighbor has degree at least threld.ir(b) In G, the vertexvs has degree greater than twd.has only two vertices of degree
one.

Sincek = 3 andG is connected, it is easy to see that the veugx; is not a degree-one vertex & Since the
degree of/z11 in H is one less than its degree®) the degree 0¥ 1 is at least one if. By the maximality of#?,
we can conclude that one of the following is truevdf, ; is a degree-one vertex i, then, the unique neighbor of
Va1 has degree at least 3 hh (as in Figure 8(a)). I 1 has degree greater than onddnthen,H has at most two
degree-one verticep; andp; (as in Figure 8(b)).

The properties of the patb? ensures thatl is connected. Since all the removed vertiegs. ., v were of degree
less than three, they were all on the outer face of the inlgrimmngulated grapl. ThereforeH remains internally
triangulated as well.

When at least one of the degree-one vertice& ¢fas a neighbor of degree greater than two or when2 we
initialize H = G.

From the construction dfl, we can make the following observation.
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Property 6. H isa connected and internally triangulated plane graph. H has at most three degree-one vertices. If H
has three degree-one vertices, then, one of the degree-one vertices has a neighbor of degree at least three. If My isa

maximum matching in H, then, G has a matching of size My | +t, wheret is an integer given by w

Construction of the auxiliary graph G’. Now we describe the construction of a supergrépbf H such thatz’ will
satisfy the assumptions of Theorem 2; i.e. we w@hto be a bi-connected planar graph of minimum degree at least
3. Our construction will also ensure that there exist eithsingle vertex or two verticesu andv in G/, such that
every edge irE(G') \ E(H) has one of its end points ator v. Since a matchiny!’ of G’ can have at most one edge
incident at each ofi andv, this implies thaH has a matching of size at leddt — 2.

We initialize G’ to be the same d3. Let the degree-one verticesldfbe denoted byg,qs,...,0n_1. If H has no
degree-one vertices, we consiteio be zero. By Property 6, we hate< 3. If h =0 or 1, the modification o’ is
simple. We insert a new vertexin the outer face o6’ and add edges betwegrand all other vertices which were
already on the outer face & (i.e, add edges between the new vent@nd vertices which were on the outer face of
H). This transformation maintains planarity. All verticeésG' except the vertegy (present only wheh = 1) have
degree at least three now. Hf= 1, the degree ofjy has become two i’ at this stage. In this case, létbe a face
of the current grapl®’, containing bothyg andx. Modify G’ by inserting a new vertexinside f and adding edges
from this new vertex to all other vertices belongingftoAs earlier, this transformation maintains planarity. Ndve
degree ofjp becomes 3 and th@® achieves minimum degree 3. Notice that, when 0 every edge it (G') \ E(H)
is incident atx and wherh = 1 every edge ife(G') \ E(H) is incident atx or y.

If h=2 orh =3, consider a simple closed curgéin the plane such that (1) the entire graplfall its vertices and
edges) lies inside the bounded region enclosed b2) the vertices oH which lie on%” are precisely the degree-one
vertices ofH, (3) except for the end points, every edgé-blies in the interior of the bounded region encloseddy
The region of the outer face &f, bounded by the curvé&’, can be divided intd regionsRy,...,R,_1, whereR; is
the region bounded by the edgecptthe edge at|;,1) mogh @nd the boundary of the outer facetéfand the curve
% . (Here onwards, in this subsection we assume that indicesrt€es and regions are taken modh)oNotice that
every vertex on the outer-face bff lies on at least one of these regions apdies on the region® andR,_;, for
0<i<h-1.

Whenh = 2, we insert two new verticesy into G'. (See Figure 9(a)). Three types of new edges are added in
(1) betweerx andy (2) between the vertexand all the vertices dfl which lie on the regioriRy and (3) betweey
and all the vertices dfl which lie on the regioiir;. This transformation maintains planarity. (We can imagia@dy
to be points on the boundary of the regidfsandR; respectively, but distinct from any point on the boundaryhef
outer face oH. Edges between the new verteand old vertices oy can be drawn insidBy and edges betweean
and the old vertices oR; can be drawn insid®;. The edges among the new verticeandy can be drawn outside
these regions, except at their end points). Both of theaestjy andq, lie in both the region&y andR;. Therefore,
go andg; becomes adjacent to batlandy in G’ and hence degrees of vertiags g1, X, y are all at least 3 i6’. Since
H was an internally triangulated planar graph, all the detgweerertices oH were on the outer face &f. Therefore,
each of them gets at least one new neighlxasr(y) in G'. Therefore, minimum degree & is at least 3. In this
case also, every edgeit{G') \ E(H) is incident atx ory. Whenh = 3, Property 6 ensures that the neighbor of one
of the degree-one vertices Hf has degree at least 3. Without loss of generality, assumehdaeighbor ofyy has
degree at least 3 iH. In this case, we insert one new verteito G'. (See Figure 9(b)). Three types of new edges
are added il5': (1) betweerx andqg (2) betweery and all the other vertices &f which were on the regiorR, and
R> (3) betweerx and all the vertices dfl which were on the regioR;. This transformation also maintains planarity.
(We can imagine to be a point on the boundary of the regign but distinct from any point on the boundary of the
outer face oH. Edges betweeqy and the other vertices dRy can be drawn insidBy and edges betweey and the
other vertices ofiR, can be drawn insid®,. Edges betweekr and the other vertices dR, can be drawn insid&;.
The edges among the new verticeandqg can be drawn outside these regions, except at their endspovertices
g: andg, become adjacent to botly andx in G'. Therefore, degrees of, qi, 0o are at least 3. In additiomy is
also adjacent ta. Therefore, degree ofis also at least three i@’. Suppose vertex was the (unique) neighbor of
go in H. By Property 6y has degree at least threethand hence also i®’. All degree two vertices off, which
belonged tdR, or R, were non-adjacent tqu in H; but are adjacent tqg in G'. Thus, they attain degree at least 3 in
G'. All degree two vertices dfi, which belonged t&, gets a new neighberin G’ and attain degree three. Thus, the
minimum degree o' is at least 3 in this case as well. Every edg&{&’) \ E(H) is incident aix or qo.
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(b)

Figure 9: (a) Modification done wheth has two degree-one vertices. Every edgg (') \ E(H) is incident atx or y. (b) Modification done when
H has three degree-one vertices. Every eddg(i@’) \ E(H) is incident atgp or x.

From the description above, we can make the following olzg&m.

Property 7. G’ isa planar graph of minimum degree at least three, with [V (H)| +1 < |[V(G')| < [V(H)|+ 2. There
exist either a single vertex u or two vertices u and v in G/, such that every edgein E(G') \ E(H) has one of its end
pointsat u or v.

Claim 2. Thegraph G’ is 2-connected.

PrROOF In all the different cases above, it is easy to observe thatrof the newly inserted vertices can be a cut
vertex ofG'.

Consider an arbitrary vertexe V(H). If v is not a cut vertex oH, then,H \ v is connected. Sinc&' has
minimum degree at least 3, any newly added vertex has a n@ighl/(H) \ {v} in the graphG'. ThereforeG'\ v
remains connected. Therefore, none of the non-cut ventitelscan be a cut vertex &&'. In particular, none of the
degree-one vertices 6f can be a cut vertex d&'.

If vis a cut vertex irH, v was on the outer face ¢i, becauséd was internally triangulated. It is clear that if
two verticesv1, vz € V(H) are in the same connected componerigfv, they are in the same connected component
of G\ v as well. IfC; andC;, are two components dfl \ v, then we know that there are verticese V(C;) and
vz € V(Cy), such that, andv, are neighbors of on the outer face dfl.

Whenh < 2, verticesv; andv, have an edge to at least one of the newly inserted vertic&.inSince the
induced subgraph @& on the newly inserted vertices is connectedzirwe get a path fron; to v» in which all the
intermediate vertices are newly inserted vertice§'inWhenh = 3, we have two cases to consider. It is possible that
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Vi Or Vo is same as the vertay itself. If this is not the cases; andv, have edges to eithep or the new vertex in
G'. In either case, since there is an edge betwpeandx in G/, we get a path fromr; to v, in G'\ v. Thus, in all
cases wheh > 3, any two componentg; andC; of H \ v become part of the same connected compone® gf.
Moreover, by the construction &', the degree-one vertices bff and the vertices iv(G') \ V(H) are part of the
same component @& \ v. This implies thatG' \ v has only a single connected component and henisenot a cut
vertex ofG'.

Thus,G' is 2-connected. O

A lower bound for the cardinality of a maximum matching in G. By Property 7 and Claim 2, the auxiliary graph
G’ is a 2-connected planar graph of minimum degree at least 8n’lze |V (H)| +t; be the number of vertices of
G, wheret; = 1 ort; = 2 by Property 7. By Theorem 2, the cardinality of a maximumahiatg M’ in G’ is at least

T+41 whenn' > 14 and|M’| > | 7|, otherwise. Sincéi is a subgraph o6/, if we delete the edges iM’ which

belong toE(G') \ E(H), we get a matchinyy of H. SinceM’ is a matching inG’, M’ can have at most one edge
incident at any vertex d&'. Hence, by Property 7, there can be at most two edgkBim(E(G') \ E(H)). Therefore,
we havelMy | > [M’| — 2. From this, we get,

w]_z, when|V (H)|+1t; > 14
IMu| >
{Wsz, otherwise

By Property 6 G has a matchinl of size|My | +t, wheret is an integer, given by (G”;‘V(H)‘ . By substituting the
lower bound folMy |, we get,

[N(H)\%ﬂ,zﬂ, when|V (H)|+1t; > 14
M| >
{WJ —2+t, otherwise

Sincet; =1or2and = |V(G)| — |[V(H)| > 0, this gives

{%W , when|V(H)| > 13
M| =
L—MGZ)"?’J , otherwise

G|

WhenevelV(G)| > 7, from the above inequality, we ggl| > PV(TAW > 2. SinceG has at most three vertices

of degree one, whelV(G)| > 5, G cannot be a star with/(G)| — 1 leaves. Therefore, whe¥ (G)| > 5, [M| > 2.
When |V (G)| > 1, sinceG is connected, we géM| > 1. From this discussion, we can conclude that, in all cases,

M| > [% . This concludes the proof of Lemma 5.
As an immediate corollary of Lemma 5 and Theorem 1, we get:

Theorem 3. For any point set P of n pointsin general position, G, (P) contains a matching of size [%1] .

Some graphsfor which our boundistight. In Figure 10 (a), a point s€ consisting of 15 points and the corresponding
graphGg, (P) is given. This graph has a maximum matching (shown in thiod) of sizePp‘T’ﬂ = 5. This is the
same example as given by Panahi et al. [2]. By adding moretsipf points(a;, bi,ci), i > 4, into P, following the
same pattern, we can show that for any 15 which is a multiple of 3, there is a point g&of n points in general

position, such that a maximum matching@y, (P) is of cardinalityPP‘T’ﬂ. We can also show that, for amy> 13,

which is one more than a multiple of three, there is a poinPseh n points in general position, such that a maximum

matching in is of cardinality Pl1y or example, take the point det= ap,bo} whereP is the point
hing inG., (P') is of cardinality| L2 |. F le, take th $et= P\ {ag,bo} whereP is th
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b4(750,894) ba(750,894)

a4(572,881) a4(572,881)

¢4(662,846) ¢4(662, 846)

b5(726, 709)
¢3(665, 683)

b3(726,709)

586, 699
a3 (586, 699) ©5(665, 683)

a3(586,699)

bs(723, 563)
¢(667,527)

by (723, 563)

a5(598, 550)
(667, 527)

a3(598, 550)

by (711,428)
¢1 (665, 396)

by (711,428)

611,410
a1(611,410) 1 (665, 396)

a1(611,410)

bo (705, 308)
&(667,278)

a0(628,297) co(667,278)

(a) (b)

Figure 10: (a) A point seP with 15 points in general position, whe@; (P) has a maximum matching of siié'g—ﬂ =5[2]. (b) A point setP
with 13 points in general position, whe@ (P) has a maximum matching of sii@g—ﬂ =4.

set of triplets described in the paragraph above. Figurd}ll(strates this fon = 13, in which case a maximum
matching inG, (P') has cardinalityPPI‘T’ﬂ = 4. Similarly, for anyn > 14, which is two more than a multiple of
three, there is a point sBt onn points in general position, such that a maximum matchir@iiP’) is of cardinality

‘P/%ﬂ . For example, take the point ¥8t= P\ {ap} whereP is the point set of triplets described in the paragraph
above. From the examples above, it is clear that the bourh@ivTheorem 3 is tight.

5.1. A 3-connected down triangle graph without perfect matching

The example given by Panahi et al. [2], for a point Beor which G, (P) has a maximum matching of size
[%ﬂ contained many cut vertices. However, for general planaplgs, we get a better lower bound for the size of
a maximum matching, when the connectivity of the graph iases. By Theorem 2, we know that any 3-connected
planar graph om vertices has a matching of siz&£4], if n > 14 and has a matching of sizé | if n < 14 or it is
4-connected. Hence, it was interesting to see whether éxéta point seP in general position, with an even number
of points, such thaG, (P) is 3-connected but does not contain a perfect matching. Mseer is positive. Consider
the graph given in Figure 11 (a), which shows a pointBef 18 points in general position and the corresponding
graphGg, (P). This graph has a maximum matching (shown in thick lines)zé 8. We can follow the pattern and
go on adding points;, b; andc;, fori > 4 to the point set such that whén= {ag, bo, Co, ..., ax, bk, Ck, P1, P2, P3},

Gy (P) is a 3-connected graph with a maximum matching of #%ﬂ’w It can be verified thaG, (P \ {ag}) and

Gy (P\ {ag,bo}) are also 3-connected and their maximum matchings have{é-p%@] (See Figure 11 (b) for the

case whenP| = 16). Thus, for 3-connected down triangle graphs corresipgrid point sets in general position, the
best known lower bound for maximum matching[%‘] and the examples we discussed above show that it is not

possible to improve the bound abof?].

6. Some properties 0iGg (P)

In this section, we prove that for a point $&tthe 2-connectivity structure @b (P) is simple andG (P) can
have at most®— 11 edges.
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Pp3(661.507,1100.74) p3(661.507, 1100.74)

p2
(150.403, 252.89) (1143.33,240.911) (1143.33,240.911)

(a)

Figure 11: (a) A point selP with 18 points in general position, whe@, (P) is 3-connected and has a maximum matching of #&?} (b) A

point setP with 16 points in general position, whet, (P) is 3-connected and has a maximum matching of #%?} The points with their
co-ordinates unspecified have the same co-ordinates agureFi0.

6.1. Block cut point graph

Let G(V,E) be a graph. A block o& is a maximal connected subgraph having no cut vertex. Theklglot point
graph ofG is a bipartite grapB(G) whose vertices are cut-vertices@fand blocks of5, with a cut-vertex adjacent
to a blockX if x is a vertex of blockX. The block cut point graph d& gives information about the 2-connectivity
structure ofG.

SinceGy (P) is the union of two connected grap@s, (P) andG, (P) (Lemma 2), it is connected and hence its
block-cut point graph is a tree [12]. We will show that thedX@ut point graph o5, (P) is a simple path. We use
the following lemma in our proof.

Lemma 6. Let P be a point set and p € P be a cut vertex of G4 (P). Then, there exists an i € {1,2,3} such that
Vi(p) # 0, Vi(p) # 0 and for all j € {1,2,3}\ {i}, Vj(p) = 0 and Vj(p) = 0. Moreover, G (P) \ p has exactly two
connected components, one containing all verticesin Vi(p) and the other containing all vertices of Vi(p).

PROOF Sincep is a cut vertex ofG (P), we know that there existy, v, € P that are in different components of
Gy (P) \ p. We will show thatv; andv, should be in opposite cones with reference to the apex point

Without loss of generality, assume thatc A;(p) NP\ {p}. If vo € (A1(p) UA2(p)UAs(p)) N (P\ {p}), then,
p ¢ yv1v2 and hence by Lemma 2, there is a patlGin(P) betweerv, andv, that does not pass throughwhich is
not possible. Similarly, if> € (As(p) UAs(p)) N (P\ {p}), then,p ¢ Aviv, and there is a path iG, (P) betweens;
andv, that does not pass throughwhich is not possible. Therefore, € A4(p), the cone which is opposite o (p)
which contains/;. Thus any two points; andv, which are in different connected componentsf(P) \ p, are in
opposite cones arourd

LetC; andC; be two connected components®@f; (P) \ p with v € C; andv, € C;. Without loss of generality,
assume that such € Vi(p) andv, € Vi(p). From the paragraph above, we know that every verte®,0tP) \ p
which is not inCy is in Vy(p) and every vertex 06 (P) \ p which is not inC; is in Vi(p). This implies that for all
j €{2,3},Vj(p) =0 andV;(p) = 0. This proves the first part of our lemma.

For anyvy,v» € Vi(p), we havep ¢ s7viv» and hence by Lemma 2, there is a patlGip(P) betweervy andv,
that does not pass through Similarly, for anyvy,vo € Vi(p), p ¢ Avivo and there is a path iB (P) betweenv; and
v, that does not pass through Therefore, there are exactly two connected componensg;ifP) \ p, one containing
all vertices inVi(p) and the other containing all vertices\4{p). a
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Theorem 4. Let P be a point set in general position and let k be the number of blocks of Gy (P). Then, the blocks of
Gy (P) can be arranged linearly as By, Bo, ... Bk such that, for i > j, BN B; contains a single (cut) vertex p; when
j =i+ 1and B;NBj isan empty graph otherwise. That is, the block cut point graph of Gy (P) is a path.

PROOF. If G¢(P) is two-connected, there is only a single block and the lenstiavially true.

SinceGy (P) is a connected graph, its block cut point graph is a tree. Mmyttlocks can have at most one vertex
in common and the common vertex is a cut vertex. From Lemmae6alao know that three or more blocks cannot
share a common (cut) vertex. If a bloBkof G (P) is such that, in the block cut point graph@§;(P), the node
corresponding to blocB; is a leaf nodeB; is adjacent to only one another block and they share a singte\ertex.

If the node corresponding 18 is not a leaf node of the block cut point graph, we know Bathares (distinct)
common vertices with at least two other blodsandB;». Therefore, two vertices iB; are cut vertices 06y (P).
Let vy, Vv, be these cut vertices. We will show that there cannot be d $hich cut vertex i;.

By Lemma 6, we know thaGy (P) \ v1 has exactly two components and sirigeis 2-connected initially, all
vertices ofB; exceptv; are in the same connected componenGgf(P) \ vi. By Lemma 6, all vertices oB; lie
in the same (designated) cone with apgx Without loss of generality, assume that all verticeBjn v, are in
Vi(v1). In particulary, € Vi(v1) and hence; € Vi(v2). Similarly, sincev; is a cut vertex, all vertices d; lie in the
same (designated) cone with apex Sincev; € Vi(v,), all vertices inB; \ v, are inVy(v,). If vz is a vertex inBj,
distinct fromv; andvs, then from the discussion above, we ggt Vi (v1) andvs € Vi(v2). Hencev; € Vi (vs) and
V2 € Vi(v3). Supposes is a cut vertex irGy; (P). Sincev; andv; are in the same connected componerGgfP) \ va,
it is a contradiction to Lemma 6, thet € Vi (v3) andv; € Vi(v3).

Thus, if the node corresponding B is not a leaf node of the block cut point graph®#; (P), then exactly two
vertices inB;j are cut vertices 0B (P). Since no three blocks can share a common vertex by Lemma&endone.

a

6.2. Number of Edges of Gy (P)

SinceGg, (P) andGx (P) are planar graphs ar@ (P) = G, (P) UGA (P), using Euler’s theorem, it is obvious
thatGy (P) has at most X (3n—6) = 6n— 12 edges, where = |P| [12]. In this section, we show that for any point
setP, its Gy (P) has a spanning tree of a special structure, which will impbt G (P) can have at mostrb- 11
edges.

Lemma 7. For a point set P, the intersection of G, (P) and G (P) is a connected graph.

ProoFr We will prove this algorithmically. At any point of execati of this algorithm, we maintain a partition Bf
into two setsSandP\ Ssuch that the induced subgraph®§,(P) N Ga (P) on Sis connected. When the algorithm
terminates, we will hav& = P, which will prove the lemma.
We start by adding any arbitrary poipi € P to S. The induced subgraph @, (P) NG (P) on Sis trivially
connected now.
At any intermediate step of the algorithm, Bt {p1, p2,..., Pk} # P, such that the invariant is true. We will
show that we can add a poipt. 1 from P\ Sinto S, and still maintain the invariant.
For any pointp € S, let
H /
di(p) = (123} D (PRS- (p.P)

d2(p) = min_ Gi(p,p)
i€{1,2,3},peVi(p)NP\S

and
d(p) = min(dy(p),d2(p))

Since|P\ S > 1,d(p) < . Letd = migd(p).
pe

Considerp € Ssuch thatd(p) = d. By definition ofd, such a point exists. Consider the area enclosed by the

3 3
hexagon aroung which is defined byH, = | J{p' € Ci(p) | ci(p,p') < d} U J{p € Ci(p) | Ti(p,p') < d}. (See
i—1 i—1
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Figure 12: (a) Closest point o. (b) Hexagons around closest pairs.

Figure 12 (a)). We know that there exists a paj P\ Ssuch thag is on the boundary dfl,. We claim thatpq is
an edge irG ( YNGa(P).

LetHq = U{p €Ci(q)|c(qg,p) <d}u U{p €Ci(q) | (g, p') <d}, which is a hexagonal area aroundSee

Figure 12 (b)) Without loss of generallty, assume thatCy(p). Note that, by Property I (p,q) = t1(g,p) =d
and hencesypgqu Apg C Hp N Hg.

If there exists a poird’ € (P\ {q}) \ Ssuch that/ lies in the interior oHp, thend(p) < d, which is a contradiction.
Similarly, if there exists a poinp’ € (P\ {p}) N Ssuch thaty' lies in the interior oHg, thend(p) < d. This is also
a contradiction. Thereforédp,NHq N (P\ {p,q}) = 0. Since,sy7pquU Apg C HpNHg, this implies thatypgn (P\
{p,q}) =0 andApgn (P\ {p,q}) = 0. This implies thapq is an edge irG, (P) as well as inG, (P).

Sincepq is an edge irG, (P) NG (P), we can addy.1 = q to the setS, thus increasing the cardinality 8fby
one, and still maintaining the invariant that the induceigsaph ofG, (P) NG (P) onSis connected. Since we can
keep on doing this untlb= P, we conclude thaB, (P) NG (P) is connected. O

Theorem 5. For a set P of n points in general position, G (P) has at most 5n— 11 edges and hence its average
degreeislessthan 10.

PROOF SinceG, (P) andG (P) are both planar graphs we know that each of them can have aBmes edges.
From Lemma 7, we know that the intersection@f (P) andGx (P) contains a spanning tree and hence they have
at leastn — 1 edges in common. From this, we conclude that the numbergeetG; (P) = G, (P) UGA (P) is at
most(3n—6) + (3n—6) — (n— 1) = 5n— 11. Hence,the average degreef(P) is less than 10. O

Corollary 2. For a set P of n pointsin general position, its ©g graph has at most 5n — 11 edges.

It is still an open problem to decide whether the upper boumdhe number of edges, stated in Theorem 5 and
Corollary 2, is tight. Here we give an example showing thisttipper bound cannot be improved bel(ﬂw %) n—13.

In Figure 13, a point se® of 18 points and the correspondi@g; (P) graph is shown. This graph has 65 edges. By
varying the number of triplets of pointsy, b, ci), i > 0, in P, following the same pattern, we can show that for any
n > 6 which is a multiple of 3, there is a point setof n points in general position, such th@t; (P) has exactly
(4+31)n—13edges.

7. Conclusions

We have shown that for any setof n points in general position, any maximugn (resp. ) matching ofP will
match at least éPP‘T’lD points. This also implies that any hatfs graph for point sets in general position has a

matching of size at lea t‘P‘T’l . We have also given examples for which this bound is tight. &f§e proved that
whenP is in general position, the block cut point graph of@s graph is a simple path and that t8g graph has at
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e - Edges of GA(P) \Gv(P)
p3 ————  Edges of G (P)\ Ga(P)

Edges of GA(P) NGy (P)

Figure 13: A point seP of n = 18 points and the correspondi@ (P) graph With(4+ %) n—13= 65 edges.

most 51— 11 edges. It is an interesting question to see whether fay ga@nt set in general position, i®g graph
contains a matching of sizF@J . So far, we were not able to get any counter examples for thisiand hence we

conjecture the following.

Conjecture 1. For every set of n pointsin general position, its ©g graph contains a matching of size LgJ .
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