
Name: Student Number:

COMP4804 Assignment 2: Due Wednesday March 1st, 23:59EDT

Print this assignment and answer all questions in the boxes provided. Any text outside of
the boxes will not be considered when marking your assignment.

1 Multiplicative Hashing — The Wrong Way

We didn’t cover multiplicative hashing in COMP4804 this year, but we did do it in COMP2402.
This exercise studies why the choice of a in the multiplicative universal hashing algorithms is
important. Recall that the multiplicative hashing scheme that takes elements from {0, . . . ,2k − 1}
onto {0, . . . ,2` − 1} using the hash function ha(x) = (ax mod 2k)div2k−`.

1. Suppose k/` is an integer and consider the set of keys

S = {j(2k/2`) : j ∈ {0, . . . ,2` − 1}} .

Suppose a is of the form 2it where t is an odd integer. How many distinct values are in the
set ha(S) = {ha(x) : x ∈ S}?

2. Suppose we choose a uniformly at random from {0, . . . ,2k − 1}. What is the probability (as a
function of i) that a is of the form 2it where t is an odd integer?

1

Name: Student Number:

3. Suppose we choose a uniformly at random from {0, . . . ,2k − 1} and use this to store the set S
described in Part 1. What is the expected time to search for a value x ∈ S in the resulting
hash table?

2

Name: Student Number:

2 A Monte-Carlo Min-Tricut Algorithm

A tricut of an undirected graph G = (V ,E) is a subset of E whose removal separates G into at least
3 connected components. A min-tricut of G is a tricut of minimum size (over all possible tricuts
of G). This question studies a problem of computing the min-tricut.

1. Let C be a min-tricut of G. Prove the best upper bound you can on the size of C in terms
of |V | and |E|. (Hint one possible tricut can be obtained by separating two vertices from the
rest of G by deleting all their incident edges.)

2. If we pick a random edge e ∈ E give an upper bound on the probability that e ∈ C.

3. Suppose we repeat the following |V | −4 times: Select a random edge e of G, contract e (iden-
tify the two endpoints of e) and eliminate any loops (edges with both endpoints at the same
vertex). Give a lower bound on the probability that all n − 4 edge contractions avoid the
edges of C.

4. In a graph with 4 vertices, give an upper bound on the probability that a randomly selected

3

Name: Student Number:

edge is part of the Min-Tricut. (Hint: Your bound in part 1 may not be strong enough to give
a non-trivial upper bound. You will really have to see what a tricut in a graph with 4 vertices
looks like.)

5. Give a lower bound on the probability that a sequence of n−3 edge contractions of randomly
chosen edges do not contract any of the edges in a min-tricup C. (Hint: You get this from
the last two questions.)

6. The previous question gives a lower bound on the probability that a monte-carlo algorithm
finds a min-tricut C. Unfortunately, the probability is very small. How many times would
we have to run the algorithm so that the probability of finding C is at least

(a) 1− 1/e
(b) 1− 1/1000
(c) 1− 1/1000000000

4

Name: Student Number:

3 Monte-Carlo Landslide Finding

We are given an array A1, . . . ,An and we are told that some element x occurs 2n/3 times in the
array, but we are not told the value of x. Our goal is to use a fast Monte-Carlo algorithm (that may
report the incorrect value) to find x.

1. Suppose we sample k elements at random (with replacement) from the array to obtain k
sample values S1, . . . ,Sk . Give a good upper-bound on the probability that x occurs less than
(1− ε)2k/3 times in this sample.

2. Give a good upper bound on the probability that x occurs less than k/2 time in the sample.
(Hint: This is the same as the previous question except we are using a specific value of ε.)

3. Describe an O(1)-time Monte-Carlo algorithm to find x that is correct with probability 2/3.

4. Describe a Monte-Carlo algorithm that runs in O(k) time and reports x with probability at
least 1−1/eΩ(k). (Just describe the algorithm. The error probability follows from the previous
questions.)

5

Name: Student Number:

4 McDiarmid’s Inequality

Chernoff’s bounds is only one of many concentration inequalities that probability theory offers to
us. In this question we explore an extremely powerful and general inequality due to McDiarmid.

Theorem 1 (McDiarmid’s Inequality) Let A be some set of values and let f : An→ R be a function
that satisfies

|f (x1, . . . ,xn)− f (x1, . . . ,xi−1,x
′
i ,xi+1, . . . ,xn)| ≤ ci

for all x1, . . . ,xn,x
′
i ∈ A

n+1 and all 1 ≤ i ≤ n. Then, if X1, . . . ,Xn are independent random variables
that only take on values in A then

Pr{|f (X1, . . . ,Xn)−E[f (X1, . . . ,Xn)]| ≥ t} ≤ 2

e2t2/
∑n
i=1 c

2
i

.

In words, McDiarmid’s Inquality says that if we have a function f that doesn’t change too much
if we only change one of f ’s inputs then f (X1, . . . ,Xn) is strongly concentrated around its expected
value.

1. A Bernoulli(p) random variable takes on values in the set A = {0,1}. If X1, . . . ,Xn are indepen-
dent Bernoulli(p) random variables and f (x1, . . . ,xn) =

∑n
i=1 xi then what does McDiarmid’s

Inequality tell us about f (X1, . . . ,Xn)? Does this remind you of anything?

2. Let X1, . . . ,Xn be independent random variables that are uniformly distributed in the unit
interval A = [0,1]. Let f (x1, . . . ,xn) be the function that counts the number of inversions in
x1, . . . ,xn (an inversion is a pair (xi ,xj) with i < j and xi > xj . What is E[f (X1, . . . ,Xn)]?

6

Name: Student Number:

3. Using the same setup as the previous question. If we change one value xi to x′i , what is the
maximum value of |f (x1, . . . ,xn)− f (x1, . . . ,x

′
i , . . . ,xn)|.

4. What does McDiarmid’s inequality tell us about Pr{|f (X1, . . . ,Xn)−
(n

2
)
/2| ≥ εn2}

7

Name: Student Number:

5. Suppose we run the insertion sort algorithm on X1, . . . ,Xn independently and uniformly dis-
tributed in [0,1]. Then what does the above imply about (a) the number of swaps performed
and (b) the number of comparisons performed.

InsertionSort(X1, . . . ,Xn)
for i← 2, . . . ,n do
j← i
while j > 1 and Xj < Xj−1 do

swap Xj ↔ Xj−1
j← j − 1

8

