COMP4804 Important Facts

Union of Events and Boole's Inequality. For any events A and B

$$
\begin{aligned}
\operatorname{Pr}\{A \text { or } B\} & =\operatorname{Pr}\{A\}+\operatorname{Pr}\{B\}-\operatorname{Pr}\{A \text { and } B\} \\
& \leq \operatorname{Pr}\{A\}+\operatorname{Pr}\{B\} .
\end{aligned}
$$

Conditional Probability.

$$
\operatorname{Pr}\{A \mid B\}=\frac{\operatorname{Pr}\{A \text { and } B\}}{\operatorname{Pr}\{B\}}
$$

Another useful way of writing this is

$$
\begin{equation*}
\operatorname{Pr}\{A \text { and } B\}=\operatorname{Pr}\{A \mid B\} \operatorname{Pr}\{B\} \tag{1}
\end{equation*}
$$

Independence. We say that A and B are independent if and only if

$$
\operatorname{Pr}\{A \mid B\}=\operatorname{Pr}\{A\}
$$

If A and B are independent then (1) becomes

$$
\operatorname{Pr}\{A \text { and } B\}=\operatorname{Pr}\{A\} \operatorname{Pr}\{B\} \quad \text { (Only if } A \text { and } B \text { are independent!) }
$$

Expected Value. For a random variable X

$$
\mathrm{E}[X]=\sum_{x} x \operatorname{Pr}\{X=x\}
$$

Linearity of Expectation. For any random variables X and Y

$$
\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]
$$

More generally, for any random variables X_{1}, \ldots, X_{n}

$$
\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]
$$

Linearity of expectation, in combination with indicator variables, is extremely useful for things we can count.

Markov's Inequality. For any non-negative random variable X,

$$
\operatorname{Pr}\{X>t \mathrm{E}[X]\} \leq 1 / t
$$

Bernoulli and Binomial Random Variables. A Bernoulli (p) random variable is a random variable that is equal to 1 with probability p and 0 with probability $1-p$. If X is a $\operatorname{Bernoulli}(p)$ random variable then $E[X]=p$. A $\operatorname{binomial}(p, n)$ random variable is the sum of n independent $\operatorname{Bernoulli}(p)$ random variables. If B is a $\operatorname{Bernoulli}(p, n)$ random variable then $E[B]=p n$. Also, don't forget Chernoff's bounds:

$$
\operatorname{Pr}\{B \geq(1+\epsilon) n p\} \leq e^{-\epsilon^{2} n p / 3}
$$

and

$$
\operatorname{Pr}\{B \leq(1-\epsilon) n p\} \leq e^{-\epsilon^{2} n p / 2}
$$

Beware: Chernoff's bounds are only for binomial random variables. In particular you must make sure that the $X_{i} \mathrm{~s}$ are independent!

