

Graph Planarity

Alina Shaikhet

Outline

- Definition.
- Motivation.
- Euler's formula.
- Kuratowski's theorems.
- Wagner's theorem.
- Planarity algorithms.
- Properties.
- Crossing Number

Definitions

- A graph is called planar if it can be drawn in a plane without any two edges intersecting.
- Such a drawing we call a planar embedding of the graph.
- A plane graph is a particular planar embedding of a planar graph.

Circuit boards.

- Circuit boards.
- Connecting utilities (electricity, water, gas) to houses.

- Circuit boards.
- Connecting utilities (electricity, water, gas) to houses.

- Circuit boards.
- Connecting utilities (electricity, water, gas) to houses.
- Highway / Railroads / Subway design.

Euler's formula.

Consider any plane embedding of a planar connected graph. Let V - be the number of vertices, E - be the number of edges and F - be the number of faces (including the single unbounded face), Then V - E + F = 2.

Euler formula gives the necessary condition for a graph to be planar.

Euler's formula.

Consider any plane embedding of a planar connected graph.

Let V - be the number of vertices,

E - be the number of edges and

F - be the number of faces (including the single unbounded face),

Then V - E + F = 2.

Then V - E + F = C + 1.

C - is the number of connected components.

V - E + F = 2

Euler's formula.

V = 6 E = 12 F = 8 V - E + F = 26 - 12 + 8 = 2

V - E + F = 2

Corollary 1

Let G be any plane embedding of a connected planar graph with $V \geq 3$ vertices. Then

- 1. G has at most 3V 6 edges, and
- 2. This embedding has at most 2V 4 faces (including the unbounded one).

V - E + F = 2

Corollary 1

Let G be any plane embedding of a connected planar graph with $V \geq 3$ vertices. Then

- 1. G has at most 3V 6 edges, and
- 2. This embedding has at most 2V 4 faces (including the unbounded one).

Corollary 1

V - E + F = 2 $E \le 3V - 6$ $F \le 2V - 4$

Let G be any plane embedding of a connected planar graph with $V \geq 3$ vertices. Then

- 1. G has at most 3V 6 edges, and
- 2. This embedding has at most 2V 4 faces (including the unbounded one).

K_5 is not planar.

V - E + F = 2 $E \le 3V - 6$ $F \le 2V - 4$

K_5 is not planar.

V - E + F = 2 $E \le 3V - 6$ $F \le 2V - 4$

V = 5 E = 10 $E \le 3V - 6$

K_5 is not planar.

V - E + F = 2 $E \le 3V - 6$ $F \le 2V - 4$

V = 5 E = 10 $E \le 3V - 6$ $10 \le 9$

V - E + F = 2 $E \le 3V - 6$ $F \le 2V - 4$

$K_{3,3}$ is not planar.

V = 6 E = 9 $E \le 3V - 6$

V - E + F = 2 $E \le 3V - 6$ $F \le 2V - 4$

$K_{3,3}$ is not planar.

V = 6 E = 9 $E \le 3V - 6$ $9 \le 12$

> Euler formula gives the necessary (but not sufficient!) condition for a graph to be planar.

Corollary 2

Let G be any plane embedding of a connected planar graph with $V \ge 4$ vertices. Assume that this embedding has no triangles, i.e. there are no cycles of length 3. Then

 $E \leq 2V - 4$

$K_{3,3}$ is not planar.

V = 6 E = 9 $E \le 2V - 4$ $9 \le 8$

Quiz © Is the following graph planar?

V - E + F = 2 $E \leq 3V - 6$ $E \le 2V - 4 \qquad F \le 2V - 4$

Quiz 🙂

V = 15E = 18 $E \le 2V - 4$ $18 \le 26$

What makes a graph non-planar?

- Euler's conditions are necessary but not sufficient.
- We proved that K_5 and $K_{3,3}$ are non-planar.
- Next we look at Kuratowski's and Wagner's Theorems for conditions of sufficiency.

What makes a graph non-planar?

- K_5 and $K_{3,3}$ are the smallest non-planar.
- Every non-planar graph contains them, but not simply as a subgraph.
- Every non-planar graph contains a subdivision of K_5 or $K_{3,3}$.

Subdividing an edge in a planar graph does not make it non-planar.

What makes a graph non-planar?

An example of a graph which doesn't have K_5 or $K_{3,3}$ as its subgraph. However, it has a subgraph that is **homeomorphic** to $K_{3,3}$ and is therefore not planar.

A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Proof:

Sufficiency immediately follows from non-planarity of K_5 and $K_{3,3}$. Any subdivision of K_5 and $K_{3,3}$ is also non-planar.

subdivision

1930 by Kazimierz Kuratowski

A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Proof:

- Suppose G is non-planar.
 - Remove edges and vertices of G such that it becomes a minimal non-planar graph.
 - I.e. removing any edge will make the resulting graph planar.

A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Proof:

A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

A graph is planar <u>if and only if</u> it does not contain a subdivision of K_5 or $K_{3,3}$.

A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$.

Wagner's Theorem.

A graph is planar if and only if it does not contain a subgraph which has K_5 or $K_{3,3}$ as a minor.

minor

1937 by Klaus Wagner

Shrinking an edge of a planar graph G to make a single vertex does not make G non-planar

Wagner's Theorem.

Every graph has either a planar embedding, or a minor of one of two types: K_5 or $K_{3,3}$. It is also possible for a single graph to have both types of minor.

subdivision

1937 by Klaus Wagner

subdivision

Petersen graph.

Petersen graph has both K_5 and $K_{3,3}$ as minors.

It also has a subdivision of $K_{3,3}$.

subdivision

Petersen graph.

Petersen graph has both K_5 and $K_{3,3}$ as minors.

Petersen graph.

Petersen graph has both K_5 and $K_{3,3}$ as minors.

minor

subdivision

It also has a subdivision of $K_{3,3}$.

How to test planarity?

How to apply Kuratowski's theorem? Assume, you want to test a given graph G for K_5 subdivision.

- Choose 5 vertices of G.
- Check if all 5 vertices are connected by 10 distinct paths as K_5 .

How to test planarity?

How to apply Kuratowski's theorem? Assume, you want to test a given graph G for K_5 subdivision.

- Choose 5 vertices of G.
- Check if all 5 vertices are connected by 10 distinct paths as K_5 .

Planarity testing using Wagner's Theorem:

- Choose an edge of G there are E choices.
- Shrink it.
- If 6 vertices are remaining check for $K_{3,3}$. (if 5 check for K_5).
- Repeat

How to test planarity?

How to apply Kuratowski's theorem? Assume, you want to test a given graph G for K_5 subdivision.

- Choose 5 vertices of G.
- Check if all 5 vertices are connected by 10 distinct paths as K_5 .

Planarity testing using Wagner's Theorem:

- Choose an edge of G there are E choices.
- Shrink it.
- If 6 vertices are remaining check for $K_{3,3}$. (if 5 check for K_5).
- Repeat

Planarity Algorithms.

- The first polynomial-time algorithms for planarity are due to Auslander and Parter (1961), Goldstein (1963), and, independently, Bader (1964).
- <u>Path addition method</u>: In 1974, Hopcroft and Tarjan proposed the first linear-time planarity testing algorithm.
- Vertex addition method: due to Lempel, Even and Cederbaum (1967).
- Edge addition method: Boyer and Myrvold (2004).

FMR Algorithm. (Left-Right algorithm)

- Due to Hubert de Fraysseix, Patrice Ossona de Mendez and Pierre Rosenstiehl. (2006)
- The fastest known algorithm.

FMR Algorithm. (Left-Right algorithm)

 The most important technique, common to almost all the algorithms, is Depth First Search.

Tremaux tree or Palm tree

Left-Right criterion.

Theorem: Let G be a graph with Tremaux tree T. Then G is planar iff there exists a partition of the back-edges of G into two classes, so that any two edges belong to a same class if they are T-alike and any two edges belong to different classes if they are T-opposite.

Left-Right criterion.

Properties.

- For any connected planar graph: $E \leq 3V 6$, $F \leq 2V 4$.
- All planar graphs contain at least one vertex with degree ≤ 5 .

 $\sum_{i=1}^{N} d(v_i) = 2E \le 6V - 12 < 6V$

- Planar graphs are 4-colorable.
- Every triangle-free planar graph is 3-colorable and such a 3-coloring can be found in linear time.
- The size of a planar graph on n vertices is O(n), (including faces, edges and vertices). They can be efficiently stored.

Crossing Number of G

CR(G) - the minimum number of crossings over all possible embeddings of G.

K_{12} E = 66 $CR(K_{12}) = 153$

Given G with n vertices and m edges; select a subset of vertices of G (call it S) by picking each vertex with probability p.

G(S) - the graph induces on S.

Given G with n vertices and m edges; select a subset of vertices of G (call it S) by picking each vertex with probability $p_1 \qquad v_1 \qquad v_3 \qquad v_1 \qquad v_3$

 v_2

G

 v_2

G(S)

G(S) - the graph induces on S. $\Pr(\overline{xy} \in G(S) | \overline{xy} \in G) = p^2$ $E(\# of edges of G(S)) = mp^2$

Given G with n vertices and m edges; select a subset of vertices of G (call it S) by picking each vertex with probability p. v_1 v_1 v_3 G(S)G(S) - the graph induces on S. G v_2 v_2 $\Pr(\overline{xy} \in G(S) | \overline{xy} \in G) = p^2$ $E(\# of edges of G(S)) = mp^2$ $Pr(crossing appears in G(S)|crossing in G) = p^4$ $E(\# of crossings in G(S)) = p^4 CR(G)$

$E \leq 3V - 6$

Can we find a lower bound on CR(G)?

 $CR(G) \ge m - (3n - 6) \ge m - 3n$ $E[CR(G(S))] \ge E[m_S - 3n_S] = E[m_S] - E[3n_S]$ $p^4CR(G) \ge mp^2 - 3pn$

 $CR(G) \ge \frac{m}{p^2} - \frac{3n}{p^3}$

 $CR(G) \ge m - (3n - 6) \ge m - 3n$ $E[CR(G(S))] \ge E[m_S - 3n_S] = E[m_S] - E[3n_S]$ maximize this $f(p) = \frac{m}{p^2}$ $p^4 CR(G) \ge mp^2 - 3pn$ 3n $CR(G) \ge \frac{m}{p^2} - \frac{3n}{p^3}$ 2m 9n p^3 $\frac{m}{\left(\frac{4n}{m}\right)^2} - \frac{3n}{\left(\frac{4n}{m}\right)^3} = \frac{m^3}{64n^2}$ $CR(G) \geq$ 9n m 2m

Referenses.

- Carsten Thomassen, Kuratowski's theorem. J. Graph Theory 5 (1981), 225–241.
- John Hopcroft, Robert Tarjan, (1974), "Efficient planarity testing", Journal of the Association for Computing Machinery 21 (4): 549–568,
- A. Lempel, S. Even, I. Cederbaum, (1967), "An algorithm for planarity testing of graphs", in Rosenstiehl, P., *Theory of Graphs*, New York: Gordon and Breach, pp. 215–232.
- H. de Fraysseix, P. Ossona de Mendez, P. Rosenstiehl, (2006), "Trémaux Trees and Planarity", International Journal of Foundations of Computer Science 17 (5): 1017–1030,