

Graph Planarity

Alina Shaikhet

Outline

- Definition.
- Motivation.
- Euler's formula.
- Kuratowski's theorems.
- Wagner's theorem.
- Planarity algorithms.
- Properties.
- Crossing Number

Definitions

- A graph is called planar if it can be drawn in a plane without any two edges intersecting.
- Such a drawing we call a planar embedding of the graph.
- A plane graph is a particular planar embedding of a planar graph.

Motivation

- Circuit boards.

Motivation

- Circuit boards.
- Connecting utilities (electricity, water, gas) to houses.

Motivation

- Circuit boards.
- Connecting utilities (electricity, water, gas) to houses.

Motivation

- Circuit boards.
- Connecting utilities (electricity, water, gas) to houses.
- Highway / Railroads / Subway design.

Euler's formula.

Consider any plane embedding of a planar connected graph.
Let $\quad V$ - be the number of vertices,
E - be the number of edges and
F - be the number of faces (including the single unbounded face),
Then $V-E+F=2$.

Euler formula gives the necessary condition for a graph to be planar.

Euler's formula.

Consider any plane embedding of a planar conntcted graph.
Let V - be the number of vertices,
E - be the number of edges and
F - be the number of faces (including the single unbounded face),
Then $V-E+F=2$.
Then $V-E+F=C+1$.
C - is the number of connected components.

$$
V-E+F=2
$$

Euler's formula.

$$
\begin{aligned}
& V=6 \\
& E=12 \\
& F=8 \\
& V-E+F=2 \\
& 6-12+8=2
\end{aligned}
$$

$$
V-E+F=2
$$

Corollary 1

Let G be any plane embedding of a connected planar graph with $V \geq 3$ vertices. Then

1. G has at most $3 V-6$ edges, and
2. This embedding has at most $2 V-4$ faces (including the unbounded one).

$$
V-E+F=2
$$

Corollary 1

Let G be any plane embedding of a connected planar graph with $V \geq 3$ vertices. Then

1. G has at most $3 V-6$ edges, and
2. This embedding has at most $2 V-4$ faces (including the unbounded one).

$$
\begin{aligned}
& \sum_{i=1}^{F} e_{i} \leq 2 E \\
& \sum_{i=1}^{F} e_{i} \geq 3 F
\end{aligned} \quad F \leq \frac{2 E}{3}
$$

$$
\begin{gathered}
V-E+F=2 \\
E \leq 3 V-6 \\
F \leq 2 V-4
\end{gathered}
$$

Let G be any plane embedding of a connected planar graph with $V \geq 3$ vertices. Then

1. G has at most $3 V-6$ edges, and
2. This embedding has at most $2 V-4$ faces (including the unbounded one).

$$
\left.\begin{array}{l}
\sum_{i=1}^{F} e_{i} \leq 2 E \\
\sum_{i=1}^{F} e_{i} \geq 3 \mathrm{~F}
\end{array}\right\} \quad F \leq \frac{2 E}{3}
$$

$$
\begin{aligned}
& V-E+F=2 \\
& E \leq 3 V-6 \\
& F \leq 2 V-4
\end{aligned}
$$

$$
\begin{gathered}
V-E+F=2 \\
E \leq 3 V-6 \\
F \leq 2 V-4
\end{gathered}
$$

$$
\begin{aligned}
& V=5 \\
& E=10 \\
& E \leq 3 V-6
\end{aligned}
$$

$$
\begin{gathered}
V-E+F=2 \\
E \leq 3 V-6 \\
F \leq 2 V-4
\end{gathered}
$$

$$
\begin{aligned}
& V=5 \\
& E=10 \\
& E \leq 3 V-6 \\
& 10 \leq 9
\end{aligned}
$$

$$
\begin{gathered}
V-E+F=2 \\
E \leq 3 V-6 \\
F \leq 2 V-4
\end{gathered}
$$

$K_{3,3}$ is not planar.

$$
\begin{aligned}
& V=6 \\
& E=9 \\
& E \leq 3 V-6
\end{aligned}
$$

$$
\begin{gathered}
V-E+F=2 \\
E \leq 3 V-6 \\
F \leq 2 V-4
\end{gathered}
$$

$V=6$
$E=9$
$E \leq 3 V-6$
$9 \leq 12$
Euler formula gives the necessary (but not sufficient!) condition for a graph to be planar.

Corollary 2

$$
\begin{gathered}
V-E+F=2 \\
E \leq 3 V-6
\end{gathered}
$$

$$
E \leq 2 V-4 \quad F \leq 2 V-4
$$

Let G be any plane embedding of a connected planar graph with $V \geq 4$ vertices. Assume that this embedding has no triangles, i.e. there are no cycles of length 3 . Then

$$
E \leq 2 V-4
$$

$K_{3,3}$ is not planar.

$$
E \leq 2 V-4 \quad F \leq 2 V-4
$$

$$
\begin{aligned}
& V=6 \\
& E=9 \\
& E \leq 2 V-4 \\
& 9 \leq 8
\end{aligned}
$$

Quiz () Is the following graph planar?

Quiz ©

$$
E \leq 2 V-4 \quad F \leq 2 V-4
$$

$$
\begin{aligned}
& V=15 \\
& E=18 \\
& E \leq 2 V-4 \\
& 18 \leq 26
\end{aligned}
$$

What makes a graph non-planar?

- Euler's conditions are necessary but not sufficient.
- We proved that K_{5} and $K_{3,3}$ are non-planar.
- Next we look at Kuratowski's and Wagner's Theorems for conditions of sufficiency.

What makes a graph non-planar?

- K_{5} and $K_{3,3}$ are the smallest non-planar.
- Every non-planar graph contains them, but not simply as a subgraph.
- Every non-planar graph contains a subdivision of K_{5} or $K_{3,3}$.

Subdividing an edge in a planar graph does not make it non-planar.

What makes a graph non-planar?

An example of a graph which doesn't have K_{5} or $K_{3,3}$ as its subgraph. However, it has a subgraph that is homeomorphic to $K_{3,3}$ and is therefore not planar.

Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Proof:

- Sufficiency immediately follows from non-planarity of K_{5} and $K_{3,3}$.
Any subdivision of K_{5} and $K_{3,3}$ is also non-planar.

Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Proof:

- Suppose G is non-planar.
- Remove edges and vertices of G such that it becomes a minimal non-planar graph.
- l.e. removing any edge will make the resulting graph planar.

Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Proof:

Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$.

Wagner's Theorem.

A graph is planar if and only if it does not contain a subgraph which has K_{5} or $K_{3,3}$ as a minor.

Shrinking an edge of a planar graph G to make a single vertex does not make G non-planar

Wagner's Theorem.

Every graph has either a planar embedding, or a minor of one of two types: K_{5} or $K_{3,3}$. It is also possible for a single graph to have both types of minor.

Petersen graph.

Petersen graph has both K_{5} and $K_{3,3}$ as minors.

It also has a subdivision of $K_{3,3}$.

Petersen graph.

Petersen graph has both K_{5} and $K_{3,3}$ as minors.

It also has a subdivision of $K_{3,3}$.

Petersen graph.

It also has a subdivision of $K_{3,3}$.

How to test planarity?

How to apply Kuratowski's theorem? Assume, you want to test a given graph G for K_{5} subdivision.

- Choose 5 vertices of G.
- Check if all 5 vertices are connected by 10 distinct paths as K_{5}.

How to test planarity?

How to apply Kuratowski's theorem? Assume, you want to test a given graph G for K_{5} subdivision.

- Choose 5 vertices of \mathbf{G}.
- Check if all 5 vertices are connected by 10 distinct paths as K_{5}.

Planarity testing using Wagner's Theorem:

- Choose an edge of G - there are E choices.
- Shrink it.
- If 6 vertices are remaining check for $K_{3,3}$. (if 5 - check for K_{5}).
- Repeat

How to test planarity?

How to apply Kuratowski's theorem? Assume, you want to test a given graph G for K_{5} subdivision.

- Choose 5 vertices of G.
- Check if all 5 vertices are connected by 10 distinct paths as K_{5}.

Planarity testing using Wagner's Theorem:

- Choose an edge of G - there are E choices.
- Shrink it.
- If 6 vertices are remaining check for $K_{3,3}$. (if 5 - check for K_{5}).
- Repeat
$O(E!)$

Planarity Algorithms.

- The first polynomial-time algorithms for planarity are due to Auslander and Parter (1961), Goldstein (1963), and, independently, Bader (1964).
- Path addition method: In 1974, Hopcroft and Tarjan proposed the first linear-time planarity testing algorithm.
- Vertex addition method: due to Lempel, Even and Cederbaum (1967).
- Edge addition method: Boyer and Myrvold (2004).

FMR Algorithm. (Left-Right algorithm)

- Due to Hubert de Fraysseix, Patrice Ossona de Mendez and Pierre Rosenstiehl. (2006)
- The fastest known algorithm.

FMR Algorithm. (Left-Right algorithm)

- The most important technique, common to almost all the algorithms, is Depth First Search.

Tremaux tree
Palm tree

Left-Right criterion.

Theorem: Let G be a graph with Tremaux tree T. Then G is planar iff there exists a partition of the back-edges of G into two classes, so that any two edges belong to a same class if they are T-alike and any two edges belong to different classes if they are T-opposite.

Left-Right criterion.

Properties.

- For any connected planar graph: $E \leq 3 V-6, F \leq 2 V-4$.
- All planar graphs contain at least one vertex with degree ≤ 5.
- Planar graphs are 4-colorable.

$$
\sum_{i=1}^{V} d\left(v_{i}\right)=2 E \leq 6 V-12<6 V
$$

- Every triangle-free planar graph is 3 -colorable and such a 3 -coloring can be found in linear time.
- The size of a planar graph on n vertices is $O(n)$, (including faces, edges and vertices). They can be efficiently stored.

Crossing Number of G

$C R(G)$ - the minimum number of crossings over all possible embeddings of G.

$C R\left(K_{3,3}\right)=1$

K_{12}
$E=66$
$C R\left(K_{12}\right)=153$
$C R\left(K_{29}\right)=$?

Can we find a lower bound on $\operatorname{CR}(G)$?

Given G with n vertices and m edges; select a subset of vertices of G (call it S) by picking each vertex with probability p.
$G(S)$ - the graph induces on S.

Can we find a lower bound on $C R(G)$?

Given G with n vertices and m edges; select a subset of vertices of G (call it S) by picking each vertex with probability p.
$G(S)$ - the graph induces on S.

$$
\operatorname{Pr}(\overline{x y} \in G(S) \mid \overline{x y} \in G)=p^{2}
$$

$E(\#$ of edges of $G(S))=m p^{2}$

Can we find a lower bound on $C R(G)$?

Given G with n vertices and m edges; select a subset of vertices of G (call it S) by picking each vertex with probability p.
$G(S)$ - the graph induces on S.
$\operatorname{Pr}(\overline{x y} \in G(S) \mid \overline{x y} \in G)=p^{2}$

$E(\#$ of edges of $G(S))=m p^{2}$
$\operatorname{Pr}($ crossing appears in $G(S) \mid$ crossing in $G)=p^{4}$ $E(\#$ of crossings in $G(S))=p^{4} C R(G)$

Can we find a lower bound on $C R(G)$?

$$
\begin{aligned}
& C R(G) \geq m-(3 n-6) \geq m-3 n \\
& E[C R(G(S))] \geq E\left[m_{S}-3 n_{S}\right]=E\left[m_{S}\right]-E\left[3 n_{s}\right] \\
& p^{4} C R(G) \geq m p^{2}-3 p n \\
& C R(G) \geq \frac{m}{p^{2}}-\frac{3 n}{p^{3}}
\end{aligned}
$$

Can we find a lower bound on $C R(G)$?

$$
C R(G) \geq m-(3 n-6) \geq m-3 n
$$

$$
E[C R(G(S))] \geq E\left[m_{S}-3 n_{s}\right]=E\left[m_{S}\right]-E\left[3 n_{s}\right]
$$

$$
\begin{aligned}
& p^{4} C R(G) \geq m p^{2}-3 p n \\
& \left.\left.C R(G) \geq \frac{m}{p^{2}}-\frac{3 n}{p^{3}}\right) \quad \begin{array}{r}
f(p)=\frac{m}{p^{2}}-\frac{3 n}{p^{3}} \\
C R(G) \geq \frac{m}{\left(\frac{4 n}{m}\right)^{2}}-\frac{3 n}{\left(\frac{4 n}{m}\right)^{3}}=\frac{m^{3}}{64 n^{2}} \quad P=\frac{4 n}{m}
\end{array} \quad \begin{array}{r}
\operatorname{set}^{\prime} \\
f^{\prime}(p)=-\frac{2 m}{p^{3}}+\frac{9 n}{p^{4}} \\
p=\frac{9 n}{2 m} \quad m>\frac{9 n}{2}
\end{array}\right)
\end{aligned}
$$

Referenses.

- Carsten Thomassen, Kuratowski's theorem. J. Graph Theory 5 (1981), 225-241.
- John Hopcroft, Robert Tarjan, (1974), "Efficient planarity testing", Journal of the Association for Computing Machinery 21 (4): 549-568,
- A. Lempel, S. Even, I. Cederbaum, (1967), "An algorithm for planarity testing of graphs", in Rosenstiehl, P.; Theory of Graphs, New York: Gordon and Breach, pp. 215-232.
- H. de Fraysseix, P. Ossona de Mendez, P. Rosenstiehl, (2006), "Trémaux Trees and Planarity", International Journal of Foundations of Computer Science 17 (5): 1017-1030,

