1 Finding a Large Independent Set in a 3-Regular Graph

In this question we give an algorithm to find a large independent set in a 3-regular graph. (An independent set is a set of vertices, no two of which are adjacent.)

We have a graph $G=(V, E)$ in which every vertex has degree 3 and $|V|=n$. For each vertex $v \in V$, we color v black with probability p and color it white with probability $1-p$ and this is done indpendently for each vertex. We say that a vertex v is good if v is colored black and v 's three neighbours are all colored white.

1. What is the probability that a particular vertex v is good?
2. What is the expected number of good vertices?
3. The above algorithm does not generate a very large independent set. It's main advantage is that it's easy to implement in parallel. Describe and analyze a simple algorithm that guarantees an independent set of size at least $n / 4$. (Hint: The solution relies only on the fact that G is 3 -regular.)

2 The height of a skiplist

Suppose we start with a list $L_{0}=l_{1}, \ldots, l_{n}$. We obtain a new list L_{1} by tossing a fair coin for each element l_{i} and adding l_{i} to L_{1} iff the coin toss comes up heads.

1. What is the probability that l_{i} is in L_{1} ? From this, compute the expected size of L_{1}.
2. Suppose we continue in this manner to obtain a list L_{2} by tossing coins for each element of L_{1}. In general, to obtain $L_{i}(i>0)$, we toss a coin for each element in L_{i-1} and add that element to L_{i} iff the coin toss comes up heads.
What is the probability that any particular element l_{j} is in L_{i} ? From this, compute the expected size of L_{i}.
3. Show that the expected time required to build all the lists $L_{1}, L_{2}, L_{3}, \ldots$ is $O(n)$.
4. The height of a skiplist is the maximum value h such that L_{h} is non-empty. Prove that

$$
\operatorname{Pr}\left\{h>\log _{2} n+c\right\} \leq 1 / 2^{c} .
$$

3 Indiana's Pi

In 1897, a bill came up in the Indiana Legislature that proposed defining the value of π as $\hat{\pi}=3.2$.
Consider the following algorithm: Generate n points uniformly in the unit square $[0,1]^{2}$. Count the number, k of these points whose x and y coordinates satisfy $x^{2}+y^{2} \leq 1$. Output the value $X=k / n$.

1. What is $\mathrm{E}[\mathrm{X}]$?
2. What kind of random variable is k ?
3. Give an upper bound on $\operatorname{Pr}\{k>3.2 n / 4\}$.
