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Abotroct 

We present a new technique for constructing a data-structure 
that approximates shortest path maps in lH’. By applying 
tbia technique, we get the following two results on approxi- 
mate ahorteet path maps in lRB. 

(i) Given a polyhedral surface or a convex polytope P 
with n edges in lRa, a source point s on P, and a real 
parameter 0 < c 5 1, we present an algorithm that com- 
putes a subdivision of P of size O((n/e)log(l/e)) 17hich 

can be used to answer efficiently approximate shortest path 
queries, Namely, given any point t on P, one can com- 
pute, in O(log(n/s)) time, a distance Appls(t), such that 
dp+(t) 5 A?,,(t) 5 (1 + e)d~,#(t), where d~,~(t) is the 
length of a shortest path between s and t on P. 

The map can be computed in O(ns log n+(n/a) log (l/c) 
time, for the case of a polyhedral surface, and in 

log(l/s) + (n/e”“) log (l/s) log n) time if P is a 
convex polytope. 

(ii) Given a set of polyhedral obstacles 0 with a total 
of n edges in lRs, a source point s in lH3 \ int UO~,, 0, and 
a renl pnrameter 0 < e 5 1, we present an algonthm that 
computes a subdivision of lEtB, which can be used to answer 

efllciently approximate shortest path queries. That is, for 
any point t E lIta, one can compute, in O(log (n/e)) time, a 
distance A+(t) that s-approximates the length of a short- 
eat path from s to t that avoids the interiors of the obsta- 
;ple,e This subdivision can be computed in roughly O(n4/e6) 

. 

1 Introduction 

The three-dimenaionalEuclideanahorteat-pathproblemis de- 
fined aa follows: Given a set of pah-wise-disjoint polyhedral 
objects in lRB and two points s and t, compute the shortest 
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path between s and t ~7hich avoids the interiors of the given 
polyhedral ‘obstacles’. This problem has received consider- 
able attention in computational geometry. It was shown to 
be NP-hard by Canny and Reif [S], and the fastest available 
algorithms for this problem run in time that is exponential 
in the total number of obstacle vertices (which we denote 
by n) [20, 211. Th e apparent intractability of the problem 
has motivated researchers to develop polynomial-time algo- 
rithms for computing approximate shortest paths and for 
computing shortest paths in special cases. 

In the approzimate three-dimenaionoI Euclidean ahotteat- 
path problem, we are given an additional parameter e > 0, 
and the goal is to compute a path between s and t that 
avoids the interiors of the obstacles and whose length is 
at most (1+ e) times the length of the shortest obstacle- 
avoiding path (we call such a path an c-approtimate path). 
Approxlmation algorithms for the three-dimensional short- 
est path problem were first studied by Papadimitriou [19], 
who gave an O(n4(L + log(n/e))a/ea)-time algorithm for 
computing an c-approximate shortest path, where L is the 
number of bits used in each computation. A rigorous analy- 
sis of Papadimitriou’s algorithm 17as recently given by Choi 
et al. [6]. A different approach ~7a.5 taken by Clarkson [I’], 
resulting in an algorithm with roughly 0 (n”/e’) running 
time (the precise result is stated in Theorem 4.1). 

The problem of computing a shortest path between two 
points along the surface of a single convex polytope is an 
interesting special case of the three-dimensional Euclidean 
shortest-path problem. Sharir and Schorr [22] gave an 
O(n3 log n) algorithm for this problem, exploiting the prop 
erty that a shortest path on a polyhedron unfolda into a 
straight line. Mitchell et al. [16] improved the running time 
to O(ns log n); their algorithm works for non-convex poly- 
hedra (or polyhedral surfaces) as 17ell. Chen and Han [5] 
gave another algorithm with an improved running time of 
O(r?). It is a rather long-standing and intriguing open prob- 
lem whether the shortest path on a convex polytope can be 
computed in subquadratic time. This has motivated the 
problem of finding near-linear algorithms that produce only 
an approximation of the shortest path. The first result in 
this direction is by Hemhberger and Suri [12]. They present 
a simple algorithm that runs in O(n) time, and computes a 
path whose length is at most 2dp(s, t). Using the algorithm 
of [12], Agam7al et al. [l] present a relatively simple algo- 
rithm that computes an c-approximate shortest path (Le., a 
path on BP between two points a, t E l3P whose length is at 
most (1 + e)dp(s, t)), f or any prescribed 0 < e s 1, where 
the running time of the algorithm is O(nlog(l/e)+l/aa). In 
a companion paper [ll], we present an improved algorithm, 
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with O(n) preprocessing time, that answers two- 
E 

oints E- 
approximate shortest-path queries in O((logn)/& + 1/s3) 
time, for anypair of points s, t E aP. Recently, Varadarajan 
and Agarwal [24] gave a subquadratic time algorithm that 
computes a constant approximation to the shortest path 
on a polyhedral terrain. Other recent works, by Mata and 
Mitchell [14], and also by Lanthier at al. [13] implement var- 
ious heuristics for computing approximate shortest paths on 
weighted terrains (i.e., each face f is being assigned a weight 
2~t, such t.hat the distance between any two points a, b E f is 
ZU~ . II&\). Those programs give satisfactory results in prec- 
ticc, which are within an order of magnitude better th$an 
their worst case analysis. 

Iu this paper, extending our work in [ll], we present a 
new general technique for constructing a data-structure that. 
one can use to answer s-appro.simate shortest-path queries, 
for a source point s and approximation factor E > 0 fixed 
in advance. Using t.his technique, we soIve two problems 
involving approximate shortest path maps in IR3. 

Approximate shortest path maps. The exact algorithms 
of [lG, 221 receive as input a convex polytope or a polyhedral 
surface ?, and a fLved source point s on P, and compute a 
map (i.e., a subdivision of P) of complexity O(n2), that can 
be used to answer (exact) shortest path queries from 3 to 
any point on P (along P) in O(logn) time (such a query 
reports the length of the shortest path; reporting the path 
itself might require more t.ime). This shortest path map can 
be stored in linear space, for t.he case of a convex polytope, 
by using a persistent data-structure, see [1’7]. However, the 
time required to compute this compact representation of the 
shortest pat.h map is quadratic in the worst case. This raises 
the problem of computing a map of near-linear size for zp- 
prkmate shortest-path queries from s. We show in Section 
3 that &is is indeed possible: Given a polyhedral surfxe 
P with n edges in m3, a source point s E P, and a pl-e- 
scribed 0 C: c < 1, t,here exists a map (a subdivision of P) of 
complexity O((n/,c) log (l/s)), such that for any t E P, one 
can compute the length of an s-approximate shortest path 
F;we; s and t on P in O(log (ra/.s)) time, by locating t in 

We iresent an algorithm that constructs such an ap- 
prosimation map in O(n” logn + (n/b) log(l/s) log(n/cj) 
time, for t,he case of a polyhedral surface, and in O((n/s ) 
log(l/c)+(n/s”“) log (l/s) logn) time, for the case of a con- 
vex polytope. Note that if P is a convex polytope than our 
previous result [ll] provides an alternative structure with 
similar propert,ies. However, the dependence of the query 
time on E is much better in the method we present here. 

Approximate spatial shortest path maps. In Section 4, 
we present a similar result for c-approximate shortest pa& 
among polyhedral obstacles in IR3. Let 0 be a set, of poly- 
hedral obstacles in m3 with a total of n edges, s a source 
point in lR3, and 0 < E < 1 a parameter. We show that. 
there e.sists a spatial sub&vision M of lR3, such that for 
any t E lR3, one can compute, in O(log(n/s)) time, the 
length of an e-approximate shortest path between s and t, 
that avoids the interiors of the obstacles, by performing a 
spatial point-location query with t in M. The space needed 
to compute and preprocess Jci for spatiaI point-Iocation is 
O(r?/c’+‘), for any S > 0, and the preprocessing time is 

0 n4 B(n) 
( ( F &4 

- log ; + log (np) log(n log p) 
> > 

log ; t 

where p is the ratio of the length of the longest edge in 0 
to the Euclidean distance between s and t, /3(n) = 
,(,)w+w and p(n) is the extremely slowly growing 
inverse of the kkermann fin&ion. This algorithm uses the 
algorithm of Clarkson [7], that computes an c-approximate 
shortest path, between two given points, in 

0 
( 

$-3(n)log 9 -I- n2 log (np)log(nlogp) 
> 

time. 
The paper is organized as follows. Section 2 introduce0 

the notion of a dihmce function, and show how to com- 
pute a “small-size” additive weighted Voronoi diagram that 
enables us to s-approximate this function. We present two 
applications of this result. In Section 3, we present the al- 
gorithm mentioned above for constructing a map for ap- 
proximate shortest-path queries from a fixed source on a 
convex polytope or a polyhedral surface in lR3. In Section 4 
we present the algorithm mentioned above for constructing 
a spatial subdivision for approximate shortest-path querieo 
from a fixed source among polyhedral obstacles in lR3. We 
conclude in Section 5 by mentioning a few open problems. 

2 Approximating a Distance Function by a Weighted 
Voronoi Diagram 

In this section, we introduce the notion of a distance func- 
tion, and show how to compute a “small-size” additive 
weighted Voronoi diagram that approximates it up to a fac- 
tor of 1 + E. We use this result in Sections 3 and Section 4 
to derive our two main results. 

Definition Let Z be a subset of IRd. A function f : Z -+ IR 
is a distance function on Z if: 

l f(z) + f(Y) 2 I~YL for =Y zc,y E 2% 

l f(s) + 1~~1 >_ f(y), for any straight segment zy C Z, 

where layI denotes the Euclidean distance between m and y, 

Thus, a distance function has to satisfy two types of 
triangle inequalities. Since these inequalities are ontiofied 
by the Euclidean distance from any fixed point, a distance 
function can be regarded as a certain generalization of the 
Euclidean distance. 

Example 2.1 Figure I ihstrates some geometric rcstric- 
tion imposed on a univariate distance function. 

Example 2.2 (i) Let P be a polyhedral surface in IR’, and 
let s be a source point on P. For any t E P, let d?,*(t) 
denote the length of a shortest path between s and t on P. 
It is easy to verify that d,,,(t) is a distance junction on P. 

e 
ob3tAeiYR 

a collection of pairwise-disjoint polyhedral 
and let s 

oEo int 0. Lel FP(O, 3) 
be a point in FP(O) = El3 \ 

U d enote the connected component 
of FP(O) that containa s (i.e., the set of all the points in R3 
that can be connected to s by a path that avoids the interiors 
of the obstacles of 0). 

For any t E FP(O, s), we denote by &,#(t) the length of 
a shortest path between s and t, that avoids the interior of 
the obstacles of 0. Clearly, dqs is a distance function on 
FP(O, 5). 
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Figure 1: The graph of the distance function f must lie in- 
aide the gray area. This implies that the function g(z’) = 
f(a) + Ima’1 approximate5 f(z’) “well” in a small neighbor- 
hood of m, and for sufficiently large values oft’. 

Definition A pair S = (S,w) is a weighted set of points 
if S = bl,. , . ,pm} is a finite set of points in lFld, and WI(-) 
ia a function aosigning non-negative weights to the points 
of S. We define the distance of a point p from the point 
PI to be V(p4,w(pi j(p) 
mini% vip~lw(po) 1 1. 

= IPpil -I- w(n). We define vS@) = 
The function V,(p) induces a natural 

aubdiviaion VC of lFLd into cells, known as the (additive) 
weighted Voronoi diagram of S, such that the Gth cell is the 
lOcU0 of all points closeat to pi in thi5 distance function. A5 
ia well Imown, in the planar ca5e, YS ha5 complexity O(m), 
and it can be computed in O(mlogm) time (see [lo]). 

Remark 2.3 For d > 3, the complexity of an additive 
vrci hted Voronoi aagram of m points in lRd is 
0 ,Lcw , 

e > 
Thi5 follows by reducing the computation of 

the d&ram to the computation of a convex hull in d + 2 
dimenoiono. Furthermore, one can compute the diagram in 
~(rrd~l~J+‘) time. See ~21. 

We next ohovr how to approximate a distance function 
f(o) by a weighted Voronoi diagram. First, we compute a 
global minimum p5 off. A5 illustrated in Figure 1, the func- 
tion I&,t(PO)) (p) approximate5 f(p) %Jl” for p sufkiently 
clone to, or wfficiently far from ~5. In other words, f is well- 
approximated in these regions by the weighted Voronoi dia- 
gram of the single oite po with weight f(po). By adding extra 
aiteo to the diagram, we can make the distance induced by 
the reoulting diagram an e-approximation to f everywhere, 
ao will be ohovrn next. 

Definition Given a point p E IRd, and P 2 0, let B@,r) 
&note the closed ball of radius P centered at p, and let 
B(@,F) denote the set lRd\B(p,r). For r’ > r, let, A@,r,r’) 
denote the onnulu~ (or shell) B(p,r’) \ B(p, r). 

The following sequence of technical lemmas provide the 
bnoio for approximating a given distance function by a 
weighted Voronoi diagram. The following lemmas are stated 
for nrbitrary &menGon d. We will apply them with d = 1,2, 
or 3. 

Lemma 2.4 Let Z be B convex subset of lRd, f Q di&nce 
function defined over Z, and S = (S, w) a weighted set, such 
that S E Z and f(z) 5 w(z), for all z E S. Then f(t) 5 
Vs(t), for all t E 2. 

Proof: Let t be any point of Z, and let z denote the 
point of S realizing V.s(t). Then V.(t) = w(z) + Itzl > 
f(x) + It4 2 m. H 

Formalizing the intuition behind Figure 1, we have the 
following: 

Lemma 2.5 Let Z be o convex subset of IRd, f Q distance 
function defined over Z, 0 < E 5 1 (I pcaremeter, p a point in 
1, and zo a real number such that f(p) 5 ‘uf 5 (19 e/S)f (p). 
Then f(t) 5 Q,+,)(t) 2 (l+e)f(t), for aZ2 t in 

Proof: The first inequality f(t) 5 V,,,)(t) follows im- 
mediatelv Corn Lemma 2.4. 

As for the other inequality, for t E Z I-I B (p, y) , we 

have 

(1;,8) - ?- 5 f(P) - WI I f(t) I v,,w, (4 

= w+lptl<w+y. 

However, 

to + &w/8 l+e/8 < l+c/S 
*--w/S = Q-&-E/~- l-e/S-e/8 

1+.5/S -<l+e, 
= l-&E/4 - 

since E 2 1. Thus V@,,)(t) 5 (1+ e)f(t), for all t E Xfl 
B@, 4~)/8). 

For t E Z tl z(p, 6f@)/e), we have 

IPtl - w 5 lPtl - f @I 5 f(t) 5 v,,u!,(t) = WI+ w* 
However, 

IPd + w 
Id--1D 

= 1+ b;z w 5 1+3w;ew- w I 1++$ = 1-h 

she lPtl 2 6f@)/e 2 3wI~. Thus Vi,,)(t) I (1 -i- e)f (t), 
for any such t. q 

Lemma 2.6 Let T. be a convez subset of lRd, f B distonce 
function defined ouer Z, 0 < E 5 1 a parameter, and p a 
point in Z. Then for any t E XI-I B@,ef(p)/9) and any 
number wt such that f(t) 5 wt 5 (1 + e/S)f(t), we hove 
fb) 5 v,:,~&‘) 5 (I+ e)f @). 

Proof: Since jptl 5 cf(p)/S, it follows that f(t) 2 f@) - 
IPtkh&p) (1 - e/9)* 

I 

implying that p E B(t, ef(t)/S). By Lemma 2.5, me have 
f@) I v,t,w, @I I (1+ 4fM 6 
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The preceding lemmas suggest the following strategy for 
construct.ing an approximation of a distance function f over 
(a conves port,ion of) IRd: Pick a point p, such that f(p) 
is close to the global minimum of f. The Voronoi diagram 
Y(p,w) approximates f “well” near p and outside a larger 
ball centered at p, where ‘UI is an approximation of f(p). We 
approximate f in the space between those two balls by 

partitioning it into concentric spherical shells whose radii 
form an increasing geometric progression, and by covering 
each shell by a uniform grid (whose unit length increases 
with bhe radius of the shell). In this manner, the number 
of points needed is only a fimction of E (the approximation 
factor) and d. 

When approsimating a distance function on a convex 
subset Z of IRd, we have to cope with the possibility that 
sites might be placed outside Z. We overcome this by pro- 
jecting all such sites onto the boundary of Z. 

Definition Let Z be a convex subset in IFl’, and let a: 
be a point in ntd. Let Y(z,~) denote the projection of x 
onto Z; that is, Y(x,Z) is the closest point (m the Euclidean 
distance) in Z to x. Clearly, if x E Z then ~(e,z) = m. 

When m is fixed, we call v(x,z) the hook point of 1. 

Definition Let r 2 P’ > 0 be real numbers, let p be a 
point in Rd, and let Z be a convex set in Rd. We denote by 
S(p, Z, P, r’) the set 51 n B(p, r) I-I ((r’/&)Z”), where Zd 
is the integer lattice, and X$ = Uq&3(q, r’) is the set of all 
point in Rd that are at distance at most r’ from some point 
of Z. Clearly, IS(p,Z,r,r’)l = O((r/r’)d) (with a constant 
of proportionality depending on d). 

The following technical lemma shows how to pick the 
sites of the additive weighted Voronoi diagram, so that it 
c-approximates a given distance function. 

Lemma 2.7 Let Z be a convex subset of lRd, f : Z + El 
a distance function, 0 < c 5 1 a parameter, c a positive 
constant, and p a point in Z such that f(t) > f (p)/c, jar 
all t E Z. Then one can compute a set S-&z Z of size 
00’4”1os(1/4) Oh e constant of proportionality depends 
on c), such that p E S, and for any weight function w on 
S satisfying f(x) 5 ‘UI(X) < (1 + e/S)f(x), for all x E S, 
me have f(t) 5 Vs(t) < (1 + e)f(t), for all t E Z, where 
s = (S, w). 

Proof: Let u+, be any number satisfying f(p) 5 za, < 
(1 +,;I”!f(p). 

i = (2’ + 1)~~~ for i = l,..., m, where m = 
py;(f3/;)1. Let AI = B(p,rl), 15 A = *A(P,ri--l,ri), 

,...,m, and let A,+1 
l&g&l*;). 

= B(p,r,). Clearly, Z = 

Let ri 
2 

= e~~+/(lSc), and let r: = e2i-1yp/9, for i = 
,...,m. 

Let s = ;; $=;w”h~~~~$xf i ~&j-j-;;; 

i=l , . . . ,m. See Figure 2 for an ilhxtration of the set 5’. 
Let IO be any weight function, such that f(x) 5 w(x) 5 

(l-l- c/S)f(x), for any z E S, and let S = (S,‘u)). 
We claim that S is the required weighted set. Indeed, 

let t E Z. If t E &+I then ]ptJ 2 (2m + 1)~~ 2 Sf(p)/e. 
Thus t E B(p, Sf (p)/e) and by Lemmas 2.4 and 2.5, we have 
f(t) 5 Wt) 5 ~&wP) 0) 5 (1+ e)f (t). 

If t E B(p,r,), let A; be the shell containing t. Let o’ 
be the closest point to t in $. Let m = ~(x’,z). By the 
d&&ion of u and Si and by the convexity of Z, we hzve 
ltx[ < [tx’l 5 r: (see Figure 3). 

Figure 2: Illustrating the proof of Lemma 2.7. We pick our 
sites to be on a uniform gx-id inside each concentric ohell 
around p. 

Figure 3: lstl 2 lhtl for h = v(s,Z) 

If i = 1 then the inequality f(t) 1 f (p)/c 2 wp/2c im- 
plies that Itxl 5 r: = e~+/(lSc) 5 cf(t)/9. Thus a E 
w, ef (t)P). 

If i > 1 then we also have Itxl 5. r: = ~2’%.+,/9 5 
&f(t)l9, eke f(t) 2 lptl - f(p) 2 (2*-’ + l)ub - f(p) 2 
2i-‘wp. Thus x E B(t,ef(t)/g). 

By Lemma 2.6 and Lemma 2.4, we have f(t) 4 ITS(t) 4 
v,W,~,, (t) I (1+ e)f (t). 

As for the size of S, we have 

ISI = O (g (;fd) 

= ‘q(.w:;8c))d+g (!gyi,“) 
= 0 J-@log~ . ( 1 & 

To approximate a distance function f(e) using the co: 
structive proof of Lemma 2.7, we need to find a point VJhich 

is, within a constant factor, a global minimum off over the 
given range. The following lemma shows that this can be 
easily done if f has a known zero point outside the Given 
range. 

Lemma 2.8 LetZ’ be a subset of Rd, f : Z’ -+ IR a distance 
bnction, 0 < E 5 1 a parameter, Z a convex subset of Z’, 
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and a a point in 2’ \ Z such that f (s = 0. Then f(t) 2 
f(h)/Z, for all t E X, where h = v(a,Z 1 . 

Proof: Let e be any point in 2. Since h is the closest point 
in X to s and X is convex, it easily follows that lstlz lhtl, see 
Figure 3. Since f(t) = f(t)+f(e) > Irrtl,wehave f(t) > Ihtl. 
Moreover, the segment ht is a con%ned iu X, implying that 
f(h) ‘5 f(t) -t IW 5 2f (t). n 

I&mark 2.0 The lemma also holds when s E X, but then 
it only yields the trivial bound f(t) > 0 for all t E X. Then, 
of course, n is the required global &mum. 

Remark 2.10 Let 2’ be a set in Et’, let X be a convex 
oubaet of X’, f : X’ -+ R a distance function, 0 < E 2 
1 a parameter, and s a point of X’ such that f(s) = 0. 
Computing a weighted set S = (S, w) such that the weighted 
Voronoi diagram induced on X approximates f up to a factor 
of (1 + e), can be accomplished by following the proof of 
Lemma 2.7, in four 5tages: 

(i) Compute the point p = v(s,X). By Lemma 2.8, p is 
~~alrnoet~~ a minimum off on X. 

(ii) Compute an (a/8)-approximation w, to f(p) (as pre- 
scribed in the lemma). 

(iii) Co$ruct the set S of points in X, as prescribed in the 

(iv) Rpprdximate the distance function values of all the 
points of S, up to a factor of 1 + e/8, and use these 
values as the weights for the points of S. 

Remark 2.11 The set of points S produced in the proof of 
Lemma 2.7 is made out of O(log(l/e)) subsets (i.e., Sl, . . . , 
Sm) such that f(n) C cf (t), for all z, t E S;, for 15 i 5 nz, 
where c ia an appro$ate constant. This property enables 
us, in the case of shortest paths on a convex polytope, to ap- 
proximate the value of the distance function to all the points 
of & simultaneously, yielding a more efficient algorithm. See 
Remark 3.2 for the details. 

Romork 2.12 Let X’ be a subset of Rd, and let f,g be two 
diotance functions defined over X’. It is easy to verify that 
h(m) = max(f (4, s(a)) is also a distance function. This 
implies that the distance function induced by any furthest 
neighbor Voronoi diagram of a finite set of points in IF@, is 
a distance function in IRd. Hence, by Lemma 2.7, we have: 

Corollary 2.13 Any furthest neighbor Vo~onoi diagram of 
pointa in lRd, can be e-approximated by a (nearest neighbor) 
weighted Voronoi diagram, having O((l/cd) log (l/c)) sites. 

The following is a strengthening of Lemma 2.7, by notic- 
ing that in the cases we are going to apply it to, our dis- 
tance function is the length of a shortest path from a fixed 
source point to the given point of X. In such cases, if the 
~ourcc point liee outside X, then a shortest path connecting 
any point in X to our source point, must first pass through 
the boundary BX. We next show that if we are able to E- 
approximate the distance on the boundary of X, then we 
can trivially e-approximate the distance function to all the 
points of X. 

Definition Let X be a convex polytope iu lRd. We call a 
function f : X -+ lR bounda&nducedon X, if f is a distance 

function, and for any t E 2, there exists a point x E bX such 
that f(t) = f(z) + pzl. 

Definition Given a convex polytope X in lRd, we denote 
by 4(X) the set of all the facets ((d - I)-faces) of 2. 

Lemma 2.14 Let Z be a convex polytope in Et”, f : Z 3 
R a boundary-induced distance function, and 0 < E 5 1 a 
parameter. For any facet F of T., Zet S(F) = (.SF,ZIIF) be 
a weighted set of points in F, such that f(t) 5 V+)(e) 5 
(l+c)f(t), for a22 t E F. Then f(t) 5 Vs(t) 5 (l+c)f(t), 
for all t E 2, where S = (Z&w) = UF,=Q)S(F). 

Proof: For any t E X, let x be the point in 8X satisfying 
f(t) = f(x) + Id, and let F be a facet of X that contains 
I. By Lemma 2.4, we have 

f (4 + 14 = f(t) 5 Wt) I E(x) + IH 
5 %(F)(x)+bl 5 (1-k e)f@)+ kxl 

I (1+ e)(f (4 + 14) = (1-b e)f (4. 

q 

Remark 2.15 Let X’ be a set in IRd, let X be a convex 
subset of X’, f : X’ + IR a boundary-induced distance func- 
tion, 0 < E s 1 a parameter, and a a point of 2’ such that 
f(e) = 0. Computing a weighted set S = (S,w) such that 
the weighted Voronoi diagram induced on X approximates 
f up to a factor of (1 + E), can be done by applying the 
algorithm described in Remark 2.10 for each facet of X. By 
Lemma 2.14, the union of all these weighted sets has the 
required properties. 

3 Approximate Shortest-Path Map on a Polyhedral 
Surface in EL3 

Let ‘P be a given polyhedral surface in R3 with n edges, let s 
be a source point on P, and let 0 < e < 1 be a given parame- 
ter. In this section, we give au algorithm for construc!ting an 
approximation map on P of complexity O((n/e)log(l/c)), 
such that given any t E P, one can compute in O(log(n/e)) 
time a distance Ap(s, t) satisfying &(a, t) 5 A~(s,t) s 
(1 t-+-h+,& 

Although the following description is rather technical, 
one has to bear in mind that it is a straightforward imple- 
mentation of the technique of Section 2. Namely, for each 
edge of our domain (polyhedral terrain, or a convex poly- 
tope) we compute a “5malP set of points, me approximate 
the (geodesic) distance from the source point to all those 
points, and me construct the weighted additive Voronoi di- 
agram that those points induce on each face of the domain. 

Definition A polyhedd surface 7’ in R3 is the union of 
a collection of planar polygonal faces, with their edges and 
vertices, such that each edge is incident to at most two faces 
and any pair of faces intersect either at a common edge, a 
common vertex, or not at all. A face is a simple closed poly- 
gon (i.e., it contains its boundary), and an edge is a closed 
segment (i.e., it contains its endpoints). Without loss of 
generality me assume that all the faces are triangular (since 
simple polygons may be triangulated in linear time [4] and 
the number of new edges introduced by the triangulation is 
linear in the number of vertices). We aIso assume that ? is 
connected. 
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A polyhedral terrain is a polyhedral surface that inter- 
sects every vertical line in at most a single point. 

Definition Given a polyhedral surface ‘P in lRs, and any 
two points s, t on P, me denote by dp,.(t) the length of a 
shortest path between s and t on ?. 

As noted in Example 2.2 (i), dp,.(*) is a distance fimction 
on P, Moreover, if F is a face of P and s $ F then do,, 
is boundary induced on F. (If s E F then d,,,(t) is t.he 
Euclidcan distance Istl) 

The following theorem is the main result of this section. 

Theorem 3.1 Let P be a polyhedral surface in IFL’ with n 
edges, 3 a source point on P, and 0 < E 5 1 a real param- 
eter. Then there exists a subdivision II of P of complexity 
O((n/c) log (l/e)), which f izc~ a a ‘1-t t es e-approximate shortest 
path queries from s on Pp. That is, for any query point t 
on p, one can compute, in O(log(n/a)) time, a distance 
b+% t) , such that dp,.(t) 5 &(s, t] _< (1 -I- +P&). 

The map can be computed in O(n log n + (n/c) log (I/E) 
log (n/c)) time, if ? is an arbitrary polyhedral surface, and 
in O((n/e3) log(l/s) $ (n/clS6) log (l/c) log n) time, if P is 
a conucx polytope. 

The space used by the algorithm is O((n/&) log (l/e)), if 
F is cithcr 4 convex polytope or 4 polyhedral terrain, tind 

O(n” + (n/c)log (l/c)) othewrise. 

Proof: For each face F of P that does not contain s, we 
construct a weighted Voronoi diagram that approximates 
dp,. on F. By Remark 2.15, this can be done by construct- 
ing a weighted Voronoi diagram on each edge of P, as out- 
lined in Remark 2.10. 

For the general case, we compute the exact shortest-path 
map of 3 on P, using the algorithm of [16], in 
O(n2 logn) time. The exact map enables us to compute the 
shortest distance from 3 to any point of P in O(logn) time. 
Thus, computing the distances from s to the n hooks of t.he 
edges of P takes additional O(nlogn) time. The hook point 
of an edge is the closest point of the edge to s, and it can 
be computed in O(1) time. 

For the convex case, we approximate the distances on ? 
to all t,he hooks on t.he edges of P, up to a factor of (1+&/s). 
This takes O(n/c3 +(n/&‘) log n) time, using the algorithm 
of [l, Sec. 61. 

For each edge e of ?, we compute a set Se of O((l/c) 
log (l/e)) points one, as specXed in the proof of Lemma 2.7, 
taking t,he corresponding p to be the hook of e and wP to be 
the approximated (exact in the non-convex case) distance 
along P from s to p. Let S = U,S,, taken over all edges e 
of P. 

We now compute (or approximate) the distances from s 
to all the points in S. For the non-convex case, this can be 
done in O((n/c) log (I/E) log n) time, using the exact short- 
est pat,h map. 

For the convex case, we compute appro.ximate distances 
from s to all points of S, up to a factor of (1 + e/8). Us- 
ing the observat,ion of Remark 2.11, we partition S into 
O(nlog(l/c)) sets, each of size 0(1/e), such that the re- 
quired distances to the points in each such set are within a 
tied constant factor of each other (namely, for each edge c of 
P, the set S, is decomposed into O(log(l/c)) sets, as in the 
proof of Lemma 2.7). Using the algorithm described in Re- 
mark 3.2 below, we can compute the distances from s to all 
&;,oints of S in O((n/e’) log (l/e)+(n/e’“) log (l/c) log n) 

Next, we compute, for each face P of ‘P, the weighted 
Voronoi diagram induced by the weighted points of S that 
lie on BF. This takes O((n/e)log’ (l/e)) overall time (see 
[lo]), since each face contains O((l/c) log (l/c)) points of S. 
Let II be the resulting map, consisting of the union of all 
those facial Voronoi diagrams. 

By Lemma 2.7 and Lemma 2.14, the map II on ?J has the 
required properties. Moreover, we can preprocess each face 
F of ‘P in O((l/e)log’ (l/c)) time, such that point location 
queries on F can be answered in O(log (l/e)) time (see [18]). 
Overall, this preprocessing takes O((n/e) loga (l/c)) time. 

To answer a approximate shortest path query for a query 
point q, the algorithm must locate the face of 7 contnining 
q. If ‘P is a polyhedral terrain, we project the terrain into 
the zy-plane and preprocess it, in O(nlogn) time, for pla- 
nar point location. If ? is a convex polytope, it can be 
preprocessed in linear time to answer point location queries 
in O(logn) time (see [9]). Otherwise, we preproceno ‘P for 
spatial point-location in O(n2 log n) time, and O(n’) npnce, 
with O(logn) query time, using the algorithm of [23]. 

Given any query point q on ‘P, the algorithm computeo 
the face F of ‘P that contains q in O(logn) time. Locating 
the face of the subdivision II that contains q takes an nddi- 
tional O(log(l/c)) t’ Ime. Thus, c-approximate ahorteot path 
queries for P can be answered in O(1og (n/c)) time. (If the 
face containing q is already known, the query time reducen 
to O(log (l/E)).) n 

Definition Let P be a convex body in ll?. An outer path 
of P is a curve 7 connecting two points on BP and dinjoint 
from the interior of P. 

Remark 3.2 Let P be a convex polytope in lR3, o a uource 
point on P, T a set of points on P, and 0 < E s 1 n pre- 
scribed parameter. One can c-approximate the length of 
the shortest path from s to all the points of T on P, in 

o((n+lTI)/~3-t-((n+lTI)/~“6)log (n f ITI)) time, by adding 
the points of T as vertices to P and by using the algorithm 
of [1, Sec. 61. 

The algorithm of [1] works by computing au approsimn- 
tion polytope for each point of T, and by computing the 
exact distance from s to the point on this polytope. 

Moreover, suppose that T can be partitioned into m seta 
l-1 ,..., Tm, k&that dp,.(t) 5 C-&,,(t’), for all t,t’ ET; 
andforeachi=l...., rn, where c is a mescribed com0xnt. 
and all the points’of k delong to the ‘3ame edge of 19, foi 
any fixed i = l,..., m. Then it is possible to speed up the 
above algorithm, as follows. Instead of constructing an op- 
proximation polytope for each destination point separately, 
we construct an approximation polytope that can be used to 
approximate the distances from s to all the points of Ti, for 
i = 1 , . . . , m. This is done by ensuring that all the pointo 
of Ti lie on the boundary of the approsimation polytope 
calculated by the algorithm, which can be enforced by in- 
tersecting it with a supporting plane of P passing through 
the edge containing the points of Ti (adding at moot one 
new face to the approximation polytope). WC also need to 
use a more refined approximation polytope, so as to achieve 
the claimed error bound, but since c is a constant this does 
not change the asymptotic compkxity of the algorithm. See 
[l] for the technical details. 

This improves the running time to 

0 n+$+$logn+s 
( J 

, 
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by constructing an approximation polytope for the points 
of Tt (in 0( fi log n) time), computing the exact distance 
map from the source point on the approximation polytope 
(in O(l,/e’) time), and extracting the shortest path to each 
point of T{, repeating all this, for Tl,. . . ,Tm. Moreover, for 
each point t E !Z’J, the algorithm computes a polygonal outer 
path of P, made out of 0(1/e’&) segments, that realizes the 
npproximnted distance. 

Romnrk 3.3 The algorithm of [16] works for arbitrary poly- 
hedral surfaces; in particular, it is not restricted to polyhe- 
dral terrains. Thus, the algorithm of Theorem 3.1 also works 
for general polyhedral surfaces. 

Ibmnrk 3.4 For a convex polytope P with n edges in lR3, 
one can compute an approximation map that can be used 
to compute an outer path that realizes the approximate dis- 
tance, This itl done by modifying the algorithm of Theorem 
3.1, such thot it stores an outer path from the source point 
to each of the constructed sites, where the outer path real- 
izes ito e-approximate distance. Such a path is readily avail- 
able from the procedure used to compute the approximate 
distance to the site, and the complexity of such a path is 
0(1/e’*“) (gee [l]). Th e s ace needed to store the extended p 
approximation map is O(t~/e’*~ log (l/e)), and the compu- 
tation time remains O((n/e’) log(l/e) + (n/e1*6)log (l/e) 
log fb), 

The new map can be used to answer approximate short- 
cot path queries, in O(lOg(n/e)) time, and also compute, 
in additional O(l/.@) time, an outer path of the convex 
polytope realizing this distance. Such an outer path can be 
projected onto the boundary of the convex polytope, in ad- 
ditional 0 (nlog (l/e) + l/es) time, resulting in a path on 
BP which is an e-approximation to the shortest path, see 
[l], Note however that the performance of the enhanced 
data structure is poorer both in terms of storage and query 
time. 

4 Constructing Spatial Approximate Shortest-Path Maps 
In ma 

Let 0 be a collection of pairwise-disjoint polyhedral obsta- 
cles in @, o a source point in lRs \ intU0, and 0 < e 5 1 
a porameter. In this section, we present an algorithm for 
preproceaoing 0 such that for any point in lRa (or, more 
precisely, for any ‘free’ point that can be reached corn 8 
without penetrating into an obstacle) one can compute, in 
0(10&~/e)) time, a distance Ao,,(t) satisfying de+(t) 2 
Act+ 5 (1 + e)&,,(t), where d+(t) is the length of a 
shortest path between s and t that avoids the interiors of 
the obotacleo. 

The preprocessing time of the algorithm is roughly 
O(n”/e’), which ahow that the problem of approximating 
the distance from a single source to all the ‘free’ points in 
ma, io not much harder (computationally) than approximat- 
ing the distance between an$ specific pair of points (17hich 
con be done in roughly O(n /e”) time, see [7]). In fact, for 
a tied uource point and many destination points, our algo- 
rithm will actually be faster. The problem of computing the 
elect diotnnce between two points in lR3 among polyhedral 
obotacleo is NP-hard, as shown by Canny apd Reif [3], and 
the fastest available algorithms for this problem run in time 
that is exponential in the total number of obstacle vertices 
[20, 21, 223. 

Definition Let 0 be a collection of pair&e-disjoint poly- 
hedrol obstacles with a total of n edges in R’, and s a source 

point in FP(O) = EL3 \ intljoEo 0. Let FP(O,a) denote 
the set of all points in FP(0) that can be connected to a 
by a path that avoids the interiors of the obstacles of 6. 

For any t E FP(O,s), we denote, as above, by d,,,(t) 
the length of a shortest path between s and t, that avoids 
the interiors of the obstacles of 6. 

As noted in Example 2.2 (ii), cZo,,(-) is a distance func- 
tion over FP(O,s), and for any convex set Z C FP(O,s) 
such that 8 $ Z, the function do,.(*) is boundary induced 
over 2. 

Theorem 4.1 (Clarkson [7]) Given B set 6 ofpolyhedrd 
obstacles in l@, and points s and t, an e-approx&nete path 
between s and t that does not penetrate into any obstacle in 
0 can be computed in 

0 
( 

$(n) log 5 + na log (np) log(nlog p) 
> 

time, where n is the number of obstacle edges, and p is the 
ratio of the length of the longest edge in 0 to the Euclidean 
distance between s and t, /3(n) = a(n)“(a(~l)o(a), and ar(n) 
is the inverse of the Ackermannfunction. 

The following theorem is the main result of this section. 

Theorem 4.2 Let 0 be a collection of pairwise-disjoinbt 
polyhedd obstacles with n edges in IRS, s a source point in 
FP(O), and 0 < e < 1 a parameter. Then a subdiuision M 
of FP(O,s) of complezity O(n”/e’+‘), for any 1 > 6 > 0, 
can be computed in 

0 n4 P(n) 
( ( 2 &’ 

- log 5 + log (np) log(n log P) 
> > 

log i 

time, where p, andfl(n) are as above. 
For any query point t E FP(O,s), one can compute in 

O(log(n/c)) time a distance A,,,(t), such that do,,(t) < 
A,,&) 5 (1 +e)&,&). 

Proof: Fit, we partition FP(O) into O(d) vertical 
prisms. This can be easily done by erecting a vertical mall 
from each edge of the obstacles. For an edge e of the obsta- 
cles, such a mall is the set of all points in FP(O) that lie 
on vertical rays emanating from the edge, and not intersect- 
ing the obstacles. Let M”’ denote the resulting partition of 
FP~O). It is easy to verify that the complexity of M”’ is 
O(n ), and that it can be computed in O(na log n) time. 

We refine Ml”, by further partitioning each cell OF M”’ 
into vertical triangular prisms. This is done by projecting 
each cell of M”’ into the zy-plane, and by triangulating 
the resulting polygon, in O(mlogm) time (see [IS]), where 
m is the number of vertices of the polygon. For each new 
edge created, we erect a corresponding vertical wall inside 
the cell. Let M” be the resulting subdivision of FP(0). 
Clearly, the complexity of M” remains O(n’), and it can be 
computed in additional O(n’ log n) time. 

Let T, be the vertical prism in M” that contains a. We 
construct an adjacency graph G on the vertical prisms of 
M”. By computing the connected component of G that con- 
tains T,, one obtains the subdivision M’ = M”n FP(O, a). 

Each cell Z of M’ is a vertical prism, having at most 
5 faces. We can approximate the distance function do,,(t) 
inside Z by computing a weighted set ST = (S~,wx), as 
specified in the proofs oFLemma 2.7 and Lemma 2.14. To do 
so, it is necessary to (r/S)-approximate the value of do,,(-) 
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for O((l/s”) log (l/c)) points (i.e., the points of Sz). By 
Theorem 4.1, t.his takes 

time. The weighted Voronoi diagram VS, induced by Sz 
inside Z approximates do,, inside Z up to a factor of 1 + E. 

Let S = !J~~&z. Clearly, one can (e/S)-approximate 
the distance between s and all the sites of S in 

0 
time. 

Let M be the subdivision UZEM, (Y.sz I-I 2). We prepro- 
cess M for spatial point location, by constructing a two-level 
spatial point location data structure. First, we preprocess 
M’ for point location in O(n” log n) time, using the algo- 
rithm of [23]. Next, we preprocess each cell Z of M’ for 
nearest neighbor queries for the weighted set Sz. By Lemma 
4.3 below, performing this preprocessing for all the cells of 
M’ takes a total of 0 (n2/e4+ ) randomized expected time 
and space, for any 6 > 0. 

For any query point t E FP(O,s), we can compute in 
O(log n + log (l/s)) = O(log (n/s)) time, the cell of M that 
contains t; that is, in O(log(n/s)) time, one can compute 
a distance b,,(t), such that do,.(t) 5 a,,,(t) 5 (1 + 
c)ao,&). n 

To complete the description and analysis of the algo- 
rithm, we next show how to preprocess a weighted set in IRS 
so t.hat one can perform efficient nearest neighbor queries in 
t.he additive weighted Voronoi diagram that it induces. 

Definition Let S = (S,ut) be a weighted set in lFt3. We 
decompose the weighted Voronoi diagram VS into “simpler” 
cells in t,he following way: For each cell C in Vs, we compute 
the spherical map Sc of the cell, by projecting the bound- 
ary of the cell onto the sphere of directions centered at pc, 
where pc is the site of C in S. (We use here the well-known 
property t,hat G is star-shaped with respect to PC.) We de- 
compose Sc into pseudo-vertical subcells on the sphere of 
&re&ons, by drawing a meridian arc upwards and dorm- 
wards from each vertex Sc, and from each locally longitude- 
esbremal point on any arc of Sc, and by extending each of 
these meridian arcs until it hits another arc of Sc or, fail- 
ing bhis, all the way to the poles of the sphere of directions. 
Clearly, t,he complexity of SC is linear in the complexity of 
the cell C. 

We project each “vertical” trapezoid in Sc back into C, 
to obtain the portion within C of the cone with apex pc 
spanned by the trapezoid. This defines a decomposition 
of C into simple subcells, such that each subcell is uniquely 
defined by at most 6 points of S. We decompose all the cells 
of Ys in a similar manner, and let C(S) denote the resulting 
subdivision. We calI C(S) the sphetical decompositionof Vs. 

For a weighted set a C S and a subcell 7 E C(a), a 
weighted point (p,z~~) E S confiicts with 7 if there exists 
a point. t E 7, such that l&,,,+)(t) < V-(t). Let K(S,7) 
denote bhe set of all the points of S that conflict with 7. 
The conjlict size of 7 is m(S,7) = IK(S,7)[. 

Lemma 4.3 Let S = (S, w) be a weighted set of m points 
in lR3, and S > 0 be a parameter. One can compute, in 
o(m2t6) randomized expected time, a data structure for 
nearest-neighbor queries, of size O(WZ~~~), such that for 0ny 

point p E IRS, one c0n compute, in O(log m) time, the cell 
of VS that contains p; that is, the point in S realizing the 
didcame V,(p). 

Proof: We construct the data-structure using a random- 
ized divide and conquer algorithm. We randomly pick a 
subset R of S of size r, where P is a parameter to be speci- 
fied later. One can compute the weighted Voronoi diagram 
of ‘R = (R,w), in O(ra) time, by Remark 2.3, and construct 
the spherical decomposition C(a) in O(r’logr) additional 
time, using plane sweeping techniques on the sphere of di- 
rections (see [lS]). 

For each subcell 7 in C(R), we compute its conflict size 
zu(S,7). Each subcell in C(Z) is uniquely defined by at 
most 6 sites in 7?., and if K(S,7) n 7Z # 0 then 7 $! C(R). 
We can thus apply the analysis of Clarkson and Shor. By 
[S, Corollary 3.81, w(S, 7) 5 c- (nlogr)/r, for alI 7 E C(R), 
with probability at least l/2, where c > 0 is an appropriate 
constant. We sample 7L from S repeatedly until we get a 
sample that fuKlls this condition. Overall, this stage takeo 
O(mr2 + r2 log r) expected running time. For each cell 7 E 
C(a), we construct recursively a data-structure for point- 
location in the Voronoi diagram VK(S,~. 

For any query point p, locating the subcell 7 in C(?L) 
that contains p is done by a brute force search inside C(a), 
in O(ra) time. Then, we compute the point realizing I%(p) 
by recursively performing a nearest neighbor query in the 
data-structure computed for YK(s,~. Thus, a query takeo 
Q(m) = Q(c(mlogr)/r) + O(ra) time, and the data- 
structure can be computed, in randomized expected time 

T(m) = T(r) + O(?)T 
( ) 

* + 0 (mra f ra logr) . 

Choosing r to be a suiliciently large constant, we have Q(m) 
= O(logm), and T(m) = O(matb) (where the constants of 
proportionality depend on 6). A similar bound holds for the 
space required by the algorithm. n 

Remark 4.4 The only stage in the algorithm of Theorem 
4.2 that uses randomization is the construction of the spatial 
point-location data described in Lemma 4.3. This can be 
replaced by a deternum . *stic data-structure as follows. 

We observe that each spherical cell, in the decomposition 
described above, can be parameterized by 24 parametero (6 
sites and their respective weights). Thus, we define a range 
space (S,?X), where ?X is the set of all possible subsets of S 
that are contained inside such a spherical cell. It is easy to 
verify that this is a range space having finite VC-dimension. 
By a result of MatouSek [15], we can compute, in O(nar’(‘)) 
time, a subset 7Z of S having O(r logr) points, which io 
(l/r)-net of (S, %). In particular, the set 7L can replocc the 
random sample in the proof of Lemma 4.3, see [lb]. This 
yields a deternum ’ ‘stic algorithm with the same time/opnce 
complexity as in Lemma 4.3. 

Alternatively, one can naively preprocess the Voronoi di- 
agram YS for spatial point-location directly, see [23]. How- 
ever, this approach is considerably less efficient than the 
approach proposed above. 

5 Conclusions 

In this paper we have presented two results for computing 
approximate maps that facilitate shortest paths queries on 
the surface of a convex polytope or on a polyhedral surface 
in 3+pace, or among polyhedral obstacles in 3-space. WC 
conclude by mentioning the following open probleme. 
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Uan an e-approximate shortest path between two 
points on a polyhedral terrain, or on the surface of 
a nonconvex polyhedron, be computed in time that 
is near-linear in the number of edges? A recent sub- 
quadratic solution has been obtained by Varadarajan 
and Agarwal [24], but it only computes a constant- 
factor approximation to the shortest path. 

Con the exact shortest path between two points on a 
convex polyhedron be computed in near-linear time? 
in subquadratic time? 

Can the methods and techniques used in this paper be 
extended to handle shortest path queries for weighted 
surfaces (as in [13, 14])? 
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