Constructing Approximate Shortest Path Maps in Three Dimensions*
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Abotract

We present a new technique for constructing a data-structure
that approximates shortest path maps in IR?, By applying
this technique, we get the following two results on approxi-
mate shortest path maps in IR®,

(i) Given a polyhedral surface or a convex polytope P
with 'n edges in IR®, a source point s on P, and a real
parameter 0 < ¢ < 1, we present an algorithm that com-
putes a subdivision of P of size O((n/e)log(1/¢)) which
con be used to answer efficiently approximate shortest path
querics, Namely, given any point £ on P, one can com-
pute, in O(log (n/e)) time, a distance Ap,s(t), such that
dpe(t) < Ap,s(t) < (1 + e)dp,s(t), where dp,(t) is the
length of a shortest path between s and ¢ on P.

The map can be computed in O(n? log n+(n/e)log (1/¢)
log (n/c)) time, for the case of a polyhedral surface, and in
O((n/e®)log(1/e) + (n/e**)log (1/c)logn) time if P is a
convex polytope,

(ii) Given a set of polyhedral obstacles O with a total
of n edgen in IR?, a source point s in IR? \ intJy o O, and
a real parameter 0 < ¢ < 1, we present an algorithm that
computes a subdivision of IR®, which can be used to answer
efliciently approximate shortest path queries. That is, for
ony point ¢t € IR3, one can compute, in O(log (n/e)) time, a
distonce Ao,.(t) that e-approximates the length of a short-
eot path from s to ¢ that avoids the interiors of the obsta-
cles, This subdivision can be computed in roughly O(n*/e®)
time,

1 Introduction

The three-dimensional Euclidean shortest-path problemis de-
fined o5 follows: Given a set of pairwise-disjoint polyhedral
objects in IR® and two points s and ¢, compute the shortest
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path between s and ¢ which avoids the interiors of the given
polyhedral ‘obstacles’. This problem has received consider-
able attention in computational geometry. It was shown to
be NP-hard by Canny and Reif [3], and the fastest available
algorithms for this problem run in time that is exponential
in the total number of obstacle vertices (which we denote
by n) [20, 21]. The apparent intractability of the problem
has motivated researchers to develop polynomial-time algo-
rithms for computing approximate shortest paths and for
computing shortest paths in special cases.

In the approzimate three-dimensional Euclidean shortest-
path problem, we are given an additional parameter ¢ > 0,
and the goal is to compute a path between s and ¢ that
avoids the interiors of the obstacles and whose length is
at most (1 + ) times the length of the shortest obstacle-
avoiding path (we call such a path an e-approzimate path).
Approximation algorithms for the three-dimensional short-
est path problem were first studied by Papadimitriou [19],
who gave an O(n*(L + log(n/e))?/c*)-time algorithm for
computing an e-approximate shortest path, where L is the
number of bits used in each computation. A rigorous analy-
sis of Papadimitriou’s algorithm was recently given by Choi
et al. [6]. A different approach was taken by Clarkson [7},
resulting in an algorithm with roughly O (n?/e*) running
time (the precise result is stated in Theorem 4.1).

The problem of computing a shortest path between two
points along the surface of a single convex polytope is an
interesting special case of the three-dimensional Euclidean
shortest-path problem. Sharir and Schorr [22] gave an
O(n® log n) algorithm for this problem, exploiting the prop-
erty that a shortest path on a polyhedron unfolds into a
straight line. Mitchell et al. {16] improved the running time
to O(n2 logn); their algorithm works for non-convex poly-
hedra (or polyhedral surfaces) as well. Chen and Han [5]
gave another algorithm with an improved running time of
O(n?). It is a rather long-standing and intriguing open prob-
lem whether the shortest path on a convex polytope can be
computed in subquadratic time. This has motivated the
problem of finding near-linear algorithms that produce only
an approximation of the shortest path. The first result in
this direction is by Hershberger and Suri [12]. They present
a simple algorithm that runs in O(n) time, and computes a
path whose length is at most 2dp(s,t). Using the algorithm
of [12], Agarwal et al. [1] present a relatively simple algo-
rithm that computes an e-approximate shortest path (i.e., a
path on 8P between two points s,t € AP whose length is at
most (1 + €)dp(s,t)), for any prescribed 0 < ¢ < 1, where
the running time of the algorithm is O(nlog(1/¢)+1/¢%). In
a companion paper [11], we present an improved algorithm,



with O(n) preprocessing time, that answers two-points ¢-
approximate shortest-path queries in O((logn)/e*”® + 1/¢°)
time, for anypair of points s, ¢t &€ P. Recently, Varadarajan
and Agarwal [24] gave a subquadratic time algorithm that
computes a constant approximation to the shortest path
on a polyhedral terrain. Other recent works, by Mata and
Mitchell [14], and also by Lanthier at al. [13] implement var-
ious heuristics for computing approximate shortest paths on
weighted terrains (i.e., each face f is being assigned a weight
wy, such that the distance between any two points a,b € f is
wy - |zb]). Those programs give satisfactory results in prac-
tice, which are within an order of magnitude better than
their worst case analysis.

In this paper, extending our work in [11], we present a
new general technique for constructing a data-structure that
one can use to answer e-approximate shortest-path queries,
for a source point s and approximation factor £ > 0 fixed
in advance. Using this technique, we solve two problems
involving approximate shortest path maps in IR?.

Approximate shortest path maps. The exact algorithms
of [16, 22] receive as input a convex polytope or a polyhedral
surface P, and a fixed source point s on P, and compute a
map (i.c., a subdivision of P) of complexity ©(n?), that can
be used to auswer (exact) shortest path queries from s to
any point on P (along P) in O(logn) time (such a query
reports the length of the shortest path; reporting the path
itself might require more time). This shortest path map can
be stored in linear space, for the case of a convex polytope,
by using a persistent data-structure, see [17]. However, the
time required to compute this compact representation of the
shertest path map is quadratic in the worst case. This raices
the problem of computing a map of near-linear size for gp-
proximate shortest-path queries from s. We show in Section
3 that this is indeed possible: Given a polyhedral surfzce
P with n edges in IR®, a source point s € P, and a pre-
scribed 0 < ¢ < 1, there exists a map (a subdivision of P) of
complexity O((n/<)log (1/¢)), such that for any ¢ € P, one
can compute the length of an s-approximate shortest path
between s and ¢ on P in O(log (n/e)) time, by locating ¢ in
the map.

We present an algorithm that constructs such an ap-
proximation map in O(n®logn + (n/e) log(1/e) log(n/cg)
time, for the case of a polyhedral surface, and in O((n/e”)
log(1/c)+(rn/e'*") log (1/€) log n) time, for the case of a con-
vex polytope. Note that if P is a convex polytope than cur
previous result [11] provides an alternative structure with
similar properties. However, the dependence of the query
time on ¢ is much better in the method we present here.

Approximate spatial shortest path maps. In Section 4,
we present a similar result for e-approximate shortest paths
among polyhedral obstacles in IR®. Let @ be a set of poly-
hedral obstacles in IR® with a total of n edges, s a source
peint in IR?, and 0 < € < 1 2 parameter. We show that
there exists a spatial subdivision M of R®, such that for
ony t € IR, one can compute, in O(log (n/c)) time, the
length of an c-approximate shortest path between s and ¢,
that avoids the interiors of the obstacles, by performing a
spatial point-location query with £ in M. The space needed
to compute and preprocess M for spatial point-location is
O(ri® [c**+¢), for any § > 0, and the preprocessing time is
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where p is the ratio of the length of the longest edge in O
to the Euclidean distance between s and ¢, B(n)=

a(n)o("("))o(l), and a(n) is the extremely slowly growing
inverse of the Ackermann function. This algorithm uses the
algorithm of Clarkson [7], that computes an c-approximate
shortest path, between two given points, in

2
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time.

The paper is organized as follows. Section 2 introduces
the notion of a distance function, and show how to com-
pute a “small-size” additive weighted Voronei diagram that
enables us to c-approximate this function. We present two
applications of this result. In Section 3, we present the al-
gorithm mentioned above for constructing a map for ap-
proximate shortest-path queries from a fixed source on a
convex polytope or a polyhedral surface in IR%, In Section 4
we present the algorithm mentioned above for constructing
a spatial subdivision for approximate chortest-path querics
from a fixed source among polyhedral obstacles in IR®, We
conclude in Section 5 by mentioning a few open problems.

2 Approximating a Distance Function by a Weighted
Voronoi Diagram

In this section, we introduce the notion of a distance func-
tion, and show how to compute a “small-size” additive
weighted Voronoi diagram that approximates it up to o fac-
tor of 1 + . We use this result in Sections 3 and Section 4
to derive our two main results.

Definition Let Z be a subset of IR%. A function f:Z — R
is a distance function on T if:

¢ f(z) + f(y) 2 leyl, for any =,y € T.
o f(z) + |zy| > f(y), for any straight segment zy C I,

where |zy| denotes the Euclidean distance between = and v,

Thus, a distance function has to satisfy two types of
triangle inequalities. Since these inequalitics are satisfied
by the Euclidean distance from any fixed point, o distonce
function can be regarded as a certain generalization of the
Euclidean distance.

Example 2.1 Figure 1 illustrates some geomelric reatric-
tion imposed on a univariate distance function,

Example 2.2 (i) Let P be a polyhedral surface in IR, and
let s be a source point on P. For any t € P, let dp,.(t)
denote the length of a shortest path between s and t on P.
It is easy to verify that dp,s(t) is a distance function on P.

(ii) Let O be a collection of pairwise-disjoint polyhcdral
obstacles in R®, and let s be a point in FP(O) = IR* \
Uoeo intO. Let FP(O, s) denote the connected component
of FP(O) that containa s (i.e., the set of all the points in R3
that can be connected to s by a path that avoids the interiors
of the obstacles of O).

For any t € FP(O, s), we denote by do,.(t) the length of
a shortest path between s and &, that aveids the interior of

the obstacles of O. Clearly, do,. is a distance function on
FP(0O,s).



9(a") = f(z) + |az'|

—f()

Figure 1: The graph of the distance function f must lie in-
gide the gray area. This implies that the function g(z’) =
f(@) + |oa’| approximates f(z') “well” in a small neighbor-
hood of @, and for sufficiently large values of z'.

Definition A pair § = (5, w) is a weighted set of points
if § = {p1,...,Pm} is & finite set of points in R¢, and w(-)
in a function assigning non-negative weights to the points
of 5, We define the distance of a point p from the point
P £0 be Vigyatp)(p), = |ppil + (). We define Va(p) =
minj%; Vi (,,“u,(,,‘))zp The function Vs(p) induces a natural
subdivision Vs of IR? into cells, known as the (additive)
weighted Voronoi diagram of S, auch that the i-th cell is the
Jocus of all points closest to p; in this distance function. As
iz well Jmown, in the planar case, Vs has complexity O(m),
ond it can be computed in O(mlog m) time (see [10]).

Remark 2.3 For d > 3, the complexity of an addxtxve
weighted Voronoi dlagram of m points in IR? is

O (ml4/31+1), This follows by reducing the computation of

the disgram to the computation of a convex hull in d + 2
dimensions, Furthermore, one can compute the diagram in
O(ml¥/2141) time, See [2].

We next show how to approximate a distance function
f() by a weighted Voronoi diagram. First, we compute a
globnl minimum pg of f. Asillustrated in Figure 1, the func-
tion Vip,, ,(,,o”(p) approximates f(p) “well” for p suﬁicxently
cloge to, or Buﬂicxently far from po. In other viords, f is well-
approximated in these regions by the weighted Voron01 dia-
gram of the single site po with weight f(po). By adding extra
pites to the diagram, we can make the distance induced by
the resulting diagram an e-approximation to f everywhere,
as will be shown next,

Definition Given a point p € R?, and r > 0, let B(p,r)
denote the closed ball of radius r centered ab p, and let
B(p,r) denote the set R\ B(p, r). For r' > r, let A(p,r,r')
denote the annulus (or shell) B(p,r') \ B(p,r).

The following sequence of technical lemmas provide the
basis for approximating a given distance function by a
weighted Voronoi diagram, The following lemmas are stated
for arbitrary dimension d. We will apply them withd =1, 2,
or 3.
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Lemma 2.4 Let T be a convez subset of R?, f a distance
function defined over I, and 8 = (S,w) a weighted set, such
that § C T and f(z) < w(z), for ellz € S. Then f(t) <
Vs(t), forallt € I.

Proof: Let ¢t be any point of Z, and let = denote the
point of S realizing Vs(t). Then Vs(t) = w(z) + |tz| >
f(=z) + Itz 2 (2)- n

Formalizing the intuition behind Figure 1, we have the
following:

Lemma 2.5 Let T be a convez subset of R%, f a distance
function defined over I, 0 < ¢ < 1 @ parameter, p a point in
T, and w a real number such that f(p) < v < (1+¢/8)f(p).
Then f(t) < Vipaw) (t) < (1 +€)f(2), for allt in

ro{n s 2) m (o2,

Proof: The first inequality f(t) < Vipw)(t) follows im-
mediately from Lemma 2.4.
—LB(E)-), we

As for the other inequality, for t € TN B ( -
have

w ew

G+e® 8 < fp) = Int] < £(t) £ Vipaw) (2)
= w-l-lptlSw-l—%D-.
However,
w+ew/8 1+¢/8 1+¢/8
1—_#—5117/8 ﬁ"é‘7§—6/8—1—€/8—6/8
_ 1+4¢/8
= _6/4<1+e,

since ¢ < 1. Thus Vip,u)(t) < (1 +€)f(t), forall t € I N

B(p,cf(p)/8)-
For t € TN B(p,6f(p)/e), we have

lpt] — w < Ipt] — £(p) < f(£) < Vip,u) () = Ipt] + .

However,
Iptl+w _ 2w 2w 2w
btl—= = e = e —w S e = 1O

since |pt| > 6f(p)/e > 3w/fe. Thus Vip.)(t) < (1 +c)f(t),
for any such t.

Lemma 2.6 Let T be a convez subset of R, f a distance
function defined over I, 0 < ¢ < 1 @ parameter, andp o
point in . Then for any t € I N B(p,cf(p)/9) and any
number w: such that f(t) < w: < (1 + ¢/8)f(t), we have
£8) < Viswon (8) < (1 + ) (o).

Proof: Since |pt] < €f(p)/9, it follows that f(t) > f(p) —
lptl'f?.hf (p) (1 —¢/9)-
us,

FO 5 256 (1- £) 2 L2 > pot,

implying that p € B(t,ef(t)/8). By Lemma 2.5, we have
f(p) < Viewon) (P) < (1 + €)1 (p)- u



The preceding lemmas suggest the following strategy for
constructing an approximation of a distance function f over
(a convex portion of) R% Pick a point p, such that f(p)
is close to the global minimum of f. The Voronoi diagram
Vipw) approximates f “well” near p and outside a larger
ball centered at p, where w is an approximation of f(p). We
approximate f in the space between those two balls by

partitioning it into concentric spherical shells whose radii
form an increasing geometric progression, and by covering
cach shell by a uniform grid (whose unit length increases
with the radius of the shell). In this manner, the number
of points needed is only a function of ¢ (the approximation
factor) and d.

When approximating a distance function on a convex
subset T of IR?, we have to cope with the possibility that
sites might be placed outside Z. We overcome this by pro-
Jjecting all such sites onto the boundary of Z.

Definition Let T be a convex subset in IR%, and let =
be a point in IR, Let »(z,Z) denote the projection of =
onto I; that is, v(z,T) is the closest point (in the Euclidean
distance) in T to z. Clearly, if ¢ € T then v(z,T) = z.
When =z is fixed, we call v(z,T) the hook point of T.

Definition Let r > r' > 0 be real numbers, let p be a
point in IR, and let T be a convex set in IRY. We denote by
S(p,I,r,r') the set T« N B(p,r) N ((r'[vV/d)Z?), where Z¢
is the integer lattice, and T+ = UgezB(g, ') is the set of all
point in IR? that are at distance at most ' from some point
of I. Cleatly, |S(p,Z,r,r')| = O((r/r')?) (with a constant
of proportionality depending on d).

The following technical lemma shows how to pick the
sites of the additive weighted Voronoi diagram, so that it
c-approximates a given distance function.

Lemma 2.7 Let T be a convez subset of R, f: T -5 R
a distance function, 0 < ¢ < 1 a parameter, ¢ a positive
constant, and p a point in T such that f(t) > f(p)/c, jor
all t € I. Then one can compule a set S in I of size
O((1/c)%log(1/c)) (the constant of proportionality depends
on c), such that p € S, and for any weight function w on
S satisfying f(z) < w(z) < (1 +¢/8)f(z), for allz € S,
we have f(t) < Vs(t) < (1 +€)F(t), for all t € I, where
S =(S,w).

Proof: Let wyp be any number satisfying f(p) < wp
(1+e/8)f(p).

Let r; = (2° + 1)wp, for ¢ = 1,...,m, where m
floga(6/c)]. Let Ar = B(p,r1), let A = A(p,ri-1,1:),
for i = 2,...,m, and let Amy1 = B(p,rm). Clearly, T =
Ul (T nAg). )

Let r{ = ew,/(18c), and let r} = €2~ w,/9, for i
2yv00ym. Let S = A; 1 S(p,T,rs,7l), for i = 1,...,m.
Let S = {p}ulJZ, Si, where S; {u(m,I) I:z: € S} }, for
2=1,...,m. See Figure 2 for an illustration of the set S.

Let w be any weight function, such that f(z) < w(z) <
(1 +¢/8)f(z), for any z € S, and let S = (S, w).

We claim that S is the required weighted set. Indeed,
let t € I. If £ € Amya then |pt] > (2™ + Lw, > 65(p)/e.
Thus ¢ € B(p,6f(p)/e) and by Lemmas 2.4 and 2.5, we have
F(2) 2 Vs(t) < Vipp) () < (1 +€)f(2)-

If t € B(p,rm), let A; be the shell containing . Let =
be the closest point to ¢ in Si. Let z = v(z',Z). By the
definition of v and S} and by the convexity of Z, we have
[tz| < [tz'] £ rf (see Figure 3).

<
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Figure 2: DNlustrating the proof of Lemma 2.7, We pick our
sites to be on a uniform grid inside each concentric ghell
around p.

©

Figure 3: [st| > |ht| for h = v(s,T)

If ¢ = 1 then the inequality f(¢) > f(p)/c 2> wp/2¢c im-
plies that |tz| < ri = ewp/(18¢c) < ef(t)/9. Thus z €
B(tr Ef(t)/g)' 3

If i > 1 then we also have |tz| < rf = 2'wp/9
ef(t)/9, since f(t) > |pt| — f(p) > (2°* + L)wp — f(p)
2""1a,. Thus = € B(t,ef(t)/9).

By Lemma 2.6 and Lemma 2.4, we have f(¢) < Vs(t) <
View(e)) () < (L + €)£(£)-

As for the size of S, we have

<
2

s = o(S(3))

1 1
(o] (e_d IOg -s-) .
|

To approximate a distance function f(.) using the con-
structive proof of Lemma 2.7, we need to find a point which
is, within a constant factor, a global minimum of f over the
given range. The following lemma shows that this con be
easily done if f has a known zero point outside the given
range.

Lemma 2.8 LetI’ be a subset of RY, f : I' = R a distance
function, 0 < ¢ < 1 a parameter, T a convez subact of T',



and 5 a point in I' \ T such that f(s) = 0. Then f(t) >
f(h)/2, for all t € I, where b =v(s,T).

Proof: Let t be any point in Z. Since h is the closest point
in T to s and T is convex, it easily follows that |st| > |hi], see
Tigure 3, Since f(t) = f(t)+f(s) > |st|, we have f(t) > |ht].
Moreover, the segment ht is a contained in Z, implying that
F(h)'< £(8) + |ht] < 2f(2). u

Remark 2.9 The lemma also holds when s € Z, but then
it only yields the trivial bound f(£) > 0 for all £ € Z. Then,
of course, o js the required global minimum,

Remark 2.10 Let I’ be a set in R?, let T be a convex
subset of I’, f : T = IR a distance function, 0 < &£ <
1 a parameter, and s a point of I’ such that f(s) = O.
Computing a weighted set § = (5, w) such that the weighted
Voronoi diagram induced on I approximates f up to a factor
of (1 + &), can be accomplished by following the proof of
Lemma 2.7, in four stages:

(i) Compute the point p = v(s,Z). By Lemma 2.8, p is
“almost” a minimum of f on Z.

(i) Compute an (e/8)-approximation wp to f(p) (as pre-
scribed in the lemma),

(iif) Construct the set S of points in T, as prescribed in the
proof,

(iv) Approximate the distance function values of all the
points of S, up to a factor of 1+ ¢/8, and use these
values as the weights for the points of S.

Remark 2.11 The set of points S produced in the proof of
Lemma 2.7 is made out of O(log(1/e)) subsets (i.e., S1,...,
Sm) such that f(z) < cf(t), for all z,t € S;, for 1 < i< m,
where ¢ is an appropriate constant. This property enables
ug, in the case of shortest paths on a convex polytope, to ap-
proximate the value of the distance function to all the points
of 8¢ simultaneously, yielding a more efficient algorithm. See
Remark 3,2 for the details.

Remark 2.12 Let I’ be a subset of IR?, and let f,g be two
distance functions defined over Z'. It is easy to verify that
h(w) = max(f(z),g(z)) is also a distance function. This
implies that the distance function induced by any furthest
neighbor Voronoi diagram of a finite set of points in IR?, is
& distance function in IR%. Hence, by Lemma 2.7, we have:

Corollary 2,13 Any furthest neighbor Voronoi diagram of
points in RY, can be e-approzimated by a (nearest neighbor)
weighted Voronoi diagram, having O((1/¢%)log (1/c)) sites.

The following is a strengthening of Lemma 2.7, by notic-
ing that in the cases we are going to apply it to, our dis-
tance function is the length of a shortest path from a fixed
gource point to the given point of Z. In such cases, if the
pource point lies outside Z, then a shortest path connecting
ony point in T to our source point, must first pass through
the boundary 8L, We next show that if we are able to e-
approximate the distance on the boundary of I, then we
can trivially e-approximate the distance function to all the
points of Z,

Definition Let T be a convex polytope in RS, We call a
function f : T ~+ IR boundary-inducedon Z, if f is a distance
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function, and for any ¢ € Z, there exists a point z € 8 such
that £() = f(z) +ltal.

Definition Given a convex polytope T in IR?, we denote
by ¢(ZT) the set of all the facets ((d — 1)-faces) of .

Lemma 2.14 Let T be a convez polytope in R?, f : T —
IR @ boundary-induced distance function, and0 < e <1 a
parameter. For any facet F of I, let S(F) = (Sr,wr) be
a weighted set of points in F, such that f(t) < Vsm)(t) <
(A +€)f(t), for allt € F. Then F(t) < Vs(t) < (1 +¢)f(2),
for all t € I, where S = (S,w) = Upey(nyS(F)-

Proof: For any ¢t € T, let = be the point in 8T satisfying
f(t) = f(z) + |tz], and let F be a facet of I that contains
z. By Lemma 2.4, we have

f@)+ltzl = £(8) < Vs(t) < Vs(e) + lea]
Ve (<) + lte] < (1+€)(z) + |tz
(L+e)(F() + lte]) = (L + )(8).

INIA

Remark 2.15 Let ' be a set in IR%, let T be a convex
subset of ', f : T' = IR a boundary-induced distance func-
tion, 0 < € < 1 a parameter, and s a point of I’ such that
f(s) = 0. Computing a weighted set S = (S, w) such that
the weighted Voronoi diagram induced on Z approximates
f up to a factor of (1 + £), can be done by applying the
algorithm described in Remark 2.10 for each facet of Z. By
Lemma 2.14, the union of all these weighted sets has the
required properties.

3 Approximate Shortest-Path Map on a Polyhedral
Surface in IR®

Let P be a given polyhedral surface in IR® with n edges, let s
be a source point on P, and let 0 < ¢ < 1 be a given parame-
ter. In this section, e give an algorithm for constructing an
approximation map on P of complexity O((n/e)log(1/¢)),
such that given any ¢ € P, one can compute in O(log(n/z))
time a distance Ap(s,t) satisfying dp(s,t) < Ap(s,t) <
(1 +€)dp(s, t). -

Although the following description is rather technical,
one has to bear in mind that it is a straightforward imple-
mentation of the technique of Section 2. Namely, for each
edge of our domain (polyhedral terrain, or a convex poly-
tope) we compute a “small” set of points, we approximate
the (geodesic) distance from the source point to all those
points, and we construct the weighted additive Voronoi di-
agram that those points induce on each face of the domain.

Definition A polyhedral surface P in IR? is the union of
a collection of planar polygonal faces, with their edges and
vertices, such that each edge is incident to at most two faces
and any pair of faces intersect either at a common edge, a
common vertex, or not at all. A face is a simple closed poly=-
gon (i.e., it contains jts boundary), and an edge is a closed
segment (i.e., it contains its endpoints). Without loss of
generality e assume that all the faces are triangular (since
simple polygons may be triangulated in linear time [4] and
the number of new edges introduced by the triangulation is
linear in the number of vertices). We also assume that P ia
connected.



A polyhedral terrain is a polyhedral surface that inter-
sects every vertical line in at most a single point.

Definition Given a polyhedral surface P in R?, and any
two points s, on P, we denote by dp,,(t) the length of a
shortest path between s and ¢ on P.

As noted in Example 2.2 (i}, dp,.(-) is a distance function
en P. Moreover, if F is a face of P and s ¢ F then dp,,
is boundary induced on F. (If s € F then dp,(t) is the
Euclidean distance |st|)

The following theorem is the main result of this section.

Theorem 3.1 Let P be a polyhedral surface in R® with n
edges, s a saurce point on P, and 0 < & < 1 & real param-
cter. Then there erists a subdivision II of P of complexity
O((r/c)log (1/€)), which facilitates e-approzimate shortest
path queries from s on P. That is, for any query point ¢
on P, one can compute, in O(log (n/c)) time, a distance
Ap(s,t), such that dp,,(t) < Ap(s,t) < (1 4 e)dp,(t).

The map can be computed in O(n® logn+ (nfe)log (1/€)
log (n/c)) time, if P is an arbitrary polyhedral surface, end
in O((n/e*)log(1/c) + (nfe'¥)log (1/€)log n) time, if P is
a convez polytope.

The space used by the algorithm is O((n/e)log (1/¢)), if
P is cither a convez polytope or a polykedral terrain, end
O(r® + (n/c)log (1/€)) otherwise.

Proof: For each face F of P that does not contain s, we
construct a weighted Voronoi diagram that approximates
dp,, on F'. By Remark 2.15, this can be done by construct-
ing a weighted Voronoi diagram on each edge of P, as out-
lined in Remark 2.10.

For the general case, we compute the exact shortest-path
map of s on P, using  the  algorithm of [16],in
O{n® logn) time. The exact map enables us to compute the
shortest distance from s to any point of P in O(log n) time.
Thus, computing the distances from s to the i hooks of the
edges of P takes additional O(nlogn) time. The hook point
of an edge is the closest point of the edge to s, and it can
be computed in O(1) time.

For the convex case, we approximate the distances on P
to all the hooks on the edges of P, up to a factor of (1+¢/8).
This takes O(n/c®+(n/c'*?) log n) time, using the algorithm
of [1, Sec. 6].

For each edge e of P, we compute a set S, of O((1/e)
log (1/¢)) points on e, as specified in the proof of Lemma 2.7,
taking the corresponding p to be the hook of € and wy, to be
the approximated (exact in the non-convex case) distance
along P from s to p. Let S = U.S,, taken over all edges e
of P.

We now compute (or approximate) the distances from s
to all the points in S. For the non-convex case, this can be
done in O((n/c)log (1/<)log n) time, using the exact short-
est path map.

For the convex case, we compute approximate distances
from s to all points of S, up to a factor of (1 +¢/8). Us-
ing the observation of Remark 2.11, we partition S into
O(nlog (1/e)) sets, each of size O(1/e), such that the re-
quired distances to the points in each such set are within a
fixed constant factor of each other (namely, for each edge € of
P, the set S is decomposed into O(log(1/¢)) sets, as in the
proof of Lemma 2.7). Using the algorithm described in Re-
mark 3.2 below, we can compute the distances from s to all
the points of § in O((n/e*)log (1/€)+(n/c'*) log (1/¢)log )
time.
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Next, we compute, for each face F' of P, the weighted
Voronoi diagram induced by the weighted points of § that
lie on 8F. This takes O((n/e)log® (1/¢)) overall time (sec
[10]), since each face contains O((1/¢)log (1/¢)) points of S.
Let I be the resulting map, consisting of the union of all
those facial Voronoi diagrams.

By Lemmma 2.7 and Lemma 2.14, the map IT on ? has the
required properties. Moreover, we can preprocess each face
F of P in O((1/¢) log? (1/€)) time, such that point location
queries on F can be answered in O(log (1/¢)) time (sce [18]).
Overall, this preprocessing takes O((n/e) log® (1/¢)) time.

To answer a approximate shortest path query for a query
point g, the algorithm must locate the face of P containing
q. If P is a polyhedral terrain, we project the terrain into
the zy-plane and preprocess it, in O(nlogn) time, for pla-
nar point location. If P is a convex polytope, it con be
preprocessed in linear time to answer point location queries
in O(logn) time (see [9]). Otherwise, we preprocess P for
spatial point-location in O(n®log r) time, and O(n?) space,
with O(log n) query time, using the algorithm of [23].

Given any query point g on P, the algorithm computes
the face F of P that contains g in O(logn) time. Locnting
the face of the subdivision II that contains g takes an nddi-
tional O(log(1/e)) time. Thus, e-approximate shortest path
queries for P can be answered in O(log (n/c)) time, (If the
face containing g is already known, the query time reduces
to O(log (1/¢€)).) |
Definition Let P be a convex body in IR®. An outer path
of P is a curve v connecting two points on &P and digjoint
from the interior of P.

Remark 3.2 Let P be a convex polytope in IR3, a a source
point on P, T a set of points on P, and 0 < ¢ < 1 o pre-
scribed parameter. One can e-approdmate the length of
the shortest path from s to all the points of T on P, in
O((n-+|T)/&* +((n+IT|)/** ) log (r + |T})) time, by adding
the points of T' as vertices to P and by using the algorithm
of [1, Sec. 6].

The algorithm of [1] works by computing an approxima-
tion polytope for each point of T, and by computing the
exact distance from s to the point on this polytope.

Moreover, suppose that T can be partitioned into m seta
Ty,...,Tm, such that dp.(t) < c-dp,.(t'), for &ll t,t' € T
and for each ¢ = 1,...,m, where c is a prescribed constant,
and all the points of T; belong to the same edge of P, for
any fixed 7 = 1,...,m. Then it is possible to speed up the
above algorithm, as follows. Instead of constructing an ap-
proximation polytope for each destination point separately,
we construct an approximation polytope that can be used to
approximate the distances from s to all the points of Ty, for
2 = 1,...,m. This is done by ensuring that all the points
of T; lie on the boundary of the approximation polytope
calculated by the algorithm, which can be enforced by in-
tersecting it with a supporting plane of P passing through
the edge containing the points of T; (adding at mest one
new face to the approximation polytope). We also need to
use a more refined approximation polytope, so as to achieve
the claimed error bound, but since ¢ is a constant this does
not change the asymptotic complexity of the algorithm. See
(1] for the technical details.

This improves the running time to

ﬂ)
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by constructing an approximation polytope for the points
of Tt (in O(-%rlogn) time), computing the exact distance
map from the source point on the approximation polytope
(in O(1/€®) time), and extracting the shortest path to each
point of T}, repeating all this, for T1,...,Tn. Moreover, for
each point ¢ € T}, the algorithm computes a polygonal outer
path of P, made out of O(1/e***) segments, that realizes the
approximated distance,

Remark 3.3 The algorithm of [16] works for arbitrary poly-
hedral surfaces; in particular, it is not restricted to polyhe-
dral terrains, Thus, the algorithm of Theorem 3.1 also vorks
for pencrnl polyhedral surfaces.

Remark 3.4 For a convex polytope P with n edges in IR®,
one can compute an approximation map that can be used
to compute an outer path that realizes the approximate dis-
tonce, This is done by modifying the algorithm of Theorem
3.1, such that it stores an outer path from the source point
to each of the constructed sites, where the outer path real-
jzes ito e-npproximate distance, Such a path is readily avail-
able from the procedure used to compute the approximate
distance to the site, and the complexity of such a path is
O(1/e*%) (See [1]). The space needed to store the extended
approximation map is O(n/e*®log (1/¢)), and the compu-
tutio;t time remains O((n/e®)log(1/e) + (n/e'")log (1/€)
log n},

gThe nev map can be used to answer approximate short-
eot path queries, in O(log (n/e)) time, and also compute,
jn additional O(1/e**) time, an outer path of the convex
polytope realizing this distance. Such an outer path can be
projected onto the boundary of the convex polytope, in ad-
ditional O (n log (1/€) 4 1/¢") time, resulting in a path on
8P which is an e-approximation to the shortest path, see
[1). Note however that the performance of the enhanced
data structure is poorer both in terms of storage and query
time,

4 Consstructing Spatial Approximate Shortest-Path Maps
in IR/

Let O be a collection of pairwise-disjoint polyhedral obsta-
cles in IR?, 5 o source point in R® \ int(JO,and 0 <e <1
a parameter., In this section, we present an algorithm for
preprocessing O such that for any point in IR® (or, more
precisely, for any ‘free’ point that can be reached from s
without penetrating into an obstacle) one can compute, in
O(log(n/e)) time, a distance Ao,,(t) satisfying do,.(t) <
Ao, (t) < (1 + €)do,d(t), where do,s(t) is the length of a
shorfiest path between s and ¢ that avoids the interiors of
the obatacles,

The preprocessing time of the algorithm is roughly
O(n*/e®), which shows that the problem of approximating
the distance from a single source to all the ‘free’ points in
IR?, io not much harder (computationally) than approximat-
ing the distance between any specific pair of points (which
con be done in roughly O(n* /c*) time, see [7]). In fact, for
a fixed source point and many destination points, our algo-
rithm will actually be faster. The problem of computing the
ezact distance between two points in IR® among polyhedral
obntacles js NP-hard, as shown by Canny and Reif [3], and
the fastest available algorithms for this problem run in time
that is exponential in the total number of obstacle vertices
[20, 21, 22].

Deflnition Let O be a collection of pairwise-disjoint poly-
hedral ohstacles with a total of n edges in IR®, and s a source
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point in FP(O) = R® \int{jycp O. Let FP(O,s) denote
the set of all points in FP(O) that can be connected to s
by a path that avoids the interiors of the obstacles of O.

For any t € FP(O,s), we denote, as above, by do,,(t)
the length of a shortest path between s and ¢, that avoids
the interiors of the obstacles of O.

As noted in Example 2.2 (ii), do,.(-) is a distance func-
tion over FP(0O, s), and for any convex set T C FP(O,s)
such that s ¢ Z, the function do,,(-) is boundary induced
over T.

Theorem 4.1 (Clarkson [7]) Given g set O of polyhedral
obstacles in IR®, and points s and £, an e-approzimate path
between s and t that does not penetrate into any obstacle in
O can be computed in

ﬂ2 n 2
0 | —rB(n)log — + n’ log (np) log(nlog o)

time, where n i3 the number of obstacle edges, and p is the
ratio of the length of the longest edge in © to the Euclidean

distance between s and t, B(n) = a(n)o("'("))o(x) , and a(n)
is the inverse of the Ackermann function.

The following theorem is the main result of this section.

Theorem 4.2 Let O be a collection of pairwise-disjoint
polyhedral obstacles with n edges in IR3, s & source point in
FP(0O), and 0 < ¢ <1 a parameter. Then a subdivision M
of FP(0,s) of complezity O(n?[e*t?), for any1> § > 0,
can be computed in

4
n
0 (e—,
time, where p, and B(n) are as above.
For any guery point t € FP(O,s), one can compute in
O(log(n/c)) time a distance Ao,.(t), such that do,.(t) <
Ao,sft) < (1 +€e)do,.(t).

Proof: First, we partition FP(O) into O(n®) vertical
prisms. This can be easily done by erecting a vertical wall
from each edge of the obstacles. For an edge e of the obsta-
cles, such a wall is the set of all points in FP(O) that lie
on vertical rays emanating from the edge, and not intersect-
ing the obstacles. Let M"' denote the resulting partition of
FP(0). It is easy to verify that the complexity of M" ia
O(n?), and that it can be computed in O(n?logn) time.

We refine M"", by further partitioning each cell of M’
into vertical triangular prisms. This is done by projecting
each cell of M" into the zy-plane, and by triangulating
the resulting polygon, in O(mlogm) time (see [18]), where
m is the number of vertices of the polygon. For each new
edge created, we erect a corresponding vertical wall inside
the cell. Let M" be the resulting subdivision of FP(O).
Clearly, the complexity of M" remains O(n?), and it can be
computed in additional O(n®logn) time.

Let T, be the vertical prism in M" that contains s. We
construct an adjacency graph G on the vertical prisms of
M". By computing the connected component of G that con-
tains T}, one obtains the subdivision M' = M"NFP(O,s).

Each cell T of M’ is a vertical prism, having at most
5 faces. We can approximate the distance function do,,{t)
inside Z by computing a weighted set St = (Sz,wz), a3
specified in the proofs of Lemma 2.7 and Lemma 2.14. To do
so, it is necessary to (e/8)-approximate the value of do,s(+)

(ﬂ (:l) log -::1 +log (np)log(nlog P)) log :];)

€



for O((1/€%)log (1/¢)) points (i.e., the points of Sz). By
Theorem 4.1, this takes

2
0 ((ﬂi("__) log = +log (np) log(nlog p)) Slog %)

time. The weighted Voronoi diagram Vs, induced by Sz
inside T approximates do,, inside Z up to a factor of 1 +e.

Let 8 = UzeaurSz. Clearly, one can (¢/8)-approximate
the distance between s and all the sites of S in

4
n
o
time.

Let M be the subdivision [z (Vs; NT). We prepro-
cess M for spatial point location, by constructing a two-level
spatial point location data structure. First, we preprocess
M’ for point location in O(n®logn) time, using the algo-
rithm of [23]. Next, we preprocess each cell T of M' for
nearest neighbor queries for the weighted set Sz. By Lemma
4.3 below, performing this pre})rocessing for all the cells of
M! takes a total of O (n?/c*t ) randomized expected time
and space, for any § > 0.

For any query point ¢ € FP(0O,s), we can compute in
Oflog n +log (1/5)) = O(log (n/c)) time, the cell of M that
contains ¢; that is, in O(log (n/c)) time, one can compute
a distance Ag,,(t), such that do,(t) < Ao.(t) < (1 +
c)do,, (t). | ]

(@ log % + log (np) log(nlog P)) log i')

To complete the description and analysis of the algo-
rithm, we next show how to preprocess a weighted set in R?
so that one can perform efficient nearest neighbor queries in
the additive weighted Voronoi diagram that it induces.

Definition Let S = (S, w) be a weighted set in R®. We
decompose the weighted Voronoi diagram Vs into “simpler”
cells in the following way: For each cell C in Vs, we compute
the spherical map Sc of the cell, by projecting the bound-
ary of the cell onto the sphere of directions centered at pg,
where pc is the site of C in S. (We use here the well-known
property that C is star-shaped with respect to pc.) We de-
compose Sc into pseudo-vertical subcells on the sphere of
directions, by drawing a meridian arc upwards and down-
wards from each vertex Sc, and from each locally longitude-
extremal point on any arc of S¢, and by extending each of
these meridian arcs until it hits another arc of Sc or, fail-
ing this, all the way to the poles of the sphere of directions.
Clearly, the complexity of Sc is linear in the complexity of
the cell C.

We project each “vertical” trapezoid in Sc back inte C,
to obtain the portion within C of the cone with apex pc
spanned by the trapezoid. This defines a decomposition
of C into simple subcells, such that each subcell is uniquely
defined by at most 6 points of S. We decompose all the cells
of Vs in a similar manner, and let C(S) denote the resulting
subdivision. We call C(S) the spherical decompositionof Vs.

For a weighted set R C S and a subcell T € C(R), a
weighted point (p,wp) € S conflicts with T if there exists
a point ¢ € T, such that Vipw,)(t) < Vr(t). Let K(S,T)
denote the set of all the points of S that conflict with 7.
The conflict size of T is w(S,T) = |K(S,T)I-

Lemma 4.3 Let S = (5,w) be a weighted set of m points
in R®, and § > 0 be a parameter. One can compute, in
O(m?**+%) randomized ezpected time, a data structure for
nearest-neighbor gueries, of size O(mz'*"s) , such that for any
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point p € IR?, one can compute, in O(logm) time, the ccll
of Vs that contains p; that is, the point in S realizing the
distance Vs(p).

Proof: We construct the data-structure using a random-
ized divide and conquer algorithm. We randomly pick a
subset R of S of size r, where r is a parameter to be speci-
fied later. One can compute the weighted Voronoei diagram
of R = (R, w), in O(r?) time, by Remark 2.3, and construct
the spherical decomposition C(R) in O(r?logr) additional
time, using plane sweeping techniques on the sphere of di-
rections (see [18]).

For each subcell 7 in C(R), we compute its conflict size
(8, T). Each subcell in C(R) is uniquely defined by at
most 6 sites in R, and if K(S,T)NR 5 0 then T ¢ C(R).
We can thus apply the analysis of Clarkson and Shor. By
[8, Corollary 3.8, w(S,T) < c-(nlogr)/r, for all T € C(R),
with probability at least 1/2, where ¢ > 0 is an appropriate
constant. We sample R from S repeatedly until we get o
sample that fulfills this condition. Overall, this stage takes
O(mr? + r? log r) expected running time. For each cell T €
C(R), we construct recursively a data-structure for point-
location in the Voronoi diagram Vic(s,7)-

For any query point p, locating the subcell 7" in C(R)
that contains p is done by a brute force search inside C(R),
in O(r?) time. Then, we compute the point renlizing Vs(p)
by recursively performing a nearest neighbor query in the
data-structure computed for Vi (s,77. Thus, a query tokes
Q(m) = Q(c(mlogr)/r) + O(r®) time, and the dato-
structure can be computed, in randomized expected time

Tm) = 7(7) + OG)T (5T ) 10 e +° )

Choosing r to be a sufficiently large constant, we have Q(m)
= O(log m), and T(m) = O(m?*+?%) (where the constants of
proportionality depend on &). A similar bound holds for the
space required by the algorithm. ]

Remark 4.4 The only stage in the algorithm of Theorem
4.2 that uses randomization is the construction of the spatial
point-location data described in Lemma 4.3. This can be
replaced by a deterministic data-structure as follows.

We observe that each spherical cell, in the decomposition
described above, can be parameterized by 24 parameters (6
sites and their respective weights). Thus, we define a ronge
space (S,%R), where R is the set of all possible subsets of &
that are contained inside such a spherical cell. It is easy to
verify that this is a range space having finite VC-dimension,
By a result of Matousek [15], we can compute, in O(mro(l))
time, a subset R of & having O(rlogr) points, which io
(1/r)-net of (S,R). In particular, the set R can replace the
random sample in the proof of Lemma 4.3, see [15]. This
yields a deterministic algorithm with the same time/space
complexity as in Lemma 4.3.

Alternatively, one can naively preprocess the Voronci di-
agram Vs for spatial point-location directly, see [23]. How-
ever, this approach is considerably less efficient than the
approach proposed above.

5 Conclusions

In this paper we have presented two results for computing
approximate maps that facilitate shortest paths querics on
the surface of a convex polytope or on a polyhedral surface
in 3-space, or among polyhedral obstacles in 3-space. We
conclude by mentioning the following open problems.



e Can an e-approximate shortest path between two
points on a polyhedral terrain, or on the surface of
a nonconvex polyhedron, be computed in time that
is near-linear in the number of edges? A recent sub-
quadratic solution has been obtained by Varadarajan
and Agarwal [24], but it only computes a constant-
factor approximation to the shortest path.

o Can the exact shortest path between two points on a
convex polyhedron be computed in near-linear time?
in subquadratic time?

Can the methods and techniques used in this paper be
extended to handle shortest path queries for weighted
surfaces (as in [13, 14])?
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