
Constructing Approximate Shortest Path Maps in Three Dimensions*

Sariel Har-Peled i

Abotroct

We present a new technique for constructing a data-structure
that approximates shortest path maps in lH’. By applying
tbia technique, we get the following two results on approxi-
mate ahorteet path maps in lRB.

(i) Given a polyhedral surface or a convex polytope P
with n edges in lRa, a source point s on P, and a real
parameter 0 < c 5 1, we present an algorithm that com-
putes a subdivision of P of size O((n/e)log(l/e)) 17hich

can be used to answer efficiently approximate shortest path
queries, Namely, given any point t on P, one can com-
pute, in O(log(n/s)) time, a distance Appls(t), such that
dp+(t) 5 A?,,(t) 5 (1 + e)d~,#(t), where d~,~(t) is the
length of a shortest path between s and t on P.

The map can be computed in O(ns log n+(n/a) log (l/c)
time, for the case of a polyhedral surface, and in

log(l/s) + (n/e”“) log (l/s) log n) time if P is a
convex polytope.

(ii) Given a set of polyhedral obstacles 0 with a total
of n edges in lRs, a source point s in lH3 \ int UO~,, 0, and
a renl pnrameter 0 < e 5 1, we present an algonthm that
computes a subdivision of lEtB, which can be used to answer

efllciently approximate shortest path queries. That is, for
any point t E lIta, one can compute, in O(log (n/e)) time, a
distance A+(t) that s-approximates the length of a short-
eat path from s to t that avoids the interiors of the obsta-
;ple,e This subdivision can be computed in roughly O(n4/e6)

.

1 Introduction

The three-dimenaionalEuclideanahorteat-pathproblemis de-
fined aa follows: Given a set of pah-wise-disjoint polyhedral
objects in lRB and two points s and t, compute the shortest

*Thin work has been supported by a grant from the U.S.-
Inrneli Binotionol Science Foundation. This work is part of the
author’s Ph.D. thesis, prepared at Tel-Aviv University under the
supervision of Prof. Micha Sharir.

tSchoo1 of Mathematical Sciences, Tel Aviv University, Tel
Aviv 08078, kwl; oariol&nath.tau.ac.il

Permission IO make digihd or bud copies of all or pat ofthis work for
pcaonnl or classroom use is gtlrnted without fee provided thltt copies
nro not mndo or diutibuled for profit or commercial advantage and that
copicz~ hear lhfo notice nnd the full citation on the first page. To copy
oUvmhc, to republish, to post on servers or to redistribute to iii
rcquircs prior cpccifk permission n&or a fee.
SC0 38 Minneapolis Minnesoh USA
CopyriCj~t ACM 1938 O-89791.973-4/98/6...%5.00

path between s and t ~7hich avoids the interiors of the given
polyhedral ‘obstacles’. This problem has received consider-
able attention in computational geometry. It was shown to
be NP-hard by Canny and Reif [S], and the fastest available
algorithms for this problem run in time that is exponential
in the total number of obstacle vertices (which we denote
by n) [20, 211. Th e apparent intractability of the problem
has motivated researchers to develop polynomial-time algo-
rithms for computing approximate shortest paths and for
computing shortest paths in special cases.

In the approzimate three-dimenaionoI Euclidean ahotteat-
path problem, we are given an additional parameter e > 0,
and the goal is to compute a path between s and t that
avoids the interiors of the obstacles and whose length is
at most (1+ e) times the length of the shortest obstacle-
avoiding path (we call such a path an c-approtimate path).
Approxlmation algorithms for the three-dimensional short-
est path problem were first studied by Papadimitriou [19],
who gave an O(n4(L + log(n/e))a/ea)-time algorithm for
computing an c-approximate shortest path, where L is the
number of bits used in each computation. A rigorous analy-
sis of Papadimitriou’s algorithm 17as recently given by Choi
et al. [6]. A different approach ~7a.5 taken by Clarkson [I’],
resulting in an algorithm with roughly 0 (n”/e’) running
time (the precise result is stated in Theorem 4.1).

The problem of computing a shortest path between two
points along the surface of a single convex polytope is an
interesting special case of the three-dimensional Euclidean
shortest-path problem. Sharir and Schorr [22] gave an
O(n3 log n) algorithm for this problem, exploiting the prop
erty that a shortest path on a polyhedron unfolda into a
straight line. Mitchell et al. [16] improved the running time
to O(ns log n); their algorithm works for non-convex poly-
hedra (or polyhedral surfaces) as 17ell. Chen and Han [5]
gave another algorithm with an improved running time of
O(r?). It is a rather long-standing and intriguing open prob-
lem whether the shortest path on a convex polytope can be
computed in subquadratic time. This has motivated the
problem of finding near-linear algorithms that produce only
an approximation of the shortest path. The first result in
this direction is by Hemhberger and Suri [12]. They present
a simple algorithm that runs in O(n) time, and computes a
path whose length is at most 2dp(s, t). Using the algorithm
of [12], Agam7al et al. [l] present a relatively simple algo-
rithm that computes an c-approximate shortest path (Le., a
path on BP between two points a, t E l3P whose length is at
most (1 + e)dp(s, t)), f or any prescribed 0 < e s 1, where
the running time of the algorithm is O(nlog(l/e)+l/aa). In
a companion paper [ll], we present an improved algorithm,

383

with O(n) preprocessing time, that answers two-
E

oints E-
approximate shortest-path queries in O((logn)/& + 1/s3)
time, for anypair of points s, t E aP. Recently, Varadarajan
and Agarwal [24] gave a subquadratic time algorithm that
computes a constant approximation to the shortest path
on a polyhedral terrain. Other recent works, by Mata and
Mitchell [14], and also by Lanthier at al. [13] implement var-
ious heuristics for computing approximate shortest paths on
weighted terrains (i.e., each face f is being assigned a weight
2~t, such t.hat the distance between any two points a, b E f is
ZU~ . II&\). Those programs give satisfactory results in prec-
ticc, which are within an order of magnitude better th$an
their worst case analysis.

Iu this paper, extending our work in [ll], we present a
new general technique for constructing a data-structure that.
one can use to answer s-appro.simate shortest-path queries,
for a source point s and approximation factor E > 0 fixed
in advance. Using t.his technique, we soIve two problems
involving approximate shortest path maps in IR3.

Approximate shortest path maps. The exact algorithms
of [lG, 221 receive as input a convex polytope or a polyhedral
surface ?, and a fLved source point s on P, and compute a
map (i.e., a subdivision of P) of complexity O(n2), that can
be used to answer (exact) shortest path queries from 3 to
any point on P (along P) in O(logn) time (such a query
reports the length of the shortest path; reporting the path
itself might require more t.ime). This shortest path map can
be stored in linear space, for t.he case of a convex polytope,
by using a persistent data-structure, see [1’7]. However, the
time required to compute this compact representation of the
shortest pat.h map is quadratic in the worst case. This raises
the problem of computing a map of near-linear size for zp-
prkmate shortest-path queries from s. We show in Section
3 that &is is indeed possible: Given a polyhedral surfxe
P with n edges in m3, a source point s E P, and a pl-e-
scribed 0 C: c < 1, t,here exists a map (a subdivision of P) of
complexity O((n/,c) log (l/s)), such that for any t E P, one
can compute the length of an s-approximate shortest path
F;we; s and t on P in O(log (ra/.s)) time, by locating t in

We iresent an algorithm that constructs such an ap-
prosimation map in O(n” logn + (n/b) log(l/s) log(n/cj)
time, for t,he case of a polyhedral surface, and in O((n/s)
log(l/c)+(n/s”“) log (l/s) logn) time, for the case of a con-
vex polytope. Note that if P is a convex polytope than our
previous result [ll] provides an alternative structure with
similar propert,ies. However, the dependence of the query
time on E is much better in the method we present here.

Approximate spatial shortest path maps. In Section 4,
we present a similar result for c-approximate shortest pa&
among polyhedral obstacles in IR3. Let 0 be a set, of poly-
hedral obstacles in m3 with a total of n edges, s a source
point in lR3, and 0 < E < 1 a parameter. We show that.
there e.sists a spatial sub&vision M of lR3, such that for
any t E lR3, one can compute, in O(log(n/s)) time, the
length of an e-approximate shortest path between s and t,
that avoids the interiors of the obstacles, by performing a
spatial point-location query with t in M. The space needed
to compute and preprocess Jci for spatiaI point-Iocation is
O(r?/c’+‘), for any S > 0, and the preprocessing time is

0 n4 B(n)
((F &4

- log ; + log (np) log(n log p)
> >

log ; t

where p is the ratio of the length of the longest edge in 0
to the Euclidean distance between s and t, /3(n) =
,(,)w+w and p(n) is the extremely slowly growing
inverse of the kkermann fin&ion. This algorithm uses the
algorithm of Clarkson [7], that computes an c-approximate
shortest path, between two given points, in

0
(

$-3(n)log 9 -I- n2 log (np)log(nlogp)
>

time.
The paper is organized as follows. Section 2 introduce0

the notion of a dihmce function, and show how to com-
pute a “small-size” additive weighted Voronoi diagram that
enables us to s-approximate this function. We present two
applications of this result. In Section 3, we present the al-
gorithm mentioned above for constructing a map for ap-
proximate shortest-path queries from a fixed source on a
convex polytope or a polyhedral surface in lR3. In Section 4
we present the algorithm mentioned above for constructing
a spatial subdivision for approximate shortest-path querieo
from a fixed source among polyhedral obstacles in lR3. We
conclude in Section 5 by mentioning a few open problems.

2 Approximating a Distance Function by a Weighted
Voronoi Diagram

In this section, we introduce the notion of a distance func-
tion, and show how to compute a “small-size” additive
weighted Voronoi diagram that approximates it up to a fac-
tor of 1 + E. We use this result in Sections 3 and Section 4
to derive our two main results.

Definition Let Z be a subset of IRd. A function f : Z -+ IR
is a distance function on Z if:

l f(z) + f(Y) 2 I~YL for =Y zc,y E 2%

l f(s) + 1~~1 >_ f(y), for any straight segment zy C Z,

where layI denotes the Euclidean distance between m and y,

Thus, a distance function has to satisfy two types of
triangle inequalities. Since these inequalities are ontiofied
by the Euclidean distance from any fixed point, a distance
function can be regarded as a certain generalization of the
Euclidean distance.

Example 2.1 Figure I ihstrates some geometric rcstric-
tion imposed on a univariate distance function.

Example 2.2 (i) Let P be a polyhedral surface in IR’, and
let s be a source point on P. For any t E P, let d?,*(t)
denote the length of a shortest path between s and t on P.
It is easy to verify that d,,,(t) is a distance junction on P.

e
ob3tAeiYR

a collection of pairwise-disjoint polyhedral
and let s

oEo int 0. Lel FP(O, 3)
be a point in FP(O) = El3 \

U d enote the connected component
of FP(O) that containa s (i.e., the set of all the points in R3
that can be connected to s by a path that avoids the interiors
of the obstacles of 0).

For any t E FP(O, s), we denote by &,#(t) the length of
a shortest path between s and t, that avoids the interior of
the obstacles of 0. Clearly, dqs is a distance function on
FP(O, 5).

354

a
v -f (4 x’/

Figure 1: The graph of the distance function f must lie in-
aide the gray area. This implies that the function g(z’) =
f(a) + Ima’1 approximate5 f(z’) “well” in a small neighbor-
hood of m, and for sufficiently large values oft’.

Definition A pair S = (S,w) is a weighted set of points
if S = bl,. , . ,pm} is a finite set of points in lFld, and WI(-)
ia a function aosigning non-negative weights to the points
of S. We define the distance of a point p from the point
PI to be V(p4,w(pi j(p)
mini% vip~lw(po) 1 1.

= IPpil -I- w(n). We define vS@) =
The function V,(p) induces a natural

aubdiviaion VC of lFLd into cells, known as the (additive)
weighted Voronoi diagram of S, such that the Gth cell is the
lOcU0 of all points closeat to pi in thi5 distance function. A5
ia well Imown, in the planar ca5e, YS ha5 complexity O(m),
and it can be computed in O(mlogm) time (see [lo]).

Remark 2.3 For d > 3, the complexity of an additive
vrci hted Voronoi aagram of m points in lRd is
0 ,Lcw ,

e >
Thi5 follows by reducing the computation of

the d&ram to the computation of a convex hull in d + 2
dimenoiono. Furthermore, one can compute the diagram in
~(rrd~l~J+‘) time. See ~21.

We next ohovr how to approximate a distance function
f(o) by a weighted Voronoi diagram. First, we compute a
global minimum p5 off. A5 illustrated in Figure 1, the func-
tion I&,t(PO)) (p) approximate5 f(p) %Jl” for p sufkiently
clone to, or wfficiently far from ~5. In other words, f is well-
approximated in these regions by the weighted Voronoi dia-
gram of the single oite po with weight f(po). By adding extra
aiteo to the diagram, we can make the distance induced by
the reoulting diagram an e-approximation to f everywhere,
ao will be ohovrn next.

Definition Given a point p E IRd, and P 2 0, let B@,r)
¬e the closed ball of radius P centered at p, and let
B(@,F) denote the set lRd\B(p,r). For r’ > r, let, A@,r,r’)
denote the onnulu~ (or shell) B(p,r’) \ B(p, r).

The following sequence of technical lemmas provide the
bnoio for approximating a given distance function by a
weighted Voronoi diagram. The following lemmas are stated
for nrbitrary &menGon d. We will apply them with d = 1,2,
or 3.

Lemma 2.4 Let Z be B convex subset of lRd, f Q di&nce
function defined over Z, and S = (S, w) a weighted set, such
that S E Z and f(z) 5 w(z), for all z E S. Then f(t) 5
Vs(t), for all t E 2.

Proof: Let t be any point of Z, and let z denote the
point of S realizing V.s(t). Then V.(t) = w(z) + Itzl >
f(x) + It4 2 m. H

Formalizing the intuition behind Figure 1, we have the
following:

Lemma 2.5 Let Z be o convex subset of IRd, f Q distance
function defined over Z, 0 < E 5 1 (I pcaremeter, p a point in
1, and zo a real number such that f(p) 5 ‘uf 5 (19 e/S)f (p).
Then f(t) 5 Q,+,)(t) 2 (l+e)f(t), for aZ2 t in

Proof: The first inequality f(t) 5 V,,,)(t) follows im-
mediatelv Corn Lemma 2.4.

As for the other inequality, for t E Z I-I B (p, y) , we

have

(1;,8) - ?- 5 f(P) - WI I f(t) I v,,w, (4

= w+lptl<w+y.

However,

to + &w/8 l+e/8 < l+c/S
*--w/S = Q-&-E/~- l-e/S-e/8

1+.5/S -<l+e,
= l-&E/4 -

since E 2 1. Thus V@,,)(t) 5 (1+ e)f(t), for all t E Xfl
B@, 4~)/8).

For t E Z tl z(p, 6f@)/e), we have

IPtl - w 5 lPtl - f @I 5 f(t) 5 v,,u!,(t) = WI+ w*
However,

IPd + w
Id--1D

= 1+ b;z w 5 1+3w;ew- w I 1++$ = 1-h

she lPtl 2 6f@)/e 2 3wI~. Thus Vi,,)(t) I (1 -i- e)f (t),
for any such t. q

Lemma 2.6 Let T. be a convez subset of lRd, f B distonce
function defined ouer Z, 0 < E 5 1 a parameter, and p a
point in Z. Then for any t E XI-I B@,ef(p)/9) and any
number wt such that f(t) 5 wt 5 (1 + e/S)f(t), we hove
fb) 5 v,:,~&‘) 5 (I+ e)f @).

Proof: Since jptl 5 cf(p)/S, it follows that f(t) 2 f@) -
IPtkh&p) (1 - e/9)*

I

implying that p E B(t, ef(t)/S). By Lemma 2.5, me have
f@) I v,t,w, @I I (1+ 4fM 6

385

The preceding lemmas suggest the following strategy for
construct.ing an approximation of a distance function f over
(a conves port,ion of) IRd: Pick a point p, such that f(p)
is close to the global minimum of f. The Voronoi diagram
Y(p,w) approximates f “well” near p and outside a larger
ball centered at p, where ‘UI is an approximation of f(p). We
approximate f in the space between those two balls by

partitioning it into concentric spherical shells whose radii
form an increasing geometric progression, and by covering
each shell by a uniform grid (whose unit length increases
with bhe radius of the shell). In this manner, the number
of points needed is only a fimction of E (the approximation
factor) and d.

When approsimating a distance function on a convex
subset Z of IRd, we have to cope with the possibility that
sites might be placed outside Z. We overcome this by pro-
jecting all such sites onto the boundary of Z.

Definition Let Z be a convex subset in IFl’, and let a:
be a point in ntd. Let Y(z,~) denote the projection of x
onto Z; that is, Y(x,Z) is the closest point (m the Euclidean
distance) in Z to x. Clearly, if x E Z then ~(e,z) = m.

When m is fixed, we call v(x,z) the hook point of 1.

Definition Let r 2 P’ > 0 be real numbers, let p be a
point in Rd, and let Z be a convex set in Rd. We denote by
S(p, Z, P, r’) the set 51 n B(p, r) I-I ((r’/&)Z”), where Zd
is the integer lattice, and X$ = Uq&3(q, r’) is the set of all
point in Rd that are at distance at most r’ from some point
of Z. Clearly, IS(p,Z,r,r’)l = O((r/r’)d) (with a constant
of proportionality depending on d).

The following technical lemma shows how to pick the
sites of the additive weighted Voronoi diagram, so that it
c-approximates a given distance function.

Lemma 2.7 Let Z be a convex subset of lRd, f : Z + El
a distance function, 0 < c 5 1 a parameter, c a positive
constant, and p a point in Z such that f(t) > f (p)/c, jar
all t E Z. Then one can compute a set S-&z Z of size
00’4”1os(1/4) Oh e constant of proportionality depends
on c), such that p E S, and for any weight function w on
S satisfying f(x) 5 ‘UI(X) < (1 + e/S)f(x), for all x E S,
me have f(t) 5 Vs(t) < (1 + e)f(t), for all t E Z, where
s = (S, w).

Proof: Let u+, be any number satisfying f(p) 5 za, <
(1 +,;I”!f(p).

i = (2’ + 1)~~~ for i = l,..., m, where m =
py;(f3/;)1. Let AI = B(p,rl), 15 A = *A(P,ri--l,ri),

,...,m, and let A,+1
l&g&l*;).

= B(p,r,). Clearly, Z =

Let ri
2

= e~~+/(lSc), and let r: = e2i-1yp/9, for i =
,...,m.

Let s = ;; $=;w”h~~~~$xf i ~&j-j-;;;

i=l , . . . ,m. See Figure 2 for an ilhxtration of the set 5’.
Let IO be any weight function, such that f(x) 5 w(x) 5

(l-l- c/S)f(x), for any z E S, and let S = (S,‘u)).
We claim that S is the required weighted set. Indeed,

let t E Z. If t E &+I then]ptJ 2 (2m + 1)~~ 2 Sf(p)/e.
Thus t E B(p, Sf (p)/e) and by Lemmas 2.4 and 2.5, we have
f(t) 5 Wt) 5 ~&wP) 0) 5 (1+ e)f (t).

If t E B(p,r,), let A; be the shell containing t. Let o’
be the closest point to t in $. Let m = ~(x’,z). By the
d&&ion of u and Si and by the convexity of Z, we hzve
ltx[< [tx’l 5 r: (see Figure 3).

Figure 2: Illustrating the proof of Lemma 2.7. We pick our
sites to be on a uniform gx-id inside each concentric ohell
around p.

Figure 3: lstl 2 lhtl for h = v(s,Z)

If i = 1 then the inequality f(t) 1 f (p)/c 2 wp/2c im-
plies that Itxl 5 r: = e~+/(lSc) 5 cf(t)/9. Thus a E
w, ef (t)P).

If i > 1 then we also have Itxl 5. r: = ~2’%.+,/9 5
&f(t)l9, eke f(t) 2 lptl - f(p) 2 (2*-’ + l)ub - f(p) 2
2i-‘wp. Thus x E B(t,ef(t)/g).

By Lemma 2.6 and Lemma 2.4, we have f(t) 4 ITS(t) 4
v,W,~,, (t) I (1+ e)f (t).

As for the size of S, we have

ISI = O (g (;fd)

= ‘q(.w:;8c))d+g (!gyi,“)
= 0 J-@log~ . (1 &

To approximate a distance function f(e) using the co:
structive proof of Lemma 2.7, we need to find a point VJhich

is, within a constant factor, a global minimum off over the
given range. The following lemma shows that this can be
easily done if f has a known zero point outside the Given
range.

Lemma 2.8 LetZ’ be a subset of Rd, f : Z’ -+ IR a distance
bnction, 0 < E 5 1 a parameter, Z a convex subset of Z’,

3S6

and a a point in 2’ \ Z such that f (s = 0. Then f(t) 2
f(h)/Z, for all t E X, where h = v(a,Z 1 .

Proof: Let e be any point in 2. Since h is the closest point
in X to s and X is convex, it easily follows that lstlz lhtl, see
Figure 3. Since f(t) = f(t)+f(e) > Irrtl,wehave f(t) > Ihtl.
Moreover, the segment ht is a con%ned iu X, implying that
f(h) ‘5 f(t) -t IW 5 2f (t). n

I&mark 2.0 The lemma also holds when s E X, but then
it only yields the trivial bound f(t) > 0 for all t E X. Then,
of course, n is the required global &mum.

Remark 2.10 Let 2’ be a set in Et’, let X be a convex
oubaet of X’, f : X’ -+ R a distance function, 0 < E 2
1 a parameter, and s a point of X’ such that f(s) = 0.
Computing a weighted set S = (S, w) such that the weighted
Voronoi diagram induced on X approximates f up to a factor
of (1 + e), can be accomplished by following the proof of
Lemma 2.7, in four 5tages:

(i) Compute the point p = v(s,X). By Lemma 2.8, p is
~~alrnoet~~ a minimum off on X.

(ii) Compute an (a/8)-approximation w, to f(p) (as pre-
scribed in the lemma).

(iii) Co$ruct the set S of points in X, as prescribed in the

(iv) Rpprdximate the distance function values of all the
points of S, up to a factor of 1 + e/8, and use these
values as the weights for the points of S.

Remark 2.11 The set of points S produced in the proof of
Lemma 2.7 is made out of O(log(l/e)) subsets (i.e., Sl, . . . ,
Sm) such that f(n) C cf (t), for all z, t E S;, for 15 i 5 nz,
where c ia an appro$ate constant. This property enables
us, in the case of shortest paths on a convex polytope, to ap-
proximate the value of the distance function to all the points
of & simultaneously, yielding a more efficient algorithm. See
Remark 3.2 for the details.

Romork 2.12 Let X’ be a subset of Rd, and let f,g be two
diotance functions defined over X’. It is easy to verify that
h(m) = max(f (4, s(a)) is also a distance function. This
implies that the distance function induced by any furthest
neighbor Voronoi diagram of a finite set of points in IF@, is
a distance function in IRd. Hence, by Lemma 2.7, we have:

Corollary 2.13 Any furthest neighbor Vo~onoi diagram of
pointa in lRd, can be e-approximated by a (nearest neighbor)
weighted Voronoi diagram, having O((l/cd) log (l/c)) sites.

The following is a strengthening of Lemma 2.7, by notic-
ing that in the cases we are going to apply it to, our dis-
tance function is the length of a shortest path from a fixed
source point to the given point of X. In such cases, if the
~ourcc point liee outside X, then a shortest path connecting
any point in X to our source point, must first pass through
the boundary BX. We next show that if we are able to E-
approximate the distance on the boundary of X, then we
can trivially e-approximate the distance function to all the
points of X.

Definition Let X be a convex polytope iu lRd. We call a
function f : X -+ lR bounda&nducedon X, if f is a distance

function, and for any t E 2, there exists a point x E bX such
that f(t) = f(z) + pzl.

Definition Given a convex polytope X in lRd, we denote
by 4(X) the set of all the facets ((d - I)-faces) of 2.

Lemma 2.14 Let Z be a convex polytope in Et”, f : Z 3
R a boundary-induced distance function, and 0 < E 5 1 a
parameter. For any facet F of T., Zet S(F) = (.SF,ZIIF) be
a weighted set of points in F, such that f(t) 5 V+)(e) 5
(l+c)f(t), for a22 t E F. Then f(t) 5 Vs(t) 5 (l+c)f(t),
for all t E 2, where S = (Z&w) = UF,=Q)S(F).

Proof: For any t E X, let x be the point in 8X satisfying
f(t) = f(x) + Id, and let F be a facet of X that contains
I. By Lemma 2.4, we have

f (4 + 14 = f(t) 5 Wt) I E(x) + IH
5 %(F)(x)+bl 5 (1-k e)f@)+ kxl

I (1+ e)(f (4 + 14) = (1-b e)f (4.

q

Remark 2.15 Let X’ be a set in IRd, let X be a convex
subset of X’, f : X’ + IR a boundary-induced distance func-
tion, 0 < E s 1 a parameter, and a a point of 2’ such that
f(e) = 0. Computing a weighted set S = (S,w) such that
the weighted Voronoi diagram induced on X approximates
f up to a factor of (1 + E), can be done by applying the
algorithm described in Remark 2.10 for each facet of X. By
Lemma 2.14, the union of all these weighted sets has the
required properties.

3 Approximate Shortest-Path Map on a Polyhedral
Surface in EL3

Let ‘P be a given polyhedral surface in R3 with n edges, let s
be a source point on P, and let 0 < e < 1 be a given parame-
ter. In this section, we give au algorithm for construc!ting an
approximation map on P of complexity O((n/e)log(l/c)),
such that given any t E P, one can compute in O(log(n/e))
time a distance Ap(s, t) satisfying &(a, t) 5 A~(s,t) s
(1 t-+-h+,&

Although the following description is rather technical,
one has to bear in mind that it is a straightforward imple-
mentation of the technique of Section 2. Namely, for each
edge of our domain (polyhedral terrain, or a convex poly-
tope) we compute a “5malP set of points, me approximate
the (geodesic) distance from the source point to all those
points, and me construct the weighted additive Voronoi di-
agram that those points induce on each face of the domain.

Definition A polyhedd surface 7’ in R3 is the union of
a collection of planar polygonal faces, with their edges and
vertices, such that each edge is incident to at most two faces
and any pair of faces intersect either at a common edge, a
common vertex, or not at all. A face is a simple closed poly-
gon (i.e., it contains its boundary), and an edge is a closed
segment (i.e., it contains its endpoints). Without loss of
generality me assume that all the faces are triangular (since
simple polygons may be triangulated in linear time [4] and
the number of new edges introduced by the triangulation is
linear in the number of vertices). We aIso assume that ? is
connected.

387

A polyhedral terrain is a polyhedral surface that inter-
sects every vertical line in at most a single point.

Definition Given a polyhedral surface ‘P in lRs, and any
two points s, t on P, me denote by dp,.(t) the length of a
shortest path between s and t on ?.

As noted in Example 2.2 (i), dp,.(*) is a distance fimction
on P, Moreover, if F is a face of P and s $ F then do,,
is boundary induced on F. (If s E F then d,,,(t) is t.he
Euclidcan distance Istl)

The following theorem is the main result of this section.

Theorem 3.1 Let P be a polyhedral surface in IFL’ with n
edges, 3 a source point on P, and 0 < E 5 1 a real param-
eter. Then there exists a subdivision II of P of complexity
O((n/c) log (l/e)), which f izc~ a a ‘1-t t es e-approximate shortest
path queries from s on Pp. That is, for any query point t
on p, one can compute, in O(log(n/a)) time, a distance
b+% t) , such that dp,.(t) 5 &(s, t] _< (1 -I- +P&).

The map can be computed in O(n log n + (n/c) log (I/E)
log (n/c)) time, if ? is an arbitrary polyhedral surface, and
in O((n/e3) log(l/s) $ (n/clS6) log (l/c) log n) time, if P is
a conucx polytope.

The space used by the algorithm is O((n/&) log (l/e)), if
F is cithcr 4 convex polytope or 4 polyhedral terrain, tind

O(n” + (n/c)log (l/c)) othewrise.

Proof: For each face F of P that does not contain s, we
construct a weighted Voronoi diagram that approximates
dp,. on F. By Remark 2.15, this can be done by construct-
ing a weighted Voronoi diagram on each edge of P, as out-
lined in Remark 2.10.

For the general case, we compute the exact shortest-path
map of 3 on P, using the algorithm of [16], in
O(n2 logn) time. The exact map enables us to compute the
shortest distance from 3 to any point of P in O(logn) time.
Thus, computing the distances from s to the n hooks of t.he
edges of P takes additional O(nlogn) time. The hook point
of an edge is the closest point of the edge to s, and it can
be computed in O(1) time.

For the convex case, we approximate the distances on ?
to all t,he hooks on t.he edges of P, up to a factor of (1+&/s).
This takes O(n/c3 +(n/&‘) log n) time, using the algorithm
of [l, Sec. 61.

For each edge e of ?, we compute a set Se of O((l/c)
log (l/e)) points one, as specXed in the proof of Lemma 2.7,
taking t,he corresponding p to be the hook of e and wP to be
the approximated (exact in the non-convex case) distance
along P from s to p. Let S = U,S,, taken over all edges e
of P.

We now compute (or approximate) the distances from s
to all the points in S. For the non-convex case, this can be
done in O((n/c) log (I/E) log n) time, using the exact short-
est pat,h map.

For the convex case, we compute appro.ximate distances
from s to all points of S, up to a factor of (1 + e/8). Us-
ing the observat,ion of Remark 2.11, we partition S into
O(nlog(l/c)) sets, each of size 0(1/e), such that the re-
quired distances to the points in each such set are within a
tied constant factor of each other (namely, for each edge c of
P, the set S, is decomposed into O(log(l/c)) sets, as in the
proof of Lemma 2.7). Using the algorithm described in Re-
mark 3.2 below, we can compute the distances from s to all
&;,oints of S in O((n/e’) log (l/e)+(n/e’“) log (l/c) log n)

Next, we compute, for each face P of ‘P, the weighted
Voronoi diagram induced by the weighted points of S that
lie on BF. This takes O((n/e)log’ (l/e)) overall time (see
[lo]), since each face contains O((l/c) log (l/c)) points of S.
Let II be the resulting map, consisting of the union of all
those facial Voronoi diagrams.

By Lemma 2.7 and Lemma 2.14, the map II on ?J has the
required properties. Moreover, we can preprocess each face
F of ‘P in O((l/e)log’ (l/c)) time, such that point location
queries on F can be answered in O(log (l/e)) time (see [18]).
Overall, this preprocessing takes O((n/e) loga (l/c)) time.

To answer a approximate shortest path query for a query
point q, the algorithm must locate the face of 7 contnining
q. If ‘P is a polyhedral terrain, we project the terrain into
the zy-plane and preprocess it, in O(nlogn) time, for pla-
nar point location. If ? is a convex polytope, it can be
preprocessed in linear time to answer point location queries
in O(logn) time (see [9]). Otherwise, we preproceno ‘P for
spatial point-location in O(n2 log n) time, and O(n’) npnce,
with O(logn) query time, using the algorithm of [23].

Given any query point q on ‘P, the algorithm computeo
the face F of ‘P that contains q in O(logn) time. Locating
the face of the subdivision II that contains q takes an nddi-
tional O(log(l/c)) t’ Ime. Thus, c-approximate ahorteot path
queries for P can be answered in O(1og (n/c)) time. (If the
face containing q is already known, the query time reducen
to O(log (l/E)).) n

Definition Let P be a convex body in ll?. An outer path
of P is a curve 7 connecting two points on BP and dinjoint
from the interior of P.

Remark 3.2 Let P be a convex polytope in lR3, o a uource
point on P, T a set of points on P, and 0 < E s 1 n pre-
scribed parameter. One can c-approximate the length of
the shortest path from s to all the points of T on P, in

o((n+lTI)/~3-t-((n+lTI)/~“6)log (n f ITI)) time, by adding
the points of T as vertices to P and by using the algorithm
of [1, Sec. 61.

The algorithm of [1] works by computing au approsimn-
tion polytope for each point of T, and by computing the
exact distance from s to the point on this polytope.

Moreover, suppose that T can be partitioned into m seta
l-1 ,..., Tm, k&that dp,.(t) 5 C-&,,(t’), for all t,t’ ET;
andforeachi=l...., rn, where c is a mescribed com0xnt.
and all the points’of k delong to the ‘3ame edge of 19, foi
any fixed i = l,..., m. Then it is possible to speed up the
above algorithm, as follows. Instead of constructing an op-
proximation polytope for each destination point separately,
we construct an approximation polytope that can be used to
approximate the distances from s to all the points of Ti, for
i = 1 , . . . , m. This is done by ensuring that all the pointo
of Ti lie on the boundary of the approsimation polytope
calculated by the algorithm, which can be enforced by in-
tersecting it with a supporting plane of P passing through
the edge containing the points of Ti (adding at moot one
new face to the approximation polytope). WC also need to
use a more refined approximation polytope, so as to achieve
the claimed error bound, but since c is a constant this does
not change the asymptotic compkxity of the algorithm. See
[l] for the technical details.

This improves the running time to

0 n+$+$logn+s
(J

,

3ss

by constructing an approximation polytope for the points
of Tt (in 0(fi log n) time), computing the exact distance
map from the source point on the approximation polytope
(in O(l,/e’) time), and extracting the shortest path to each
point of T{, repeating all this, for Tl,. . . ,Tm. Moreover, for
each point t E !Z’J, the algorithm computes a polygonal outer
path of P, made out of 0(1/e’&) segments, that realizes the
npproximnted distance.

Romnrk 3.3 The algorithm of [16] works for arbitrary poly-
hedral surfaces; in particular, it is not restricted to polyhe-
dral terrains. Thus, the algorithm of Theorem 3.1 also works
for general polyhedral surfaces.

Ibmnrk 3.4 For a convex polytope P with n edges in lR3,
one can compute an approximation map that can be used
to compute an outer path that realizes the approximate dis-
tance, This itl done by modifying the algorithm of Theorem
3.1, such thot it stores an outer path from the source point
to each of the constructed sites, where the outer path real-
izes ito e-approximate distance. Such a path is readily avail-
able from the procedure used to compute the approximate
distance to the site, and the complexity of such a path is
0(1/e’*“) (gee [l]). Th e s ace needed to store the extended p
approximation map is O(t~/e’*~ log (l/e)), and the compu-
tation time remains O((n/e’) log(l/e) + (n/e1*6)log (l/e)
log fb),

The new map can be used to answer approximate short-
cot path queries, in O(lOg(n/e)) time, and also compute,
in additional O(l/.@) time, an outer path of the convex
polytope realizing this distance. Such an outer path can be
projected onto the boundary of the convex polytope, in ad-
ditional 0 (nlog (l/e) + l/es) time, resulting in a path on
BP which is an e-approximation to the shortest path, see
[l], Note however that the performance of the enhanced
data structure is poorer both in terms of storage and query
time.

4 Constructing Spatial Approximate Shortest-Path Maps
In ma

Let 0 be a collection of pairwise-disjoint polyhedral obsta-
cles in @, o a source point in lRs \ intU0, and 0 < e 5 1
a porameter. In this section, we present an algorithm for
preproceaoing 0 such that for any point in lRa (or, more
precisely, for any ‘free’ point that can be reached corn 8
without penetrating into an obstacle) one can compute, in
0(10&~/e)) time, a distance Ao,,(t) satisfying de+(t) 2
Act+ 5 (1 + e)&,,(t), where d+(t) is the length of a
shortest path between s and t that avoids the interiors of
the obotacleo.

The preprocessing time of the algorithm is roughly
O(n”/e’), which ahow that the problem of approximating
the distance from a single source to all the ‘free’ points in
ma, io not much harder (computationally) than approximat-
ing the distance between an$ specific pair of points (17hich
con be done in roughly O(n /e”) time, see [7]). In fact, for
a tied uource point and many destination points, our algo-
rithm will actually be faster. The problem of computing the
elect diotnnce between two points in lR3 among polyhedral
obotacleo is NP-hard, as shown by Canny apd Reif [3], and
the fastest available algorithms for this problem run in time
that is exponential in the total number of obstacle vertices
[20, 21, 223.

Definition Let 0 be a collection of pair&e-disjoint poly-
hedrol obstacles with a total of n edges in R’, and s a source

point in FP(O) = EL3 \ intljoEo 0. Let FP(O,a) denote
the set of all points in FP(0) that can be connected to a
by a path that avoids the interiors of the obstacles of 6.

For any t E FP(O,s), we denote, as above, by d,,,(t)
the length of a shortest path between s and t, that avoids
the interiors of the obstacles of 6.

As noted in Example 2.2 (ii), cZo,,(-) is a distance func-
tion over FP(O,s), and for any convex set Z C FP(O,s)
such that 8 $ Z, the function do,.(*) is boundary induced
over 2.

Theorem 4.1 (Clarkson [7]) Given B set 6 ofpolyhedrd
obstacles in l@, and points s and t, an e-approx&nete path
between s and t that does not penetrate into any obstacle in
0 can be computed in

0
(

$(n) log 5 + na log (np) log(nlog p)
>

time, where n is the number of obstacle edges, and p is the
ratio of the length of the longest edge in 0 to the Euclidean
distance between s and t, /3(n) = a(n)“(a(~l)o(a), and ar(n)
is the inverse of the Ackermannfunction.

The following theorem is the main result of this section.

Theorem 4.2 Let 0 be a collection of pairwise-disjoinbt
polyhedd obstacles with n edges in IRS, s a source point in
FP(O), and 0 < e < 1 a parameter. Then a subdiuision M
of FP(O,s) of complezity O(n”/e’+‘), for any 1 > 6 > 0,
can be computed in

0 n4 P(n)
((2 &’

- log 5 + log (np) log(n log P)
> >

log i

time, where p, andfl(n) are as above.
For any query point t E FP(O,s), one can compute in

O(log(n/c)) time a distance A,,,(t), such that do,,(t) <
A,,&) 5 (1 +e)&,&).

Proof: Fit, we partition FP(O) into O(d) vertical
prisms. This can be easily done by erecting a vertical mall
from each edge of the obstacles. For an edge e of the obsta-
cles, such a mall is the set of all points in FP(O) that lie
on vertical rays emanating from the edge, and not intersect-
ing the obstacles. Let M”’ denote the resulting partition of
FP~O). It is easy to verify that the complexity of M”’ is
O(n), and that it can be computed in O(na log n) time.

We refine Ml”, by further partitioning each cell OF M”’
into vertical triangular prisms. This is done by projecting
each cell of M”’ into the zy-plane, and by triangulating
the resulting polygon, in O(mlogm) time (see [IS]), where
m is the number of vertices of the polygon. For each new
edge created, we erect a corresponding vertical wall inside
the cell. Let M” be the resulting subdivision of FP(0).
Clearly, the complexity of M” remains O(n’), and it can be
computed in additional O(n’ log n) time.

Let T, be the vertical prism in M” that contains a. We
construct an adjacency graph G on the vertical prisms of
M”. By computing the connected component of G that con-
tains T,, one obtains the subdivision M’ = M”n FP(O, a).

Each cell Z of M’ is a vertical prism, having at most
5 faces. We can approximate the distance function do,,(t)
inside Z by computing a weighted set ST = (S~,wx), as
specified in the proofs oFLemma 2.7 and Lemma 2.14. To do
so, it is necessary to (r/S)-approximate the value of do,,(-)

389

for O((l/s”) log (l/c)) points (i.e., the points of Sz). By
Theorem 4.1, t.his takes

time. The weighted Voronoi diagram VS, induced by Sz
inside Z approximates do,, inside Z up to a factor of 1 + E.

Let S = !J~~&z. Clearly, one can (e/S)-approximate
the distance between s and all the sites of S in

0
time.

Let M be the subdivision UZEM, (Y.sz I-I 2). We prepro-
cess M for spatial point location, by constructing a two-level
spatial point location data structure. First, we preprocess
M’ for point location in O(n” log n) time, using the algo-
rithm of [23]. Next, we preprocess each cell Z of M’ for
nearest neighbor queries for the weighted set Sz. By Lemma
4.3 below, performing this preprocessing for all the cells of
M’ takes a total of 0 (n2/e4+) randomized expected time
and space, for any 6 > 0.

For any query point t E FP(O,s), we can compute in
O(log n + log (l/s)) = O(log (n/s)) time, the cell of M that
contains t; that is, in O(log(n/s)) time, one can compute
a distance b,,(t), such that do,.(t) 5 a,,,(t) 5 (1 +
c)ao,&). n

To complete the description and analysis of the algo-
rithm, we next show how to preprocess a weighted set in IRS
so t.hat one can perform efficient nearest neighbor queries in
t.he additive weighted Voronoi diagram that it induces.

Definition Let S = (S,ut) be a weighted set in lFt3. We
decompose the weighted Voronoi diagram VS into “simpler”
cells in t,he following way: For each cell C in Vs, we compute
the spherical map Sc of the cell, by projecting the bound-
ary of the cell onto the sphere of directions centered at pc,
where pc is the site of C in S. (We use here the well-known
property t,hat G is star-shaped with respect to PC.) We de-
compose Sc into pseudo-vertical subcells on the sphere of
&re&ons, by drawing a meridian arc upwards and dorm-
wards from each vertex Sc, and from each locally longitude-
esbremal point on any arc of Sc, and by extending each of
these meridian arcs until it hits another arc of Sc or, fail-
ing bhis, all the way to the poles of the sphere of directions.
Clearly, t,he complexity of SC is linear in the complexity of
the cell C.

We project each “vertical” trapezoid in Sc back into C,
to obtain the portion within C of the cone with apex pc
spanned by the trapezoid. This defines a decomposition
of C into simple subcells, such that each subcell is uniquely
defined by at most 6 points of S. We decompose all the cells
of Ys in a similar manner, and let C(S) denote the resulting
subdivision. We calI C(S) the sphetical decompositionof Vs.

For a weighted set a C S and a subcell 7 E C(a), a
weighted point (p,z~~) E S confiicts with 7 if there exists
a point. t E 7, such that l&,,,+)(t) < V-(t). Let K(S,7)
denote bhe set of all the points of S that conflict with 7.
The conjlict size of 7 is m(S,7) = IK(S,7)[.

Lemma 4.3 Let S = (S, w) be a weighted set of m points
in lR3, and S > 0 be a parameter. One can compute, in
o(m2t6) randomized expected time, a data structure for
nearest-neighbor queries, of size O(WZ~~~), such that for 0ny

point p E IRS, one c0n compute, in O(log m) time, the cell
of VS that contains p; that is, the point in S realizing the
didcame V,(p).

Proof: We construct the data-structure using a random-
ized divide and conquer algorithm. We randomly pick a
subset R of S of size r, where P is a parameter to be speci-
fied later. One can compute the weighted Voronoi diagram
of ‘R = (R,w), in O(ra) time, by Remark 2.3, and construct
the spherical decomposition C(a) in O(r’logr) additional
time, using plane sweeping techniques on the sphere of di-
rections (see [lS]).

For each subcell 7 in C(R), we compute its conflict size
zu(S,7). Each subcell in C(Z) is uniquely defined by at
most 6 sites in 7?., and if K(S,7) n 7Z # 0 then 7 $! C(R).
We can thus apply the analysis of Clarkson and Shor. By
[S, Corollary 3.81, w(S, 7) 5 c- (nlogr)/r, for alI 7 E C(R),
with probability at least l/2, where c > 0 is an appropriate
constant. We sample 7L from S repeatedly until we get a
sample that fuKlls this condition. Overall, this stage takeo
O(mr2 + r2 log r) expected running time. For each cell 7 E
C(a), we construct recursively a data-structure for point-
location in the Voronoi diagram VK(S,~.

For any query point p, locating the subcell 7 in C(?L)
that contains p is done by a brute force search inside C(a),
in O(ra) time. Then, we compute the point realizing I%(p)
by recursively performing a nearest neighbor query in the
data-structure computed for YK(s,~. Thus, a query takeo
Q(m) = Q(c(mlogr)/r) + O(ra) time, and the data-
structure can be computed, in randomized expected time

T(m) = T(r) + O(?)T
()

* + 0 (mra f ra logr) .

Choosing r to be a suiliciently large constant, we have Q(m)
= O(logm), and T(m) = O(matb) (where the constants of
proportionality depend on 6). A similar bound holds for the
space required by the algorithm. n

Remark 4.4 The only stage in the algorithm of Theorem
4.2 that uses randomization is the construction of the spatial
point-location data described in Lemma 4.3. This can be
replaced by a deternum . *stic data-structure as follows.

We observe that each spherical cell, in the decomposition
described above, can be parameterized by 24 parametero (6
sites and their respective weights). Thus, we define a range
space (S,?X), where ?X is the set of all possible subsets of S
that are contained inside such a spherical cell. It is easy to
verify that this is a range space having finite VC-dimension.
By a result of MatouSek [15], we can compute, in O(nar’(‘))
time, a subset 7Z of S having O(r logr) points, which io
(l/r)-net of (S, %). In particular, the set 7L can replocc the
random sample in the proof of Lemma 4.3, see [lb]. This
yields a deternum ’ ‘stic algorithm with the same time/opnce
complexity as in Lemma 4.3.

Alternatively, one can naively preprocess the Voronoi di-
agram YS for spatial point-location directly, see [23]. How-
ever, this approach is considerably less efficient than the
approach proposed above.

5 Conclusions

In this paper we have presented two results for computing
approximate maps that facilitate shortest paths queries on
the surface of a convex polytope or on a polyhedral surface
in 3+pace, or among polyhedral obstacles in 3-space. WC
conclude by mentioning the following open probleme.

390

Uan an e-approximate shortest path between two
points on a polyhedral terrain, or on the surface of
a nonconvex polyhedron, be computed in time that
is near-linear in the number of edges? A recent sub-
quadratic solution has been obtained by Varadarajan
and Agarwal [24], but it only computes a constant-
factor approximation to the shortest path.

Con the exact shortest path between two points on a
convex polyhedron be computed in near-linear time?
in subquadratic time?

Can the methods and techniques used in this paper be
extended to handle shortest path queries for weighted
surfaces (as in [13, 14])?

Acknowledgments

The author wishes to thank Pankaj Agarwal and Micha
Sharir for helpful discussions concerning the problems stud-
ied jn this paper and related problems. Micha Sharir has
nloo suggested Lemma 4.3. The author also wishes to thank
the referees for their comments and suggestions.

Reference5

AQARWAL, P., BAR-PELED, S., SHARIR, M., AND
VARADARAJAN, K. R. Approximate shortest paths on
a convex polytope in three dimensions. J. Assoc. Com-
put. Mach. & (1997), 667-584.
AURENHAMMER, F. Voronoi diagrams: A survey of a
fundnmental geometric data structure. ACM Comput.
Surv, 29 (1991), 345-405.
CAlJNY, J., AND REIF, J. H. New lower bound tech-
niques for robot motion planning problems. In Proc.
28th Annu. IEEE Sympos. Found. Comput. Sci. (1987),
pp, 49-60.
&IAZELLE, B. Triangulating a simple polygon in linear
time, Discrete Comput. Geom. 6 (1991), 485-524.
GIEN, J., AND HAN, Y. Shortest paths on a polyhe-
dron; Part I: computing shortest paths. Int. J. Comput.
Geom, El Appl. 6, 2 (1996), 127-144.
Ckor, J., SELLEN, J., AND YAP, C. K. Approximate
Euclideon shortest path in 3-space. In Proc. 16th Annu.
ACM Sympos. Oomput. Geom. (1994), pp. 41-48.
OLARKSON, K. L. Approximation algorithms for short-
cot path motion planning. In Proc. 19th Annu. ACM
§ympos, Theory Comput. (1987), pp. 56-65.
CLARKSON, K. L., AND SHOR, P. W. Applications of
random sampling in computational geometry, II. Dis-
crete Comput. Geom. 4 (1989), 387-421.
DOBKIN, D.P., AND KIRKPATRICK,D.G.A~~~~EZ&
gorithm for determining the separation of convex poly-
hedra. J. Algorithms 6 (1985), 381-392.
FORTUIIE, S. J. A sweepline algorithm for Voronoi
diagrams, Algorithmica 2 (1987), 153-174.
HAR-PELED, 9. Approximate shortest paths and
Geodesic diameters on convex polytopes in three di-
mensions. In Proc. f 9th Annu. ACM Sympos. Comput.
Geom. (1997), pp. 359-365.
HERSHBBROER, J., AND SURI, 9. Practical methods for
ap

P
roximnting shortest paths on a convex polytope in

lR , In Proc. 6th ACM-SIAM Sympos. Discrete Algo-
rithms (1996), pp. 447-456.

El31

PI

[151

[I61

[I71

P81
PI

PO1

LANTHIER, M., MAHESHWARI, A., AND SACK, J.-R.
Approximating weighted shortest paths on polyhedral
surfaces. In Proc. 13th Annu. ACH Sympos. Comput.
Geom. (1997), pp. 274-283.
MATA, C., AND MITCHELL, J. A new algorithm for
computing the shortest paths in planar subdivisions.
In Proc. 13th Annu. ACM Sympos. Comput. Geom.
(1997), pp. 264-273.
MATOUSEK, J. Approximations and optimal geometric
divide-and-conquer. In Proc. 23rd Annu. ACM Sympoa.
Theory Comput. (1991), pp. 505-511. Also to appear
in J. Comput. Syst. Sci.
MITCHELL, J. S., MOUNT, D. M., AND PAPADIW
ITIUOU, C. H. The discrete geodesic problem. SIAN
J. Comput. 16 (1987), 647-668.
MOUNT, D. M. Storing the subdivision of a polyhedral
surface. Discrete Comput. Geom. 2 (1987), 153-174.
O’ROURKB, J. Computational Geometry in C. Cam-
bridge University Press, Cambridge, 1994.
PAPADINITRIOU, C. H. An algorithm for shortest-path
motion in three dimensions. Inform. Process. Lett. 29
(1985), 259-263.
E&IF, J. H., AND STORER, J. A. A single-exponential
upper bound for 6nding shortest paths in three dimen-
sions. J. ACM 41,5 (1994), 1013-1019.

[21] SHAXR, M. On shortest paths amidst convex polyhe-
dra. SIAM J. Comput. 16 (1987), 561-572.

[22] SHARR, M., AND SCHORR, A. On shortest paths in
polyhedral spaces. Sinm J. Comput. 15 (1986), 193-
215.

[23] TAN, X.-H., HIRATA, T., AND INACUKI, Y. Spatial
point location and its applications. In Proc. 1st Annu.
SIGAL Internot. Sympos. Algotithms (1990), vol. 450
of Lecture Notes in Computer Science, Springer-Verlag,
pp. 241-250.

[24] VARADARAJAN, K., AND AGARWAL, P. Approximating
shortest paths on a nonconvex polyhedron. In Proc.
38th Annu. IEEE Sympos. Found. Comput. Sci. (1997),
pp. 182-191.

391

