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1 Introduction

Let G = (V,E) be an undirected graph. An independent set of G is a subset I of V
such that no two vertex in I are adjacent in G. A Mazimal Independent Set (MIS) of
G is an independent set such that adding any other vertex to it forces the set to contain
an edge between two of its vertices. A Maximum independent Set (MaxIS) is a largest
maximal independent set contained in V; see Fig. [l The problem of finding a MaxIS has
been proved to be NP-hard. Moreover, it is even hard to find an e-approximation unless
P = NP [EHO0]. However, finding a MIS is relatively easy and many (greedy) algorithms
are known to solve the problem. The idea to construct an MIS I is usually the following;:
Given an ordering of the vertices of G, process each vertex by adding it to I as long as
it is not adjacent to a vertex already in /. In this way, it is not hard to see that an MIS
would be produced. The output of this algorithm is known as the Lexicografical Maximal
Independent Set (LFMIS) for the given order. In fact, if the vertices are sorted by degree,
from minimum to maximum, the output of the algorithm is a ﬁ-approximation of the
MaxIS, where A is the maximum degree of a vertex in G. That is, the size of the computed
approximation MIS has at least ALH where k is the size of a MaxIS in G.

In this work we are interested in the study of the MIS and LFMIS problem using
parallel algorithms. Finding a LFMIS has been proved hard since it was shown to be a
P-complete problem [Coo85]. Therefore, it is very unlikely that there exists an efficient
parallel algorithm to solve this problem in its general setting. Furthermore, it is even P-
complete to approximate the size of the LFMIS |[GHRO5]. However, in “average” it is not
so hard to parallelize. In other words, for the vast majority of orderings of V', there is an
efficient parallel algorithm to find the LFMIS as proved in [BES12] in 2012. This is certainly
surprising and opened the door for new research in a field that has been almost closed for
the past 20 years.

Figure 1: A Maximum Independent Set of the graph is depicted in blue.



The MIS problem is a basic problem in Graph Theory since several problems can be
reduced to it. For example, finding small proper colorings or finding maximal matchings in
a graph. A wvertex coloring of a graph G = (V, E) is an assignment of colors to the vertices
of G. A vertex coloring is proper if no two adjacent vertices are assign with the same color.
A proper coloring of GG is minimum if G cannot be properly colored with less colors. One
important remark is that every chromatic class of a proper coloring is a MIS of G. Therefore,
one way to compute a proper coloring with “few” colors is to compute a large MIS, assign
the same color to all its vertices and remove it from G afterwards. By repeating this process
recursively, we obtain an algorithm to compute a proper coloring of G. However, the quality
of the coloring depends heavily on the choice for the MIS algorithm. Therefore, having good
and fast algorithms to compute MIS translates into efficient algorithms to compute a proper
coloring of G.

Another classical problem in graph theory is the matching problem. A set of edges of a
graph G is a matching if no two edges in it share an endpoint. The problem of computing
a Maximal Matching (MM) can also be solved using an algorithm for MIS. Consider the
edge-graph G, that is the graph whose vertex set are the edges of G and where two of these
edges are adjacent if they share a common endpoint. Therefore, a MIS of the edge-graph
of G corresponds to a MM of G. While this algorithm is straightforward, it requires the
computation of the edge-graph of G, which can be expensive. Therefore, direct parallel
algorithms are of great interest. In this direction, Blelloch et al. in [BFS12] provided a
variation of their techniques to solve the MIS and applied them directly to find a MM.

Other problems such as the vertex covering and maximal clique problems are also closely
related to MIS. The consequences and applications of a good algorithm to find a MIS are
too many and just a few are mentioned in this work. This remarks, together with the fact
that finding a MaxIS is N P-hard and a LFMIS is P-complete, show that the study of this
problem is fundamental and that the consequences of any development in this field are of
great importance.

2 Literature Review

In the parallel setting, the MIS problem has been extensively studied as well. Vliant [Val82]
noted that the MIS problem, which has an easy sequential algorithm, may be one of the
problems for which no fast parallel algorithm exists. Cook [Coo85| strengthened this belief
by proving that obtaining the LEMIS for any arbitray ordering of V' is P-complete. Where
P is the class of all problems solvable in polynomial time. In other words, there is no
parallel algorithm to find the LFMIS for any given order of V unless P = NC. Therefore,
to solve the MIS problem, researches needed to look for a different approach to that present
in the sequential algorithm.

The study of the MIS problem in the parallel setting was inspired by the growing number
of parallel algorithms using the MIS algorithm as a subroutine. Karp and Wigderron [KW85]
gave NC'! reductions from the Maximum Set Packing and the Maximal Matching problems
to the MIS problem, and an NC? reduction from the 2- Satisfiability problem to the MIS
problem. Luby also showed an NC' reduction from the Maximal Coloring problem to the
MIS problem.

Karp and Wigderson [KW85] surprised the research community by developing a fast par-
allel algorithm for the MIS problem. They presented a randomized algorithm with expected
running time O(log* n) using O(n?) processors, and a deterministic algorithm with running



time O(log* n) using O(—%—) processors on a EREW PRAM. That is, they established that

log> n

the MIS problem is in N 34. Independently, Goldberg and Spencer showed a deterministic
parallel algorithm running in O(log* n) time on the EREW PRAM model [GS89]. Later
on, Luby [Lub86] and Alon et al. [ABI86], independently proved the existence of a Monte
Carlo algorithm in the EREW PRAM running in expected O(log?n) time using O(|E|)
processors. Furthermore, Alon et al. showed that in the CRCW PRAM, the MIS prob-
lem can be solved in O(logn) time using O(|E|A) processors. Both papers show a way to
derandomized the algorithms at the expense of using O(mn?) processors, obtaining in this
way efficient deterministic algorithms for the MIS problem.

A few years later, Coppersmith [CRT89] studied the problem in the setting of random
graphs. He showed that in a random graph with n vertices, the LFMIS can be found in
O(logo(l) n) expected time using linearly many processors in the CRCW PRAM model
for any given order. Recall that LFMIS is P-complete for general graphs. However, this
is not contradiction and simply shows that in the “average” case, the LEMIS problem is
highly parallelizable. Calkin and Frieze further analyzed this algorithm and proved that the
expected running time of Coppersmith’s algorithm is in fact O(logn) for random graphs
of arbitrary edge density. Nevertheless, these results were only theoretical and couldn’t be
implemented to solve real-life applications.

The greedy sequential algorithm to compute an MIS loops over the vertices according to
the given order, adding them to the resulting set only if no previous neighboring vertex has
been added. In this loop, each iterate depends only on a subset of the previous iterates. That
is, to decide the fate of a vertex we need only to know if any one of the vertex’s previous
(in the order) neighbors is in the partially computed MIS. This leads to a dependence
structure among the iterates. If this structure is shallow (has a polylogarithmic depth),
then running each of the iterates in parallel, while respecting the dependencies, leads to an
efficient parallel implementation that mimics the sequential algorithm. The depth of this
dependance structure is called the dependence length.

Using these abstraction, Blelloch et Al. [BFS12] revisited the ideas of Coppersmith and
Calkin et al., and showed that the dependence length of the sequential algorithm for the
LEFMIS problem has O(log2 n) depth with high probability, where the probability is with
respect to the random order taken from the input. That is, for almost every ordering
the dependance structure will be shallow. Furthermore, this result was followed by a new
parallel implementation providing a continuous trade-off between total work and running
time. To achieve this result, they fix an ordering of the vertices and instead of processing
all of them at once, they process only a prefix of the vertices in parallel. By reducing the
size of the prefix, the parallelism is also reduced but the redundant work is reduced. When
the prefix is of size one, the algorithm mimics the sequential algorithm with no redundant
work. Using this trade-off, they showed that by choosing and appropriate size for the prefix,
they can obtain linear work while computing the solution after a polylogarithmic number
of steps. Another interesting property of their algorithm is that even while their algorithm
is randomized, it will produce the same output whenever the same ordering of the vertices
is given as an input. This can be a desirable property for parallel algorithms as shown
in [BAAS09].

Given a graph G, the Set Cover problem asks for the smallest set of points (called a
vertex cover) such that every edge of the graph is incident to an element of the vertex cover.
The relation between Set Cover and MIS is tight since a set of vertices is a vertex cover, if
and only if its complement is an independent set. An immediate consequence is that a big



MIS produces a small vertex cover.

While a vertex cover can be found in polylogarithmic time using parallel algorithms for
MIS, its output may be arbitrarily big (bad) compared with the size of a minimum vertex
cover. Therefore, another branch of study is dedicated to compute good approximations for
graph problems using parallel algorithms for MIS and related problems.

While the Set Cover problem is NP-hard, good approximation algorithm exist in the
sequential setting as shown by Chvatal in [Chv79]. Blelloch et Al. [BPT11] studied the Set
Cover problem in the parallel setting and showed the existence of a (1+¢)H,-approximation
parallel algorithm using linear work, where H,, = > 1, % To obtain this result they use a
set of tools related to MIS’s. They introduced the concept of Maximal Nearly Independent
Set (MANIS) and presented an O(m) work and O(log? m)-time parallel algorithm for the
MANIS problem in the EREW PRAM model. The MANIS problem is to find a subset of
the power set of the vertices of G such that they are nearly independent (their elements do
not overlap too much), and maximal (no set can be added without introducing too much
overlap). The MaNIS abstraction generalize de MIS problem and allows them to use the
duality to solve several set-cover like problems.
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