The Erdős-Sós Conjecture for Geometric Graphs

Luis F. Barba * Ruy Fabila-Monroy † Dolores Lara † Jesús Leaños § Cynthia Rodríguez † Gelasio Salazar ¶ Francisco Zaragoza ‡

Abstract

Let \(f(n, k) \) be the minimum number of edges that must be removed from some complete geometric graph \(G \) on \(n \) points, so that there exists a tree on \(k \) vertices that is no longer a planar subgraph of \(G \). In this paper we show that \(\left(\frac{1}{2} \right) \frac{n^2}{k-1} - \frac{n}{2} \leq f(n, k) \leq 2 \frac{n(n-2)}{k-2} \). For the case when \(k = n \), we show that \(2 \leq f(n, n) \leq 3 \). For the case when \(k = n \) and \(G \) is a geometric graph on a set of points in convex position, we show that at least three edges must be removed.

1 Introduction

One of the most notorious problems in extremal graph theory is the Erdős-Sós Conjecture, which states that every simple graph with average degree greater than \(k - 2 \) contains every tree on \(k \) vertices as a subgraph. This conjecture was recently proved true for all sufficiently large \(k \) (unpublished work of Ajtai, Komlós, Simonovits, and Szemerédi).

In this paper we investigate a variation of this conjecture in the setting of geometric graphs. Recall that a geometric graph \(G \) consists of a set \(S \) of points in the plane (these are the vertices of \(G \)), plus a set of straight line segments, each of which joins two points in \(S \) (these are the edges of \(G \)). In particular, any set \(S \) of points in the plane in general position naturally induces a complete geometric graph. For brevity, we often refer to the edges of this graph simply as edges of \(S \). If \(S \) is in convex position then \(G \) is a convex geometric graph. A geometric graph is planar if no two of its edges cross each other. An embedding of an abstract graph \(H \) into a geometric graph \(G \) is an isomorphism from \(H \) to a planar geometric subgraph of \(G \). For \(r \geq 0 \), an \(r \)-edge is an edge of \(G \) such that in one of the two open semi-planes defined by the line containing it, there are exactly \(r \) points of \(G \).

In this paper all point sets are in general position and \(G \) is a complete geometric graph on \(n \) points. It is well known that \(G \) contains every tree on \(k \) vertices as a planar subgraph \([2]\), for every integer \(1 \leq k \leq n \).

Moreover, it is possible to embed any such tree into \(G \), when the image of a given vertex is predefined \([4]\).

Let \(T \) be a subset of edges of \(G \), which we call forbidden edges. If \(T \) is a tree for which every embedding into \(G \) uses an edge of \(T \), then we say that \(T \) forbids \(T \). In this paper we study the question of what is the minimum size of \(T \) so that there is a tree on \(k \) vertices that is forbidden by \(T \). Let \(f(n, k) \) be the minimum of this number taken over all complete geometric graphs on \(n \) points. As \(f(2, 2) = 1 \), \(f(3, 3) = 2 \), \(f(4, 4) = 2 \) and \(f(n, 2) = \binom{n}{2} \), we assume throughout the paper that \(n \geq 5 \) and \(k \geq 3 \).

We show the following bounds on \(f(n, k) \).

Theorem 1

\[
\left(\frac{1}{2} \right) \frac{n^2}{k-1} - \frac{n}{2} \leq f(n, k) \leq 2 \frac{n(n-2)}{k-2}
\]

Theorem 2

\[2 \leq f(n, n) \leq 3 \]

In the case when \(G \) is a convex complete geometric graph, we show that the minimum number of edges needed to forbid a tree on \(n \) vertices is three. Some results shown in \([3]\) are closely related to this problem.

An equivalent formulation of the problem studied in this paper is to ask how many edges must be removed from \(G \) so that it no longer contains some planar subtree on \(k \) vertices. A different but related problem is to ask how many edges must be removed from \(G \), so that it no longer contains any planar subtree on \(k \) vertices. For the case of \(k = n \), in \([5]\), it is proved that if any \(n - 2 \) edges are removed from \(G \), it still contains a planar spanning subtree. Note that if the \(n - 1 \) edges incident to any vertex of \(G \) are removed, then \(G \) no longer contains a spanning subtree. In general, for \(2 \leq k \leq n - 1 \), in \([1]\), it is proved that if any set of \(\frac{n(n-k+1)}{2} - 1 \) edges are removed from \(G \), it still contains a planar subtree on \(k \) vertices. In the same paper it is also shown that this bound is tight.

2 Spanning Trees

In this section we consider the case when \(k = n \). Let \(T \) be a tree on \(n \) vertices. Consider the following algorithm to embed \(T \) into \(G \). Choose a vertex \(v \) of \(T \); root \(T \) at \(v \). For every vertex of \(T \) choose an arbitrary
order of its children. Suppose that the neighbors of v are u_1, \ldots, u_m, and let n_1, \ldots, n_m be the number of nodes in their corresponding subtrees. Choose a convex hull point p of G and embed v into p. Sort the remaining points of G counter-clockwise by angle around p. Choose $m + 1$ rays centered at p so that the wedge between two consecutive rays is convex and between the i-th ray and the $(i+1)$-th ray there are exactly n_i points of G. Let S_i be this set of points. For each u_i choose a convex hull vertex of S_i visible from p and embed u_i into this point. Recursively embed the subtrees rooted at each u_i into S_i. Note that this algorithm provides an embedding of T into G. We will use this embedding frequently throughout the paper. See Figure 1.

For every integer $n \geq 2$ we define a tree T_n as follows: If $n = 2$, then T_n consists of only one edge; if n is odd, then T_n is constructed by subdividing once every edge of a star on $\frac{n+1}{2}$ vertices; if n is even and greater than 2, then T_n is constructed by subdividing an edge of T_{n-1}. These trees are particular cases of spider trees. See Figure 2.

We prove the lower bound of $f(n, n) \geq 2$ of Theorem 2.

Theorem 3 If G has only one forbidden edge, then any tree on n vertices can be embedded into G, without using the forbidden edge.

Proof. Let e be the forbidden edge of G. Let T be a tree on n vertices. Choose a root for T. Sort the children of each node of T, by increasing size of their corresponding subtree. Embed T into G with the embedding algorithm, choosing at all times the rightmost point as the root of the next subtree. Suppose that e is used in this embedding. Let $e := (p, q)$ so that u is embedded into p and v is embedded into q (note that u and v are vertices of T).

Suppose that the subtree rooted at v has at least two nodes. In the algorithm, we embedded this subtree rooted at v into a set of at least two points. We chose a convex hull point (q), of this set visible from p to embed v. In this case we may choose another convex hull point visible from p to embed v and continue with the algorithm. Note that (p, q) is no longer used in the final embedding.

Suppose that v is a leaf, and that v has a sibling v' whose subtree has at least two nodes. Then we may change the order of the children of u so that e is no longer used in the embedding, or if it is, then v' is embedded into q, but then we proceed as above.

Suppose that v is a leaf, and that all its siblings are leaves. The subtree rooted at u is a star. We choose a point distinct from p and q in the point set where this subtree is embedded, and embed u into this point. Afterwards we join it to the remaining points. This produces an embedding that avoids e.

Assume then, that v is a leaf and that it has no siblings. We distinguish the following cases:

1. u has no siblings. In this case, the subtree rooted at the parent of u is a path of length two. It is always possible to embed this subtree without using e. See Figure 3.

2. u has a sibling u' whose subtree is not an edge. We may change the order of the siblings of u, with respect to their parent, so that the subtree rooted at u' will be embedded into the point set containing p and q. In the initial order—increasing by size of the corresponding subtrees—u' is after u. We may assume that in the new ordering, the order of the siblings of u before it, stays the same. Therefore p is the rightmost point of the set into which the subtree rooted at u' will be embedded. Embed u' into p. Either we find an embedding not using e, or this embedding fails into one of the cases considered before.

3. u has at least one sibling, all whose corresponding subtrees are edges

Suppose that u has no grandparent; then T is equal to T_n and n is odd. Let w be the parent of u. Embed w into p. Let p_1, \ldots, p_{n-1} be the points of G different from p sorted counter-clockwise by angle around p; choose p_1 so that the angle between two consecutive points is less than π. Let $u_1, \ldots, u_{(n-1)/2}$ be the neighbors of

Figure 1: An embedding of a tree using the algorithm.

Figure 2: T_7 and T_8.
Lemma 4. Let T be a tree on n vertices. If G is a convex geometric graph, then T can be embedded into G using at most two convex hull edges of G.

\textbf{Proof.} If T is a star, then any embedding of T into G uses only two convex hull edges. If T is a path then it can be embedded into G using at most two convex hull edges. Therefore, we may assume that T is neither a star nor a path.

Since T is not a path, it has a vertex of degree at least three. Choose this vertex as the root. Since T is not a star, the root has a child whose subtree has at least two nodes. Sort the children of T so that this node is first. Embed T into G with the embedding algorithm.

Let u and v be vertices of T, so that u is the parent of v. Suppose that the subtree rooted at v has at least two nodes. Then in the embedding algorithm we have at least two choices to embed v once the ordering of the children of u has been chosen. At least one of which is such that (u, v) is not embedded into a convex hull edge. Therefore, we may assume that the embedding is such that all the convex hull edges used are incident to a leaf.

Since the first child of the root is not a leaf, there is at most one convex hull edge incident to the root in the embedding. Note that any vertex of T, other than the root, is incident to at most one convex hull edge in the embedding. If $n/2$ or more convex hull edges are used, then there are at least $n/2$ non-leaf vertices, each adjacent to a leaf. These vertices must be all the vertices in T and there are only $n/2$ such pairs (n must also be even). Therefore every non-leaf vertex has at most one child which is a leaf. In particular the root has at most one child which is a leaf. Since the root was chosen of degree at least three it has a child which is not a leaf nor the first child; we place this vertex last in the ordering of the children of the root. The leaf adjacent to the root can no longer be a convex hull edge and the embedding uses less than $n/2$ convex hull edges.

Theorem 5. If G is a convex geometric graph and has at most two forbidden edges, then any tree on n vertices can be embedded into G, without using a forbidden edge.

\textbf{Proof.} Let f_0 be an embedding given by Lemma 4, of T into G. For $0 \leq i \leq n$, let f_i be the embedding produced by rotating f_0, i places to the right. Assume that in each of these rotations at least one forbidden edge is used, as otherwise we are done. Let e_1, \ldots, e_m be the edges of T that are mapped to a forbidden edge. Some tree on n vertices. Lemma 4 can be proved easily using a previous result (Theorem 2.1 of [3]). We provide a self-contained proof for completeness.
edge in some rotation. Assume that the two forbidden edges are an \(l \)-edge and an \(r \)-edge respectively.

Suppose that \(l \neq r \). Then, each edge of \(T \) can be embedded into a forbidden edge at most once in all of the \(n \) rotations. Thus \(m \geq n \). This is a contradiction, since \(T \) has \(n - 1 \) edges.

Suppose that \(l = r \). Then, each of the \(e_i \) is mapped twice to a forbidden edge. Thus \(m \geq n/2 \). By Lemma 4, \(f_0 \) uses less than \(n/2 \) convex hull edges. Therefore, \(l \) and \(r \) must be greater than 0. But a set of \(n/2 \) or more \(r \)-edges, with \(r > 0 \), must contain a pair of edges that cross. And we are done, since \(f_0 \) is an embedding.

\(\square \)

3 Bounds on \(f(n,k) \)

In this section we prove Theorem 1. First we show the upper bound which can also be seen as a consequence of Theorem 2.2 of [3]. However, we provide a self-contained proof for completeness.

Lemma 6 If \(G \) is a convex geometric graph, then forbidding three consecutive convex hull edges of \(G \) forbids the embedding of \(T_n \).

Proof. Recall that \(T_n \) comes from subdividing a star, let \(v \) be the non leaf vertex of this star. Let \((p_1, p_2), (p_2, p_3), (p_3, p_4) \) be the forbidden edges, in clockwise order around the convex hull of \(G \). Note that in any embedding of \(T_n \) into \(G \), an edge incident to a leaf of \(T_n \), must be embedded into a convex hull edge. Thus, the leaves of \(T_n \) nor its neighbors can be embedded into \(p_2 \) or \(p_3 \), without using a forbidden edge. Thus, \(v \) must be embedded into \(p_2 \) or \(p_3 \). Without loss of generality assume that \(v \) is embedded into \(p_2 \). But then, the embedding must use \((p_2, p_3) \) or \((p_3, p_4) \). \(\square \)

Lemma 7 If \(G \) is a convex geometric graph, then forbidding any three pairs of consecutive convex hull edges of \(G \) forbids the embedding of \(T_n \).

Proof. Let \(p_1, p_2 \) and \(p_3 \) be the vertices in the middle of the three pairs of consecutive forbidden edges of \(G \). Note that a leaf of \(T_n \), nor its neighbor can be embedded into \(p_1, p_2 \) or \(p_3 \), without using a forbidden edge. But at most two points do not fall into this category. \(\square \)

Lemma 8 \(f(n, k) \leq 2 \frac{n(n-2)}{k-2} \)

Proof. Let \(G \) be a complete convex geometric graph. We forbid every \(r \)-edge of \(G \) for \(r = 0, \ldots, \left[\frac{n-2}{k-2} - 2 \right] \). Note that, in total we are forbidding at most \(n \left(\left[\frac{n-2}{k-2} - 2 \right] + 1 \right) \leq 2 \frac{n(n-2)}{k-2} \) edges. As every subset of points of \(G \) is in convex position, it suffices to show that every induced subgraph \(H \) of \(G \) on \(k \) vertices is in one of the two configurations of Lemma 6 and 7.

Assume then, that \(H \) does not contain three consecutive forbidden edges in its convex hull nor three pairs of consecutive forbidden edges in its convex hull. \(H \) has at most two (non-adjacent) pairs of consecutive forbidden edges in its convex hull. Therefore every forbidden edge of \(H \) in its convex hull—with the exception of at most two—must be preceded by an \(\ell \)-edge (of \(G \)), with \(\ell > \left[\frac{n-2}{k-2} - 2 \right] \). \(H \) contains at least \(\frac{k+2}{2} \) of these edges. The points separated by these edges amount to more than \(\frac{k-2}{2} \left[\frac{n-2}{k-2} - 2 \right] \geq n - k \) points of \(G \). Together with the \(k \) points of \(H \) this is strictly more than \(n \)—a contradiction. \(\square \)

Now, we show the lower bound of Theorem 1.

Lemma 9 \(f(n, k) \geq \left(\frac{k}{2} \right) \frac{n^2}{k-2} - \frac{n}{2} \)

Proof. Let \(F \) be a set of edges whose removal from \(G \) forbids some \(k \)-tree. Let \(H := G \setminus F \). Note that \(H \) contains no complete \(K_k \) as a subgraph, otherwise any \(k \)-tree can be embedded in this subgraph [2]. By Turán’s Theorem [6], \(H \) cannot contain more than \(\left(\frac{k-2}{2} \right) \frac{n^2}{k-2} \) edges. Thus \(F \) must have size at least \(\left(\frac{k}{2} \right) \frac{n^2}{k-2} - \frac{n}{2} \). \(\square \)

Acknowledgments

Part of this work was done at the “First Workshop in Combinatorial Optimization at Cineast”. It was continued during a visit of L.F. Barba, R. Fabila-Monroy, J. Leaños and G. Salazar to Abacus research center.

References

