Disk constrained 1-center queries

Luis Barba *

Abstract

We show that a set P of n points in the plane can be preprocessed in $O(n \log n)$-time to construct a data structure supporting $O(\log n)$-time queries of the following form: Find the minimum enclosing circle of P with center on a given disk.

1 Introduction

Given a set P of n points in the plane, the minimum enclosing circle problem, originally posed by Sylvester in 1857 [14], asks to identify a point c_P in the plane such that the maximum Euclidean distance from the points of P to c_P is minimized. Therefore, this problem can be thought as that of finding the center of the minimum enclosing circle of P. For ease of notation we say that every circle containing P is a P-circle. An $O(n^2)$-time algorithm was presented by Elzinga and Hearn [5] to find the minimum P-circle. Later, Preparata in [11], and Shamos and Hoey in [13], independently proposed two algorithms to solve this problem in $O(n \log n)$-time. Lee presented the farthest-point Voronoi diagram, which can be also be used to solve this problem in $O(n \log n)$-time [9]. Finally, Megiddo proposed an optimal $O(n \log n)$-time algorithm to find the center of the minimum P-circle using a prune and search approach [10]. Furthermore, the problem of finding the minimum enclosing d-sphere that contains a given set of n points in \mathbb{R}^d can be solved in $O(n)$-time for any fixed d. [3][4].

Several constrained versions of the minimum P-circle problem have been studied lately. Hurtado, Sacristán and Toussaint presented an optimal $O(n + m)$-time algorithm to find the minimum P-circle whose center is constrained to satisfy m linear inequalities [6]. Bose and Toussaint considered the generalized version of this problem by restricting the center of the P-circle to lie inside a simple polygon of size m. They proposed an $O((n + m) \log (n + m) + k)$-time algorithm to solve this problem, where k is the number of intersections of Q with the farthest-point Voronoi diagram of P. [2]. Megiddo studied the problem of finding the minimum P-circle with center on a given straight line and proposed an $O(n)$-time algorithm to solve this problem [10]. He also posed the on-line version of this problem in which a preprocessing of the point set P is allowed and the objective is to answer the following query: Given a straight line ℓ, find the minimum P-circle with center on ℓ. Das, Karmakar, Nandy and Roy first addressed this problem and proposed an $O(n \log n)$-time preprocessing on P, which allows them to answer these queries in $O(\log^2 n)$-time [12]. They improved the query running time to $O(\log n)$ using $O(n^3)$ preprocessing time and space [7]. Finally, Bose, Langerman and Roy showed an $O(n \log n)$-time preprocessing to construct a linear space data structure that answers queries in $O(\log n)$-time [1].

In this paper, we address a generalized version of this problem in which the center of the minimum P-circle is constrained to lie on a query disk. This problem has a direct application in wireless communication: think of a set of locations that need to receive a certain message (represented by P) and think of a main moving antenna that is broadcasting a message within a certain range (represented by a query disk Q). Our objective is then to determine the location for a re-transmitter C, inside the range of Q, such that every location in P receives the message from C at the lowest cost.

We propose an $O(n \log n)$-time preprocessing on the point set P, to construct a linear space data structure that answers both disk and line queries, in $O(\log n)$-time.

2 Preliminaries

In this paper, the words disk and circle refer to the same geometric object. The former refers to the query objects while the latter to the solutions of the query. Given $S \subset \mathbb{R}^2$, ∂S denotes its boundary while $\text{int}(S)$ denotes its interior.

Let P be a set of n points in the plane. A circle containing P is called a P-circle. Given a disk Q with center on q, let p_Q be a point in P such that q lies in the farthest-point Voronoi region associated with p_Q. The farthest-point Voronoi diagram of P can be seen as a tree with n unbounded edges and is denoted in this paper by $V(P)$. For any point p of P, let $R(p)$ be the farthest-point Voronoi region associated with p. Let C_P be the minimum enclosing circle of P and let c_P be its center. If c_P is not a vertex of $V(P)$, we insert it into $V(P)$ by splitting the edge where it belongs. We consider $V(P)$ as a rooted tree at c_P. Given a point x on $V(P)$, π_x denotes the unique path joining c_P with x.

*Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium, lbarbafl@ulb.ac.be
contained in $V(P)$. Given a set $S \subseteq \mathbb{R}^2$, let $C(S)$ be the minimum P-circle with center on S and let $c(S)$ be its center. We say that $c(S)$ is the query center of S. Whenever $S = \{x\}$, $C(x)$ denotes the minimum P-circle with center on x and we let $\rho(x)$ be its radius. If x belongs to $R(p)$ for some vertex p of P, then $C(x)$ passes through p and hence, $\rho(x) = d(p, x)$, where $d(\ast, \ast)$ represents the Euclidean distance between two points in the plane. Given a disk Q with center on q and a point x outside Q, the projection of x on Q, denoted by $\sigma(x, Q)$, is the intersection of the segment $[x, q]$ with the circumcircle of Q.

3 The minimum P-circle with center on Q

Proposition 1 Let w be a point on an edge of $V(P)$.

The function ρ is monotonically increasing along the path π_w starting at c_P.

Proof. In [12] (Result 2), it is shown that if x is an ancestor of y on the rooted tree $V(P)$, then $\rho(x) < \rho(y)$. Since $\rho(x)$ is a convex function [1] (Lemma 3), it is also convex when restricted to any segment of π_w. □

Let Q be a disk with center on q. The following results characterize the position of $c(Q)$ with respect to $V(P)$.

Proposition 2 The point $c(Q)$ lies on ∂Q if and only if $c_P \notin \text{int}(Q)$.

Proof. \rightarrow) If $c_P \in \text{int}(Q)$, then $C(Q) = C_P$ and hence $c(Q) = c_P$ lies in $\text{int}(Q)$. \leftarrow) Assume that $c(Q)$ lies in the interior of Q but c_P does not. Let p be a point of P such that $c(Q)$ belongs to $R(p)$. Two cases arise:

If $c(Q) \in \text{int}(R(p))$, then there is a point x in the vicinity of $c(Q)$, slightly closer to p, such that x belongs to $Q \cap R(p)$. Therefore, $\rho(x) < \rho(c(Q))$ which is a contradiction. Otherwise, if $c(Q)$ lies on an edge of $V(P)$, we can consider a point x slightly closer to c_P along the path $\pi_{c(Q)}$, such that x still belongs to Q. Thus, by Proposition 1 $\rho(x) < \rho(c(Q))$ which is also a contradiction. Therefore, if c_P does not belong to the interior of Q, then $c(Q)$ lies on the boundary of Q. □

From now on we assume that c_P is not contained in Q. Otherwise, c_P is trivially the query center of Q.

Lemma 3 Given a disk Q with center on q. If p_Q is a point of P such that $q \in R(p_Q)$, then:

1. The circumcircle of $C(Q)$ passes through exactly one point p of P, if and only if $p = p_Q$ and $\sigma(p_Q, Q) \in \text{int}(R(p_Q))$. In this case, $c(Q) = \sigma(p_Q, Q)$.

2. The circumcircle of $C(Q)$ passes through at least two points of P, if and only if $c(Q)$ lies on an edge of $V(P)$.

![Figure 1: Case 1 of Lemma 3, where the projection of p_Q on Q lies inside $R(p_Q)$ and determines the center of $C(Q)$.](image)

Proof.

1 \rightarrow) If $C(Q)$ passes through only one point p of P, then $\sigma(p_Q, Q) \in \text{int}(R(p))$. Let ℓ be the line joining p with $c(Q)$ and let ℓ_\perp be the perpendicular line to ℓ that passes through $c(Q)$; see Figure 1. Note that ℓ_\perp must leave all points of Q on the halfplane defined by ℓ_\perp that is farther away from p. Otherwise, we can choose a point x inside $Q \cap R(p)$ such that x is closer to p than $c(Q)$—a contradiction since $C(x)$ would be a P-circle with smaller radius than $C(Q)$. Since ℓ_\perp leaves all points of Q in one halfplane, ℓ_\perp is tangent to Q and hence $c(Q) = \sigma(p_Q, Q)$. Moreover, the points $q, c(Q)$ and p are collinear. Thus, the circle with center on q and passing through p is also a P-circle, which means that $q \in R(p)$, i.e. $p = p_Q$.

1 \leftarrow) Let C be the circle with center on $\sigma(p_Q, Q)$ and radius $d(\sigma(p_Q, Q), p_Q)$. Since $\sigma(p_Q, Q)$ is the closest point of Q to p_Q, C is the smallest circle containing p_Q with center on Q. Moreover, since $\sigma(p_Q, Q) \in \text{int}(R(p_Q))$, C is a P-circle passing only through p_Q and any other P-circle with center on Q must contain p_Q. Thus, $C(Q) = C$ and it passes only through one point of P.

2) Follows from the definition of the farthest-point Voronoi diagram; see Figure 2. □

If case 1 of Lemma 3 holds we are done since $C(Q)$ will be the circle with center on $\sigma(p_Q, Q)$ and radius $d(\sigma(p_Q, Q), p_Q)$. Therefore, we assume from now on that $c(Q)$ is a point lying on an edge of $V(P)$.

4 Sketch of the algorithm

The idea behind the algorithm that we will present is to shrink the disk Q, obtaining in this way a new disk...
Q' with the same center, such that case 1 of Lemma holds for Q'. Thus, $c(Q')$ can be efficiently computed and we can scale Q' back to its original size, tracking the position of $c(Q')$ during this scaling.

Let ℓ be the line joining q with p_Q and let ω be the intersection of ℓ with $\partial R(p_Q)$. It is well known that this intersection is unique. Let Q' be the circle with center on q and radius $d(q, \omega)$. Note that Q' can be seen as the disk Q scaled down such that the projection of p_Q on Q' and ω lies in $R(p_Q)$. Thus, by Lemma $C(Q')$ is the circle with center on ω and radius $d(\omega, p_Q)$; see Figure 3.

The idea is now to scale back Q' to Q, without losing the position of the query center of Q' along the process. In order to do that, we construct a family of disks representing this scaling as follows. Assume that r and r' are the radius of Q and Q', respectively, and let $Q(t)$ be the disk with center on q and radius $r + t(r - r')$, $t \in [0, 1]$. Note that $Q(t)$ represents a continuous scaling starting with $Q(0) = Q'$ and ending with $Q(1) = Q$. Let $\gamma(t)$ be the curve described by query center of $Q(t)$, $t \in [0, 1]$.

Lemma 4 The curve $\gamma(t)$ is a continuous curve such that $\gamma(0) = \omega$, $\gamma(1) = c(Q)$ and $\gamma(t)$ lies on π_ω for every $0 \leq t \leq 1$.

Proof. The curve $\gamma(t)$ is continuous since ρ is a continuous function. Thus, it only remains to prove that $\gamma(t)$ is contained in $V(P)$.

Since every $Q(t)$ is centered on q, $p_Q = p_{Q(t)}$ for every $0 \leq t \leq 1$. Furthermore, for every $0 < t < 1$, the projection of p_Q on $Q(t)$ lies outside $R(p_Q)$; see Figure 3. Therefore, Lemma 3 implies that every $Q(t)$ has its query center lying on an edge of $V(P)$. In other words, the curve $\gamma(t)$ is completely contained in $V(P)$.

Since we assumed that c_P lies outside Q and since $Q(t) \subseteq Q(t')$ for every $0 \leq t < t' < 1$, the value of $\rho(\gamma(t))$ decreases monotonically as t increases. Thus, because $\gamma(t)$ is contained in $V(P)$, Proposition 4 implies that $\gamma(t)$ is contained on the path joining c_P with ω.

Our objective will be to find $c(Q)$ along the path π_ω, using a binary search. However, the boundary of a disk may intersect a path on $V(P)$ more than once. Thus, we need the following result.

Figure 3: The disk Q' as the reduction of Q. In this case, $c(Q') = \omega$ is the projection of p_Q on Q'.

Figure 4: The point x_0 is an accumulation point of $\gamma(t)$ while x_1 represents a discontinuity of $\gamma(t)$.
Lemma 5 There is a unique intersection point between the path π_ω and the boundary of Q.

Proof. Proceed by contradiction and assume that the boundary of $Q = Q(1)$ intersects π_ω in at least two points. Recall that $Q' = Q(0)$ intersects π_ω at a unique point $\omega = \sigma(\partial Q, Q')$. Let t_0 be the minimum value in $[0, 1]$ such that $\partial Q(t_0)$ intersects π_ω in more than 2 points. Let x_0, \ldots, x_k be the points of intersection between $Q(t_0)$ and π_ω, and assume that they are sorted in decreasing order with respect to their depth on the tree $\mathcal{V}(P)$. Note that, for every $0 \leq t < t_0$, $Q(t)$ intersects π_ω in exactly one point and, by Lemma 4, this intersection defines the position of $\gamma(t)$; see Figure 4. However, Proposition 2 implies that $\rho(x_0) > \ldots > \rho(x_k)$ and hence $\gamma(t)$ must be equal to x_k. This represents a discontinuity of the curve $\gamma(t)$ and hence a contradiction. □

Using both lemmas presented in this section, we obtain the following result.

Corollary 6 The point $c(Q)$ is the unique intersection point between π_ω and ∂Q.

5 The algorithm

Recall that our objective is to design a data structure on P to answer the following query: Given any disk Q, find the minimum P-circle with center on Q.

In the previous section we presented the relation existing between the query center of Q and $\mathcal{V}(P)$. In this section, we use that relation to construct a data structure on $\mathcal{V}(P)$, that allow us to perform a binary search for $c(Q)$ along the paths contained in $\mathcal{V}(P)$.

5.1 Preprocessing

Compute $\mathcal{V}(P)$ and c_P in $O(n \log n)$-time [13]. Assume that $\mathcal{V}(P)$ is stored as a binary tree with n (unbounded) leaves, so that every edge and every vertex of the tree has a set of pointers to the vertices of P defining it. Every vertex p of P has a pointer to $R(p)$ which is stored as a convex polygon. Construct a point location data structure on top of the farthest-point Voronoi diagram in $O(n \log n)$-time [8] so that we can answer farthest-point queries in $O(\log n)$-time. If c_P is not a vertex of $\mathcal{V}(P)$, we insert it to $\mathcal{V}(P)$ by splitting the edge that it belongs to.

We will use an operation on the vertices of $\mathcal{V}(P)$ called $\text{PointBetween}(u, v)$ with the following properties. Given two vertices u, v in π_ω, $\text{PointBetween}(u, v)$ returns a vertex z that splits the path on π_ω joining u and v into two subpaths. Moreover, if we discard the subpath that does not contain $c(Q)$ and we proceed recursively on the other, then, after $O(\log n)$ iterations, the search interval becomes only an edge of π_ω containing $c(Q)$.

A data structure that supports this operation was presented in [12]. This data structure can be constructed on top of $\mathcal{V}(P)$ in $O(n)$ time and uses linear space.

5.2 The search for $c(Q)$

Given a query disk Q with center on q and radius r, we present an algorithm to determine the position of $c(Q)$ in $O(\log n)$-time using the data structure described in the previous section. Let p_Q be a point of P such that q belongs to $R(p_Q)$. To find p_Q, an $O(\log n)$-time point-location query on the farthest-point Voronoi diagram suffices.

Let ℓ be the line joining q with p_Q and let w be the intersection of the boundary of $R(p_Q)$ with ℓ. Since $R(p_Q)$ is a convex polygon, this intersection can be computed in $O(\log n)$-time. Let Q' be the disk with center on q and radius $d(q, w)$. By Corollary 6 $c(Q)$ is the unique intersection between π_ω and ∂Q. Thus, we search on π_ω for $c(Q)$ as follows:

The procedure $\text{PointBetween}(w, c_P)$ provides a point z that splits π_ω into two subpaths. Let π (resp. π') be the subpath joining z with c_P (resp. ω with z) contained in π_ω. If $z \in Q$ (resp. $z \notin Q$), then $c(Q)$ lies on π (resp. π'). Thus, we can discard either π or π' and continue the search on the subpath containing $c(Q)$. We proceed until finding two consecutive vertices on π_ω, such that the first one lies inside Q but the second one does not. The details can be found in Algorithm 1.

Algorithm 1 Algorithm to find $c(Q)$ given the path $\pi_\omega = (\omega = u_0, \ldots, u_r = c_P)$

1: Define the initial search interval:
 $u \leftarrow u_0, v \leftarrow u_r$.
2: if uv is an edge of π_ω then
3: Finish and report the segment $s = [u, v]$.
4: end if
5: $z \leftarrow \text{PointBetween}(u, v)$.
6: if $z \in Q$ then
7: Move forward, let $u \leftarrow z$ and return to step 2
8: else
9: Move backwards, let $v \leftarrow z$ and return to step 2
10: end if

When our algorithm finishes, it reports an edge $s = [u, v]$ of the path π_ω, such that u is contained in Q but v is not. By Corollary 6, we conclude that $c(Q)$ is the intersection point between s and ∂Q. Since the number of steps on this binary search is $O(\log n)$ [12] and since each step requires a constant number of operations, the overall running time of the algorithm is $O(\log n)$.
Theorem 7 After preprocessing a set P of n points in $O(n \log n)$-time, the minimum P-circle with center on a query disk Q can be found in $O(\log n)$-time.

References