
Computing the Greedy Spanner in
Near-quadratic Time?

Prosenjit Bose1, Paz Carmi1, Mohammad Farshi1, Anil Maheshwari1, and
Michiel Smid1

School of Computer Science, Carleton University, Ottawa, ON, K1S 5B6, Canada.
jit@scs.carleton.ca, {paz,mfarshi}@cg.scs.carleton.ca,

{anil,michiel}@scs.carleton.ca

Abstract. It is well-known that the greedy algorithm produces high
quality spanners and therefore is used in several applications. However,
for points in d-dimensional Euclidean space, the greedy algorithm has
cubic running time. In this paper we present an algorithm that computes
the greedy spanner (spanner computed by the greedy algorithm) for a
set of n points from a metric space with bounded doubling dimension in
O(n2 logn) time using O(n2) space. Since the lower bound for computing
such spanners is Ω(n2), the time complexity of our algorithm is optimal
to within a logarithmic factor.

1 Introduction

A network on a point set V is a connected graph G(V,E). When designing a
network several criteria are taken into account. In particular, in many applica-
tions it is important to ensure a fast connection between every pair of points.
For this it would be ideal to have a direct connection between every pair of
points—the network would then be a complete graph—but in most applications
this is unacceptable due to the very high costs associated with constructing such
networks. This leads to the concept of spanners, as defined below.

Let (V , d) be a metric space and G(V,E) be a network on V such that the
weight of each edge e ∈ E is equal to the distance between its endpoints. We say
that G is a t-spanner of V , for some constant t > 1, if for each pair of points
u, v ∈ V , there exists a path in G between u and v of length at most t · d(u, v).
The dilation or stretch factor of G is the minimum t for which G is a t-spanner
of V . Spanners were introduced by Peleg and Schäffer [12] in the context of
distributed computing and by Chew [3] in the geometric context. Since then
spanners have received a lot of attention, see [10, 11].

A classical algorithm for computing a geometric spanner for any set V of n
points in Rd, where d is the Euclidean metric, and for any fixed t > 1, is the
greedy algorithm, proposed independently by Bern in 1989 and Althöfer et al. [1].
The main steps of this algorithm are the following: first sort all the pairs of points
in V with respect to their distances in increasing order and initialize the greedy
? Research supported in part by NSERC and MRI.

graph G(V,E) so that its edge set is empty. Next, the pairs are processed in
sorted order. Processing a pair (u, v) entails a shortest path query in G between
u and v. If there is no t-path between u and v (a path of length at most t·d(u, v))
in G then (u, v) is added to G, otherwise it is discarded. We will refer to the
graph G generated by the greedy algorithm as the greedy spanner.

The greedy algorithm as stated above performs
(
n
2

)
single-source shortest

path queries. By employing Dijkstra’s single-source shortest path algorithm, the
time complexity is O(mn2 +n3 log n) using O(n2) space, where n is the number
of points and m is the number of edges in the spanner. It has been shown that
for any set V of n points in Rd and for any fixed t > 1 in the Euclidean metric,
the greedy spanner has O(n) edges, bounded degree, and its total weight is
O(wt(MST (V))), where wt(MST (V)) is the weight of the minimum spanning
tree of V [4, 10]. Unfortunately, the näıve implementation of the greedy algorithm
runs in cubic time.

Due to the high time complexity of computing the greedy spanner, researchers
have proposed algorithms for computing other types of sparse t-spanners, see
[10]. But it turns out that in practice the greedy algorithm produces t-spanners
of high quality in comparison to other spanners [5, 6]. For example, they have
been used for protein visualization as a low-weight data structure, which is used
as a contact map, that allows approximate reconstruction of the full distance
matrix [13].

For points in the plane under the Euclidean metric, Farshi and Gudmunds-
son [5, 6] introduced a speed-up strategy that generates the greedy spanner much
faster in practice. They conjectured that their algorithm runs inO(n2 log n) time.
However, as we will show in this paper, this conjecture is incorrect. They also
showed that the greedy algorithm produces graphs whose size, weight, maximum
degree and number of crossings are superior to the graphs produced from the
other approaches which have near linear time complexity. For t = 2, t = 1.1 and
t = 1.05 the number of edges in the greedy t-spanner is approximately 2n, 4n
and 6n respectively, which is surprisingly small. For comparison it is interesting
to note that the Delaunay triangulation has approximately 3n edges and dila-
tion bounded by 2.42 [9]. Also the maximum degree of the greedy 1.1-spanner,
generated on a uniformly distributed set, of 8000 points is 14 and its weight is 11
times the weight of the minimum spanning tree of the point set. To have a rough
comparison, the Θ-graph algorithm, which runs in O(n log n) time, generated a
graph containing 370K edges, the maximum degree was 144 and the weight was
327 times the weight of the minimum spanning tree.

For general metric spaces, there are cases where the complete graph is the
only t-spanner of a point set. For example, assume V is a set of points from a
metric space where the distance between any two distinct points is equal to 1.
For any 1 < t < 2, the complete graph is the only t-spanner of V . Therefore, in
general metric spaces, we can not guarantee that the generated graph is sparse.
The doubling dimension is defined as follows. Let λ be the smallest integer
such that for each real number r, any ball of radius r can be covered by at
most λ balls of radius r/2. The doubling dimension of V is defined to be log λ.

The doubling dimension is a generalization of the Euclidean dimension, as the
doubling dimension of d-dimension Euclidean space is Θ(d).

1.1 Main Results and Organization of the Paper

The main result of this paper is that for any metric space V of bounded doubling
dimension, the greedy spanner of V has linear size and can be computed in
O(n2 log n) time, where n = |V |. The organization of the remainder of this
paper is as follows. In Sect. 2, we review the improved greedy algorithm of [5, 6]
and give a counterexample to the conjecture that this algorithm only performs
O(n) shortest path queries. In Sect. 3, we present an algorithm that generates
the greedy spanner in near-quadratic time for some special cases. These results
are generalized to metric spaces of bounded doubling dimension in Sect. 4.

2 The FG-greedy Algorithm

As mentioned above the running time of a näıve implementation of the greedy
algorithm is O(mn2 + n3 log n). Farshi and Gudmundsson [5, 6] introduced an
improved version of the algorithm and showed that it improves the running time
for constructing the greedy spanner considerably in practice on point sets in the
plane with the Euclidean metric. We call this algorithm as the FG-greedy algo-
rithm. The FG-greedy algorithm is the same as the original greedy algorithm
except that it uses a matrix to save the length of the shortest path between every
two points and updates the matrix only when it is required. Thus the matrix
is not always up to date. Instead of computing a shortest path for each pair, it
first checks the matrix to see if there is a t-path; if the answer is no, then it per-
forms a shortest path query and updates the matrix which enables us to answer
the distance queries correctly. They conjectured that the FG-greedy algorithm
performs only O(n) shortest path queries, which would imply a running time
of O(n2 log n).

2.1 A Counterexample

We give an example which shows that the FG-greedy algorithm may perform
Θ(n2) shortest path queries. Consider a set S = {p0, p1, . . . , pn−1} of n points
on the real line such that pi = 2i. The algorithm sorts all pairs of points based
on their distance. We also assume that for each pair (pi, pj) the index of the first
point in the pair is less than the index of the second point, i.e. i < j. It is easy
to see that the algorithm performs a shortest path query for each pair of points.

Note that if we change the algorithm such that when a new edge is added
to the greedy spanner, it performs a shortest path query for both endpoints of
the new edge and updates the weight matrix then the new algorithm performs
only O(n) shortest path queries on the above counterexample. However, in the
full version of this paper, we give an example where we still need to perform
Ω(n log n) shortest path queries.

3 A Preliminary Algorithm

Let V be a set of n points in a metric space with distance function d. As men-
tioned before, for generating the greedy t-spanner, we start with a graph G(V,E)
with no edges and we go through all the pairs of points in V (in increasing order
based on their distances). For each pair we check if there exists a t-path between
them in G, if not we add the edge between them in G.

In the new algorithm we basically do the same thing as the FG-greedy algo-
rithm in the sense that we use the weight matrix to answer the shortest path
queries. The differences are the following:

– We process the pairs whose distance is less than L, for a real number L,
exactly in the way as in the original (or FG-) greedy algorithm.

– We divide the remaining pairs into buckets such that the ith bucket contains
all the pairs whose distance is between 2i−1L and 2iL.

– During the processing of each bucket, we keep the shortest path between
the pairs in the bucket up to date. To do this we update the shortest path
between all pairs in the bucket before processing the pairs in the bucket and
during the process we update it when we add an edge to the graph. Note
that we keep the shortest path length between pairs in a weight matrix.

Without loss of generality we assume that the diameter of the point set is
one. Let 0 < L < 1 be a real number to be specified later. We split the pairs
of points into k = O(log(1

L)) buckets such that the ith bucket, i.e. Ei, contains
all the pairs with distance in [2(i−1)L, 2iL). Let E0 contain all the pairs with
distance less than L.

The algorithm starts with the pairs in E0. It process all the pairs in the set E0

in the same manner as the original (or FG-) greedy algorithm does. Therefore,
if E0 contains O(nβ) pairs then processing it takes O(nβ+1 log n) time. Let G
denote the current greedy spanner after processing E0.

Now we show how to process the remaining buckets. Assume that we have
processed buckets E1, E2, . . . , Ei−1 and we need to process bucket Ei. Before
processing the edges in this bucket, we compute the single-source shortest path
with source at each point p of V and update the weight matrix. Then we make
“local” updates when we add an edge to the graph. By “local” update, we mean
we update the weight matrix for all points nearby each of the endpoints of the
new edge. Since the weight matrix is up to date for all pairs in the current bucket
we can answer the t-path queries in constant time using the weight matrix. For
details see Algorithm 3.1.

Theorem 1. Algorithm 3.1 generates the greedy spanner of the input point set.

Proof. To prove the correctness of the algorithm, we need to prove that the
t-path queries (line 17 of Algorithm 3.1) are answered correctly.

Let (p, q) be an arbitrary pair in Ei with d(p, q) ∈ [Li, 2Li) which is about
to be processed in the algorithm. If there is no t-path between p and q in G then
the algorithm answers the t-path query correctly since the entry in the weight

matrix corresponding to the pair is at least equal to the shortest path length
between p and q in G. Assume that there is a t-path between p and q in G. We
have two cases:
Case 1: The shortest path between p and q in G does not pass through any
edges that were added during processing of pairs in Ei. In this case we are done
because before processing the pairs in Ei, we updated all-pair shortest paths
and adding new edges to the graph does not change the shortest path length
between p and q.
Case 2: The shortest path π in G between p and q passes through some edges
of Ei. Among all edges of Ei ∩ π, let (u, v) be the one that was added last by
the algorithm. We may assume without loss of generality that, starting at p, the
path π goes to u, then traverses (u, v), and then continues to q. We define

S(u,v) = {x ∈ V : d(x, u) < (t− 1/2)Li or d(x, v) < (t− 1/2)Li}.
We claim (and show below) that p or q belongs to S(u,v). This will imply that,
in the iteration in which (u, v) is added to the graph, the algorithm computes
the exact shortest-path length between p and all vertices of V , or between q and
all vertices of V . Therefore, at the moment when (p, q) is processed, the value of
weight(p, q) is equal to the shortest-path length in G between p and q.

It remains to prove the claim. Assume that neither p nor q is contained
in S(u,v). Then d(p, u) ≥ (t − 1

2)Li and d(q, v) ≥ (t − 1
2)Li. Thus, if we denote

the shortest-path length between p and q by dG(p, q), then
dG(p, q) ≥ d(p, u) + d(u, v) + d(v, q) ≥ 2(t− 1/2)Li + Li = 2tLi > t · d(p, q),

which contradicts the fact that there is a t-path in G between p and q. ut

Algorithm 3.1: New-Greedy(V, t, L)

Input: V , t > 1 and L > 0.
Output: t-spanner G = (V,E′).
foreach (u, v) ∈ V 2 do weight(u, v) :=∞;1

E :=sorted list of all the pairs in V 2 by increasing distance; /*ties are broken arbitrarily*/2
E0 := all the point pairs in E with distance in [0, L);3
j := 1;4

while E \ (
⋃j−1
k=1 Ek) 6= ∅ do5

Ej := all the point pairs in E \ (
⋃j−1
k=1 Ek) with distance in [2j−1L, 2jL);6

j := j + 1;7

l := j − 1;8

E′ := ∅;9

G := (V,E′);10
Process pairs in E0 in the same way as the original (or FG-) greedy algorithm;11
for i := 1, . . . , l do12

Li := 2i−1L;13
foreach u ∈ V do14

Compute single-source shortest paths with source at u and update weight;15
foreach (u, v) ∈ Ei ; /* in sorted order */16

do if weight(u, v) > t · d(u, v) then E′ := E′ ∪ {(u, v)};17
foreach p ∈ V do18

if d(p, u) < (t− 1
2)Li or d(p, v) < (t− 1

2)Li then19
Compute single-source shortest paths with source at p and update weight;20

return G(V,E′);21

Now we show that the algorithm runs in near quadratic time in some special
cases. First we need to recall the well-separated pair decomposition developed
by Callahan and Kosaraju [2] in d-dimensional Euclidean space.

Definition 1. Let s > 0 be a real number, referred to as the separation constant.
We say that two point sets A and B in Rd are well-separated with respect to s,
if there are two disjoint balls DA and DB of the same radius, r, such that

(i) DA contains A and DB contains B,
(ii) the distance between DA and DB is at least s · r.
Lemma 1 ([2]). Let A and B be two finite sets of points that are well-separated
with respect to s, let x and p be points of A, and let y and q be points of B. Then
(i) |xy| ≤ (1 + 4/s) · |pq| and (ii) |px| ≤ (2/s) · |pq|.
Definition 2. Let V be a set of n points in Rd and let s > 0 be a real number. A
well-separated pair decomposition (WSPD) for V with respect to s is a collection
W := {(A1, B1), ..., (Am, Bm)} of pairs of non-empty subsets of V such that

1. Ai and Bi are well-separated with respect to s, for all i = 1, . . . ,m.
2. for any two distinct points p and q of V , there is exactly one pair (Ai, Bi)

in the collection, such that (i) p ∈ Ai and q ∈ Bi or (ii) q ∈ Ai and p ∈ Bi.
The number of pairs,m, is called the size of the WSPD. Callahan and Kosaraju [2]
have shown that any set V ⊆ Rd admits a WSPD of size m = O(sdn). Har-Peled
and Mendel [8] generalized the results to metric spaces with doubling dimen-
sion λ. They showed that any set of n points from a metric space with doubling
dimension λ admits a WSPD with respect to s > 1, of size O(sO(λ)n). In the
rest of the paper, we assume that V is a set of n points from a metric space with
doubling dimension λ.

Observation 1. If {(Ai, Bi)}i is a WSPD of a point set V with respect to
s = 4(t+1)

t−1 , then for each i, there is at most one greedy edge between Ai and
Bi in the t-spanner generated by the greedy algorithm.

Proof. Assume that we have a pair (A,B) in the WSPD such that there exist
two edges (a1, b1) and (a2, b2) in the greedy t-spanner where a1, a2 ∈ A and
b1, b2 ∈ B. Without loss of generality assume the greedy algorithm process the
pair (a1, b1) before the pair (a2, b2).

Because A and B are s-well-separated pair, by Lemma 1, we have d(a1, a2) ≤
2
s d(a2, b2) < d(a2, b2). By the same argument d(b1, b2) < d(a1, b1). Therefore,
there exists a t-path between a1 and a2 and a t-path between b1 and b2 when
the greedy algorithm processes the pair (a2, b2). Let G′ be the graph just before
processing (a2, b2) and let P be a path in G′ between a2 and b2 generated by
concatenating a t-path between a2 and a1, the edge (a1, b1) and a t-path between
b1 and b2. If |P | denotes the length of the path P , then

|P | = dG′(a2, a1) + d(a1, b1) + dG′(b1, b2)
≤ t · d(a2, a1) + d(a1, b1) + t · d(b1, b2)

≤ t · 2
s

d(a2, b2) + (1 +
4
s

) d(a2, b2) + t · 2
s

d(a2, b2) (by Lemma 1)

= (
4t
s

+ 1 +
4
s

) d(a2, b2)

= t · d(a2, b2).

This means that the greedy algorithm does not add (a2, b2) to the spanner since
there already exist a t-path between them in G′. ut

As a corollary, since there exists a linear size WSPD for any point set in a metric
space with bounded doubling dimension, the size of a greedy t-spanner on such
a point set is linear.

Lemma 2. While processing the pairs in Ei, for each point p, line 20 in Algo-
rithm 3.1 is executed O(1

(t−1)O(λ)) times.

Proof. For simplicity, we first prove the lemma in the 2-dimensional Euclidean
case. Assume the distance between the pairs in Ei is in [L, 2L). Algorithm 3.1
performs a single-source shortest path computation with source at p, after adding
an edge (u, v) to the graph, if d(p, u) < (t− 1

2)L or d(p, v) < (t− 1
2)L. So if we

draw a ball C with center at p and radius (2t + 1)L, then all the edges which
affect p lies inside the ball C. So the number of times we need to execute line 20
for p is at most the number of edges in the greedy spanner with length between
L and 2L which lie inside C. Now we show that the number of such edges is at
most O(1

(t−1)2).
To show this, assume B is a square with side length 2(2t + 1)L which in-

cludes C. We cover the square B with cells of side length ` = L√
2(s+4)

where s =
4(t+1)
t−1 . The number of such cells inside B is

(
2
√

2(2t+ 1)(s+ 4)
)2

= O(1
(t−1)2).

Let (u, v) be a greedy edge with distance in the interval [L, 2L). First we show
that the grid cells which contains u and v are s-well-separated. Assume C1 and
C2 are balls with radius

√
2` which contain the grid cell of u and the grid cell of

v, respectively— see Fig. 1. Since d(u, v) ≥ L and the radius of the circles are√
2`, the distance between C1 and C2 is at least L− 4

√
2`. Therefore

d(C1, C2) ≥ L− 4
√

2` = L− 4
√

2
L√

2(s+ 4)
= L(

s

s+ 4
) = s(

L

s+ 4
) = s×

√
2`

which means the cells are s-well-separated.
Therefore, by Observation 1, we have at most one greedy edge between grid

cells which are well-separated. This means that the number of the greedy edges
with distance in [L, 2L) inside the circle C is bounded by the number of cell
pairs which is O(1

(t−1)4).

`

`
u

v

≥ L

C1

C2

p

2
(2

t
+

1
)L

(2t + 1)L

Fig. 1. Illustration for the proof of Lemma 2.

For the general case, the same argument works. In this case we use the
property of doubling dimension which guarantees that each ball of radius r > 0
can be covered by 2λ balls of radius r/2. This means that the number of balls
with radius

√
2` inside the ball C centered at p is O(1

(t−1)O(λ)). ut

Now we are ready to compute the time complexity of Algorithm 3.1. Clearly
lines 1–11 of the algorithm take O(n2 log n) time. For line 12, if the size of E0 is
β then it takes O(β(m+n log n)) since for each pair it performs a shortest path
query.

For each interval, computing all-pairs shortest path, lines 15–17, takes
O(mn + n2 log n) time, and by Lemma 2, the update procedure takes at most
O(1

(t−1)O(λ) (mn+ n2 log n)). Since the number of intervals is O(log(1/L)), pro-

cessing all intervals takes O
(

log(1/L)
(t−1)O(λ) (mn+ n2 log n)

)
time. For a metric space

with doubling dimension λ, the size of the generated graph is O(n
(t−1)O(λ)), the

total running time of Algorithm 3.1 is O
(
βn+log(1/L)n2 logn

(t−1)O(λ)

)
. Therefore for a

point set V with the property that there exists a real number L such that
1
L = O(nc) (c is a constant) and β = O(n log2 n), the greedy spanner can be
computed in O(n2 log2 n) time.

Points Sets with Polynomial Aspect Ratio. If the input point set has
aspect ratio less than nc, for some constant c, then by scaling the point set such
that the longest distance is 1 and setting L = 1

nc , we have no pair of points in
the scaled point set with distance less than L. Therefore the running time of
Algorithm 3.1 in this case is O(n2 log2 n

(t−1)O(λ)).

Uniformly Distributed Point Set. Assume we have a set of n points uni-
formly distributed inside the unit square and let L = 1√

n
. Since the points are

uniformly distributed, for each point p, the expected number of points inside the
ball with center at p and radius L is L2n. So the expected number of pairs with
distance less than L is L2n2/2 = O(n). Therefore, the expected running time of
Algorithm 3.1 in this case is O(n2 log2 n

(t−1)O(λ)).

4 An Improved Algorithm

To generalize the results of the previous section to bounded doubling dimension,
we have to overcome obstacles. First, we need to speedup processing the pairs
in the first set (i.e. the set E0). The second problem is that if we decrease the
number L to bound the number of pairs in the first interval, it increases the
number of buckets which causes higher time complexity. We overcome these
difficulties by modifying the previous algorithm in the following way.

– we partition the
(
n
2

)
pairs into a linear number of buckets,

– we maintain a data structure for each point during the algorithm. When we
need to update a point, instead of doing a single-shortest path computation
from scratch, we use the data structure to update just the necessary part
and use it to update the weight matrix.

First we claim that for updating the shortest path lengths with source at
a point p, performing a length-bounded Dijkstra’s algorithm is sufficient. More
precisely, if we are working on point pairs in a bucket with distances in [L, 2L)
and we need to update the shortest path lengths with source at p, it is sufficient
to update the distance between p and all the points q such that dG(p, q) < 2tL,
where G is the current graph. The reason is that if dG(p, q) ≥ 2tL then either
the pair (p, q) is outside the current bucket or there is no t-path between p and
q in G.

So, in the new algorithm, we maintain a data structure for each point, which
is the same as the data structure used in the Dijkstra’s single-source shortest
paths algorithm. When we perform a shortest path query with bound U , we
execute Dijkstra’s algorithm but stop when the key of the element on the top
of the priority queue (heap) is bigger than U . We also maintain a stack storing
all changes that are made to the heap in this process, so that we can undo the
procedure, if required.

Note that our graph is dynamic and we add edge(s) to the graph, in increasing
order of length. We use the “undo facility” to fix the part of the execution of
Dijkstra’s algorithm that is affected by the insertion of an edge. For the details
of the algorithm, see Algorithm 4.1.

To complete the correctness proof, we show that in the algorithm, the shortest
path queries are answered correctly. To do this, we show that the length-bounded
Dijkstra’s algorithm on a subgraph of the greedy spanner works exactly same as
Dijkstra’s algorithm on the greedy spanner.

Lemma 3. Let Ge be the subgraph of the greedy spanner G that contains all the
edges added to the graph up to the processing of the pair e = (p, q) in the greedy
algorithm. Let u be an arbitrary vertex of G. As long as the key of the element
on the top of the heap in Dijkstra’s algorithm with source at u is less than d(p, q)
the algorithm works the same on G and Ge.

Proof. Let x be a vertex of the graph G and assume the shortest path between
u and x passes through at least one edge in E \Ee. Since the length of each edge
in E \Ee is at least d(p, q), the key of the point x in the heap is at least d(p, q).
This completes the proof. ut

4.1 Running Time

Now, we show that Algorithm 4.1 runs in O(n2 log n) time. To this end, we
show that for each point p ∈ V the overall time spent is proportional to running
Dijkstra’s single-source shortest paths algorithm with source p.

Algorithm 4.1 basically performs Dijkstra’s algorithm with source at each
point of the graph. The only differences are

Algorithm 4.1: Quad. Greedy(V, t)
Input: V and t > 1.
Output: t-spanner G = (V,E′).
foreach (u, v) ∈ V 2 do weight(u, v) :=∞;1

E :=sorted list of all the pairs in V 2 by increasing distance; /*ties are broken arbitrarily*/2
L1 := the distance between the closest pair in E;3
E1 := all the pairs in E with distance in [L1, 2L1);4
j := 2;5

while E \ (
⋃j−1
k=1 Ek) 6= ∅ do6

Lj := the distance between the closest pair in E \ (
⋃j−1
k=1 Ek);7

Ej := all the pairs in E \ (
⋃j−1
k=1 Ek) with distance in [Lj , 2Lj);8

j := j + 1;9

l := j − 1;10

E′ := ∅; G := (V,E′);11
foreach u ∈ V do12

Initialize PQu required for executing Dijkstra’s algorithm with source at u;13
for i := 1, . . . , l do14

foreach u ∈ V ;15
do16

τu := ∅;17
Dijkstra-Bounded(G, u, 2tLi, PQu, τu);18

foreach (u, v) ∈ Ei; /* in sorted order */19
do20

if weight(u, v) > t · d(u, v) then21
E′ := E′ ∪ {(u, v)};22

foreach p ∈ V do if d(p, u) < (t− 1
2)Li or d(p, v) < (t− 1

2)Li then23
Update(G, p, u, v, 2tLi, PQp, τp);24

return G(V,E′);25

Algorithm 4.2: Update(G, s, u, v, L, PQ, τ)
if weight(s, v) < weight(s, u) + d(u, v) and weight(s, u) < weight(s, v) + d(u, v) ; /* This1
means adding (u, v) does not change any shortest path with source at s */
then2

return;3
else4

if weight(s, v) < weight(s, u) + d(u, v) then5
Swap u and v;6

Dijkstra-Undo(τ, PQ,weight(s, u) + d(u, v));7
Decrease the key of v to weight(s, u) + d(u, v) in PQ;8
Dijkstra-Bounded(G, s, L, PQ, τ)9

– it performs bounded Dijkstra’s algorithm and
– it fixes the process after adding edge(s) to the graph by undoing some parts

and redoing it.

The following lemma follows from [7]:

Lemma 4. The value of l computed in line 10 of Algorithm 4.1 is O(n).

Now we show that for any point p, the time we spend to update p in the
whole process is proportional to the time for running Dijkstra’s algorithm with
source at p. Assume we are processing the point pairs in Ei and let G be the
current graph. As one can see in Algorithm 4.1, when we process the pairs in Ei,
for updating followed by adding an edge, we undo the execution of Dijkstra’s
algorithm until the key of the points on the top of the heap is less than the

Algorithm 4.3: Dijkstra-Bounded(G, s, L, PQ, τ)
Input: Graph G, a vertex s, a real number L and a priority queue PQ.
Output: Shortest path length between s and all other vertices in G which has length at

most L.
while The key of the element on the top of PQ is at most L do1

u := pop the element with minimum key from PQ;2
weight(s, u) := weight(u, s) := the key of u;3
foreach node v adjacent to u in G do4

if weight(s, u) + wt(u, v) < weight(s, v) then5
Decrease the key of v in PQ to weight(s, u) + wt(u, v) and add all the changes6
in PQ to the stack τ ; /* To be used in the undo procedure. */

Algorithm 4.4: Dijkstra-Undo(τ, PQ,L)
Input: a stack τ , a priority queue PQ and a real number L.
while the key of the element on the top of τ is at most L do1

Pop the top element from τ ;2
Undo the changes on PQ based on the information in the element;3

length of the new edge and redo the execution until the key of the point on the
top of the heap is more than 2tLi. But the length of the new edge is at least Li
which means that the undo process never goes further when the key on the top
of the heap is less than Li. We say that a vertex q is in the undo area of Ei if
Li ≤ dG(p, q) ≤ 2tLi. The claim is that each point q appears in the undo area
for a constant number of sets. To prove this let q be in the undo area of Ei. This
means

Li ≤ dG(p, q) ≤ 2tLi. (1)

We show that q can not be in the undo area of Ej if j > i + log t. Let G′ be
the graph when we process the pairs in Ej . Since we add edge(s) to the graph,
we know that for each pair (p, q) of points dG′(p, q) ≤ dG(p, q). Since for each i,
Li+1 > 2Li we have Li+k > 2kLi, for each k > 0. Using Equation (1), we have

dG′(p, q) ≤ dG(p, q) ≤ 2tLi <
2t

2log t
Lj ≤ Lj ,

which means q is not in the undo area of Ej .
On the other hand, by Lemma 2, we update the shortest paths with source

p at most O(1
(t−1)O(λ)) times in each set Ei. This means in total we need to

recompute the shortest path between p and any point q at most O(log t
(t−1)O(λ))

times. Therefore, the whole process for a fixed point p takes O(log t
(t−1)O(λ)n log n)

time. So we have the following theorem.

Theorem 2. For each point set V of n points from a metric space with doubling
dimension λ, we can compute the greedy t-spanner of V in O(log t

(t−1)O(λ)n
2 log n)

time using O(n2) space.

5 Conclusion

In this paper we presented an algorithm which, given a set of n points from a
metric space with bounded doubling dimension, computes the greedy spanner of
the point set in O(n2 log n) time. In the greedy spanner, every point is connected
to its nearest neighbor. Therefore, we can compute all nearest neighbors of the
input point set using the greedy spanner in O(n) time. Har-Peled and Mendel [8]
showed that the all nearest neighbor problem has an Ω(n2) lower bound for
metric spaces with bounded doubling dimension. This implies that computing
the greedy t-spanner also has an Ω(n2) lower bound. There is a logarithmic gap
between the running time of the greedy algorithm presented in this paper and the
lower bound. Another interesting problem is finding a o(mn2) time algorithm for
constructing the greedy graph on a set of n points from a metric space, where m
is the number of edges in the greedy graph. In the special case where the points
are a subset of R2, is there a o(n2) algorithm for constructing the greedy graph?

References

[1] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete and Computational Geometry, 9(1):81–100, 1993.

[2] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. Journal
of the ACM, 42:67–90, 1995.

[3] L. P. Chew. There is a planar graph almost as good as the complete graph.
In SCG’86: Proceedings of the 2nd Annual ACM Symposium on Computational
Geometry, pages 169–177, 1986.

[4] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean
spanners. Int. J. of Computational Geometry & Applications, 7:297–315, 1997.

[5] M. Farshi and J. Gudmundsson. Experimental study of geometric t-spanners. In
ESA’05, volume 3669 of LNCS, pages 556–567. Springer-Verlag, 2005.

[6] M. Farshi and J. Gudmundsson. Experimental study of geometric t-spanners: A
running time comparison. In WEA’07, volume 4525 of LNCS, pages 270–284.
Springer-Verlag, 2007.

[7] S. Har-Peled. A simple proof?, 2006. http://valis.cs.uiuc.edu/blog/?p=362.
[8] S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics

and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.
[9] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete

Euclidean graph. Discrete and Computational Geometry, 7:13–28, 1992.
[10] G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge University

Press, 2007.
[11] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadel-

phia, PA, 2000.
[12] D. Peleg and A. Schäffer. Graph spanners. Journal of Graph Theory, 13:99–116,

1989.
[13] D. Russel and L. J. Guibas. Exploring protein folding trajectories using geometric

spanners. Pacific Symposium on Biocomputing, pages 40–51, 2005.

