Question 1: The Hadamard matrices H_0, H_1, H_2, \ldots are recursively defined as follows:

$$H_0 = (1)$$

and for $k \geq 1$,

$$H_k = \begin{pmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{pmatrix}.$$

Thus, H_0 is a 1×1 matrix whose only entry is 1,

$$H_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$$

and

$$H_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}.$$

Observe that H_k has 2^k rows and 2^k columns.

If x is a column vector of length 2^k, then H_kx is the column vector of length 2^k obtained by multiplying the matrix H_k with the vector x.

Describe a recursive algorithm $\text{MULT}(k, x)$ that does the following:

Input: An integer $k \geq 0$ and a column vector x of length $n = 2^k$.

Output: The column vector H_kx (having length n).

The running time $T(n)$ of your algorithm must be $O(n \log n)$. Derive a recurrence for $T(n)$. (You do not have to solve the recurrence, because we have done that in class.)

Hint: The input only consists of k and x. The matrix H_k, which has n^2 entries, is not given as part of the input. Since you are aiming for an $O(n \log n)$-time algorithm, you cannot compute all entries of the matrix H_k.

Solution: We will write the vector x as

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Algorithm $\text{MULT}(k, x)$ is a recursive algorithm and does the following:

- If $k = 0$, return the vector (x_1).

- Assume that $k \geq 1$.

1
– Split the vector x into two vectors x' and x'', both of length $n/2 = 2^{k-1}$:

\[
x' = \begin{pmatrix} x_1 \\ \vdots \\ x_{n/2} \end{pmatrix}
\]

and

\[
x'' = \begin{pmatrix} x_{1+n/2} \\ \vdots \\ x_n \end{pmatrix}.
\]

– Run MULT($k - 1, x'$) and let the output be y'.

– Run MULT($k - 1, x''$) and let the output be y''.

– Compute the vector

\[
y = \begin{pmatrix} y' + y'' \\ y' - y'' \end{pmatrix}.
\]

– Return the vector y.

Let $T(n)$ denote the running time of algorithm MULT(k, x), where $n = 2^k$. If $k \geq 1$, there are two recursive calls, both of which take time $T(n/2)$, whereas the rest of the algorithm takes $O(n)$ time. Thus, we obtain the “merge-sort recurrence”

\[
T(n) = \begin{cases}
\text{constant} & \text{if } n = 1, \\
2 \cdot T(n/2) + O(n) & \text{if } n \geq 2.
\end{cases}
\]

We have seen in class that this recurrence solves to $T(n) = O(n \log n)$.