COMP 3804 - Assignment 4

Due: Monday April 8, 23:59.

Assignment Policy:

- Your assignment must be submitted as one single PDF file through Brightspace.

> Use the following format to name your file: $$
\text { LastName_StudentId_a4.pdf }
$$

- Late assignments will not be accepted. I will not reply to emails of the type "my internet connection broke down at $23: 57$ " or "my scanner stopped working at $23: 58$ ", or "my dog ate my laptop charger".
- You are encouraged to collaborate on assignments, but at the level of discussion only. When writing your solutions, you must do so in your own words.
- Past experience has shown conclusively that those who do not put adequate effort into the assignments do not learn the material and have a probability near 1 of doing poorly on the exams.
- When writing your solutions, you must follow the guidelines below.
- You must justify your answers.
- The answers should be concise, clear and neat.
- When presenting proofs, every step should be justified.

Question 1: Write your name and student number.
Question 2: The set cover problem is defined as follows:
SETCover $=\left\{\left(S, n, A_{1}, A_{2}, \ldots, A_{m}, K\right): \quad S\right.$ is a set of size n, each A_{i} is a subset of S, $\exists I \subseteq\{1,2, \ldots, m\}$ such that $|I|=K$ and $\left.\cup_{i \in I} A_{i}=S\right\}$.
Prove that SetCover is in NP.

Question 3: Los Tabernacos is a famous poutine restaurant in Playa del Carmen, Mexico. The owners want to advertize their restaurant to all people ("users") on Instagram. For a given integer K, they ask K users to post a picture of the restaurant ${ }^{1}$ on their account.

All users follow the Instagram etiquette: If user u posts a picture, then all users who follow u post a copy of this picture.

Can the owners of Los Tabernacos choose K users such that all Instagram users post a picture of the restaurant?

- Formulate this problem as a decision problem LosTabernacos on a graph.
- Prove that LosTabernacos \leq_{P} SetCover, i.e., in polynomial time, LosTabernacos can be reduced to SetCover.

Question 4: Let $G=(V, E)$ be an undirected graph. A Hamilton cycle is a cycle in G that contains every vertex exactly once. A Hamilton st-path is a path in G between the vertices s and t that contains every vertex exactly once.

Consider the problems

$$
\text { HamiltonCycle }=\{G: \text { graph } G \text { contains a Hamilton cycle }\}
$$

and

$$
\text { HamiltonPath }=\{(G, s, t): \text { graph } G \text { contains an st-Hamilton path }\} .
$$

- Prove that HamiltonCycle \leq_{P} HamiltonPath, i.e., in polynomial time, HamiltonCycle can be reduced to HamiltonPath.
- Prove that HamiltonPath \leq_{P} HamiltonCycle, i.e., in polynomial time, HamiltonPath can be reduced to HamiltonCycle.

Question 5: In the longest path problem, we are given an undirected graph $G=(V, E)$ in which each edge has a positive weight, two vertices s and t, and a number L. The question is whether or not G contains an $s t$-path (i.e., a path between s and t) of length at least L. In such a path, any vertex cannot be visited more than once.

[^0]LongestPath $=\{(G, s, t, L):$ graph G contains an st-path of length at least $L\}$.
Prove that HamiltonCycle \leq_{P} LongestPath, i.e., in polynomial time, HamiltonCycle can be reduced to LongestPath.

Question 6: A Boolean formula φ, in the variables $x_{1}, x_{2}, \ldots, x_{n}$, is in three conjunctive normal form (3CNF), if it is of the form

$$
\varphi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

where each clause $C_{i}, 1 \leq i \leq m$, is of the form

$$
C_{i}=l_{1}^{i} \vee l_{2}^{i} \vee l_{3}^{i}
$$

Each l_{j}^{i} is a literal, which is either a variable or the negation of a variable.
The three-satisfiability problem is defined as follows:

$$
3 \mathrm{SAT}=\{\varphi: \varphi \text { is in 3CNF-form and is satisfiable }\} .
$$

A vertex cover of an undirected graph $G=(V, E)$ is a subset X of V such that for each edge $\{u, v\}$ in E, at least one of u and v is in X.

The vertex cover problem is defined as follows:
VertexCover $=\{(G, K):$ graph G contains a vertex cover of size $K\}$.
Prove that 3Sat \leq_{P} VertexCover, i.e., in polynomial time, 3Sat can be reduced to VertexCover.

[^0]: ${ }^{1}$ and offer them free poutine

