Correctness Proof of Dijkstra's Algorithm

Michiel Smid*

February 23, 2024

Let $G=(V, E)$ be a directed graph in which each edge (u, v) has a real weight $w t(u, v) \geq$ 0 . Let $s \in V$ be a source vertex. In these notes, we prove that Dijkstra's algorithm computes for each vertex v in V, the length $\delta(s, v)$ of a shortest directed path from s to v.

```
Algorithm Dijkstra( \(G, s\) ):
for each \(v \in V\)
do \(d(v)=\infty\)
endfor;
\(d(s)=0\);
\(S=\emptyset ;\)
\(Q=V\);
while \(Q \neq \emptyset\)
do \(u=\) vertex in \(Q\) for which \(d(u)\) is minimum;
    comment: we will prove below that \(d(u)=\delta(s, u)\).
    delete \(u\) from \(Q\);
    insert \(u\) into \(S\);
    for each edge \((u, v)\)
    do if \(d(u)+w t(u, v)<d(v)\)
        then \(d(v)=d(u)+w t(u, v)\)
        endif
    endfor
endwhile
```

Lemma 1 For each vertex v in V and at any moment during the algorithm,

$$
\delta(s, v) \leq d(v)
$$

Proof. The lemma follows from the fact that either $d(v)=\infty$ or $d(v)$ is equal to the length of some directed path from s to v.

[^0]Lemma 2 Let v be a vertex in V and assume that, at some moment, $d(v)$ becomes equal to $\delta(s, v)$. Then the value of $d(v)$ does not change afterwards.

Proof. It follows from the algorithm that, if $d(v)$ changes, it becomes smaller. By Lemma 1 , $d(v)$ cannot be smaller than $\delta(s, v)$.

Lemma 3 Let u be a vertex in V. Consider the iteration of the while-loop in which u is chosen as the vertex in Q for which $d(u)$ is minimum. At the moment when u is chosen, $d(u)=\delta(s, u)$.

Proof. The proof is by contradiction. Consider the first iteration of the while-loop for which the lemma does not hold. In other words, consider the first vertex u having the property that

$$
\begin{equation*}
\delta(s, u)<d(u) \tag{1}
\end{equation*}
$$

during the iteration in which u is chosen as the vertex in Q for which $d(u)$ is minimum.
Exercise: Convince yourself that $u \neq s$.
We define time t to be the moment when u is chosen, but before u is deleted from the set Q. At time t, the following hold:

- For every vertex z in $S, d(z)=\delta(s, z)$. This follows from the way we have chosen u and from Lemma 2.
- The source vertex s is in S.
- The vertex u is in Q.

Let P be a shortest directed path from s to u. Since, at time $t, s \in S$ and $u \in Q$, this path contains an edge, say (x, y), such that, at time $t, x \in S$ and $y \in Q$. (In fact, there may be several such edges.)

At time t, u is chosen as the vertex in Q for which $d(u)$ is minimum. Since at that time, y is in Q, we have

$$
\begin{equation*}
d(u) \leq d(y) \tag{2}
\end{equation*}
$$

Consider the iteration in which x is chosen as the vertex in Q for which $d(x)$ is mimimum. Note that this happens before time t. It follows from the algorithm that, at the end of this iteration,

$$
\begin{equation*}
d(y) \leq d(x)+w t(x, y) \tag{3}
\end{equation*}
$$

By Lemma 2, $d(x)$ does not change afterwards. The value of $d(y)$ may change afterwards, but if it does, it becomes smaller. Therefore, (3) still holds at time t.

Since P is a shortest path from s to u, we have

$$
\begin{equation*}
\delta(s, y)=\delta(s, x)+w t(x, y) \tag{4}
\end{equation*}
$$

Since all edge weights are non-negative, we have

$$
\begin{equation*}
\delta(s, y) \leq \delta(s, u) \tag{5}
\end{equation*}
$$

By combining the above inequalities, we obtain

$$
\begin{aligned}
d(u) & \leq d(y) & & (\text { from (2) }) \\
& \leq d(x)+w t(x, y) & & \left(\text { from }\left(\frac{3}{2}\right)\right) \\
& =\delta(s, x)+w t(x, y) & & (\text { since } x \in S \text { at time } t) \\
& =\delta(s, y) & & \text { (from (4)) } \\
& \leq \delta(s, u) & & \text { (from (5)) } \\
& <d(u) . & & \text { from (1) })
\end{aligned}
$$

Thus, we have shown that $d(u)<d(u)$, which is a contradiction.

[^0]: *School of Computer Science, Carleton University, Ottawa, Canada.

