Minimum Spanning Trees

Michiel Smid*
May 15, 2006

1 Introduction

We are given a connected undirected graph G = (V, E) with vertex set V' and
edge set E. Each edge (u,v) € E has a weight wt(u,v) which is a positive
real number. We denote the number of vertices by n and the number of edges
by m. We want to compute a subset 7" of E such that

1. the graph (V,T) is connected, and
2. the weight of T, which is }(, ,cp wt(u,v), is minimum.

Observe that in order to satisfy 1. and 2., the graph (V,T) must be a tree'.
Therefore, it is called a minimum spanning tree of G.

In these notes, we will present two algorithms to compute a minimum
spanning tree of G. Both algorithms are based on the following lemma.

Lemma 1 Let V. =V, UV, be a partition of the verter set V. (Hence, V)
and Vy are both non-empty and disjoint.) Let (u,v) be an edge of minimum
weight that connects Vi and Vs, i.e., u € Vi, v € Vo, (u,v) € E, and

wt(u,v) = min{wt(z,y) : v € Vi,y € Vo, (z,y) € E}.

Then there is a minimum spanning tree of G that contains the edge (u,v).

*School of Computer Science, Carleton University, 1125 Colonel By Drive, Ottawa,
Ontario, Canada K1S 5B6. E-mail: michiel@scs.carleton.ca.

lrecall that a graph is a tree if and only if it is connected and does not contain any
cycle.

Va

Figure 1: Illustrating the proof of Lemma 1.

Proof. Let MST be an arbitrary minimum spanning tree of G. If this tree
contains the edge (u,v), then we are done. So assume that MST does not
contain (u,v). We will construct another minimum spanning tree MST' that
contains the edge (u,v).

Consider the graph G’ obtained by adding the edge (u,v) to MST. (Refer
to Figure 1.) In this graph, there is a cycle that contains (u,v). Since (u,v)
is an edge between the sets V] and V5, there must be another edge, say (z,y),
on this cycle such that z € V; and y € V,. Note that (z,y) is an edge of
MST. Tt follows from our choice of the edge (u,v) that

wt(u,v) < wt(z,y).
Let MST' be the graph obtained from MST by replacing edge (x,y) by (u,v),

ie.,

MST" := (MST \ {(z,y)}) U{(u,v)}.
Then, MST' is a spanning tree of G, and

wt(MST') = wt(MST) — wt(z,y) + wt(u,v) < wt(MST).
On the other hand, since MST is a minimum spanning tree, we have

wt(MST) < wt(MST').

2

It follows that
wt(MST') = wt(MST),

i.e., MST' is also a minimum spanning tree of G. Hence, we have shown that
there is a minimum spanning tree of G that contains the edge (u,v). [

2 Kruskal’s algorithm

Our first minimum spanning tree algorithm is due to Kruskal (1956). This
algorithm does the following. It maintains a forest, which is a collection of
trees. In each step, an edge of minimum weight is added that does not create
a cycle. More precisely:

1. The algorithm starts with a forest consisting of n trees, each consisting
of a single vertex of V.

2. The algorithm combines two trees in the forest, using an edge of min-
imum weight, and repeats this, until the forest consists of one single
tree. As we will see, this final tree is a minimum spanning tree of G.

The algorithm is given in Figure 2. It takes as input the connected undirected
weighted graph G = (V| F), and gives as output a minimum spanning tree
of G. The graph G has n vertices and m edges. The vertices are denoted as
V =A{z1,29,...,2,}.

We now prove that this algorithm indeed computes a minimum spanning
tree of the graph G = (V, E). The following lemma follows immediately from
the algorithm.

Lemma 2 Let k be an index with 1 < k < m, and consider the k-th iteration
of Kruskal’s algorithm. At any moment after this iteration, the vertices uy
and vy, are connected by a path in the graph (V,T), where T := |, T}.

Lemma 3 During the main for-loop of Kruskal’s algorithm, the following
invariant s maintained:

1. The non-empty sets V; form a partition of the verter set V.

2. There is a minimum spanning tree of G that contains the edge set T :=
U, 12

Kruskal’s Algorithm

sort the m edges of E in non-decreasing order of their weights;
let e, eo, ..., e, be the sorted sequence, i.e.,

wt(er) < wi(ey) < ... < wi(ey);

fori:=1ton

do V; :={z;};
T =10
endfor;

for k:=1tom

do (x do we include edge e;? *)
let uy and v, be the vertices of e;
1 := index such that u; € V;;
J = index such that v, € Vj;

ifi#j

then (x adding edge (ug, vx) does not introduce a cycle %)
Vi=V,UVj;
Vi =0;
Ti =T, U T; U{(uk,ve) 5
7,0

endif

endfor

Figure 2: Kruskal’s minimum spanning tree algorithm.

3. For all i and i’ with i # 7', no vertex of V; is connected by a path (in
the graph (V,T)) to any vertex of Vy.

Proof. The first and third claims follow immediately from the algorithm. So
it remains to prove the second claim. Immediately before the first iteration
of the for-loop, the edge set T' is empty. Hence, the second claim is true at
that moment.

Let 1 < k < m, and consider the k-th iteration of the for-loop. Assume
the second claim holds at the beginning of this iteration. Consider the indices
¢ and j such that u, € V; and v, € V. If 4 = j, then the edge set T" does
not change during this iteration. Hence, in this case the second claim holds
immediately after the k-th iteration. So assume that 7 # j. We first show

that
wt(ug, vx) = min{wt(z,y) : z € Vi,y € V\V,, (z,y) € E}. (1)

To prove (1), assume that there is an edge (z,y) € E such that z € V},
y e V\V, and
wt(z,y) < wt(ug, vg)-

Let i’ be the index such that—at the beginning of the k-th iteration—y € Vj:.
Since x € V; and y € V' \ 'V}, we have i #i'.

Let a be the integer such that the edge (x,y) was tested in the a-th
iteration of the for-loop. Since we test the pairs of points in non-decreasing
order of their distances, we have 1 < a < k. Hence, by Lemma 2, at the
beginning of the k-th iteration, the vertices x and y are connected by a path
in the graph (V, 7). But then the third claim implies that at that moment,
the vertices and y are contained in the same subset, i.e., ¢ = i'. This is a
contradiction.

So we know that (1) holds. Let MST be a minimum spanning tree of G
that contains the edges of T. (Here, T is the edge set at the beginning of the
k-th iteration.) If (ug,vy) is an edge of MST, then the second claim is true
immediately after the k-th iteration. (Note that (ug,vg) is added to T during
this iteration.) Assume that (ug,v) is not an edge of MST. We replace, in
MST, any edge e that joins a vertex of V; with a vertex of V' \ V;, by edge
(ug,vk). (Note that e is not contained in 7".) As in the proof of Lemma 1,
it follows that this gives another minimum spanning tree of G' that contains
the edge set T U {(ug, vx)}. Hence, also in this case, the second claim holds
immediately after the k-th iteration. |

Lemma 4 Let T := |J,T; be the edge set that is computed by Kruskal’s
algorithm. The graph (V,T) is a minimum spanning tree of the input graph
G.

Proof. It follows from Lemma 2, that (V,T) is connected. By Lemma 3,
there is a minimum spanning tree that contains this graph (V, 7). Since the
minimum spanning tree is a connected graph of minimum weight, it follows
that (V,7T) is a minimum spanning tree of G. [

How do we implement Kruskal’s algorithm? Sorting the m edges of E
takes O(mlogm) time. Since m < (}), the sorting step takes O(mlogn)
time. The first for-loop takes O(n) time.

Let us consider the main for-loop. We maintain each set 7; of edges in a
linked list. Then, each of the assignments T; := T;UT;U{(u, v)} and T} := ()
takes O(1) time. Since each of these assignments is carried out exactly n — 1
times during the main for-loop (why?), the total time for maintaining the
edge sets is O(n).

The main problem is to maintain the non-empty sets V;. We need a data
structure that stores these sets, and that supports the following operations:

e Initialization: V; := {z;}. This operation has to be processed for n
different values of i.

e Given a vertex x € V, find the index i such that x € V;. This operation
has to be processed exactly 2m times.

e Given two distinct indices ¢ and j, assign V; := V; UV} and V; := 0.
This operation has to be processed exactly n — 1 times.

In Section 2.1, we will give a data structure having the following proper-
ties:

e Initializing any set V; can be done in O(1) time. So overall, we need
O(n) time for the entire initialization.

e For an arbitrary vertex x € V, we can find in O(logn) time, the index
1 such that = € V;. Hence, the overall time for all these operations is
O(mlogn).

e The union of any two distinct sets V; and V; can be computed in O(1)
time. Hence, for these operations, we need O(n) total time.

It follows that the total time for maintaining the non-empty sets V; is
O(mlogn). This will prove the following theorem.

Theorem 1 Given a connected undirected weighted graph with n vertices
and m edges, Kruskal’s algorithm computes a minimum spanning tree of G
in O(mlogn) time.

2 B
(6) @f (D (13) (4)

Figure 3: Trees for the sets A = {1,3,5,6,7,10,11,17,21} and B =
{2,4,8,9,12,13,15,19}.

2.1 The Union-Find problem

We are given a collection of n disjoint sets Vi, V5, ..., V,, each containing
a single element, and want to process a sequence of operations, where each
operation is of one of the following two types:

e Union(A, B,C): Combine the two disjoint sets A and B into a new set
named C. (Afterwards, the old sets A and B no longer exist.)

e Find(z): Compute the name of the (unique) set that contains z.

The data structure consists of a collection of trees. For each set A in the
current collection of sets, there is one tree having |A| nodes. Each node in
this tree stores one element of A. Moreover, except for the root, each node
contains a pointer to its parent. With the root, we store the name of the set
and the number of its elements. See Figure 3.

Initialization: At the start of the sequence of operations, there are n trees.

The i-th tree, 1 < ¢ < n, consists of one node that stores the only element
of V;, the name of this set and its size (which is one).

7

Initializing one tree clearly can be done in O(1) time.

Union: To process the operation Union(A, B,C), we are given pointers to
the roots r(A) and r(B) of the trees that store the sets A and B, respectively.
In these roots, we read the number of elements of A and B. We distinguish
two cases.

1. If |A| < |B|, then we merge both trees by making r(A) a child of r(B):
We give r(A) a pointer to r(B), and with r(B), we store the name C
of the new set and its size, which is |A| + |B].

2. If |B| < |A|, then we merge both trees by making r(B) a child of r(A):
We give r(B) a pointer to r7(A), and with r(A), we store the name C
of the new set and its size, which is |A| + | B].

See Figure 4 for an example. It is clear that one Union operation can be
processed in O(1) time.

Find: To process the operation Find(x), we are given a pointer to the node
u containing element z. Starting in this node u, we follow parent-pointers
until we reach the root r of u’s tree. In r, we read the name of the set that
contains z.

The time for this Find operation is bounded by the height of the tree,
which is the number of edges on a longest path from any leaf to the root.
The following lemma implies an upper bound on the height of any tree in
our data structure.

Lemma 5 At any moment during the sequence of Union and Find opera-
tions, and for each set A, we have

\A| > Qh(TA),

where Ty is the tree that stores the elements of A, and h(T4) is the height of
this tree.

Proof. After the initialization, each set A has size one. The tree T4 storing
A consists of a single node. Hence, |[A| = 1 and h(T4) = 0, which implies
that |A| > 2h(Ta),

Figure 4: The result of Union(A, B,C) on the two trees of Figure 3.

Consider an operation Union(A, B,C), and assume that |A| > 2T4) and
|B| > 2MTB). We will show that |C| > 27¢) after this operation. We may
assume without loss of generality that |A| < |B|. Note that

hMTc) = max(1 + h(Ta), h(Tp)).
We distinguish two cases.
Case 1: h(T¢) = h(Tg). Then
C| = [A] +|B| > |B| > 2T = 2h(T0),
Case 2: h(T¢) = 1+ h(T4). In this case, we have

O] = |A| +|B] > 2 |A] > 2. 2"(Ta) = 21+hT4) = gh(Te),

Consider any set A in our collection of disjoint sets. Then, by Lemma 5,
|A| > 2MT4)_ Since |A| < n, it follows that

hT4) < log|A| < logn.

This proves that each Find operation can be processed in O(logn) time.
We have proved the following result:

Theorem 2 For the Union-Find problem on n elements, there is a data
structure such that

1. initializing any singleton set takes O(1) time,
2. any Find operation can be processed in O(logn) time, and

3. any Union operation can be processed in O(1) time.

3 Prim’s algorithm

We have seen that Kruskal’s algorithm can be implemented such that its
running time is O(mlogn). In this section, we will give another algorithm
having the same running time. This algorithm is commonly known as Prim’s
algorithm. It was discovered independently by Jarnik (1930), Prim (1957),
and Dijkstra (1959).

Consider again the connected undirected weighted graph G = (V, E).
Prim’s algorithm does the following. It starts with a set A consisting of an
arbitrary vertex of V, and an empty set 7" of edges. In each step, an edge of
minimum weight joining a vertex of A with a vertex of V' \ A is added to 7.
In this step, the vertex of this edge that is in V' \ A “moves” to the set A.
The algorithm terminates as soon as A = V. As we will see, at that moment,
the graph (V,T) is a minimum spanning tree of G. A high-level description
of this algorithm is given in Figure 5.

Lemma 6 During the while-loop of Prim’s algorithm, the following invariant
s maintained:

e Fach edge of T connects two vertices of A.

e There is a minimum spanning tree of G that contains the edge set T.

10

Prim’s Algorithm

r := arbitrary vertex of V;

A= {r};

T:=0;

while A #V

do find an edge (u,v) € E of minimum weight such that
u€ Aand v €V \ A4;

A:=AU{v}
T:=TU{(u,v)}
endwhile

Figure 5: A high-level description of Prim’s minimum spanning tree algo-
rithm.

Proof. It is clear that the first part of the invariant holds. So let us prove
that the second part also holds.

Immediately before the while-loop starts, the set 7" is empty. Hence, the
second part of the invariant holds at that moment. Consider one iteration
of the while-loop, and assume that the invariant holds at the beginning of
it. Consider the sets A and T at the beginning of this iteration. Let MST
be a minimum spanning tree of G' that contains all edges of 7. Consider the
edge (u,v) that is added to T during this iteration. If (u,v) is an edge of
MST, then the invariant holds at the end of this iteration, i.e., for the set
TU{(u,v)}.

Otherwise, if (u,v) is not an edge of MST, we replace in MST any edge
e that joins a vertex of A with a vertex of V' \ A, by edge (u,v). (Note
that, by the first part of the invariant, e is not contained in 7".) It follows in
exactly the same way as in the proof of Lemma 1, that this results in another
minimum spanning tree MST' of G that contains the edge set T U {(u,v)}.
Hence, also in this case the invariant holds at the end of this iteration. N

Lemma 7 Let T be the edge set that is computed by Prim’s algorithm. The
graph (V,T) is a minimum spanning tree of the input graph G.

Proof. We make the following observations:

1. Initially, the set 1" is empty.

11

2. The while-loop makes exactly n — 1 iterations.
3. In each iteration, one edge is added to T

Hence, at the end of the algorithm, the set 7" contains exactly n — 1 edges.
By Lemma 6, there is a minimum spanning tree of G that contains this edge
set 7'. Since a minimum spanning tree has n — 1 edges, it follows that the
graph (V,T) is a minimum spanning tree of G. [|

How do we implement Prim’s algorithm? The main problem is to find an
edge in E of minimum weight that joins a vertex of A and a vertex of V' \ A.
Computing this edge by brute-force leads to a total running time of ©(nm).
(Why?)

In order to speed up the algorithm, we maintain the following information.

e For each vertex y € V' \ A,

— a variable minweight(y), whose value is
minweight(y) = min{wt(z,y) : © € A, (z,y) € E}.

(In words, minweight(y) is the minimum weight of any edge be-
tween y and a vertex of A.)

— a variable closest(y), which is a vertex z € A for which (z,y) € E
and wt(z,y) = minweight(y). (In words, closest(y) is the vertex
of A that is part of the edge of minimum weight between y and
any vertex in A.)

Observation 1 We have
min{minweight(y) : y € V\A} = min{wt(z,y) : z € A,y € V\A, (z,y) € E}.

A version of Prim’s algorithm that uses these variables is given in Figure 6.
The value of the variable k is equal to the number of elements in the set A,
whereas the set @ is equal to V' \ A.

We maintain the set T in a list. Also, with each vertex, we store a bit
indicating whether it belongs to A or to Q.

How do we find the vertex v of () for which minweight(v) is minimum?
Here is the answer: We maintain the elements of () in a min-heap with the
keys being the minweight-values.

12

Prim’s Algorithm

r := arbitrary vertex of V;

A= {r};

T:=0;

for each y € V' \ {r}

do minweight(y) := oo;
closest(y) := nil

endfor;

for each edge (r,y) € E

do minweight(y) := wt(r,y);
closest(y) :=r

endfor;

Q:=V\{rh

k:=1;

while £ #n

do v := vertex of @ for which minweight(v) is minimum;
u := closest(v);

A=AU{v}
Q= Q\{v};
T:=TU{(uv)};
k:=k+1;

for each edge (v,y) € F
do if y € @ and wit(v,y) < minweight(y)
then minweight(y) := wt(v, y);
closest(y) :=v
endif
endfor
endwhile

Figure 6: An efficient version of Prim’s minimum spanning tree algorithm.

Immediately before the while-loop, we build the heap for the elements of
@ =V \ {r}. This takes O(n) time. So the part of the algorithm up to the
while-loop takes O(n) time.

Consider one iteration of the while-loop. Finding the vertex v € () whose
minweight-value is minimum, and deleting v from @) is an extract_min oper-

13

ation in the heap; it takes O(logn) time. In the for-loop, we consider each
edge (v,y) € E. If y € @ and wt(v,y) < minweight(y), then we decrease
minweight(y) to wt(v,y); in the heap, this corresponds to a decrease_key
operation which takes O(logn) time. Therefore, the time for one iteration of
the while-loop is

O(logn + deg(v) - logn) = O(deg(v) - logn),

where deg(v) is the degree of vertex v.
It follows that the entire while-loop takes time

0 (lognz deg(v)) :

veEV

Since), . deg(v) = 2m, the while-loop takes O(mlogn) time. We have
shown that the entire algorithm takes O(n + mlogn) = O(mlogn) time.

Theorem 3 Given a connected undirected weighted graph with n wvertices

and m edges, Prim’s algorithm computes a minimum spanning tree of G in
O(mlogn) time.

14

