
COMP 3804 — Solutions Assignment 2

Question 1: Write your name and student number.

Solution: Aitana Bonmat́ı, 14

Question 2: Since you all miss COMP 2804 so much, let’s start with a basic probability
question. First some notation: If x1, x2, . . . , xm are real numbers, then their product is
written as

m∏
i=1

xi = x1 · x2 · x3 · · ·xm.

Let (S,Pr) be a probability space, let m ≥ 2 be an integer, and let B1, B2, . . . , Bm be a
sequence of events in this space. In this question, you will prove that

Pr (B1 ∩B2 ∩ · · · ∩Bm) = Pr (B1) ·
m∏
i=2

Pr (Bi | B1 ∩B2 ∩ · · · ∩Bi−1) . (1)

Question 2.1: Using the definition of conditional probability, prove that (1) holds when
m = 2.
Question 2.2: Using the definition of conditional probability, prove that (1) holds when
m = 3.
Question 2.3: Using induction and the definition of conditional probability, prove that (1)
holds for every integer m ≥ 2.

Solution: Recall that

Pr(A | B) =
Pr(A ∩B)

Pr(B)
.

For m = 2, (1) becomes

Pr(B1 ∩B2) = Pr(B1) · Pr(B2 | B1).

Starting with the right-hand side, we get

Pr(B1) · Pr(B2 | B1) = Pr(B1) ·
Pr(B1 ∩B2)

Pr(B1)

= Pr(B1 ∩B2).

For m = 3, (1) becomes

Pr(B1 ∩B2 ∩B3) = Pr(B1) · Pr(B2 | B1) · Pr(B3 | B1 ∩B2).

Starting with the right-hand side, we get

Pr(B1) · Pr(B2 | B1) · Pr(B3 | B1 ∩B2)

= Pr(B1) ·
Pr(B1 ∩B2)

Pr(B1)
· Pr(B1 ∩B2 ∩B3)

Pr(B1 ∩B2)

= Pr(B1 ∩B2 ∩B3).

1

From these two cases, you should see what is going on. We now do the induction proof.
We have seen above that (1) is true for m = 2. Let m ≥ 3 and assume that (1) is true for
m− 1, i.e., we assume that

Pr (B1 ∩B2 ∩ · · · ∩Bm−1) = Pr (B1) ·
m−1∏
i=2

Pr (Bi | B1 ∩B2 ∩ · · · ∩Bi−1) .

We note that

Pr(B1 ∩B2 ∩ · · · ∩Bm) = Pr(B1 ∩B2 ∩ · · · ∩Bm−1) · Pr(Bm | B1 ∩B2 ∩ · · · ∩Bm−1).

By using the induction hypothesis and some algebra, we get

Pr(B1 ∩B2 ∩ · · · ∩Bm)

= Pr(B1 ∩B2 ∩ · · · ∩Bm−1) · Pr(Bm | B1 ∩B2 ∩ · · · ∩Bm−1)

= Pr (B1) ·
(
m−1∏
i=2

Pr (Bi | B1 ∩B2 ∩ · · · ∩Bi−1)

)
· Pr(Bm | B1 ∩B2 ∩ · · · ∩Bm−1)

= Pr (B1) ·
m∏
i=2

Pr (Bi | B1 ∩B2 ∩ · · · ∩Bi−1) .

Question 3: In class, we have seen the following randomized selection algorithm:

Algorithm RSelect(S, k):
Input: Sequence S of numbers, integer k with 1 ≤ k ≤ |S|
Output: k-th smallest number in S
if |S| = 1
then return the only element in S
else p = uniformly random element in S;

by scanning S and making |S| − 1 comparisons, divide it into
S< = {x ∈ S : x < p},
S= = {x ∈ S : x = p},
S> = {x ∈ S : x > p};
if k ≤ |S<|
then RSelect(S<, k)
else if k ≥ 1 + |S<|+ |S=|

then RSelect(S>, k − |S<| − |S=|)
else return p
endif

endif
endif

2

Let T be the random variable whose value is the number of comparisons made by this
algorithm. With n denoting the length of the sequence S, we have shown that the expected
value of T is O(n).

A natural question to ask is if the value of T is O(n) with high probability, i.e., does there
exist a positive constant C, such that

lim
n→∞

Pr(T ≤ Cn) = 1?

In this question, you will prove that the answer is “no”.

In the rest of this question, we assume that the sequence S contains the num-
bers 1, 2, 3, . . . , n in sorted order. We are going to run algorithm RSelect(S, 1).

Algorithm RSelect(S, 1) and its recursive calls choose pivots p1, p2, p3, . . .:

• p1 is chosen uniformly at random in {1, 2, . . . , n}.

• If p1 6= 1, then p2 is chosen uniformly at random in {1, 2, . . . , p1 − 1}.

• If p2 6= 1, then p3 is chosen uniformly at random in {1, 2, . . . , p2 − 1}.

• If p3 6= 1, then p4 is chosen uniformly at random in {1, 2, . . . , p3 − 1}.

• Etcetera.

Let C be an arbitrary positive integer, and let n be a very large integer that is a multiple of
4C. Divide the set {1, 2, . . . , n} into 2C + 1 subsets, as indicated in the figure below. The
subset S0 has size n/2, whereas each subset Si, for 1 ≤ i ≤ 2C, has size n/(4C).

S1S2S2C

n/(4C) n/(4C) n/(4C)n/2

. . .S0

Define the events
A = “T > Cn”

and, for each i = 1, 2, . . . , 2C,
Bi = “pi ∈ Si”.

Question 3.1: Prove that

Pr (B1 ∩B2 ∩ · · · ∩B2C) ≤ Pr(A).

Question 3.2: Use Question 2 to prove that

Pr(A) ≥ (1/(4C))2C .

Question 3.3: Conclude that

Pr(T ≤ Cn) ≤ 1− (1/(4C))2C .

3

Solution: For 3.1, it is sufficient to show that

B1 ∩B2 ∩ · · · ∩B2C ⊆ A,

i.e., if the event B1 ∩B2 ∩ · · · ∩B2C occurs, then the event A also occurs.
Let us assume that the event B1 ∩ B2 ∩ · · · ∩ B2C occurs. We are going to show that A

also occurs, i.e., T > Cn.
When the first pivot p1 is chosen, each of the other n − 1 numbers is compared to p1.

Thus, the number of comparisons made is n− 1, which is more than n/2.
Since B1 occurs, p1 is in S1. Thus, there is a recursive call, in which the second pivot p2

is chosen. This second pivot is compared to all elements in S0 (and to others as well). Thus,
the number of comparisons is at least n/2.

Since B2 occurs, p2 is in S2. Thus, there is a recursive call, in which the third pivot p3
is chosen. This third pivot is compared to all elements in S0 (and to others as well). Thus,
the number of comparisons is at least n/2.

Etc., etc.
Since B2C−1 occurs, p2C−1 is in S2C−1. Thus, there is a recursive call, in which the pivot

p2C is chosen. This (2C)-th pivot is compared to all elements in S0 (and to others as well).
Thus, the number of comparisons is at least n/2.

By adding up all these comparisons, we conclude that the value of T , i.e., the total
number of comparisons, is more than

2C · n/2 = Cn.

For 3.2: Using 3.1, it is sufficient to show that

Pr (B1 ∩B2 ∩ · · · ∩B2C) ≥ (1/(4C))2C .

First note that

Pr (B1 ∩B2 ∩ · · · ∩B2C) 6= Pr(B1) · Pr(B2) · · ·Pr(B2C),

because the events B1, B2, . . . , B2C are not independent. That is why we are going to use
Question 2.

Using Question 2, it is sufficient to show that

Pr (B1) ·
2C∏
i=2

Pr (Bi | B1 ∩B2 ∩ · · · ∩Bi−1) ≥ (1/(4C))2C .

• Pr(B1) is the probability that the first pivot p1 is in S1. There are n choices for p1,
and n/(4C) of these are in S1. Thus,

Pr(B1) =
n/(4C)

n
= 1/(4C).

4

• To determine Pr(B2 | B1), we assume that event B1 occurs, i.e., the first pivot p1 is in
S1. There are p1 − 1 ≤ n ways to choose the second pivot p2. Note that all elements
in S2 are included in these. Among all possible choices for p2, there are n/(4C) ways
to choose it from S2. Thus,

Pr(B2 | B1) =
n/(4C)

p1 − 1
≥ n/(4C)

n
= 1/(4C).

• In general, let i be such that 2 ≤ i ≤ 2C. To determine Pr(Bi | B1∩B2∩· · ·∩Bi−1), we
assume that all events B1, B2, . . . , Bi−1 occur. There are pi−1 − 1 ≤ n ways to choose
the pivot pi. Note that all elements in Si are included in these. Among all possible
choices for pi, there are n/(4C) ways to choose it from Si. Thus,

Pr(Bi | B1 ∩B2 ∩ · · · ∩Bi−1) =
n/(4C)

pi−1 − 1
≥ n/(4C)

n
= 1/(4C).

• Putting it al together, we get

Pr (B1) ·
2C∏
i=2

Pr (Bi | B1 ∩B2 ∩ · · · ∩Bi−1) ≥ (1/(4C))2C .

3.3 is easy, because

Pr(T ≤ Cn) = 1− Pr(A) ≤ 1− (1/(4C))2C .

Question 4: You are given a min-heap A[1 . . . n] and a variable largest that stores the
largest number in this min-heap.

In class, we have seen algorithms Insert(A, x) (which adds the number x to the min-
heap and restores the heap property) and ExtractMin(A) (which removes the smallest
number from the heap and restores the heap property).

Explain, in a few sentences, how these two algorithms can be modified such that the
value of largest is correctly maintained. The running times of the two modified algorithms
must still be O(log n).

Solution:

• Insert(A, x): The algorithm is the same as the one we have seen in class. At the
end of this algorithm, we set largest = max(largest , x). The running time will be
O(log n) + O(1) = O(log n).

• ExtractMin(A): The algorithm is the same as the one we have seen in class. Note
that, if the heap is not empty afterwards, the value of largest does not change. If A
is empty afterwards, then we set largest = −∞. The running time will be O(log n) +
O(1) = O(log n).

5

Question 5: Let m be a large integer and consider m non-empty sorted lists L1, L2, . . . , Lm.
All numbers in these lists are integers. Let n be the total length of all these lists.

Describe an algorithm that computes, in O(n logm) time, two integers a and b, with
a ≤ b, such that

• each list Li contains at least one number from the set {a, a + 1, . . . , b} and

• the difference b− a is minimum.

For example, if m = 4,
L1 = (2, 3, 4, 8, 10, 15)
L2 = (1, 5, 12)
L3 = (7, 8, 15, 16)
L4 = (3, 6),

then the output can be (a, b) = (4, 7) or (a, b) = (5, 8).
As always, justify the correctness of your algorithm and explain why the running time is

O(n logm).
Hint: Use a min-heap of size m and use Question 4. For the example, draw it like this, then
stare at it until you “see” the algorithm:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 4 8 10 15
1 5 12

7 8 15 16
3 6

Solution: After having stared at the figure long enough, you will have noticed that we want
to compute the smallest interval that contains at least one element from each list. We will
do this by “sliding” an interval [a, b] from left to right and take care that this interval always
contains at least one element from each list.

• For each i = 1, 2, . . . ,m, take the first element xi in list Li and remove it from Li.
Let H be the sequence x1, x2, . . . , xm. Let smallest be the smallest number in H, let
largest be the largest number in H, and let answer = largest − smallest . Then the
interval [smallest , largest] contains at least one element from each list, and the length
of this interval is answer .

• How do we “slide” this interval to the next one: We delete smallest from H. Let i be
the index such that smallest was in Li. Then we add the first element in Li to H, and
delete it from Li. Now we recompute smallest , largest , and answer .

• We repeat this until one of the lists gets empty.

• What are the operations that we need?

6

– We have to delete the smallest number in H.

– We have to insert an element into H.

– We have to keep track of the largest number in H.

• The first two operations suggest that we store H in a min-heap.

• For the third operation, we will use Question 4.

Here is a more formal description of the algorithm. We assume that every number
“knows” the index of the list Li it is part of.

Initialization:

• For i = 1, 2, . . . ,m, let xi be the first element in Li, and delete it from Li.

• Build a min-heap H for the numbers x1, x2, . . . , xm.

• Set smallest = Min(H).

• By scanning x1, x2, . . . , xm, compute the largest among these numbers and store it in
the variable largest .

• Set answer = largest − smallest .

Repeat the following as long as all lists are non-empty:

• x = ExtractMin(H); this updates largest , see Question 4.

• Let i be the index such that x was in Li.

• Let xi be the first element in Li and remove it from Li.

• Insert(H, xi); this updates largest , see Question 4.

• Set smallest = Min(H).

• Set answer = min(answer , largest − smallest).

After the loop has terminated: Return answer .

Running time:

• The initialization takes O(m) time.

• Note that, at any moment, the heap stores m numbers. Therefore, each operation that
we perform on the heap takes O(logm) time.

• There are at most n ExtractMin-operations, at most n Insert-operations, and at
most n Min-operations.

7

• Thus, the loop takes time O(n logm).

• We conclude that the total running time is O(m+n logm), which is O(n logm), because
m ≤ n.

Question 6: Consider the following undirected graph:

A B
C

D

E

F

G

H

I

J

K L

Question 6.1: Draw the DFS-forest obtained by running algorithm DFS on this graph.
Recall that algorithm DFS uses algorithm Explore as a subroutine.

In the forest, draw each tree edge as a solid edge, and draw each back edge as a dotted
edge.

Whenever there is a choice of vertices (see the two lines labeled (*)), pick the one that is
alphabetically first.
Question 6.2: Do the same, but now, whenever there is a choice of vertices (see the two
lines labeled (*)), pick the one that is alphabetically last.

Algorithm DFS(G):
for each vertex u
do visited(u) = false
endfor;
cc = 0;
for each vertex v (*)
do if visited(v) = false

then cc = cc + 1
Explore(v)

endif
endfor

Algorithm Explore(v):
visited(v) = true;
ccnumber(v) = cc;
for each edge {v, u} (*)

8

do if visited(u) = false
then Explore(u)
endif

endfor

Solution: We start with (6.1). In case there is more than one choice, we pick the alphabet-
ically smallest one. Thus, algorithm DFS(G) starts by calling Explore(A). The vertices
in each adjacency list are sorted in increasing order. Here is the resulting DFS-forest, which
consists of two trees:

A

B

C

D

E

F

G

H

I

J

K

L

Next we do (2.2). In case there is more than one choice, we pick the alphabetically
largest one. Thus, algorithm DFS(G) starts by calling Explore(L). The vertices in each
adjacency list are sorted in decreasing order. Here is the resulting DFS-forest, which consists
of two trees:

A

B

C

D

E

F

G

H

I

J

K

L

Question 7: Prove that an undirected graph G = (V,E) is bipartite if and only if G does
not contain any cycle having an odd number of edges.

9

Solution: Assume that G is bipartite, i.e., the vertex set V of G can be partitioned into
two sets L and R, such that each edge has one vertex in L and one vertex in R. We have to
show that G does not contain any odd cycle. Assume there is an odd cycle

v1, v2, v3, . . . v2k+1, v1.

We may assume that v1 is in L. Then v2 is in R, v3 is in L, v4 is in R, . . . , v2k−1 is in L, v1
is in R. This is a contradiction.

Now we assume that G does not contain any odd cycle. We have to show that G is
bipartite. We run algorithm DFS(G) and classify each edge as a tree edge or a back edge.
Consider the tree defined by the tree edges. Using this tree, we partition the vertex set
V into two subsets L and R: The vertices at the even levels are added to L, whereas the
vertices at the odd levels are added to R. It is clear that for every tree edge, one vertex is in
L and the other vertex is in R. Assume, by contradiction, that there is a back edge {u, v}
such that both u and v are in L (the case when they are both in R is symmetric). We may
assume that v is in the subtree of u. Consider the following cycle in G:

• Start at u, follow tree edges to v, then follow the back edge to u.

Since both u and v are in L, this cycle has an odd number of edges, which is a contradiction.

Question 8: Since Taylor Swift and Travis Kelce miss each other very much, they decide
to meet. Taylor and Travis live in a connected, undirected, non-bipartite graph G = (V,E).
Taylor lives at vertex s, whereas Travis lives at vertex k.

Taylor and Travis move in steps. In each step, Taylor must move from her current vertex
to a neighboring vertex, and Travis must move from his current vertex to a neighboring
vertex.

Prove that there exists a moving strategy such that Taylor and Travis meet each other
at the same vertex.
Hint: While moving around in the graph, each of Taylor and Travis may visit the same
vertex more than once, and may traverse the same edge more than once.

If the graph G consists of the single edge {s, k}, then they will never be at the same
vertex. But in this case G is bipartite.

If the graph contains a path having 8 edges, Taylor lives at one end-vertex, and Travis
lives at the other end-vertex, will they ever be at the same vertex?

Question 7 is useful.

Solution: To get some intuition, assume there is a path (1, 2, 3, 4, 5, 6, 7) with 6 edges,
Taylor lives at vertex 1 and BF (boyfriend) lives at vertex 7.

• In step 1, Taylor moves to 2, and BF moves to 6.

• In step 2, Taylor moves to 3, and BF moves to 5.

• In step 3, Taylor moves to 4, and BF moves to 4. Both Taylor and BF are happy!

10

This works as long as the number of edges on the path is even. In other words, if there is
a path with an even number of edges between the vertices s and k, then there is a strategy
such that Taylor and BF meet at the same vertex. In fact, this path may be a walk, i.e., a
sequence of vertices such that (i) the first vertex is s, the last vertex is k, and there is an
edge between any two consecutive vertices in this sequence. Note that in a walk, vertices
may be visited more than once and edges may be traversed more than once.

If we can prove that there always is a walk with an even number of edges between the
vertices s and k, then we have answered the question.

Since the graph G is not bipartite, we know from Question 7 that there is a cycle C in G
with an odd number of edges. Let c be an arbitrary vertex on this cycle C. Since the graph
G is connected, there is a path P from s to c, and there is a path Q from c to k.

• If the concatenation PQ (which is a path or a walk) has an even number of edges, then
we are done.

• Assume that PQ has an odd number of edges. Consider the walk W that starts at s,
follows P to c, then walks along the cycle C back to c, and then follows Q from c to
k. Since C has an odd number of edges, the number of edges on W is “odd plus odd”,
which is even.

11

