
COMP 3804 — Solutions Tutorial January 19

Problem 5: Solve the following recurrence using the unfolding method that we have seen
in class. Give the final answer using Big-O notation.

T (n) =

{
1 if n = 1,
n + 5 · T (n/7) if n ≥ 7.

You may assume that n is a power of 7.
Solution: We write n = 7k. Unfolding gives

T (n) = n + 5 · T (n/7)

= n + 5
(
n/7 + 5 · T (n/72)

)
= (1 + 5/7)n + 52 · T (n/72)

= (1 + 5/7)n + 52
(
n/72 + 5 · T (n/73)

)
=

(
1 + 5/7 + (5/7)2

)
n + 53 · T (n/73)

=
(
1 + 5/7 + (5/7)2

)
n + 53

(
n/73 + 5 · T (n/74)

)
=

(
1 + 5/7 + (5/7)2 + (5/7)3

)
n + 54 · T (n/74)

...

=
(
1 + 5/7 + (5/7)2 + · · · + (5/7)k−1

)
n + 5k · T (n/7k)

=
k−1∑
i=0

(5/7)in + 5k · T (1)

=
k−1∑
i=0

(5/7)in + 5k

≤
∞∑
i=0

(5/7)in + 7k

=
1

1 − 5/7
n + n

=
9

2
n

= O(n).

Problem 6: The function T (n) is recursively defined as follows:

T (n) =

{
1 if 1 ≤ n ≤ 2,
n + T (n/3) + T (2n/3) if n ≥ 3.

Use the recursion tree method that we have seen in class to prove that T (n) = Θ(n log n).
Solution: If we draw a few levels of the recursion tree, we get the following:

1



n

n/3 2n/3

n/32 2n/32 22n/32

n/33
2n/33 22n/33 23n/3322n/3322n/332n/332n/33

2n/32

From this figure, we see that, if a level is full, it contributes exactly n to the function
T (n). However, since the tree is not perfectly balanced, it is not the case that every level is
full.

The path in the recursion tree that starts at the root and always moves to the left child
has length log3 n (maybe plus or minus 1). Each level, from the root down to the level of
the leftmost leaf, is full and contributes n to T (n). Thus,

T (n) ≥ n log3 n = Ω(n log n).

level 0

level log3 n

level log3/2 n

contributes n to T (n)

contributes ≤ n to T (n)

The path in the recursion tree that starts at the root and always moves to the right child
has length log3/2 n (maybe plus or minus 1). Each level, from the root down to the level of
the rightmost leaf, contributes at most n to T (n). Thus,

T (n) ≤ n log3/2 n = O(n log n).

2


