
COMP 3804 — Solutions Tutorial January 19

Question 1: The Hadamard matrices H0, H1, H2, . . . are recursively defined as follows:

H0 = (1)

and for k ≥ 1,

Hk =

(
Hk−1 Hk−1
Hk−1 −Hk−1

)
.

Thus, H0 is a 1 × 1 matrix whose only entry is 1,

H1 =

(
1 1
1 −1

)
,

and

H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

(1.1) Let k ≥ 0 be an integer and let n = 2k. How many entries does the matrix Hk have?
Express your answer in terms of n.

Solution: We first determine the number of rows in the matrix Hk. Observe that H0 has
1 = 20 row. For k ≥ 1, the number of rows in Hk is twice the number of rows in Hk−1. By
a straightforward induction, it follows that the number of rows in Hk is equal to 2k.

By the same argument, the number of columns in the matrix Hk is equal to 2k. Thus,
the number of entries in Hk is equal to

2k · 2k = n · n = n2.

(1.2) Describe a recursive algorithm Build that has the following specification:

Algorithm Build(k):
Input: An integer k ≥ 0.
Output: The matrix Hk.

For any positive integer n that is a power of 2, say n = 2k, let T (n) be the running time
of your algorithm Build(k). Derive a recurrence for T (n). Use the Master Theorem to give
the solution to your recurrence.

Solution: We obtain the algorithm directly from the recurrence that is used to define the
matrix Hk:

1



Algorithm Build(k):
if k = 0
then return the matrix (1)
else X = Build(k − 1);

Y = −X;

return the matrix

(
X X
X Y

)
endif

Let n ≥ 2; thus, k ≥ 1. Algorithm Build(k) generates one recursive call Build(k − 1),
which takes T (n/2) time. The number of entries in X is equal to (n/2)2 = O(n2). Thus, the
matrix Y can be constructed in O(n2) time. Finally, in O(n2) time, three copies of X and
one copy of Y can be combined to obtain the output of Build(k). This shows that

T (n) = T (n/2) + O(n2).

We are going to apply the Master Theorem: We have a = 1, b = 2, and d = 2. Since
d > logb a, the Master Theorem tells us that T (n) = O(n2).

(1.3) If x is a column vector of length 2k, then Hkx is the column vector of length 2k obtained
by multiplying the matrix Hk with the vector x.

Describe a recursive algorithm Mult that has the following specification:

Algorithm Mult(k, x):
Input: An integer k ≥ 0 and a column vector x of length n = 2k.
Output: The column vector Hkx (having length n).
Running time: must be O(n log n).

Explain why the running time of your algorithm is O(n log n). You are allowed to use
the Master Theorem.
Hint: The input only consists of k and x. The matrix Hk is not given as part of the input.

Solution: An obvious algorithm first constructs the matrix Hk, by running algorithm
Build(k). Then it computes the product Hkx using the definition of multiplication. Each
of these steps takes O(n2) time. Since we are only allowed to spend O(n log n) time, we must
compute Hkx without constructing the entire matrix Hk. Of course, we can do this, because
of the recursive definition of Hk.

We will write the column vector x as

x =

 x1
...
xn

 .

Algorithm Mult(k, x) is a recursive algorithm and does the following:

2



• If k = 0, return the vector (x1).

• Assume that k ≥ 1.

– Split the vector x into two vectors x′ and x′′, both of length n/2 = 2k−1:

x′ =

 x1
...

xn/2


and

x′′ =

 x1+n/2
...
xn

 .

– Run Mult(k − 1, x′) and let the output be y′.

– Run Mult(k − 1, x′′) and let the output be y′′.

– Compute the vector

y =

(
y′ + y′′

y′ − y′′

)
.

– Return the vector y.

Let T (n) denote the running time of algorithm Mult(k, x), where n = 2k. If k ≥ 1, there
are two recursive calls, both of which take time T (n/2), whereas the rest of the algorithm
takes O(n) time. Thus, we obtain the “merge-sort recurrence”

T (n) =

{
some constant if n = 1,
2 · T (n/2) + O(n) if n ≥ 2.

We have seen in class that this recurrence solves to T (n) = O(n log n).
Alternatively, we can use the Master Theorem to solve this recurrence: We have a = 2,

b = 2, and d = 1. Since d = logb a, the Master Theorem tells us that T (n) = O(n log n).

3


