
COMP 3804 — Solutions Tutorial February 2

Problem 1: Some algorithms textbooks have statements of the type

Every comparison-based sorting algorithm takes at least O(n log n) time.

Does such a statement make sense?

Solution: Even Professor Bieber knows that this does not make any sense: The statement
says: For some constant c, every comparison-based sorting algorithm takes at least at most
cn log n time. It is like saying that every beer bottle costs at last at most $100.

Problem 2: Let A[1 . . . n] be an array storing n numbers. In the January 25 lecture, we
have seen algorithm BuildHeap(A) that rearranges the numbers in the input array A such
that the resulting array is a max-heap; see page 56 of my handwritten notes. This algorithm
uses the Heapify-procedure as a subrouting; see page 53 of my handwritten notes. Consider
the following variant of this algorithm:

Algorithm BuildHeap′(A):
for i = 1 to bn/2c
do Heapify(A, i)
endfor

Give an example of an array A[1 . . . n], where n is a small integer (such as n = 7), which
shows that algorithm BuildHeap′ may not result in a max-heap.

Solution: We take the input array A[1 . . . 7] = [4, 6, 5, 3, 2, 7, 1]. For this case, algorithm
BuildHeap′(A) runs, in this order, Heapify(A, 1), Heapify(A, 2), and Heapify(A, 3).

The tree representation of the input array is the following:

123

4

56

7

The call Heapify(A, 1) results in the following tree:

123

4 5

6

7

1

The call Heapify(A, 2) does not change the tree. The call Heapify(A, 3) results in the
following tree:

123

4

5

6

7

This is not a max-heap, because element 7 is not at the root.

Problem 3: Let A[1 . . . n] be an array storing n pairwise distinct numbers, and let k be an
integer with 0 ≤ k < n. We say that this array is k-sorted, if for each i with 1 ≤ i ≤ n, the
entry A[i] is at most k positions away from its position in the sorted order.

For example, a sorted array is 0-sorted. As another example, the array

A[1 . . . 10] = [1, 4, 5, 2, 3, 7, 8, 6, 10, 9]

is 2-sorted, because each entry A[i] is at most 2 positions away from its position in the sorted
order. For i = 3, A[3] is 2 positions away from its position, 5, in the sorted array. For i = 9,
A[9] is 1 position away from its position, 10, in the sorted array.

Describe an algorithm Sort that has the following specification:

Algorithm Sort(A, k):
Input: An array A[1 . . . n] of n pairwise distinct numbers and an integer k with
2 ≤ k < n. This array is k-sorted.
Output: An array B[1 . . . n] containing the same numbers as the input array. The
array B is sorted.
Running time: Must be O(n log k).

Explain why your algorithm is correct and why the running time is O(n log k).
Hint: Use a min-heap of a certain size.

Solution: The approach is as follows:

• Let H be the set consisting of the first k + 1 elements in the input array A[1 . . . n].

• Since the input array is k-sorted, the smallest element in the entire array A[1 . . . n] is
the smallest element in the set H. We find the smallest element in H, delete it from
H, and store it at B[1].

• We add A[k + 2] to the set H. Since the input array is k-sorted, the second smallest
element in the entire array A[1 . . . n] is the second smallest element in the subarray
A[1 . . . k+ 2], which is the smallest element in the set H. We find the smallest element
in H, delete it from H, and store it at B[2].

2

• We add A[k + 3] to the set H. Since the input array is k-sorted, the third smallest
element in the entire array A[1 . . . n] is the third smallest element in the subarray
A[1 . . . k+ 3], which is the smallest element in the set H. We find the smallest element
in H, delete it from H, and store it at B[3].

• We continue this process until B[1 . . . n− k − 1] stores, in sorted order, the n− k − 1
smallest element in the input array A[1 . . . n]. At this moment, the set H consists of
the k + 1 largest elements in the input array A[1 . . . n]. We add the elements of H to
the subarray B[n− k . . . n], one by one, from smallest to largest.

• How do we store the set H? We need the operations Insert and ExtractMin. This
suggests that we store H in a min-heap.

Algorithm Sort(A, k):
Comment: Array A[1 . . . n] is k-sorted.
Comment: The sorted numbers will be stored in array B[1 . . . n].
initialize an array H[1 . . . k + 1];
for i = 1 to k + 1
do H[i] = A[i]
endfor;
BuildHeap(H);
for i = 1 to n− k − 1
do x = ExtractMin(H);

B[i] = x;
Insert(H,A[k + 1 + i])

endfor;
for i = 1 to k + 1
do x = ExtractMin(H);

B[n− k − 1 + i] = x
endfor

Regarding the running time:

• Initializing the array H takes O(k) time, which is O(n).

• The first for-loop takes O(k) time, which is O(n).

• The call to BuildHeap(H) takes O(k) time, which is O(n).

• During the second for-loop, at any moment, the min-heap has size k or k + 1, because
we always delete the smallest element and then insert a new element. Each call to
ExtractMin and Insert takes O(log k) time. The number of iterations of the second
for-loop is n− k − 1, which is at most n. Thus, the total time for the second for-loop
is O(n log k).

3

• During the third for-loop, at any moment, the min-heap has size at most k+1, because
we only delete elements. Each call to ExtractMin takes O(log k) time. The number
of iterations of the third for-loop is k + 1, which is at most n. Thus, the total time for
the third for-loop is O(n log k).

• We conclude that the total running time is

O(n) + O(n) + O(n) + O(n log k) + O(n log k) = O(n log k).

4

