COMP 3804 - Solutions Tutorial February 2

Problem 1: Some algorithms textbooks have statements of the type
Every comparison-based sorting algorithm takes at least $O(n \log n)$ time.
Does such a statement make sense?
Solution: Even Professor Bieber knows that this does not make any sense: The statement says: For some constant c, every comparison-based sorting algorithm takes at least at most $c n \log n$ time. It is like saying that every beer bottle costs at last at most $\$ 100$.

Problem 2: Let $A[1 \ldots n]$ be an array storing n numbers. In the January 25 lecture, we have seen algorithm $\operatorname{BuildHEAP}(A)$ that rearranges the numbers in the input array A such that the resulting array is a max-heap; see page 56 of my handwritten notes. This algorithm uses the Heapify-procedure as a subrouting; see page 53 of my handwritten notes. Consider the following variant of this algorithm:

```
Algorithm BuIldHEAP}\mp@subsup{}{}{\prime}(A)
for }i=1\mathrm{ to \n/2\
do Heapify (A,i)
endfor
```

Give an example of an array $A[1 \ldots n]$, where n is a small integer (such as $n=7$), which shows that algorithm BuildHEAP ${ }^{\prime}$ may not result in a max-heap.

Solution: We take the input array $A[1 \ldots 7]=[4,6,5,3,2,7,1]$. For this case, algorithm $\operatorname{BuildHeap}^{\prime}(A)$ runs, in this order, $\operatorname{Heapify}(A, 1)$, $\operatorname{Heapify}(A, 2)$, and $\operatorname{Heapify}(A, 3)$.

The tree representation of the input array is the following:

The call $\operatorname{Heapify}(A, 1)$ results in the following tree:

The call $\operatorname{Heapify}(A, 2)$ does not change the tree. The call $\operatorname{Heapify}(A, 3)$ results in the following tree:

This is not a max-heap, because element 7 is not at the root.
Problem 3: Let $A[1 \ldots n]$ be an array storing n pairwise distinct numbers, and let k be an integer with $0 \leq k<n$. We say that this array is k-sorted, if for each i with $1 \leq i \leq n$, the entry $A[i]$ is at most k positions away from its position in the sorted order.

For example, a sorted array is 0 -sorted. As another example, the array

$$
A[1 \ldots 10]=[1,4,5,2,3,7,8,6,10,9]
$$

is 2 -sorted, because each entry $A[i]$ is at most 2 positions away from its position in the sorted order. For $i=3, A[3]$ is 2 positions away from its position, 5 , in the sorted array. For $i=9$, $A[9]$ is 1 position away from its position, 10, in the sorted array.

Describe an algorithm SORT that has the following specification:
Algorithm $\operatorname{Sort}(A, k)$:
Input: An array $A[1 \ldots n]$ of n pairwise distinct numbers and an integer k with $2 \leq k<n$. This array is k-sorted.
Output: An array $B[1 \ldots n]$ containing the same numbers as the input array. The array B is sorted.
Running time: Must be $O(n \log k)$.

Explain why your algorithm is correct and why the running time is $O(n \log k)$.
Hint: Use a min-heap of a certain size.
Solution: The approach is as follows:

- Let H be the set consisting of the first $k+1$ elements in the input array $A[1 \ldots n]$.
- Since the input array is k-sorted, the smallest element in the entire array $A[1 \ldots n]$ is the smallest element in the set H. We find the smallest element in H, delete it from H, and store it at $B[1]$.
- We add $A[k+2]$ to the set H. Since the input array is k-sorted, the second smallest element in the entire array $A[1 \ldots n]$ is the second smallest element in the subarray $A[1 \ldots k+2]$, which is the smallest element in the set H. We find the smallest element in H, delete it from H, and store it at $B[2]$.
- We add $A[k+3]$ to the set H. Since the input array is k-sorted, the third smallest element in the entire array $A[1 \ldots n]$ is the third smallest element in the subarray $A[1 \ldots k+3]$, which is the smallest element in the set H. We find the smallest element in H, delete it from H, and store it at $B[3]$.
- We continue this process until $B[1 \ldots n-k-1]$ stores, in sorted order, the $n-k-1$ smallest element in the input array $A[1 \ldots n]$. At this moment, the set H consists of the $k+1$ largest elements in the input array $A[1 \ldots n]$. We add the elements of H to the subarray $B[n-k \ldots n]$, one by one, from smallest to largest.
- How do we store the set H ? We need the operations Insert and ExtractMin. This suggests that we store H in a min-heap.

```
Algorithm \(\operatorname{Sort}(A, k)\) :
Comment: Array \(A[1 \ldots n]\) is \(k\)-sorted.
Comment: The sorted numbers will be stored in array \(B[1 \ldots n]\).
initialize an array \(H[1 \ldots k+1]\);
for \(i=1\) to \(k+1\)
do \(H[i]=A[i]\)
endfor;
\(\operatorname{BuildHeap}(H)\);
for \(i=1\) to \(n-k-1\)
do \(x=\operatorname{ExtractMin}(H)\);
    \(B[i]=x ;\)
    \(\operatorname{Insert}(H, A[k+1+i])\)
endfor;
for \(i=1\) to \(k+1\)
do \(x=\operatorname{ExtractMin}(H)\);
    \(B[n-k-1+i]=x\)
endfor
```

Regarding the running time:

- Initializing the array H takes $O(k)$ time, which is $O(n)$.
- The first for-loop takes $O(k)$ time, which is $O(n)$.
- The call to $\operatorname{BuildHeap}(H)$ takes $O(k)$ time, which is $O(n)$.
- During the second for-loop, at any moment, the min-heap has size k or $k+1$, because we always delete the smallest element and then insert a new element. Each call to ExtractMin and Insert takes $O(\log k)$ time. The number of iterations of the second for-loop is $n-k-1$, which is at most n. Thus, the total time for the second for-loop is $O(n \log k)$.
- During the third for-loop, at any moment, the min-heap has size at most $k+1$, because we only delete elements. Each call to ExtractMin takes $O(\log k)$ time. The number of iterations of the third for-loop is $k+1$, which is at most n. Thus, the total time for the third for-loop is $O(n \log k)$.
- We conclude that the total running time is

$$
O(n)+O(n)+O(n)+O(n \log k)+O(n \log k)=O(n \log k)
$$

