COMP 3804 - Tutorial January 19

Problem 1: Define O, Ω, Θ, and o.

Problem 2: I am sure you all remember the trick that Gauss used, when he was a little boy, to prove that for any integer $n \geq 1$,

$$
\begin{equation*}
1+2+3+\cdots+n=\frac{n(n+1)}{2} \tag{1}
\end{equation*}
$$

Use the definitions to prove the following. For each case, give two proofs, one that uses (1) and one that does not use it.

- $1+2+3+\cdots+n=O\left(n^{2}\right)$.
- $1+2+3+\cdots+n=\Omega\left(n^{2}\right)$.
- $1+2+3+\cdots+n=\Theta\left(n^{2}\right)$.

Problem 3: Let $n \geq 1$ be an integer and let $x \neq 1$ be a real number. Prove, without using induction, that

$$
1+x+x^{2}+x^{3}+\cdots+x^{n-1}=\frac{x^{n}-1}{x-1}
$$

Problem 4: The Fibonacci numbers are recursively defined as follows: $F_{0}=0, F_{1}=1$, for each integer $n \geq 2, F_{n}=F_{n-1}+F_{n-2}$.

Prove that $F_{n} \geq 2^{n / 2}$ for every integer $n \geq 6$.
Problem 5: Solve the following recurrence using the unfolding method that we have seen in class. Give the final answer using Big-O notation.

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ n+5 \cdot T(n / 7) & \text { if } n \geq 7\end{cases}
$$

You may assume that n is a power of 7 .
Problem 6: The function $T(n)$ is recursively defined as follows:

$$
T(n)= \begin{cases}1 & \text { if } 1 \leq n \leq 2 \\ n+T(n / 3)+T(2 n / 3) & \text { if } n \geq 3\end{cases}
$$

Use the recursion tree method that we have seen in class to prove that $T(n)=\Theta(n \log n)$.

Problem 7: The Hadamard matrices $H_{0}, H_{1}, H_{2}, \ldots$ are recursively defined as follows:

$$
H_{0}=(1)
$$

and for $k \geq 1$,

$$
H_{k}=\left(\begin{array}{c|c}
H_{k-1} & H_{k-1} \\
\hline H_{k-1} & -H_{k-1}
\end{array}\right) .
$$

Thus, H_{0} is a 1×1 matrix whose only entry is 1 ,

$$
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

and

$$
H_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

(7.1) Let $k \geq 0$ be an integer and let $n=2^{k}$. How many entries does the matrix H_{k} have? Express your answer in terms of n.
(7.2) Describe a recursive algorithm BuILD that has the following specification:

Algorithm $\operatorname{BuILD}(k)$:
Input: An integer $k \geq 0$.
Output: The matrix H_{k}.
For any positive integer n that is a power of 2 , say $n=2^{k}$, let $T(n)$ be the running time of your algorithm $\operatorname{BUILD}(k)$. Derive a recurrence for $T(n)$. Use the Master Theorem to give the solution to your recurrence.
(7.3) If x is a column vector of length 2^{k}, then $H_{k} x$ is the column vector of length 2^{k} obtained by multiplying the matrix H_{k} with the vector x.

Describe a recursive algorithm Multiply that has the following specification:
Algorithm $\operatorname{Multiply}(k, x)$:
Input: An integer $k \geq 0$ and a column vector x of length $n=2^{k}$.
Output: The column vector $H_{k} x$ (having length n).
Running time: must be $O(n \log n)$.

Explain why the running time of your algorithm is $O(n \log n)$. You are allowed to use the Master Theorem.
Hint: The input only consists of k and x. The matrix H_{k} is not given as part of the input.

