
COMP 3804 — Tutorial February 2

Problem 1: Some algorithms textbooks have statements of the type

Every comparison-based sorting algorithm takes at least O(n log n) time.

Does such a statement make sense?

Problem 2: Let A[1 . . . n] be an array storing n numbers. In the January 25 lecture, we
have seen algorithm BuildHeap(A) that rearranges the numbers in the input array A such
that the resulting array is a max-heap; see page 56 of my handwritten notes. This algorithm
uses the Heapify-procedure as a subrouting; see page 53 of my handwritten notes. Consider
the following variant of this algorithm:

Algorithm BuildHeap′(A):
for i = 1 to bn/2c
do Heapify(A, i)
endfor

Give an example of an array A[1 . . . n], where n is a small integer (such as n = 7), which
shows that algorithm BuildHeap′ may not result in a max-heap.

Problem 3: Let A[1 . . . n] be an array storing n pairwise distinct numbers, and let k be an
integer with 0 ≤ k < n. We say that this array is k-sorted, if for each i with 1 ≤ i ≤ n, the
entry A[i] is at most k positions away from its position in the sorted order.

For example, a sorted array is 0-sorted. As another example, the array

A[1 . . . 10] = [1, 4, 5, 2, 3, 7, 8, 6, 10, 9]

is 2-sorted, because each entry A[i] is at most 2 positions away from its position in the sorted
order. For i = 3, A[3] is 2 positions away from its position, 5, in the sorted array. For i = 9,
A[9] is 1 position away from its position, 10, in the sorted array.

Describe an algorithm Sort that has the following specification:

Algorithm Sort(A, k):
Input: An array A[1 . . . n] of n pairwise distinct numbers and an integer k with
2 ≤ k < n. This array is k-sorted.
Output: An array B[1 . . . n] containing the same numbers as the input array. The
array B is sorted.
Running time: Must be O(n log k).

Explain why your algorithm is correct and why the running time is O(n log k).
Hint: Use a min-heap of a certain size.

1


