COMP 3804 - Tutorial February 16

\author{
Algorithm $\operatorname{DFS}(G)$:
 for each vertex v
 do $\operatorname{visited}(v)=$ false
 endfor;
 clock $=1$;
 for each vertex v
 do if $\operatorname{visited}(v)=$ false
 then Explore (v) endif
 endfor
 ```
Algorithm Explore (v) :
 $\operatorname{visited}(v)=$ true;
 $\operatorname{pre}(v)=$ clock;
 clock $=$ clock +1 ;
 for each edge (v, u)
 do if visited $(u)=$ false
 then Explore (u)
 endif
 endfor;
 $\operatorname{post}(v)=\operatorname{clock}$;
 clock $=$ clock +1

```
}

Problem 1: Consider the following directed graph:

(1.1) Draw the \(D F S\)-forest obtained by running algorithm DFS. Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS-forest, give the pre- and post-number of each vertex. Whenever there is a choice of vertices, pick the one that is alphabetically first.
(1.2) Draw the \(D F S\)-forest obtained by running algorithm DFS. Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS-forest, give the pre- and post-number of each vertex. Whenever there is a choice of vertices, pick the one that is alphabetically last.

Problem 2: Let \(G=(V, E)\) be a directed acyclic graph, and let \(s\) and \(t\) be two vertices of \(V\).

Describe an algorithm that computes, in \(O(|V|+|E|)\) time, the number of directed paths from \(s\) to \(t\) in \(G\). As always, justify your answer and the running time of your algorithm.

Problem 3: A Hamilton path in an undirected graph is a path that contains every vertex exactly once. In the figure below, you see a Hamilton path in red. A Hamilton cycle is a cycle that contains every vertex exactly once. In the figure below, if you add the black edge \(\{s, t\}\) to the red Hamilton path, then you obtain a Hamilton cycle.


If \(G=(V, E)\) is an undirected graph, then the graph \(G^{3}\) is defined as follows:
1. The vertex set of \(G^{3}\) is equal to \(V\).
2. For any two distinct vertices \(u\) and \(v\) in \(V,\{u, v\}\) is an edge in \(G^{3}\) if and only if there is a path in \(G\) between \(u\) and \(v\) consisting of at most three edges.

Question 3.1: Describe a recursive algorithm HamiltonPath that has the following specification:

Algorithm HamiltonPath \((T, u, v)\) :
Input: A tree \(T\) with at least two vertices; two distinct vertices \(u\) and \(v\) in \(T\) such that \(\{u, v\}\) is an edge in \(T\).
Output: A Hamilton path in \(T^{3}\) that starts at vertex \(u\) and ends at vertex \(v\).

Hint: You do not have to analyze the running time. The base case is easy. Now assume that \(T\) has at least three vertices. If you remove the edge \(\{u, v\}\) from \(T\), then you obtain two trees \(T_{u}\) (containing \(u\) ) and \(T_{v}\) (containing \(v\) ).
1. One of these two trees, say, \(T_{u}\), may consist of the single vertex \(u\). How does your recursive algorithm proceed?
2. If each of \(T_{u}\) and \(T_{v}\) has at least two vertices, how does your recursive algorithm proceed?

Question 3.2: Prove the following lemma:
Lemma: For every tree \(T\) that has at least three vertices, the graph \(T^{3}\) contains a Hamilton cycle.
Question 3.3: Prove the following theorem:
Theorem: For every connected undirected graph \(G\) that has at least three vertices, the graph \(G^{3}\) contains a Hamilton cycle.```

