Introduction to Theory of Computation

Anil Maheshwari Michiel Smid

School of Computer Science
Carleton University
Ottawa

Canada
fanil,michiel g@scs.carleton.ca

March 23, 2017

Contents

Contents

Preface Vi
1 Introduction 1
1.1 Purpose and motivation 1
1.1.1 Complexity theory 2
1.1.2 Computability theory 2
1.1.3 Automatatheory 3
1.1.4 Thiscourse 3
1.2 Mathematical preliminaries 4
1.3 Prooftechniques 7
1.3.1 Directproofs 8
1.3.2 Constructive proofs, 9
1.3.3 Nonconstructive proofs 10
1.3.4 Proofs by contradiction 11
1.3.5 The pigeon hole principle 12
1.3.6 Proofsbyinduction. 13
1.3.7 More examples of proofs 15
EXercises e 18
2 Finite Automata and Regular Languages 21
2.1 An example: Controling atollgate 21
2.2 Deterministic nite automata 23
2.2.1 A rst example of a nite automaton 26
2.2.2 A second example of a nite automaton 28
2.2.3 A third example of a nite automaton 29
2.3 Regularoperations 31
2.4 Nondeterministic nite automata 35

241 Airstexample L L o 35

\Y Contents
242 Asecondexample. 37
243 Athirdexample. 38
2.4.4 De nition of nondeterministic nite automaton 39

2.5 Equivalence of DFAsand NFAs 41
251 Anexample 44
2.6 Closure under the regular operations 48
2.7 Regularexpressions e 52
2.8 Equivalence of regular expressions and regular languages . .. 56
2.8.1 Every regular expression describes a regular language . 57
2.8.2 Converting a DFA to a regular expression 60
2.9 The pumping lemma and nonregular languages 67
2.9.1 Applications of the pumping lemma 69
2.10 Higman's Theorem, 76
2.10.1 Dickson's Theorem 76
2.10.2 Proof of Higman's Theorem 77
EXercises. 80
3 Context-Free Languages 91
3.1 Context-freegrammars 91
3.2 Examples of context-free grammars 94
3.2.1 Properly nested parentheses 94
3.2.2 A context-free grammar for a nonregular language . . . 95
3.2.3 A context-free grammar for the complement of a non-
regular language 97
3.2.4 A context-free grammar that veri es addition 98
3.3 Regular languages are context-free. 100
331 Anexample 102
3.4 Chomsky normal form 104
341 Anexample 109
3.5 Pushdown automata 112
3.6 Examples of pushdown automata 116
3.6.1 Properly nested parentheses 116
3.6.2 Strings of the form 01" 117
3.6.3 Strings withbinthemiddle 118
3.7 Equivalence of pushdown automata and context-free gramnsat20
3.8 The pumping lemma for context-free languages 124
3.8.1 Proof of the pumping lemma 125

3.8.2 Applications of the pumping lemma 128

Contents \Y;

4

EXxercises. 132
Turing Machines and the Church-Turing Thesis 137
4.1 Denition of a Turing machine 137
4.2 Examples of Turing machines 141
4.2.1 Accepting palindromes using one tape 141
4.2.2 Accepting palindromes using two tapes 142
4.2.3 Acceptinga"b'c" usingonetape. 143
4.2.4 Acceptingab'c" using tape alphabetfa;b;c2g. . . . 145
4.2.5 Acceptinga™b'c™ usingonetape. 147
4.3 Multi-tape Turing machines 148
4.4 The Church-Turing Thesis 151
EXxercises. e 152
Decidable and Undecidable Languages 157
5.1 Decidability 157
51.1 Thelanguagpra . . - -« v v v o oo 158
5.1.2 Thelanguagénra - - -« « v v v e e 159
5.1.3 Thelanguagécrg - - - « « v« v v v i e 159
514 Thelanguagty« v o oo 160
5.1.5 The Halting Problem 162
52 Countablesets. 164
5.2.1 The Halting Problem revisited 167
5.3 Rice'sTheorem, 169
5.3.1 Proof of Rice's Theorem 170
54 Enumerability 173
5.4.1 Hilbert'sproblem 174
54.2 Thelanguagty oo 175
5.5 Where does the term \enumerable” come from? 176
5.6 Most languages are not enumerable 179
5.6.1 The set of enumerable languages is countable 180
5.6.2 The set of all languages is not countable 181
5.6.3 There are languages that are not enumerable 183

5.7 The relationship between decidable and enumerable languages 184

5.8 A languageA such that both A and A are not enumerable . . 186
58.1 EQqy isnotenumerable 186
58.2 EQqy isnotenumerable 188

EXxercises. 189

Contents

Vi
6 Complexity Theory 197
6.1 The running time of algorithms 197
6.2 The complexityclas 199
6.2.1 Someexamples
6.3 ThecomplexityclasdNP 202
6.3.1 PiscontainedinNP 208
6.3.2 DecidingNP -languages in exponential time 208
6.3.3 Summary 210
6.4 Non-deterministic algorithms 211

7

6.5 NP -complete languages
6.5.1 Two examples of reductions

6.5.2 De nition of NP-completeness 220

6.5.3 AnNP -complete dominogame 222

6.5.4 Examples oNP -complete languages
EXercises. 235

Summary 239

Preface

This is a free textbook for an undergraduate course on the Thgoof Com-
putation, which we have been teaching at Carleton University since0Q2.
Until the 2011/2012 academic year, this course was o ered as acead-year
course (COMP 2805) and was compulsory for all Computer Sciend¢edents.
Starting with the 2012/2013 academic year, the course has beeowhgraded
to a third-year optional course (COMP 3803).

We have been developing this book since we started teaching this s®u
Currently, we cover most of the material from Chapters 2{5 durig a 12-week
term with three hours of classes per week.

The material from Chapter 6, on Complexity Theory, is taught in the
third-year course COMP 3804 (Design and Analysis of Algorithms).nlthe
early years of COMP 2805, we gave a two-lecture overview of Compte
Theory at the end of the term. Even though this overview has disgeared
from the course, we decided to keep Chapter 6. This chapter hastrbeen
revised/modi ed for a long time.

The course as we teach it today has been in uenced by the followingd
textbooks:

Introduction to the Theory of Computation (second edition), by Mchael
Sipser, Thomson Course Technnology, Boston, 2006.

Einfahrung in die Theoretische Informatik, by Klaus Wagner, Sprimger-
Verlag, Berlin, 1994.

Besides reading this text, we recommend that you also take a look at
these excellent textbooks, as well as one or more of the followingesn

Elements of the Theory of Computation (second edition), by Harry
Lewis and Christos Papadimitriou, Prentice-Hall, 1998.

viii

Introduction to Languages and the Theory of Computation (thirdedi-
tion), by John Martin, McGraw-Hill, 2003.

Introduction to Automata Theory, Languages, and Computation(third
edition), by John Hopcroft, Rajeev Motwani, Je rey Ullman, Addism

Wesley, 2007.

Please let us know if you nd errors, typos, simpler proofs, commi
omissions, or if you think that some parts of the book \need improwveent".

Chapter 1

Introduction

1.1 Purpose and motivation

This course is on theTheory of Computation which tries to answer the
following questions:

What are the mathematical properties of computer hardware ansboft-
ware?

What is a computation and what is analgorithm? Can we give rigorous
mathematical de nitions of these notions?

What are the limitations of computers? Can \everything" be com-
puted? (As we will see, the answer to this question is \no".)

Purpose of the Theory of Computation: Develop formal math-
ematical models of computation that re ect real-world computers

This eld of research was started by mathematicians and logicians imé
1930's, when they were trying to understand the meaning of a \cqmtation"”.
A central question asked was whether all mathematical problemsamc be
solved in a systematic way. The research that started in those dayed to
computers as we know them today.

Nowadays, the Theory of Computation can be divided into the follow-
ing three areas: Complexity Theory, Computability Theory, and Aubmata
Theory.

2 Chapter 1. Introduction

1.1.1 Complexity theory

The main question asked in this area is \What makes some problems com
putationally hard and other problemseasy?"

Informally, a problem is called \easy", if it is e ciently solvable. Exam-
ples of \easy" problems are (i) sorting a sequence of, say, 1,000,0dmbers,
(i) searching for a name in a telephone directory, and (iii) computinghte
fastest way to drive from Ottawa to Miami. On the other hand, a prblem is
called \hard", if it cannot be solved e ciently, or if we don't know whet her
it can be solved e ciently. Examples of \hard" problems are (i) time table
scheduling for all courses at Carleton, (ii) factoring a 300-digit ingger into
its prime factors, and (iii) computing a layout for chips in VLSI.

Central Question in Complexity Theory: Classify problems ac
cording to their degree of \di culty”. Give a rigorous proof that
problems that seem to be \hard" are really \hard".

1.1.2 Computability theory

In the 1930's, Gedel, Turing, and Church discovered that some dlfie fun-
damental mathematical problems cannot be solved by a \computer(This
may sound strange, because computers were invented only in th@4Q's).
An example of such a problem is \Is an arbitrary mathematical stat@ent
true or false?" To attack such a problem, we need formal de nitia of the
notions of

computer,
algorithm, and
computation.

The theoretical models that were proposed in order to understdrsolvable
and unsolvable problems led to the development of real computers.

Central Question in Computability Theory: Classify problem
as being solvable or unsolvable.

1.1. Purpose and motivation 3

1.1.3 Automata theory

Automata Theory deals with de nitions and properties of di erent types of
\computation models". Examples of such models are:

Finite Automata. These are used in text processing, compilers, and
hardware design.

Context-Free Grammars. These are used to de ne programmingnia
guages and in Arti cial Intelligence.

Turing Machines. These form a simple abstract model of a \real"
computer, such as your PC at home.

Central Question in Automata Theory: Do these models hav
the same power, or can one model solve more problems than ghe
other?

1.1.4 This course

In this course, we will study the last two areas in reverse order: Waill start
with Automata Theory, followed by Computability Theory. The rst area,
Complexity Theory, will be covered in COMP 3804.

Actually, before we start, we will review some mathematical proofketh-
nigues. As you may guess, this is a fairly theoretical course, with foDf
de nitions, theorems, and proofs. You may guess this course isnfgtu for
math lovers, but boring and irrelevant for others. You guessed wrong and
here are the reasons:

1. This course is about the fundamental capabilities and limitations of
computers. These topics form the core of computer science.

2. Itis about mathematical properties of computer hardware ansoftware.

3. This theory is very much relevant to practice, for example, in thdesign
of new programming languages, compilers, string searching, patte
matching, computer security, arti cial intelligence, etc., etc.

4. This course helps you to learn problem solving skills. Theory teache
you how to think, prove, argue, solve problems, express, and &bst.

4 Chapter 1. Introduction

5. This theory simpli es the complex computers to an abstract andimple
mathematical model, and helps you to understand them better.

6. This course is about rigorously analyzing capabilities and limitations
of systems.

Where does this course t in the Computer Science Curriculum at Car
leton University? It is a theory course that is the third part in the seies
COMP 1805, COMP 2804, COMP 3803, COMP 3804, and COMP 4804.
This course also widens your understanding of computers and will mence
other courses including Compilers, Programming Languages, andtiAual
Intelligence.

1.2 Mathematical preliminaries

Throughout this course, we will assume that you know the following athe-
matical concepts:

1. A setis a collection of well-de ned objects. Examples are (i) the set of
all Dutch Olympic Gold Medallists, (ii) the set of all pubs in Ottawa,
and (iii) the set of all even natural numbers.

The set ofnatural numbersis N = f1;2;3;:::g.
The set ofintegersisZ=f:::; 3; 2, 1,0;1,2,3;:::0.
The set ofrational numbersisQ=fm=n:m2 Z;n2 Z;n 6 0g.

The set ofreal numbersis denoted byR.

o o B~ w DN

If A and B are sets, thenA is asubsetof B, written as A B, if every
element ofA is also an element oB. For example, the set of even
natural numbers is a subset of the set of all natural numbers. Exy
set A is a subset of itself, i.,e.A A. The empty set is a subset of
every setA, i.e.,; A.

7. If B is a set, then thepower setP(B) of B is de ned to be the set of
all subsets ofB:
P(B)=fA:A Bg:

Observe that; 2P (B) and B 2 P (B).

1.2. Mathematical preliminaries 5

8. If A and B are two sets, then
(a) their union is de ned as
A[B=fx:x2Aorx2Bg;
(b) their intersection is de ned as

A\ B=fx:x2Aandx 2 Bg;

(c) their dierence is de ned as

AnB =fx:x2 A andx 628Bg;
(d) the Cartesian productof A and B is de ned as
A B=f(x;y):x2Aandy 2 Bg;
(e) the complementof A is de ned as
A= fx:x 62AQ:
9. A binary relation on two setsA and B is a subset ofA B.

10. Afunction f from A to B, denoted byf : A! B, is a binary relation
R, having the property that for each elementa 2 A, there is exactly
one ordered pair inR, whose rst component isa. We will also say
that f(a) = b, or f mapsa to b, or the image ofa underf ish The
setA is called thedomain of f , and the set

fb2 B : thereis ana2 A with f(a) = bg
is called therange of f .

11. Afunctionf : A! B isone-to-one(or injective), if for any two distinct
elementsa and a%in A, we havef (a) 6 f (a%. The function f is onto
(or surjective), if for each elementb 2 B, there exists an elemena 2 A,
such that f (a) = by in other words, the range off is equal to the set
B. A function f is abijection, if f is both injective and surjective.

12. A binary relation R A A is an equivalence relation if it satis es
the following three conditions:

Chapter 1. Introduction

(@) R isre exive: For every element ina2 A, we have 4;a) 2 R.

(b) R is symmetric. For all a and bin A, if (a;b 2 R, then also
(b;a 2 R.

(c) Ristransitive: Forall a, b,andcin A, if (a;b 2 Rand (b;9 2 R,
then also @; ¢ 2 R.

13. Agraph G = (V;E) is a pair consisting of a seV, whose elements are
calledvertices and a setE, where each element d& is a pair of distinct
vertices. The elements oE are callededges The gure below shows
some well-known graphsK s (the complete graph on ve vertices)K 3.3
(the complete bipartite graph on 2 3 = 6 vertices), and the Peterson
graph.

Kas

Ks
Peterson graph

The degreeof a vertexv, denoted bydegv), is de ned to be the number
of edges that are incident orv.

A path in a graph is a sequence of vertices that are connected by edges.
A path is a cycle if it starts and ends at the same vertex. Asimple
path is a path without any repeated vertices. A graph izonnected if
there is a path between every pair of vertices.

14. In the context of strings, analphabetis a nite set, whose elements
are calledsymbols Examples of alphabets are =1f10;1g and =
fa,b;c;:::; 1.

15. Astring over an alphabet is a nite sequence of symbols, where each
symbol is an element of . Thelength of a string w, denoted byjwj, is
the number of symbols contained irw. The empty string denoted by

1.3. Proof techniques 7

, Is the string having length zero. For example, if the alphabet is
equal tof0; 1g, then 10, 1000, 0, 101, and are strings over , having
lengths 2, 4, 1, 3, and 0, respectively.

16. A languageis a set of strings.

17. TheBoolean valuesare 1 and 0, that representrue and false, respec-

tively. The basic Boolean operations include

(a) negation (or NOT), represented by: ,

(b) conjunction (or AND), represented by",

(c) disjunction (or OR), represented by

(d) exclusive-or (orXOR), represented by

(e) equivalence, represented b$ or, |,

(f) implication, represented by! or) .

The following table explains the meanings of these operations.

| NOT | AND | OR | XOR | equivalence| implication |
:0=1]070=0{0_0=0|0 0=0|0%$ 0=1|0! 0=1
:1=0]001=0{0_1=1|0 1=1|0%$ 1=0] 0! 1=1
1"0=0|1 0=1|1 0=1|1%$ 0=0| 1! 0=0
1~1=1|1 1=1|1 1=0|1%$1=1|1! 1=1

1.3 Proof technigues

In mathematics, a theorem is a statement that is true. A proof is aegjuence
of mathematical statements that form an argument to show thah theorem is
true. The statements in the proof of a theorem include axioms (agmptions
about the underlying mathematical structures), hypotheses dhe theorem
to be proved, and previously proved theorems. The main question\idow
do we go about proving theorems?" This question is similar to the quem
of how to solve a given problem. Of course, the answer is that ndingoofs,
or solving problems, is not easy; otherwise life would be dull! There is no
speci ed way of coming up with a proof, but there are some genericaegies
that could be of help. In this section, we review some of these stegies,
that will be su cient for this course. The best way to get a feeling ofhow
to come up with a proof is by solving a large number of problems. Hereea

8 Chapter 1. Introduction

some useful tips. (You may take a look at the bookHow to Solve If by G.
Rolya).

1. Read and completely understand the statement of the theoreto be
proved. Most often this is the hardest part.

2. Sometimes, theorems contain theorems inside them. For example
\Property A if and only if property B", requires showing two state-
ments:

(a) If property A is true, then property B is true (A) B).

(b) If property B is true, then property A is true (B) A).

Another example is the theorem \SetA equals setB." To prove this,
we need to prove thatA B andB A. That is, we need to show

that each element of sefA is in setB, and that each element of seB
iS in setA.

3. Try to work out a few simple cases of the theorem just to get aigron
it (i.e., crack a few simple cases rst).

4. Try to write down the proof once you have it. This is to ensure the
correctness of your proof. Often, mistakes are found at the temof
writing.

5. Finding proofs takes time, we do not come prewired to produceqofs.
Be patient, think, express and write clearly and try to be precise as
much as possible.

In the next sections, we will go through some of the proof stratezs.

1.3.1 Direct proofs

As the name suggests, in a direct proof of a theorem, we just appch the
theorem directly.

Theorem 1.3.1 If nis an odd positive integer, them? is odd as well.

1.3. Proof techniques 9

Proof. An odd positive integern can be written asn = 2k + 1, for some
integerk 0. Then

n2=(2k+1)?=4k*+4k+1=2(2k?>+2Kk)+1:

Since 2(%? + 2k) is even, and \even plus one is odd", we can conclude that
n2 is odd. |

Theorem 1.3.2 Let G =(V;E) be a graph. Then the sum of the degrees of
all vertices is an even integer, i.e.,
X
degqv)

v2V

is even.

Proof. If you do not see the meaning of this statement, then rst try it ou
for a few graphs. The reason why the statement holds is very simplEach
edge contributes 2 to the summation (because an edge is incidentexactly
two distinct vertices). [|

Actually, the proof above proves the following theorem.

Theorem 1.3.3 Let G =(V;E) be a graph. Then the sum of the degrees of
all vertices is equal to twice the number of edges, i.e.,
X

degv) = 2jEj:
v2V

1.3.2 Constructive proofs

This technique not only shows the existence of a certain object, ittally
gives a method of creating it. Here is how a constructive proof lookke:

Theorem 1.3.4 There exists an object with propertyP.

Proof. Here is the object: {::]
And here is the proof that the object satis es propertyP: [::] [|

Here is an example of a constructive proof. A graph is calledr&ular, if
each vertex has degree three.

10 Chapter 1. Introduction

Theorem 1.3.5 For every even integen 4, there exists a3-regular graph
with n vertices.

Proof. De ne
V=10,12::n 1g;

and
E=ffii+1lg:0 i n 2g[ff n 1;0gg[ff i;i+n=2g:0 i n=2 1g:

Then the graph G = (V; E) is 3-regular.
Convince yourself that this graph is indeed 3-regular. It may help tdraw
the graph for, say,n = 8. |

1.3.3 Nonconstructive proofs

In a nonconstructive proof, we show that a certain object existavithout
actually creating it. Here is an example of such a proof:

Theorem 1.3.6 There exist irrational numbersx and y such thatx? is ra-
tional.

Proof. There are two possible cases.

P_
Casel:pEZZQ. o
Inythis case, we takex =y = = 2. In Theorem 1.3.9 below, we will prove
that = 2 is irrational.

p_
Case 2: 2 2 6.

. p_"z P. .
In this case, we takex = 2 andy= 2. Since

x= 27 = 2 =2:

the claim in the theorem follows. [|

Observe that this proof indeed proves the theorem, but it does hgive
an example of a pair of irrational numbers and y such that x¥ is rational.

1.3. Proof techniques 11

1.3.4 Proofs by contradiction

This is how a proof by contradiction looks like:
Theorem 1.3.7 StatementS is true.

Proof. Assume that statementS is false. Then, derive a contradiction (such
as1+1=23).

In other words, show that the statement YS) fals€' is true. This is
su cient, because the contrapositive of the statement \S) false' is the
statement \true) S ". The latter logical formula is equivalent to S, and
that is what we wanted to show. |

Below, we give two examples of proofs by contradiction.
Theorem 1.3.8 Let n be a positive integer. Ifn? is even, thenn is even.

Proof. We will prove the theorem by contradiction. So we assume that?
is even, butn is odd. Sincen is odd, we know from Theorem 1.3.1 thanh?
is odd. This is a contradiction, because we assumed thag is even. [|

Theorem 1.3.9 P 2 is irrational, i.e., P 2 cannot be written as a fraction of
two integersm and n.

Proof. We will pgove the theorem by contradiction. So we assyme thzg)t?
is rational. Then 2 can be written as a fraction of two integers, 2 = m=n,
wherem 1 andn 1. We may assume thatm and n do not share any
common factors, i.e., the greatest common divisor of and n is equal to
one; if thbs_is not the case, then we can get rid of the common facsorBy
squaring 2 = m=n, we get h? = m?. This implies that m? is even. Then,
by Theorem 1.3.8m is even, which means that we can writen asm = 2Kk,
for some positive integerk. It follows that 2n? = m? = 4k?, which implies
that n? = 2k?. Hence,n? is even. Again by Theorem 1.3.8, it follows thanh
is even.
We have shown thatm and n are both even. But we know thatm and
are not both even. Hence, we have a contradictign. Our assumption that
2 is rational is wrong. Thus, we can conclude that 2 is irrational. [|

There is a nice discussion of this proof in the bodlly Brain is Open:
The Mathematical Journeys of Paul Erdysby B. Schechter.

12 Chapter 1. Introduction

1.3.5 The pigeon hole principle

This is a simple principle with surprising consequences.

Pigeon Hole Principle: If n+1 or more objects are placed intan
boxes, then there is at least one box containing two or more objs
In other words, if A and B are two sets such thatjAj > |Bj, then
there is no one-to-one function fromA to B.

Theorem 1.3.10 Let n be a positive integer. Every sequence of + 1 dis-
tinct real numbers contains a subsequence of lengih+ 1 that is either in-
creasing or decreasing.

Proof. For example consider the sequence (AW;9;7;11;2;21;1;20;31) of
10 = 32 + 1 numbers. This sequence contains an increasing subsequence of
length 4 = 3+ 1, namely (10, 11; 21; 31).

The proof of this theorem is by contradiction, and uses the pigeorole

principle.
Let (a1;az;:::;a.,2+1) be an arbitrary sequence oh? + 1 distinct real
numbers. For eachi with 1 i n? + 1, let inc; denote the length of

the longest increasing subsequence that starts at, and let deg denote the
length of the longest decreasing subsequence that startsaat

Using this notation, the claim in the theorem can be formulated as folies:
There is an indexi such thatinc; n+1ordeg n+1.

We will prove the claim by contradiction. So we assume thahc; n
anddeg nforalliwithl i n?+1.

Consider the set

B=f(b;g:1 b n;1 c¢ ng;

and think of the elements oB as being boxes. For eachwith1 i n2+1,
the pair (inc;; deg) is an element oB. So we haven?+1 elements (nc;; deg),
which are placed in then? boxes ofB. By the pigeon hole principle, there
must be a box that contains two (or more) elements. In other wos] there
exist two integersi andj such thati<j and

(inci; deg) = (iinc;; deg):

Recall that the elements in the sequence are distinct. Henc&, 6 a. We
consider two cases.

1.3. Proof techniques 13

First assume thata; < a;j. Then the length of the longest increasing
subsequence starting a&; must be at least 1+nc;, because we can appersi
to the longest increasing subsequence starting at. Therefore,inc; 6 inc;,
which is a contradiction.

The second case is whem > a;. Then the length of the longest decreasing
subsequence starting a&; must be at least 1+deg, because we can appersi
to the longest decreasing subsequence startingat Therefore,deg 6 deg,
which is again a contradiction. |

1.3.6 Proofs by induction

This is a very powerful and important technique for proving theonas.

For each positive integem, let P(n) be a mathematical statement that
depends onn. Assume we wish to prove thatP (n) is true for all positive
integersn. A proof by induction of such a statement is carried out as follows:

Basis: Prove that P(1) is true.

Induction step: Prove that for all n 1, the following holds: IfP(n) is
true, then P(n + 1) is also true.

In the induction step, we choose an arbitrary integen 1 and assume
that P (n) is true; this is called theinduction hypothesis Then we prove that
P(n+1)is also true.

Theorem 1.3.11 For all positive integersn, we have

n(n+1)

1+2+3+ i+ n=
2

Proof. We start with the basis of the induction. Ifn = 1, then the left-hand
side is equal to 1, and so is the right-hand side. So the theorem isdrior
n=1.

For the induction step, letn 1 and assume that the theorem is true for
n, i.e., assume that

n(n+1)

1+2+3+ :::+n=
2

14 Chapter 1. Introduction

We have to prove that the theorem is true fom + 1, i.e., we have to prove

that
(n+1)(n+2)

2

1+2+3+ i+ (n+1)=
Here is the proof:

1+2+3+ :::+(n+1) =]1+2+3{"z :::+r}1+(n+1)
:n(n2+1)
n(n+1)

= T4 (n+)

(n+1)(n+2)
5 :

By the way, here is an alternative proof of the theorem above: L& =
1+2+3+ :::+ n. Then,
S

S
2S

1 + 2 + 3 + T + (n 2 + (n 1 + n
n + (n 1) + (n 2 + B + 3 + 2 + 1
(n+1) + (n+1) + (n+1) + T + (n+1) + (n+1) + (n+1)

Since there aren terms on the right-hand side, we have& = n(n+1). This
implies that S = n(n + 1) =2.

Theorem 1.3.12 For every positive integem, a bis a factor ofa” .
Proof. A direct proof can be given by providing a factorization of" b':
a" B=(a b@ '+a" b+a" W+ :i+ad 2+ 0 Y

We now prove the theorem by induction. For the basis, let = 1. The claim
in the theorem is\a bis a factor ofa B, which is obviously true.

Letn 1 and assume thaia bis a factor ofa” Bb'. We have to prove
that a bis a factor ofa”** b'*l. We have

at gt =a"t ab+ab pr=a'(a b+(a B)b:

The rst term on the right-hand side is divisible bya b. By the induction
hypothesis, the second term on the right-hand side is divisible iy b as
well. Therefore, the entire right-hand side is divisible bya b. Since the
right-hand side is equal toa"** b'*!, it follows that a b is a factor of
ant gt |

We now give an alternative proof of Theorem 1.3.3:

1.3. Proof techniques 15

Theorem 1.3.13 Let G = (V;E) be a graph withm edges. Then the sum

of the degrees of all vertices is equal to twice the number dfes, i.e.,
X
degv) =2m:

v2Vv

Proof. The proof is by induction on the numbem of edges. For the basis of
the induction, assumg thatm = 0. Then the graph G does not contain any
edges and, therefore, ,, degv) =0. Thus, the theorem is true if m = 0.
Let m 0 and assume that the theorem is true for every graph witm
ges. LetG be an arbitrary graph with m+ 1 edges. We have to prove that
vy degv) =2(m+1).
Let fa; kg be an arbitrary edge inG, and let G° be the graph obtained
from G by removing the edgef a;lg. Since G® has m edges, we know from
the induction hypothesis that the sum of the degrees of all vertisein G°is

equal to 2n. Using this, we obtain
X X
deqv) = degv)+2=2m+2=2(m+1):

v2G v2GO

1.3.7 More examples of proofs

Recall Theorem 1.3.5, which states that for evergvenintegern 4, there
exists a 3-regular graph withn vertices. The following theorem explains why
we stated this theorem for even values of.

Theorem 1.3.14 Letn 5 be an odd integer. There is n@-regular graph
with n vertices.

Proof. The proof is by contradiction. So we assume that there exists a
graph G = (V; E) with n vertices that is 3-regular. Letm be the number of

edges inG. Sincedegv) = 3 for every vertex, we have
X
degv) = 3n:

v2V

On the other hand, by Theorem 1.3.3, we have
X
degv) =2m:

v2V

16 Chapter 1. Introduction

It follows that 3n = 2m, which can be rewritten asm = 3n=2. Sincem is an
integer, and sincegcd(2; 3) = 1, n=2 must be an integer. Hencen is even,
which is a contradiction. [|

Let K, be the complete graphon n vertices. This graph has a vertex set
of sizen, and every pair of distinct vertices is joined by an edge.

If G =(V;E)is a graph with n vertices, then thecomplementG of G is
the graph with vertex setV that consists of those edges &, that are not
present inG.

Theorem 1.3.15 Letn 2and letG be a graph om vertices. ThenG is
connected orG is connected.

Proof. We prove the theorem by induction on the numben of vertices. For
the basis, assume thah = 2. There are two possibilities for the graphG:

1. G contains one edge. In this casé& is connected.

2. G does not contain an edge. In this case, the compleme@tcontains
one edge and, therefore; is connected.

So forn = 2, the theorem is true.

Let n 2 and assume that the theorem is true for every graph with
vertices. LetG be graph with n + 1 vertices. We have to prove thatG is
connected orG is connected. We consider three cases.

Case 1: There is a vertexv whose degree irGs is equal ton.
SinceG hasn+1 vertices, v is connected by an edge to every other vertex
of G. Therefore, G is connected.

Case 2: There is a vertexv whose degree i is equal to O.

In this case, the degree of in the graph G is equal ton. SinceG hasn+1
vertices, v is connected by an edge to every other vertex &. Therefore, G
is connected.

Case 3: For every vertexv, the degree olvin Gisinf1;2;:::;n 1g.

Let v be an arbitrary vertex of G. Let G° be the graph obtained by
deleting from G the vertex v, together with all edges that are incident orv.
Since G® has n vertices, we know from the induction hypothesis thaG° is
connected orGlis connected.

1.3. Proof techniques 17

Let us rst assume that G°is connected. Then the graplG is connected
as well, because there is at least one edgeGnbetweenv and some vertex
of G°

If GCis not connected, therG°must be connected. Since we are in Case 3,
we know that the degree ot in G is in the setf1;2;:::;n 1g. It follows
that the degree ofv in the graph G is in this set as well. Hence, there is at
least one edge irG betweenv and some vertex inG% This implies that G is
connected. [|

The previous theorem can be rephrased as follows:

Theorem 1.3.16 Letn 2 and consider the complete grapK, on n ver-
tices. Color each edge of this graph as either red or blue. IRtbe the graph
consisting of all the red edges, and I& be the graph consisting of all the
blue edges. Them is connected orB is connected.

A graph is said to beplanar, if it can be drawn (a better term is \embed-
ded") in the plane in such a way that no two edges intersect, excepbssibly
at their endpoints. An embedding of a planar graph consists of véces,
edges, and faces. In the example below, there are 11 verticesed@ges, and
9 faces (including the unbounded face).

The following theorem is known astuler's theorem for planar graphs
Apparently, this theorem was discovered by Euler around 1750. ¢gendre
gave the rst proof in 1794, see

http://www.ics.uci.edu/~eppstein/junkyard/euler/

Theorem 1.3.17 (Euler) Consider an embedding of a planar grapgh. Let
v, e and f be the number of vertices, edges, and faces (including thegse

18 Chapter 1. Introduction

unbounded face) of this embedding, respectively. MoregJet c be the number
of connected components d6. Then

v e+f=c+1;

Proof. The proof is by induction on the number of edges @&. To be more
precise, we start with a graph having no edges, and prove that thieeorem
holds for this case. Then, we add the edges one by one, and showt tine
relationv e+ f = ¢+ 1 is maintained.

So we rst assume thatG has no edges, i.ee = 0. Then the embedding
consists of a collection off points. In this case, we havd =1 and c = v.
Hence, the relationv e+ f = ¢+ 1 holds.

Let e > 0 and assume that Euler's formula holds for a subgraph @&
havinge 1 edges. Leffu;vg be an edge ofs that is not in the subgraph,
and add this edge to the subgraph. There are two cases dependamgvhether
this new edge joins two connected components or joins two verticen the
same connected component.

Case 1: The new edgd u; vg joins two connected components.

In this case, the number of vertices and the number of faces da hange,
the number of connected components goes down by 1, and the rnen of
edges increases by 1. It follows that the relation in the theorem isilswalid.

Case 2: The new edgd u; vg joins two vertices in the same connected com-
ponent.

In this case, the number of vertices and the number of connectedm-
ponents do not change, the number of edges increases by 1, amel number
of faces increases by 1 (because the new edge splits one face wbofaces).
Therefore, the relation in the theorem is still valid. |

Euler's theorem is usually stated as follows:

Theorem 1.3.18 (Euler) Consider an embedding of a connected planar
graph G. Let v, e, and f be the number of vertices, edges, and faces (in-
cluding the single unbounded face) of this embedding, respely. Then

v e+f =2;

If you like surprising proofs of various mathematical results, youhsuld
read the bookProofs from THE BOOK by Aigner and Ziegler.

Exercises 19

Exercises

1.1 Use induction to prove that every integern 2 can be written as a
product of prime numbers.

P

1.2 For every prime numberp, prove that = p is irrational.

1.3 Let n be a positive integer that is not a perfect square. Prove thaq n
IS irrational.

1.4 Prove by induction that n* 4n? is divisible by 3, for all integersn 1.

1.5 Prove that

for every integern 2.
1.6 Prove that 9 dividesn®+ (n+1)3+(n+2)3, for every integern 0.

1.7 Prove that in any set ofn + 1 numbers from f1;2;:::;2ng, there are
always two numbers that are consecutive.

1.8 Prove that in any set ofn + 1 numbers from f1;2;:::;2ng, there are
always two numbers such that one divides the other.

20

Chapter 1.

Introduction

Chapter 2

Finite Automata and Regular
Languages

In this chapter, we introduce and analyze the class of languagesathare
known asregular languagesinformally, these languages can be \processed
by computers having a very small amount of memory.

2.1 An example: Controling a toll gate

Before we give a formal de nition of a nite automaton, we considean
example in which such an automaton shows up in a natural way. We csider
the problem of designing a \computer” that controls atoll gate

When a car arrives at the toll gate, the gate is closed. The gate apeas
soon as the driver has payed 25 cents. We assume that we have dhhge
coin denominations: 5, 10, and 25 cents. We also assume that noessc
change is returned.

After having arrived at the toll gate, the driver inserts a sequereof coins
into the machine. At any moment, the machine has to decide whether not
to open the gate, i.e., whether or not the driver has paid 25 centsr(more).
In order to decide this, the machine is in one of the following sistates at
any moment during the process:

The machine is in stateq, if it has not collected any money yet.
The machine is in stateq, if it has collected exactly 5 cents.

The machine is in state, if it has collected exactly 10 cents.

22 Chapter 2. Finite Automata and Regular Languages

The machine is in stateg, if it has collected exactly 15 cents.
The machine is in stateq, if it has collected exactly 20 cents.
The machine is in stateg, if it has collected 25 cents or more.

Initially (when a car arrives at the toll gate), the machine is in stateg,.
Assume, for example, that the driver presents the sequence #,8,10) of
coins.

After receiving the rst 10 cents coin, the machine switches fromate
O to state op.

After receiving the rst 5 cents coin, the machine switches from ate
¢ to state .

After receiving the second 5 cents coin, the machine switches fretate
s to state q.

After receiving the second 10 cents coin, the machine switchesnfro
state g, to state 5. At this moment, the gate opens. (Remember that
no change is given.)

The gure below represents the behavior of the machine for all psible
sequences of coins. Statg is represented by two circles, because it is a
special state: As soon as the machine reaches this state, theegapens.

5,10 25

Observe that the machine (or computer) only has to remember wihic
state it is in at any given time. Thus, it needs only a very small amount
of memory: It has to be able to distinguish between any one of six [sise
cases and, therefore, it only needs a memory @bg 6e = 3 bits.

2.2. Deterministic nite automata 23

2.2 Deterministic nite automata

Let us look at another example. Consider the followingtate diagram

We say that g, is the start state and, is an accept state. Consider the
input string 1101. This string is processed in the following way:

Initially, the machine is in the start state q;.

After having read the rst 1, the machine switches from statey to
state g.

After having read the second 1, the machine switches from stadg to
state ¢p. (So actually, it does not switch.)

After having read the rst 0, the machine switches from statex, to
state cs.

After having read the third 1, the machine switches from stateg to
state .

After the entire string 1101 has been processed, the machine is tats @,
which is an accept state. We say that the string 1101 is accepted kiye
machine.

Consider now the input string 0101010. After having read this strm
from left to right (starting in the start state @), the machine is in statecs.
Since s is not an accept state, we say that the machine rejects the string
0101010.

We hope you are able to see that this machine accepts every binatyrey
that ends with a 1. In fact, the machine accepts more strings:

Every binary string having the property that there are an even nmber
of Os following the rightmost 1, is accepted by this machine.

24 Chapter 2. Finite Automata and Regular Languages

Every other binary string is rejected by the machine. Observe th@&ach
such string is either empty, consists of Os only, or has an odd numbe
of Os following the rightmost 1.

We now come to the formal de nition of a nite automaton:

De nition 2.2.1 A nite automaton is a 5-tupleM =(Q; ; ;q;F), where
1. Q is a nite set, whose elements are callestates
2. isa nite set, called the alphabet the elements of are calledsymbols
3. :Q I Q is a function, called thetransition function,
4. gis an element ofQ; it is called the start state,
5. F is a subset ofQ; the elements ofF are calledaccept states

You can think of the transition function as being the \program" of the
nite automaton M =(Q; ;;q;F). This function tells us what M can do
in \one step™

Let r be a state of Q and let a be a symbol of the alphabet . If
the nite automaton M is in stater and reads the symbok, then it
switches from stater to state (r;a). (In fact, (r;a) may be equal to

r.)

The \computer" that we designed in the toll gate example in Section.2

is a nite automaton. For this example, we haveQ = fq; &} &b; &s; U; G0,

= f5;10 25g, the start state isq, F = fgg, and is given by the following
table:

5 10 25
b & & &
b & & &
| & & &
Bk & &
| & & &
& & & &

The example given in the beginning of this section is also a nite automa-
ton. For this example, we haveQ = fq;p;sg, = f0;1g, the start state

isq, F = fgpg, and is given by the following table:

2.2. Deterministic nite automata 25

0 1
G G @
& @
B @

Let us denote this nite automaton by M. The language ofM, denoted
by L(M), is the set of all binary strings that are accepted by. As we have
seen before, we have

L(M) = fw: w contains at least one 1 and ends with an even number ofgds

We now give a formal de nition of the language of a nite automaton:
Denition 2.2.2 LetM =(Q; ; ;q;F)bea nite automaton and letw =

the following way:
o= 0q,
ries = (ri;wis1), fori=0;1;:::;n 1.
1. If ry 2 F, then we say thatM acceptsw.

2. If r, 62F, then we say thatM rejects w.

In this de nition, w may be the empty string which we denote by , and
whose length is zero; thus in the de nition aboven = 0. In this case, the

ro = g The empty string is accepted byM if and only if the start state q
belongs toF.

De nition 2.2.3 Let M =(Q; ;;q;F) be a nite automaton. The lan-
guagelL (M) acceptedby M is de ned to be the set of all strings that are
accepted byM :

L(M)=fw: wis astring over and M acceptsw g:

De nition 2.2.4 A languageA is calledregular, if there exists a nite au-
tomaton M such that A = L(M).

26 Chapter 2. Finite Automata and Regular Languages

We nish this section by presenting an equivalent way of de ning the
language accepted by a nite automaton. LeM =(Q; ; ;q;F) be a nite
automaton. The transition function : Q I Q tells us that, when M
is in stater 2 Q and reads symbohk 2 , it switches from state r to state

(r;a). Let denote the set of all strings over the alphabet . (includes
the empty string .) We extend the function to a function

:Q I Q;

that is de ned as follows. For any stater 2 Q and for any stringw over the
alphabet

“(rw) = r ifw=
T ((r;v);a) if w= va, wherev is a string anda 2 .

What is the meaning of this function ? Letr be a state ofQ and let w be

a string over the alphabet . Then

~(r;w) is the state that M reaches, when it starts in state, reads the
string w from left to right, and uses to switch from state to state.

Using this notation, we have

L(M)=fw: wis astring over and (q;w) 2 Fg:

2.2.1 A rst example of a nite automaton
Let

A = fw: wis a binary string containing an odd number of I

We claim that this languageA is regular. In order to prove this, we have to
construct a nite automaton M such that A = L(M).

How to constructM ? Here is a rstidea: The nite automaton reads the
input string w from left to right and keeps track of the number of 1s it has
seen. After having read the entire stringw, it checks whether this number
is odd (in which casew is accepted) or even (in which casw is rejected).
Using this approach, the nite automaton needs a statdor every integer
i 0, indicating that the number of 1s read so far is equal to. Hence,
to design a nite automaton that follows this approach, we need am nite

2.2. Deterministic nite automata 27

number of states. But, the de nition of nite automaton requiresthe number
of states to be nite .

A better, and correct approach, is to keep track of whether theaumber
of 1s read so far is even or odd. This leads to the following nite autaaton:

The set of states iQ = fq.,; ¢,g. If the nite automaton is in state @,
then it has read an even number of 1s; if it is in state,, then it has
read an odd number of 1s.

The alphabetis = f0;1g.

The start state is g., because at the start, the number of 1s read by the
automaton is equal to 0, and O is even.

The setF of accept states iF = fq,g.

The transition function is given by the following table:

22~

0
G | G
G | &
This nite automaton M = (Q; ; ;e F) can also be described by itstate
diagram, which is given in the gure below. The arrow that comes \out of

the blue" and enters the stateq., indicates that g is the start state. The
state depicted with double circles indicates the accept state.

e 1

1

We have constructed a nite automatonM that accepts the languageA.
Therefore, A is a regular language.

28 Chapter 2. Finite Automata and Regular Languages

2.2.2 A second example of a nite automaton

De ne the languageA as
A = fw: wis a binary string containing 101 as a substrirg

Again, we claim that A is a regular language. In other words, we claim that
there exists a nite automaton M that acceptsA, i.e., A= L(M).

The nite automaton M will do the following, when reading an input
string from left to right:

It skips over all Os, and stays in the start state.

At the rst 1, it switches to the state \maybe the next two symbols are
0o1".

{ If the next symbol is 1, then it stays in the state \maybe the next
two symbols are 01",

{ On the other hand, if the next symbol is 0, then it switches to the
state \maybe the next symbol is 1".

If the next symbol is indeed 1, then it switches to the accept
state (but keeps on reading until the end of the string).

On the other hand, if the next symbol is 0, then it switches
to the start state, and skips 0s until it reads 1 again.

By de ning the following four states, this process will become clear:

.: M is in this state if the last symbol read was 1, but the substring
101 has not been read.

Guo: M is in this state if the last two symbols read were 10, but the
substring 101 has not been read.

Guoz: M is in this state if the substring 101 has been read in the input
string.

g: In all other casesM is in this state.

Here is the formal description of the nite automaton that acceps the
languageA:

Q= fq;q; tho; Gho10,

2.2. Deterministic nite automata 29

= f0;1g,
the start state is q,
the setF of accept states is equal t¢ = f 1019, and

the transition function is given by the following table:

0 1

q q q

G | o G
Cho d Qo
Chor | Ghor Choz

The gure below gives the state diagram of the nite automatonM =

(Q; ;:a;F).

This nite automaton accepts the languageA consisting of all binary
strings that contain the substring 101. As an exercise, how wouldy obtain
a nite automaton that accepts the complement ofA, i.e., the language
consisting of all binary strings thatdo not contain the substring 101?

2.2.3 A third example of a nite automaton

The nite automata we have seen so far have exactly one accepast. In
this section, we will see an example of a nite automaton having moreeept
states.

30 Chapter 2. Finite Automata and Regular Languages

Let A be the language
A=fw2f0;1g : whas a 1 in the third position from the righig;

wheref 0; 1g is the set of all binary strings, including the empty string. We
claim that A is a regular language. To prove this, we have to construct a nite
automaton M such that A = L(M). At rst sight, it seems di cult (or even
impossible?) to construct such a nite automaton: How does the &maton
\know" that it has reached the third symbol from the right? It is, however,
possible to construct such an automaton. The main idea is to remembthe
last three symbols that have been read. Thus, the nite automatohas eight
states g;k , wherei, j, and k range over the two elements of0; 1g. If the
automaton is in stateg;x , then the following hold:

If M has read at least three symbols, then the three most recently ata
symbols areijk .

If M has read only two symbols, then these two symbols ajle; more-
over,i =0.

If M has read only one symbol, then this symbol i&; moreover,i =
j =0.

If M has not read any symbol, then =] = k=0.

The start state is oo and the set of accept states i$Quoo; Ghi10; Go1; Ch110-
The transition function of M is given by the following state diagram.

2.3. Regular operations 31

2.3 Regular operations

In this section, we de ne three operations on languages. Latergwvill answer
the question whether the set of all regular languages is closed undeese
operations. LetA and B be two languages over the same alphabet.

1. The union of A and B is de ned as

A[B=fw: w2Aorw?2Bg:

2. The concatenationof A and B is de ned as
AB = fww’: w2 A andw®2 Bg:

In words, AB is the set of all strings obtained by taking an arbitrary
string w in A and an arbitrary string win B, and gluing them together
(such that w is to the left of w9.

3. The star of A is de ned as
A =fuu:iiuc: k Oandu; 2 Aforalli=1;2:::;kg:

In words, A is obtained by taking any nite number of strings inA, and
gluing them together. Observe thatkk = O is allowed; this corresponds
to the empty string . Thus, 2 A .

To give an example, letA = f0;01lgand B = f1;10g. Then
A[B =10;01 1;10g;

AB = 01010012 0110y;
and
A = 10,0100 00L%010 0102000 000%0010%::q:

As another example, if = f0;1g, then is the set of all binary strings
(including the empty string). Observe that a string always has a nie length.

Before we proceed, we give an alternative (and equivalent) de nitmoof
the star of the languageA: De ne

A’=f g

32 Chapter 2. Finite Automata and Regular Languages

and, fork 1,
Ak = AAk 1.

i.e., AK is the concatenation of the two language& and Ak 1. Then we have

Theorem 2.3.1 The set of regular languages is closed under the union op-
eration, i.e., if A andB are regular languages over the same alphabetthen
A [B is also a regular language.

Proof. Since A and B are regular languages, there are nite automata
My = (Qu; ; 1y F1) and Mz = (Qgz; ;250 F2) that accept A and B,
respectively. In order to prove thatA [B is regular, we have to construct a
nite automaton M that acceptsA [B. In other words, M must have the
property that for every stringw 2

M acceptsw, M, acceptsw or M, acceptsw.

As a rst idea, we may think that M could do the following:
Starting in the start state g of My, M \runs" M, on w.

If, after having read w, M; is in a state of F;, then w 2 A, thus
w2 A[B and, therefore,M acceptsw.

On the other hand, if, after having readw, M is in a state that is not
in Fy, then w 62A and M \runs" M, on w, starting in the start state
¢ of M,. If, after having readw, M, is in a state ofF,, then we know
that w2 B, thusw 2 A[B and, therefore,M acceptsw. Otherwise,
we know thatw 62A [B, and M rejectsw.

This idea does not work, because thaite automaton M can read the input
string w only once The correct approach is torun M; and M, simulta-
neously We de ne the setQ of states ofM to be the Cartesian product
Q: Q. If M isin state (ry;r,), this means that

if M, would have read the input string up to this point, then it would
be in stater,, and

2.3. Regular operations 33

if M, would have read the input string up to this point, then it would
be in stater,.

This leads to the nite automaton M = (Q; ; ;q;F), where

Q = Ql Q2 = f(rl;rz) rg 2 Ql and r, 2 ng Observe that
jQj = jQij | Q.j, which is nite.

is the alphabet of A and B (recall that we assume thatA and B are
languages over the same alphabet).

The start state g of M is equal toq= (t4; &).

The setF of accept states oM is given by
F=f(rur):iri2Forrp2 Fg=(F1 Q) [(Q1 Fo):
The transition function :Q I Qs given by
((ri;r2);8) = (1(ry;@); 2(r2;@);
forallri2 Q, r,2Qo,andaz2 .

To nish the proof, we have to show that this nite automaton M indeed
accepts the languag@ [B. Intuitively, this should be clear from the discus-
sion above. The easiest way to give a formal proof is by using the emtled
transition functions ; and ,. (The extended transition function has been
de ned after De nition 2.2.4.) Here we go: Recall that we have to pnee that

M acceptsw, M, acceptsw or M, acceptsw,

e,
M acceptsw, 1(cp;w) 2 F1 or »(op;w) 2 Fo.

In terms of the extended transition function of the transition function of
M, this becomes

(o);W) 2 F, 1(ai;w) 2 Fyoor 5(cp;w) 2 Fa. (2.1)

By applying the de nition of the extended transition function, as gien after
De nition 2.2.4, to , it can be seen that

(o)W) = (1o w); 2(Gs wW)):

34 Chapter 2. Finite Automata and Regular Languages

The latter equality implies that (2.1) is true and, therefore M indeed accepts
the languageA [B. |

What about the closure of the regular languages under the coneaation
and star operations? It turns out that the regular languages arelosed under
these operations. But how do we prove this?

Let A and B be two regular languages, and leM; and M, be nite
automata that acceptA and B, respectively. How do we construct a nite
automaton M that accepts the concatenationAB ? Given an input string
u, M has to decide whether or nou can be broken into two stringsw and
wO (i.e., write u asu = ww9, such thatw 2 A andw®2 B. In words, M
has to decide whether or noti can be broken into two substrings, such that
the rst substring is accepted byM; and the second substring is accepted by
M,. The di culty is caused by the fact that M has to make this decision by
scanning the stringu only once. Ifu 2 AB, then M has to decide,during
this single scanwhere to breaku into two substrings. Similarly, if u 62AB ,
then M has to decide,during this single scanthat u cannot be broken into
two substrings such that the rst substring is in A and the second substring
isinB.

It seems to be even more di cult to prove that A is a regular language,
if A itself is regular. In order to prove this, we need a nite automatonhat,
when given an arbitrary input string u, decides whether or notu can be
broken into substrings such that each substring is iA. The problem is that,
if u2 A, the nite automaton has to determine into how many substrings,
and where, the stringu has to be broken; it has to do this during one single
scan of the stringu.

As we mentioned already, ifA and B are regular languages, then both
AB and A are also regular. In order to prove these claims, we will introduce
a more general type of nite automaton.

The nite automata that we have seen so far aredeterministic. This
means the following:

If the nite automaton M is in state r and if it reads the symbola,
then M switches from stater to the uniquely de ned state (r;a).

From now on, we will call such a nite automaton adeterministic nite
automaton (DFA). In the next section, we will de ne the notion of anonde-
terministic nite automaton (NFA) . For such an automaton, there are zero
or more possible states to switch to. At rst sight, nondeterminist nite

2.4. Nondeterministic nite automata 35

automata seem to be more powerful than their deterministic couetparts.
We will prove, however, that DFAs have the same power as NFAs. Age will
see, using this fact, it will be easy to prove that the class of reguliEanguages
is closed under the concatenation and star operations.

2.4 Nondeterministic nite automata

We start by giving three examples of nondeterministic nite automad. These
examples will show the di erence between this type of automata anthe
deterministic versions that we have considered in the previous sects. After
these examples, we will give a formal de nition of a nondeterministicnite
automaton.

2.4.1 A rst example

Consider the following state diagram:

You will notice three di erences with the nite automata that we have
seen until now. First, if the automaton is in stateg; and reads the symbol 1,
then it has two options: Either it stays in stateq,, or it switches to stateq,.
Second, if the automaton is in statep, then it can switch to state gz without
reading a symbal this is indicated by the edge having the empty string as
label. Third, if the automaton is in state ¢z and reads the symbol 0, then it
cannot continue.

Let us see what this automaton can do when it gets the string 0101 &s
input. Initially, the automaton is in the start state q.

Since the rst symbol in the input string is 0, the automaton stays in
state q; after having read this symbol.

The second symbol is 1, and the automaton can either stay in statg
or switch to state .

36 Chapter 2. Finite Automata and Regular Languages

{ If the automaton stays in stateq, then it is still in this state after
having read the third symbol.

{ If the automaton switches to state,, then it again has two op-
tions:

Either read the third symbol in the input string, which is 0,
and switch to state g,
or switch to state ¢z, without reading the third symbol.

If we continue in this way, then we see that, for the input string 01010,
there are seven possible computations. All these computationseagiven in
the gure below.

1/'Q1 - G
01 0
1 e Y

e
0 s —» hang

g — 1
\
g2 —» hang
e

1 1
B —» Qs —>0
G —

Bt gt o0 g

02 e s ——» hang

Consider the lowest path in the gure above:
When reading the rst symbol, the automaton stays in stateq;.

When reading the second symbol, the automaton switches to stade

The automaton does not read the third symbol (equivalently, it \reds
the empty string), and switches to states. At this moment, the

2.4. Nondeterministic nite automata 37

automaton cannot continue: The third symbol is 0, but there is no
edge leavinggs that is labeled 0, and there is no edge leaving that
is labeled . Therefore, the computationhangsat this point.

From the gure, you can see that, out of the seven possible contations,
exactly two end in the accept statay, (after the entire input string 010110 has
been read). We say that the automaton accepts the string 0101,1because
there is at least one computation that ends in the accept state.

Now consider the input string 010. In this case, there are three ggible
computations:

1.q1!0 q1!l q1!0q1
2.q1!0 ql!l qz!o(:h

3.q1!0 ql!l ! ! hang

None of these computations ends in the accept state (after thatee input
string 010 has been read). Therefore, we say that the automatoejects the
input string 010.

The state diagram given above is an example of a nondeterministic it
automaton (NFA). Informally, an NFA accepts a string, if there exsts at least
one pathin the state diagram that (i) starts in the start state, (ii) does not
hang before the entire string has been read, and (iii) ends in an aptestate.
A string for which (i), (ii), and (iii) does not hold is rejected by the NFA.

The NFA given above accepts all binary strings that contain 101 orllas
a substring. All other binary strings are rejected.

2.4.2 A second example
Let A be the language
A=fw2f0;1g : whas a1 in the third position from the rightg:

The following state diagram de nes an NFA that accepts all stringshat are
in A, and rejects all strings that are not inA.

38 Chapter 2. Finite Automata and Regular Languages

This NFA does the following. If it is in the start state ¢ and reads the
symbol 1, then it either stays in stateq, or it \guesses" that this symbol
is the third symbol from the right in the input string. In the latter case,
the NFA switches to stateq, and then it \veri es" that there are indeed
exactly two remaining symbols in the input string. If there are moretan
two remaining symbols, then the NFA hangs (in statey) after having read
the next two symbols.

Observe how this guessing mechanism is used: The automaton caftyon
read the input string once, from left to right. Hence, it does not kaw when
it reaches the third symbol from the right. When the NFA reads a lit can
guess that this is the third symbol from the right; after having mae this
guess, it veri es whether or not the guess was correct.

In Section 2.2.3, we have seen a DFA for the same languaige Observe
that the NFA has a much simpler structure than the DFA.

2.4.3 A third example

Consider the following state diagram, which de nes an NFA whose alpbet
is f 0g.

This NFA accepts the language
A=f0:k Omod2ork 0 mod 3y

where @ is the string consisting ofk many 0s. (If k = 0, then 0k =)
Observe thatA is the union of the two languages

A;=f0":k Omod2y

2.4. Nondeterministic nite automata 39

and
A,=f0:k Omod3y:

The NFA basically consists of two DFAs: one of these acces, whereas the
other acceptsA,. Given an input string w, the NFA has to decide whether
or not w 2 A, which is equivalent to deciding whether or notw 2 A; or
w 2 A,. The NFA makes this decision in the following way: At the start, it
\guesses" whether (i) it is going to check whether or notv 2 A; (i.e., the
length of w is even), or (ii) it is going to check whether or notv 2 A, (i.e.,
the length of w is a multiple of 3). After having made the guess, it veri es
whether or not the guess was correct. Mv 2 A, then there exists a way of
making the correct guess and verifying thatv is indeed an element of (by
ending in an accept state). Ifw 62A, then no matter which guess is made,
the NFA will never end in an accept state.

2.4.4 De nition of nondeterministic nite automaton

The previous examples give you an idea what nondeterministic nite au
tomata are and how they work. In this section, we give a formal deition
of these automata.

For any alphabet , we dene to be the set

= [f o

Recall the notion of apower set For any setQ, the power set ofQ, denoted
by P(Q), is the set of all subsets 00, i.e.,

P(Q=fR:R Qg:

De nition 2.4.1 A nondeterministic nite automaton (NFA) is a 5-tuple
M =(Q; ;;d;F), where

1. Q is a nite set, whose elements are callestates

2. isa nite set, called the alphabet the elements of are calledsymbols
3. :Q I'P (Q) is a function, called thetransition function,

4. qis an element ofQ; it is called the start state,

5. F is a subset ofQ; the elements ofF are calledaccept states

40 Chapter 2. Finite Automata and Regular Languages

As for DFAs, the transition function can be thought of as the \program”
of the nite automaton M =(Q; ; ;q;F):

Letr 2 Q,andleta2 . Then (r;a)is a (possibly empty) subset of
Q. If the NFA M s in stater, and if it reads a (where a may be the
empty string), then M can switch from stater to any state in (r;a).
If (r;a)=;,thenM cannot continue and the computation hangs.

The example given in Section 2.4.1 is an NFA, whei@ = f ¢; &b; Gs; kO,
= f0;1g, the start state is g, the set of accept states i& = f g, and the
transition function is given by the following table:

0 1
G| fag fa,ag
& | fosg ; f ;g
G| ; f g ;
G | fag faug ;

De nition 2.4.2 LetM =(Q; ;;q;F) be an NFA, and letw 2 . We
say that M acceptsw, if w can be written asw = y1y,:::ym, Wherey; 2
foralli with1 i m, and thereexists a sequence;ry;:::;ry of states
in Q, such that

o= 0q,
Fivs 2 (ri;Visz), fori=0;1;:::;m 1, and
rm2 F.

Otherwise, we say thatM rejects the string w.

The NFA in the example in Section 2.4.1 accepts the string 01100. This
can be seen by taking

w =01 100 = y1Y2Y3YaYsys, and
ro=0Ch, 1=, 2=, 3=, 4= g, I's = O, and rg = .

De nition 2.4.3 Let M =(Q; ;;q;F) be an NFA. The languageL (M)
acceptedby M is de ned as

L(M)=fw2 : M acceptsw g:

2.5. Equivalence of DFAs and NFAs 41

2.5 Equivalence of DFAs and NFAs

You may have the impression that nondeterministic nite automata & more
powerful than deterministic nite automata. In this section, we will show
that this is not the case. That is, we will prove that a language can be
accepted by a DFA if and only if it can be accepted by an NFA. In order
to prove this, we will show how to convert an arbitrary NFA to a DFA that
accepts the same language.

What about converting a DFA to an NFA? Well, there is (almost) nothirg
to do, because a DFA is also an NFA. This is not quite true, because

the transition function of a DFA maps a state and a symbol to a stag,
whereas

the transition function of an NFA maps a state and a symbol to &et
of zero or more states.

The formal conversion of a DFA to an NFA is done as follows: Ld¥l =

(Q; ;;q;F) be a DFA. Recall that is a function : Q I Q. We
de ne the function °: Q I'P (Q) as follows. For anyr 2 Q and for
anyaz2
. f(ra)g ifa6 ,
{ra)= . ifa=s

Then N =(Q; ; %q;F)is an NFA, whose behavior is exactly the same as
that of the DFA M ; the easiest way to see this is by observing that the state
diagrams ofM and N are equal. Therefore, we have(M) = L(N).

In the rest of this section, we will show how to convert an NFA to a Di:

Theorem 2.5.1 LetN =(Q; ;;q;F) be anondeterministic nite automa-
ton. There exists a deterministic nite automatonM, such thatL(M) =
L(N).

Proof. Recall that the NFA N can (in general) perform more than one
computation on a given input string. The idea of the proof is to constict a
DFA M that runs all these di erent computations simultaneously(We have
seen this idea already in the proof of Theorem 2.3.1.) To be more pregis
the DFA M will have the following property:

the state that M is in after having read an initial part of the input
string corresponds exactly to the set of all states thalN can reach
after having read the same part of the input string.

42 Chapter 2. Finite Automata and Regular Languages

We start by presenting the conversion for the case wheN does not
contain -transitions. In other words, the state diagram oN does not contain
any edge that has as a label. (Later, we will extend the conversion to the
general case.) Let the DFAM be de ned asM = (Q% ; %% F9, where

the set QP of states is equal toQ°= P (Q); observe thatjQY = 2/,

the start state ¢°is equal toq®= fqg; SoM has the \same" start state
asN,

the set F° of accept states is equal to the set of all elemenk of Q°
having the property that R contains at least one accept state df, i.e.,

F°=fR2 Q% R\ F 6 ;g;

the transition function °: Q° I QCis de ned as follows: For each
R 2 Q%and for eacha 2 ,

(R;a) = [(r;a):

r2rR

Let us see what the transition function °of M does. First observe that,
sinceN is an NFA, (r;a) is a subset ofQ. This implies that {R;a) is the
union of subsets ofQ and, therefore, also a subset @. Hence, {R;a) is
an element ofQ®.

The set (r;a) is equal to the set of all states of the NFAN that can be
reached from stater by reading the symbola. We take the union of these
sets (r;a), wherer ranges over all elements oR, to obtain the new set

YR;a). This new set is the state that the DFAM reaches from stateR, by
reading the symbola.

In this way, we obtain the correspondence that was given in the bieging
of this proof.

After this warming-up, we can consider the general case. In othwords,
from now on, we allow -transitions in the NFA N. The DFA M is de ned as
above, except that the start stateg® and the transition function °have to be
modi ed. Recall that a computation of the NFA N consists of the following:

1. Start in the start state g and make zero or more-transitions.

2. Read one \real" symbol of and move to a new state (or stay in tle
current state).

2.5. Equivalence of DFAs and NFAs 43

3. Make zero or more -transitions.

4. Read one \real" symbol of and move to a new state (or stay in tle
current state).

5. Make zero or more -transitions.
6. Etc.
The DFA M will simulate this computation in the following way:

Simulate 1. in one single step. As we will see below, this simulation is
implicitly encoded in the de nition of the start state ¢° of M.

Simulate 2. and 3. in one single step.
Simulate 4. and 5. in one single step.
Etc.

Thus, in one step, the DFA M simulates the reading of one \real" symbol of
, followed by making zero or more -transitions.

To formalize this, we need the notion of-closure For any stater of the
NFA N, the -closure ofr, denoted by C (r), is de ned to be the set of all
states ofN that can be reached fronr, by making zero or more -transitions.
For any state R of the DFA M (hence,R Q), we de ne

C(R)= [C(r):

r2rR

How do we de ne the start stateq® of the DFA M ? Before the NFAN
reads its rst \real" symbol of , it makes zero or more -transitions. In
other words, at the moment whenN reads the rst symbol of , it can be
in any state of C (q). Therefore, we de neg’to be

o’= C(d) = C (fag):

How do we de ne the transition function °of the DFA M ? Assume that
M is in state R, and reads the symboh. At this moment, the NFA N would
have been in any state of R. By reading the symbola, N can switch to
any state in (r;a), and then make zero or more-transitions. Hence, the

44 Chapter 2. Finite Automata and Regular Languages

NFA can switch to any state in the setC ((r;a)). Based on this, we de ne
Y{R;a) to be

[
MR;a)= C((ra)):

r2R

To summarize, the NFAN = (Q; ;;q;F) is converted to the DFA
M =(Q% ; S F9, where

Q°= P(Q),

¢’= C (fag),

FO= fR2 Q% R\ F 6 g,

0. QO I QCis de ned as follows: For eaclR 2 Q°and for each
az2z ,

[
MR;a)= C((ra):

r2R

The results proved until now can be summarized in the following theem.

Theorem 2.5.2 Let A be a language. Ther is regular if and only if there
exists a nondeterministic nite automaton that accepts\.

2.5.1 An example

Consider the NFAN =(Q; ;;q;F),whereQ=11,2,39, = fa;lg,q=1,
F = f2g, and is given by the following table:

| a b
1|f3g ; f 29
2 flg ;
3|f2g 2,39 ;

The state diagram ofN is as follows:

2.5. Equivalence of DFAs and NFAs 45

E—
a

ab

@
We will show how to convert this NFAN to a DFA M that accepts the

same language. Following the proof of Theorem 2.5.1, the DA is speci ed
by M =(Q% ; %¢®F9, where each of the components is de ned below.

Q%= P(Q). Hence,

Q%= f; :fig;f2g;f3g;f1;2g;f1;3g;f2; 3g;f1; 2390

o°= C (fqg). Hence, the start stateq® of M is the set of all states of
N that can be reached fromN's start state q = 1, by making zero or
more -transitions. We obtain

o= C (fqg) = C (f1g) = f1;2g:

FO=fR2 Q%: R\ F 6 ;g. Hence, the accept states dfl are those
states that contain the accept state 2 oN. We obtain

FO= ff 2g;f1;2g;f2;3g;f1;2; 390:

0. Qo I QYis de ned as follows: For eactR 2 Q°and for each
az2 ,

[
MR;a)= C((ra):

r2R

46 Chapter 2. Finite Automata and Regular Languages

In this example °is given by

GCia)=; G =;
qf1g;a) = f3g f1g;b = ;
Af2g;a) = f1;29 qf2g;b) = ;

U3g8)=f2g Af3g;b) = f2;3g
1 1,29,a) = £1;2;3g 1,200 = ;
U13ga)= f223g Yf1,3g,b) = f23g
Af2;3g;a)= 1,29 qf2;3g;b) = f2;3g
11,23g,a)= 1,239 4f1;2309;0) = f2;3g

The state diagram of the DFAM is as follows:

We make the following observations:

2.6. Closure under the regular operations a7

The statesf 1g and f 1; 3g do not have incoming edges. Therefore, these
two states cannot be reached from the start statél; 2g.

The state f3g has only one incoming edge; it comes from the state
f1g. Sincef1g cannot be reached from the start statef 3g cannot be
reached from the start state.

The state f2g has only one incoming edge; it comes from the state
f3g. Sincef 3g cannot be reached from the start statef 2g cannot be
reached from the start state.

Hence, we can remove the four statefslg, f2g, f3g, and f1;3g. The
resulting DFA accepts the same language as the DFA above. This lsad
to the following state diagram, which depicts a DFA that accepts thesame
language as the NFAN:

48 Chapter 2. Finite Automata and Regular Languages

2.6 Closure under the regular operations

In Section 2.3, we have de ned the regular operations union, corteaation,
and star. We proved in Theorem 2.3.1 that the union of two regular lan
guages is a regular language. We also explained why it is not clear thaet
concatenation of two regular languages is regular, and that theastof a reg-
ular language is regular. In this section, we will see that the concept NFA,
together with Theorem 2.5.2, can be used to give a simple proof of tfet
that the regular languages are indeed closed under the regular ogtens.
We start by giving an alternative proof of Theorem 2.3.1.:

Theorem 2.6.1 The set of regular languages is closed under the union op-
eration, i.e., if A; and A, are regular languages over the same alphabet
then A; [A, is also a regular language.

Proof. Since A, is regular, there is, by Theorem 2.5.2, an NFAM; =

(Q1; ; 15 F1), such that A; = L(My). Similarly, there is an NFA M, =

(Q2; ; 2;;F2), such that A, = L(M;). We may assume thatQ;\ Q, = ;,

because otherwise, we can give new \names" to the states@f and Q..

From these two NFAs, we will construct an NFAM = (Q; ; ;do; F), such
that L(M) = A;[A,. The construction is illustrated in Figure 2.1. The
NFA M is de ned as follows:

1. Q=fopg[Qi Q2 where is a new state.

2. @ is the start state of M.

3. F=F[Fa.
4. :Q I'P (Q) is de ned as follows: For anyr 2 Q and for any
az2 8
5 i(rna) ifr2Qq,
(ra) = 2(r;@) i r 2 Qy,
’ 2 fo,pg ifr=qganda= |,
" fr=@gpandaé

2.6. Closure under the regular operations 49

O © O
O O).
O O, O O

'ORN®) IORN®)
0“5 0“5

O O, O O

Figure 2.1: The NFA M acceptsL(M,) [L(M>y).

Theorem 2.6.2 The set of regular languages is closed under the concatena-
tion operation, i.e., if A; and A, are regular languages over the same alphabet
, then A;A, is also a regular language.

Proof. Let M; = (Q1; ; 1;,a;F1) be an NFA, such that A; = L(My).
Similarly, let M, = (Q2; ; 2;%;F,) be an NFA, such that A, = L(M,).
As in the proof of Theorem 2.6.1, we may assume th&;\ Q, = ;. We
will construct an NFA M = (Q; ; ;qo;F), such that L(M) = A;A,. The
construction is illustrated in Figure 2.2. The NFAM is de ned as follows:

1. Q=0Q:[Qa.
2. p= Q.
3. F= Fz.

50 Chapter 2. Finite Automata and Regular Languages

o ® O
® 0“5
O, © O,

T®

O
O

© oT—» O
e

O o o
Sed © O

Figure 2.2: The NFA M acceptsL(M1)L(M>).

4. :Q I'P (Q) is de ned as follows: For anyr 2 Q and for any
az2

8
3 1(r;a) if r2 Qandr 62F,

() = 1(r; @) ifr2F,andaé |,

T3 y(na)[f g ifr2F anda=
" a(ra) if r2 Q.
|

Theorem 2.6.3 The set of regular languages is closed under the star oper-
ation, i.e., if A is a regular language, the\ is also a regular language.

Proof. Let be the alphabet of A and let N = (Q:; ; 1;t;F1) be an
NFA, such that A = L(N). We will construct an NFA M =(Q; ; ;qo;F),
such that L(M) = A . The construction is illustrated in Figure 2.3. The
NFA M is de ned as follows:

2.6. Closure under the regular operations 51

T O Own®
0O ol e
OO OO

Figure 2.3: The NFA M accepts(L(N)) .

1. Q= fopg[Q1, whereq, is a new state.
2. @ is the start state of M.
3. F=fqpg[F:. (Since 2 A, o has to be an accept state.)

4. :Q I'P (Q) is de ned as follows: For anyr 2 Q and for any
az2 ,
8 :
% 1(r;a) if r2 Qandr 62,
1(r;a) ifr2F,andaé |,
(r;a) = i(na)[f qqg ifr2Fpanda=
faug ifr=@ganda= |,
; ifr=@gpandaé
|

In the nal theorem of this section, we mention (without proof) two more
closure properties of the regular languages:

Theorem 2.6.4 The set of regular languages is closed under the complement
and intersection operations:

1. If A is a regular language over the alphabet then the complement
A=fw2 :w62Ag

is also a regular language.

52 Chapter 2. Finite Automata and Regular Languages

2. If A; and A, are regular languages over the same alphabetthen the
intersection

AN Ab=Ffw?2 w2 A;andw 2 Axg

is also a regular language.

2.7 Regular expressions

In this section, we present regular expressions, which are a meémslescribe
languages. As we will see, the class of languages that can be desdriby
regular expressions coincides with the class of regular languages.

Before formally de ning the notion of a regular expression, we giveme
examples. Consider the expression

(O[1)01:

The language described by this expression is the set of all binaryisgs

1. that start with either O or 1 (this is indicated by (O 1)),

2. for which the second symbol is O (this is indicated by 0), and

3. that end with zero or more 1s (this is indicated by J.
That is, the language described by this expression is

00,001 001%0011%:::;10,10 101110111 :: g

Here are some more examples (in all cases, the alphabeftGs1g):

The languagefw : w contains exactly two Og is described by the ex-
pression
10101:

The languagef w : w contains at least two Og is described by the ex-

pression
(0[1) 0(0[1) O(O[1) :

The languagefw : 1011 is a substring ofvg is described by the ex-
pression
(O[1) 1011([1) :

2.7. Regular expressions 53

The languagef w : the length of w is everg is described by the expres-
sion

(O 1(O[1)) :
The languagefw : the length ofw is oddy is described by the expres-
sion
O D[1O[1)) :
The languagef 1011 Og is described by the expression
1011 O:
The languagefw : the rst and last symbols of w are equag) is de-
scribed by the expression
OO[1) O[1(O0[) 1[O L

After these examples, we give a formal (and inductive) de nition akgular
expressions

De nition 2.7.1 Let be a non-empty alphabet.

1. is aregular expression.

2. ; is a regular expression.

3. Foreacha2 , ais a regular expression.
4

. If R; and R, are regular expressions, theR; [R; is a regular expres-
sion.

5. If R; and R, are regular expressions, theR;R; is a regular expression.
6. If R is a regular expression, theiR is a regular expression.

You can regard 1., 2., and 3. as being the \building blocks" of regular
expressions. ltems 4., 5., and 6. give rules that can be used to camb
regular expressions into new (and \larger") regular expressiongo give an
example, we claim that

(O] 1) 102(0[1)

is a regular expression (where the alphabet is equal t60;1g). In order
to prove this, we have to show that this expression can be \built" usg the
\rules" given in De nition 2.7.1. Here we go:

54 Chapter 2. Finite Automata and Regular Languages

By 3., 0 is a regular expression.

By 3., 1 is a regular expression.

Since 0 and 1 are regular expressions, by 4[, Dis a regular expression.
Since J 1is a regular expression, by 6., (01) is a regular expression.
Since 1 and 0 are regular expressions, by 5., 10 is a regular expressio
Since 10 and 1 are regular expressions, by 5., 101 is a regular exgioes

Since (O] 1) and 101 are regular expressions, by 5., [01) 101 is a
regular expression.

Since (O[1) 101 and (O[1) are regular expressions, by 5., (D
1) 101(0[1) is a regular expression.

Next we de ne the language that isdescribedby a regular expression:
De nition 2.7.2 Let be a non-empty alphabet.

1. The regular expression describes the languagé g.

2. The regular expression describes the language.

3. For eacha 2 , the regular expression a describes the languagéag.

4. Let R; and R, be regular expressions and ldt; and L, be the lan-
guages described by them, respectively. The regular expressiti] R»
describes the languagée; [L».

5. LetR; andR; be regular expressions and lét; and L, be the languages
described by them, respectively. The regular expressi®iR, describes
the languageL ;L ,.

6. Let R be a regular expression and ldt be the language described by
it. The regular expressionR describes the language .

We consider some examples:

The regular expression (D)(1[) describes the languageé01;0;1; g.

2.7. Regular expressions 55

The regular expression 0 describes the languag€0; g, whereas the
regular expression ldescribes the languagé; 1;11;117%;:::9. There-
fore, the regular expression (D)1 describes the language

f0;01,012011%:::;;2;11;,11% ;0

Observe that this language is also described by the regular expliegss
o1 [1.

The regular expression 1 describes the empty language, i.e., the lan-
guage; . (You should convince yourself that this is correct.)

The regular expression describes the languagé g.

De nition 2.7.3 Let R; and R, be regular expressions and ldt; and L,
be the languages described by them, respectively. Uf = L, (i.e., Ry and
R, describe the same language), then we will write; = R».

Hence, even though (D)1 and 01 [1 are di erent regular expressions,
we write
(O[)1 =01 [1;

because they describe the same language.

In Section 2.8.2, we will show that every regular language can be diised
by a regular expression. The proof of this fact is purely algebraic dnuses
the following algebraic identities involving regular expressions.

Theorem 2.7.4 Let Ry, R,, and R3 be regular expressions. The following
identities hold:

1. Ry =Ry = 3.

2. R, = R;=R..
Ri[; =;[Ri1=Rq.
R.:[R1= Ry.

Ri[R2=Rz2[Ri.

2 A

Ri(R2[Rs3) = RiR2[RiRs.

56 Chapter 2. Finite Automata and Regular Languages

7. (R1[R2)Rz = RiR3[R,Rs.

8. R1(RyR3) = (R1R2)Ra.

9.: =

10. =

11. ([R) = R,.

12. ([R)([Ry) =Ry,

13. Ri)([R)=([R)R; = R;.

14. R,R,[Rz = R,R,.

15. Ri(R:R1) =(R:R») Ry.

16. (R1[Ry) =(R,R») R; = (R,Ry) R,.

We will not present the (boring) proofs of these identities, but urg you
to convince yourself informally that they make perfect sense. Toivg an
example, we mentioned above that

(O[)1 =011 1:
We can verify this identity in the following way:

o[)1

o1 [1 (by identity 7)
01 [1 (by identity 2)

2.8 Equivalence of regular expressions and reg-
ular languages

In the beginning of Section 2.7, we mentioned the following result:

Theorem 2.8.1 Let L be a language. Theh is regular if and only if there
exists a regular expression that describés

The proof of this theorem consists of two parts:

2.8. Equivalence of regular expressions and regular langua ges 57

In Section 2.8.1, we will prove that every regular expression des@th
a regular language.

In Section 2.8.2, we will prove that every DFAM can be converted to
a regular expression that describes the languagéM).

These two results will prove Theorem 2.8.1.

2.8.1 Every regular expression describes a regular lan-
guage

Let R be an arbitrary regular expression over the alphabet . We will proe
that the language described byR is a regular language. The proof is by
induction on the structure of R (i.e., by induction on the way R is \built"
using the \rules" given in De nition 2.7.1).

The rst base case: Assume thatR = . Then R describes the lan-
guagef g. In order to prove that this language is regular, it suces, by
Theorem 2.5.2, to construct an NFAM = (Q; ; ;q;F) that accepts this
language. This NFA is obtained by de ningQ = fqg, qis the start state,
F =1fqgg, and (q;8 = ; foralla2 . The gure below gives the state

diagram of M :
—@

The second base case: Assume thatR = ;. Then R describes the language
;. In order to prove that this language is regular, it su ces, by Theoem 2.5.2,
to construct an NFA M = (Q; ; ;q;F) that accepts this language. This
NFA is obtained by dening Q = fqg, q is the start state, F = ;, and
(g;@ =; foralla2 . The gure below gives the state diagram oM :

o

The third base case: Leta2 andassume that R = a. Then R describes
the languagef ag. In order to prove that this language is regular, it su ces,
by Theorem 2.5.2, to construct an NFAM = (Q; ; ;q:;F) that accepts

58 Chapter 2. Finite Automata and Regular Languages

this language. This NFA is obtained by de ningQ = fq;; 0, ¢, is the start
state, F = f g, and

(8 = faog;
(ae; b ; forallb2 nfag,
(% b . forall b2

The gure below gives the state diagram oM :

The rst case of the induction step: Assume thatR = R; [Ry, where
R1 and R, are regular expressions. Ldt; and L, be the languages described
by R; and R;, respectively, and assume that ; and L, are regular. ThenR
describes the languagk [L, which, by Theorem 2.6.1, is regular.

The second case of the induction step: Assume thatR = R;R,, where
R; and R, are regular expressions. Ldt; and L, be the languages described
by R; and R;, respectively, and assume that ; and L, are regular. ThenR
describes the language ;L ,, which, by Theorem 2.6.2, is regular.

The third case of the induction step: Assume thatR = (R;) , where
R; is a regular expression. Let; be the language described bjr; and
assume thatl ; is regular. ThenR describes the languagelL(;) , which, by
Theorem 2.6.3, is regular.

This concludes the proof of the claim that every regular expressiate-
scribes a regular language.
To give an example, consider the regular expression

(ab[&) ;

where the alphabet isf a;by. We will prove that this regular expression de-
scribes a regular language, by constructing an NFA that acceptld language
described by this regular expression. Observe how the regular exgsion is
\built":

Take the regular expressiona and b, and combine them into the regular
expressionah

2.8. Equivalence of regular expressions and regular langua ges 59

Take the regular expressionsb and a, and combine them into the
regular expressiorab[a.

Take the regular expressiorab[a, and transform it into the regular
expression éb[a) .

First, we construct an NFA M that accepts the language described by
the regular expressiora:

a
« —0Q
Next, we construct an NFAM, that accepts the language described by
the regular expressior

Next, we apply the construction given in the proof of Theorem 2.6.2t

M, and M,. This gives an NFA M3 that accepts the language described by
the regular expressiorah

a e b
o)
Next, we apply the construction given in the proof of Theorem 2.6.1ot

M3 and M;. This gives an NFA M, that accepts the language described by
the regular expressiorab[a:

My

Finally, we apply the construction given in the proof of Theorem 2.6.3
to My4. This gives an NFA M5 that accepts the language described by the
regular expressiondb[a) :

60 Chapter 2. Finite Automata and Regular Languages

Ms

2.8.2 Converting a DFA to a regular expression

In this section, we will prove that every DFAM can be converted to a regular
expression that describes the languadg(M). In order to prove this result,
we need to solve recurrence relations involving languages.

Solving recurrence relations

Let be an alphabet, let B and C be \known" languages in such that
628, and let L be an \unknown" language such that

L=BL[C:

Can we \solve" this equation forL? That is, can we exprest in terms of
B and C?

Consider an arbitrary stringu in L. We are going to determine howu
looks like. Sinceu 2 L andL = BL [C, we know that u is a string in
BL [C. Hence, there are two possibilities fou.

1. u is an element ofC.

2. uis an element ofBL . In this case, there are stringb2 B andv 2 L
such thatu = bv. Since 62B, we haveb& and, therefore,jvj < juj.
(Recall that jvj denotes the length, i.e., the number of symbols, of the
string v.) Sincev is a string in L, which is equal toBL [C, vis a
string in BL [C. Hence, there are two possibilities fov.

2.8. Equivalence of regular expressions and regular langua ges 61

(a) v is an element ofC. In this case,

u= bv; whereb2 B andv 2 C; thus,u 2 BC.

(b) v is an element ofBL. In this case, there are string$®2 B and
w 2 L such thatv = Bw. Since 62B, we havel® 6 and,
therefore, jwj < jvj. Sincew is a string in L, which is equal to
BL[C,wisastringinBL [C. Hence, there are two possibilities
for w.

i. wis an element ofC. In this case,
u = btlw; whereb:¥2 B andw 2 C; thus, u 2 BBC.

ii. wis an element oBL. In this case, there are string$’°2 B
and x 2 L such thatw = B’%. Since 62B, we havel™8
and, therefore,jxj < jwj. Sincex is a string in L, which is
equal toBL [C, x is a string in BL [C. Hence, there are
two possibilities forx.

A. x is an element ofC. In this case,
u = b%: whereb;# %2 B and x 2 C; thus, u 2 BBBC .
B. x is an element ofBL . Etc., etc.

This process hopefully convinces you that any stringin L can be written
as the concatenation of zero or more strings iB, followed by one string in
C. In fact, L consists of exactly those strings having this property:

Lemma 2.8.2 Let be an alphabet, and leB, C, and L be languages in
such that 62B and
L=BL][C:

Then
L=B C:

Proof. First, we show thatB C L. Let u be an arbitrary string in B C.
Then u is the concatenation ofk strings of B, for somek 0, followed by
one string of C. We proceed by induction ork.

The base case is whek = 0. In this case, u is a string in C. Hence,u is
astringinBL [C. SinceBL [C =L, it follows that u is a string inL.

62 Chapter 2. Finite Automata and Regular Languages

Now let k 1. Then we can writeu = vwc, wherev is a string in B,
w is the concatenation ofk 1 strings ofB, and c is a string of C. De ne
y = wc. Observe thaty is the concatenation ofk 1 strings of B followed
by one string of C. Therefore, by induction, the stringy is an element ofL.
Hence,u = vy, wherev is a string in B and y is a string in L. This shows
that uis a string inBL. Hence,uisastringinBL [C. SinceBL[C =L,
it follows that u is a string in L. This completes the proof thatB C L.

It remains to show thatL B C. Let u be an arbitrary string in L,
and let * be its length (i.e., " is the number of symbols inu). We prove by
induction on " that uis a string inB C.

The base case is wheh=0. Thenu= . Sinceu2 L andL = BL [C,
uisastringinBL [C. Since 62B, u cannot be a string inBL . Hence,u
must be a string inC. SinceC B C, it follows that u is a string inB C.

Let™ 1. IfuisastringinC,thenuisastringinB C and we are done.
So assume thau is not a string in C. Sinceu2 L andL=BL[C,uisa
string in BL. Hence, there are string92 B andv 2 L such thatu = bw.
Since 62B, the length ofbis at least one; hence, the length of is less than
the length of u. By induction, v is a string in B C. Hence,u = bv, where
b2 B andv 2 B C. This shows thatu 2 B(B C). SinceB(B C) B C,
it follows that u2 B C. |

Note that Lemma 2.8.2 holds forany languageB that does not contain
the empty string . As an example, assume thaB = ;. Then the language
L satis es the equation

L=BL[C=;L[C:
Using Theorem 2.7.4, this equation becomes
L=;[C=C:

We now show that Lemma 2.8.2 also implies thatk = C: Since 62B,
Lemma 2.8.2 implies thatL = B C, which, using Theorem 2.7.4, becomes

L=BC=;C=C=C¢C:

The conversion

We will now use Lemma 2.8.2 to prove that every DFA can be convertead
a regular expression.

2.8. Equivalence of regular expressions and regular langua ges 63

Let M = (Q; ;;q;F) be an arbitrary deterministic nite automaton.
We will show that there exists a regular expression that describebe lan-
guageL (M).

For each stater 2 Q, we de ne

L, =fw2 : the path in the state diagram ofM that starts
in state r and that corresponds tow ends in a
state of F g.

In words, L, is the language accepted b, if r were the start state

We will show that each such languagé, can be described by a regular
expression. Sincé& (M) = Lg, this will prove that L(M) can be described by
a regular expression.

The basic idea is to set up equations for the languagks, which we then
solve using Lemma 2.8.2. We claim that

[
L, = a L (a if r 62F: (2.2)

a2

Why is this true? Let w be a string inL,. Then the path P in the state
diagram of M that starts in state r and that corresponds tow ends in a
state of F. Sincer 62F, this path contains at least one edge. Let®be the
state that follows the rst state (i.e., r) of P. Then r°= (r;b) for some
symbolb2 . Hence, bis the rst symbol of w. Write w = bv, wherev is
the remaining part ofw. Then the path P°= P nfrgin the state diagram
of M that starts in state r®and that corresponds tov ends in a state ofF.
Therefore,v2 L;o= L (.. Hence,

[
a2

Conversely, letw be a string inSaz a L (ra). Then there is a symbob 2
and a stringv 2 L (. such thatw = bv. Let P°be the path in the state
diagram of M that starts in state (r;b) and that corresponds tov. Since
vV 2 L (p), this path ends in a state ofF. Let P be the path in the state
diagram of M that starts in r, follows the edge to (r; b), and then followsP®.
This path P corresponds tow and ends in a state oF. Therefore,w 2 L,.
This proves the correctness of (2.2).

64 Chapter 2. Finite Automata and Regular Languages

Similarly, we can prove that |
[!
L= [a L (a) ifr2F: (2.3)
a2
So we now have a set of equations in the \unknowng!,, forr 2 Q. The
number of equations is equal to the size @. In other words, the number
of equations is equal to the number of unknowns. The regular exgssion for
L(M) = L, is obtained by solving these equations using Lemma 2.8.2.
Of course, we have to convince ourselves that these equationséha so-
lution for any given DFA. Before we deal with this issue, we give an exwple.

An example

Consider the deterministic nite automatonM =(Q; ; ;qo;F), whereQ =
fop,u;g, = fa;ly, @ is the start state, F = fgg, and is given in the
state diagram below. We show how to obtain the regular expressiohatt
describes the language accepted by .

8

< LQo = a LQO[b LQ2
Ly = a Lg[b Lg
LQZ = [a LQ1[b LQO

2.8. Equivalence of regular expressions and regular langua ges 65

In the third equation, L, is expressed in terms of o, and L4, . Hence, if we
substitute the third equation into the rst one, and use Theorem 2Z7.4, then
we get

LQO aLQo[b([aL(h[bLQO)
(a[b Lg[ba Lg [b:

We obtain the following set of equations.

LQO
LQl

(a[bb LQO[ba L‘h[b
b Lyl a Lg

LletL =Ly, B=DbandC = a Lg. Then 62B and the second equation
readsL = BL [C. Hence, by Lemma 2.8.2,

Ley=L=B C=Dba Lg:
If we substitute L, into the rst equation, then we get (again using Theo-

rem 2.7.4)

LQo

(a[bY Lg [ba ba L[b
(a[bb[baba)Lg, [b:

Again applying Lemma 2.8.2, this time withL = Ly, B = a[bl baba and
C = b, gives
Le, = (a[bb[baba) b:

Thus, the regular expression that describes the language acaapby M is

(a[bb[baba) b:

Completing the correctness of the conversion

It remains to prove that, for any DFA, the system of equations (2) and (2.3)
can be solved. This will follow from the following (more general) lemma.
(You should verify that the equations (2.2) and (2.3) are in the formas
speci ed in this lemma.)

66 Chapter 2. Finite Automata and Regular Languages

Lemma 2.8.3 Letn 1be aninteger and, forl i nandl | n,

L = Bij Lj [Ci for 1 | n.

Then L, can be expressed as a regular expression only involving tegutar
expressionsB; and C;.

Proof. The proof is by induction onn. The base case is when = 1. In
this case, we have

L1 =Bul:[Ci:

Since 62B, it follows from Lemma 2.8.2 thatL,; = B,,C;. This proves
the base case.

Let n 2 and assume the lemma is true far 1. We have

Ln = Bn] L] [Cn

L, = B

2.9. The pumping lemma and nonregular languages 67

By substituting this equation for L, into the equations forL;, 1 i n 1,
we obtain |
[" '
Li = Bij Lj [Ci
i=1 |
Tt '
= Binlnl Bij L [C

1
(Bin Bnanj [Bij)l—j [Bin BnnCn[Ci:

j=1

Thus, we have obtainedn 1 equations inL;Lo;:::;L, 1. Since 62
BinB,Bnj [Bjj, it follows from the induction hypothesis thatL, can be
expressed as a regular expression only involving the regular exgress B
and C;. []

2.9 The pumping lemma and nonregular lan-
guages

In the previous sections, we have seen that the class of regulardaages is
closed under various operations, and that these languages cardescribed by
(deterministic or nondeterministic) nite automata and regular expessions.
These properties helped in developing techniques for showing thabaguage
is regular. In this section, we will present a tool that can be used tprove
that certain languages arenot regular. Observe that for a regular language,

1. the amount of memory that is needed to determine whether or ha
given string is in the language is nite and independent of the length
of the string, and

2. if the language consists of an in nite number of strings, then thikan-
guage should contain in nite subsets having a fairly repetitive struc
ture.

Intuitively, languages that do not follow 1. or 2. should be nonreguta For
example, consider the language

fo"1":n Og:

68 Chapter 2. Finite Automata and Regular Languages

This language should be nonregular, because it seems unlikely that BAXcan
remember how many Os it has seen when it has reached the bordeteen
the Os and the 1s. Similarly the language

f0" : nis a prime numbeg

should be nonregular, because the prime numbers do not seem teehany

repetitive structure that can be used by a DFA. To be more rigoraaiabout

this, we will establish a property that all regular languages must pesss.

This property is called thepumping lemma If a language does not have this
property, then it must be nonregular.

The pumping lemma states that any su ciently long string in a regular
language can begumped i.e., there is a section in that string that can be
repeated any number of times, so that the resulting strings are alh the
language.

Theorem 2.9.1 (Pumping Lemma for Regular Languages) Let A be
a regular language. Then there exists an integer 1, called the pumping
length, such that the following holds: Every string in A, with jsj p, can
be written ass = xyz, such that

1.y6 (e,jyj 1,
2. jxyj p, and
3. foralli 0, xy'z2A.

In words, the pumping lemma states that by replacing the portiory in s
by zero or more copies of it, the resulting string is still in the languagg.

Proof. Let be the alphabet of A. SinceA is a regular language, there
exists a DFAM = (Q; ;;q;F) that accepts A. We de ne p to be the
number of states inQ.

Let s = s;1S,:::S, be an arbitrary string in A such thatn p. Dene
ri=0q r>= (ry;sy), rs= (rz;Se), ::i rnsr = (rn;Sn). Thus, when the

number of states ofM is equal top, the pigeonhole principle implies that
there must be a state that occurs twice in this sequence. That ishdre are
indicesj and " suchthat1l j<° p+landrj =r-.

2.9. The pumping lemma and nonregular languages 69

We denex = $:S;:::s; 1,y=5;:::S$ j,andz= s :::s,. Sincej <",
we havey 6 , proving the rst claim in the theorem. Since™ p+1, we
havejxyj= "~ 1 p, proving the second claim in the theorem. To see that
the third claim also holds, recall that the strings = xyz is accepted byM .
While reading x, M moves from the start stateq to state r;. While reading
y, it moves from stater; to stater- = rj, i.e., after having ready, M is again
in state r;. While readingz, M moves from stater; to the accept stater,.; .
Therefore, the substringy can be repeated any number 0 of times, and
the corresponding stringxy'z will still be accepted by M. It follows that
xy'z2 Aforalli O. |

2.9.1 Applications of the pumping lemma
First example

Consider the language
A=f0"1":n Og:
We will prove by contradiction that A is not a regular language.

Assume thatA is a regular language. Lep 1 be the pumping length,
as given by the pumping lemma. Consider the string = OP1P. It is clear
that s 2 A andjsj = 2p p. Hence, by the pumping lemmas can be
written as s = xyz, wherey 6 ,jxyj p, andxy'z2 Aforalli O.

Observe that, sincejxyj p, the string y contains only 0s. Moreover,
sincey 6 , y contains at least one 0. But now we are in trouble: None of
the strings xy°z = xz, xy2z = xyyz, xy®z = Xyyyz, ..., is contained inA.
However, by the pumping lemma, all these strings must be ih. Hence, we
have a contradiction and we conclude thaA is not a regular language.

70 Chapter 2. Finite Automata and Regular Languages

Second example

Consider the language
A=fw2f0;1g : the number of Os inw equals the number of 1s imwg:

Again, we prove by contradiction thatA is not a regular language.

Assume thatA is a regular language. Lep 1 be the pumping length,
as given by the pumping lemma. Consider the string = 0P1°. Thens2 A
and jsj = 2p p. By the pumping lemma, s can be written ass = xyz,
wherey 6 ,jxyj p,andxy'z2 Aforalli O.

Sincejxyj p, the string y contains only 0s. Sincey 6 , y contains at
least one 0. Therefore, the stringky?z = xyyz contains more Os than 1s,
which implies that this string is not contained inA. But, by the pumping
lemma, this string is contained inA. This is a contradiction and, therefore,
A is not a regular language.

Third example

Consider the language
A=fww:w2f0;1g g:

We prove by contradiction that A is not a regular language.

Assume thatA is a regular language. Lep 1 be the pumping length,
as given by the pumping lemma. Consider the string= 0P10°1. Thens2 A
andjsj=2p+2 p. By the pumping lemma,s can be written ass = xyz,
wherey 6 ,jxyj p,andxy'z2 Aforalli O.

Sincejxyj p, the string y contains only 0s. Sincey 6 , y contains at
least one 0. Therefore, the stringcy?z = xyyz is not contained inA. Bult,
by the pumping lemma, this string is contained iMA. This is a contradiction
and, therefore,A is not a regular language.

You should convince yourself that by choosing = 0% (which is a string
in A whose length is at leasp), we do not obtain a contradiction. The reason
is that the string y may have an even length. Thus,® is the \wrong" string
for showing that A is not regular. By choosings = 0P1(°1, we do obtain
a contradiction; thus, this is the \correct" string for showing tha A is not
regular.

2.9. The pumping lemma and nonregular languages 71

Fourth example
Consider the language
A=f0"1":m>n Og:

We prove by contradiction that A is not a regular language.

Assume thatA is a regular language. Lep 1 be the pumping length,
as given by the pumping lemma. Consider the string= 0P*11°. Thens 2 A
andjsj=2p+1 p. By the pumping lemma,s can be written ass = xyz,
wherey 6 ,jxyj p,andxy'z2 Aforalli O.

Sincejxyj p, the string y contains only 0s. Since/ 6 , y contains at
least one 0. Consider the stringty®z = xz. The number of 1s in this string
is equal top, whereas the number of Os is at most equal o Therefore, the
string xy°z is not contained inA. But, by the pumping lemma, this string
is contained inA. This is a contradiction and, therefore A is not a regular
language.

Fifth example

Consider the language
A=f1":n 0g

We prove by contradiction that A is not a regular language.

Assume thatA is a regular language. Lep 1 be the pumping length,
as given by the pumping lemma. Consider the string = 1. Thens2 A
and jsj = p> p. By the pumping lemma,s can be written ass = xyz,
wherey 6 ,jxyj p,andxy'z2 Aforalli O.

Observe that

jsi = ixyzj = p
and
ixy?zj = jxyyzj = jxyzj + jyi = p* + Jyj:

Sincejxyj p, we havejyj p. Sincey 6 , we havejyj 1. It follows that

P < jxy’zj p’+p<(p+1)*

Hence, the length of the stringxy?z is strictly between two consecutive
squares. It follows that this length is not a square and, thereforexy?z

is not contained inA. But, by the pumping lemma, this string is contained
in A. This is a contradiction and, therefore A is not a regular language.

72 Chapter 2. Finite Automata and Regular Languages

Sixth example

Consider the language
A= f1": nis a prime numbeo:

We prove by contradiction that A is not a regular language.

Assume thatA is a regular language. Lep 1 be the pumping length,
as given by the pumping lemma. Leh p be a prime number, and consider
the string s=1". Thens2 A andjsj= n p. By the pumping lemma,s
can be written ass = xyz, wherey 6 ,jxyj p,andxy'z2 Aforalli O.

Let k be the integer such thaty = 1. Sincey 6 , we havek 1. For
eachi 0,n+(i 1)k is a prime number, becausay'z = 1"*(1 Dk 2 A,
Fori = n+ 1, however, we have

n+(i Lk=n+nk=n(1+Kk);

which is not a prime number, becausa 2and 1+k 2. Thisis a
contradiction and, therefore,A is not a regular language.

Seventh example

Consider the language

A=fw2f0;1g : the number of occurrences of 01 iw is equal to
the number of occurrences of 10 iw g.

Since this language has the same avor as the one in the second eglm
we may suspect thatA is not a regular language. This is, however, not true:
As we will show, A is a regular language.

The key property is the following one: Letw be an arbitrary string in
f0;1g . Then

the absolute value of the number of occurrences of 01vunminus
the number of occurrences of 10 iw is at most one.

This property holds, because between any two consecutive oaeurces of
01, there must be exactly one occurrence of 10. Similarly, betweany two
consecutive occurrences of 10, there must be exactly one ocence of 01.

We will construct a DFA that accepts A. This DFA uses the following
ve states:

2.9. The pumping lemma and nonregular languages 73

g: start state; no symbol has been read.

Gp1: the last symbol read was 1; in the part of the string read so farhée
number of occurrences of 01 is one more than the number of oceaces
of 10.

Guo: the last symbol read was 0; in the part of the string read so farhée
number of occurrences of 10 is one more than the number of ocences
of 01.

&ua: the last symbol read was 0; in the part of the string read so far,
the number of occurrences of 01 is equal to the number of ocances
of 10.

Obquaic the last symbol read was 1; in the part of the string read so far,
the number of occurrences of 01 is equal to the number of ocamnces
of 10.

The set of accept states is equal t0q; ¢, Gqua9- The state diagram of
the DFA is given below.

In fact, the key property mentioned above implies that the languagA
consists of the empty string and all non-empty binary strings that start

74 Chapter 2. Finite Automata and Regular Languages

and end with the same symbol. As a resultA is the language described by
the regular expression

[O[1[O(O[1) O[1(0[1) L:

This gives an alternative proof for the fact thatA is a regular language.

Eighth example

Consider the language
L=fw2f0;1g : wis the binary representation of a prime numbe:

We assume that for any positive integer, the leftmost bit in its binaryepre-
sentation is 1. In other words, we assume that there are no 0's attto the
left of such a binary representation. Thus,

L=110,11,102111101%110%1000%:::g:

We will prove that L is not a regular language.

Assume thatL is a regular language. Lep 1 be the pumping length.
Let N > 2P be a prime number and lets 2 f 0;1g be the binary representa-
tion of N. Observe thatjsj p+ 1. Also, the leftmost and rightmost bits of
s are 1.

Sinces2 L andjsj p+1 p, the Pumping Lemma implies that we
can write s = xyz, such that

Ly 1L,
2. jxyj p(and, thus,jzj 1), and

3. foralli 0,xy'z2L,i.e., xy'zis the binary representation of a prime
number.

De ne A, B, and C to be the integers whose binary representations are
X, Y, and z, respectively. Note that bothy and z may have leading 0's. In
fact, y may be a string consisting of 0's only, in which cad® = 0. However,
since the rightmost bit ofz is 1, we haveC 1. Observe that

N=C+B 24+A 24+W: (2.4)

2.9. The pumping lemma and nonregular languages 75

Let i = N, consider the bitstringxy'z = xyNz, and let M be the prime
number whose binary representation is given by this bitstring. Then
y(1
C+ B 2zi+kiyi 4 A 2izi+Niyj
k=0

M

1
C+B 24 oKiyi 4 A 2izi+ Njyj.

k=0
Let
1
T= 211
k=0
Then N N
2Y 1 T=2"W 1 (2.5)

By Fermat's Little Theorem, we have
2N 2 (modN);
implying that
N 1= N oM 1 (modN):
Thus, (2.5) implies that
2y 1T 2 1 (modN): (2.6)

Observe that 2 2P < N, becausdyj j xyj p. Also, 2¥ 2, because
y 6 . It follows that
1 2¥ 1<N;

implying that N
2Y 16 0 (modN):

This, together with (2.6), implies that
T 1 (modN):

Since
M=C+B 24 T+A 24+Nwi;

76 Chapter 2. Finite Automata and Regular Languages

it follows that
M C+B 249+ A 24*¥ (modN):
This, together with (2.4), implies that
M 0 (modN);

i.e., N dividesM. SinceM > N , we conclude thatM is not a prime number,
which is a contradiction. Thus, the languagé. is not regular.

2.10 Higman's Theorem

Let be a nite alphabet. For any two strings x andy in , we say thatx

is asubsequencefy, if x can be obtained by deleting zero or more symbols
from y. For example, 10110 is a subsequence of 0010010101010001arfor
languageL , we de ne

SUBSEQ(L) := fx : there exists ay 2 L such that x is a subsequence ofg:

That is, SUBSEQ(L) is the language consisting of the subsequences of all
strings in L. In 1952, Higman proved the following result:

Theorem 2.10.1 (Higman) For any nite alphabet and for any lan-
guageL , the language SUBSEQ.) is regular.

2.10.1 Dickson's Theorem

Our proof of Higman's Theorem will use a theorem that was proved ir013
by Dickson.
Recall that N denotes the set of positive integers. Lat 2 N. For any

dominatedby q,if o q foralli withl i n.

Theorem 2.10.2 (Dickson) LetS N", andletM be the set consisting of
all elements ofS that are minimal in the relation \is dominated by". Thus,

M =1fq2 S: thereis nopin Snfqg such thatp is dominated byqg:

Then, the setM is nite.

2.10. Higman's Theorem 77

We will prove this theorem by induction on the dimensiom. If n =1,
then eitherM = ; (if S= ;) or M consists of exactly one element (6 6 ;).
Therefore, the theorem holds ih = 1. Let n 2 and assume the theorem
holds for all subsets ofN" 1. Let S be a subset oN" and consider the set
M of minimal elements inS. If S = ;, then M = ; and, thus, M is nite.
Assume thatS 6 ;. We x an arbitrary element gin M. If p2 M nfqg,
then g is not dominated by p. Therefore, there exists an index such that
pi g 1. It follows that

M nfqg N'Y [Lg 1] N :

i=1
Foralliandkwithl i nandl k g 1,wedene
Sk =fp2S:p = kg

and
Mik =fp2 M :p = kg:

Then,
N
M nfgg= Y% (2.7)

i=1 k=1

Lemma 2.10.3 Mj, is a subset of the set of all elements & that are
minimal in the relation \is dominated by".

Proof. Let p be an element oM, and assume thatp is not minimal in
Sik. Then there is an element in Sy, such thatr 6 p and r is dominated
by p. Sincep and r are both elements of5, it follows that p 62V . This is a
contradiction. [|

Since the setSy is basically a subset oN" 1, it follows from the induction
hypothesis thatSj; contains nitely many minimal elements. This, combined
with Lemma 2.10.3, implies thatM is a nite set. Thus, by (2.7), M nfqg
is the union of nitely many nite sets. Therefore, the setM is nite.

2.10.2 Proof of Higman's Theorem

We give the proof of Theorem 2.10.1 for the case when £0;1g. If L = ;
or SUBSEQ(L) = f0;1g , then SUBSEQ(L) is obviously a regular language.

78 Chapter 2. Finite Automata and Regular Languages

Hence, we may assume that is non-empty and SUBSEQ(L) is a proper
subset off 0; 1g .

We x a string z of length at least two in the complementSUBSEQ(L) of
the languageSUBSEQ(L). Observe that this is possible, becausfUBSEQ(L)
is an in nite language. We insert Os and 1s int@, such that, in the result-
ing string z% Os and 1s alternate. For example, if = 0011101011, then
z°=01010101010101. Len = jz§ 1, wherejzj denotes the length ofz°.
Then,n j zz 1 1.

A (0; 1)-alternation in a binary string x is any occurrence of 01 or 10 ix.
For example, the string 1101001 contains four {@)-alternations. We de ne

A=1x2f0;1g : x has at mostn many (0; 1)-alternationsy:
Lemma 2.10.4 SUBSEQL) A.

Proof. Let x 2 SUBSEQ(L) and assume thatx 62A. Then, x has at least
n+1 = jz§ many (0; 1)-alternations and, thereforez%is a subsequence of.
In particular, z is a subsequence of. Sincex 2 SUBSEQ(L), it follows that
z 2 SUBSEQ(L), which is a contradiction. |

Lemma 2.10.5 SUBSEQL)= A\ SUBSEQL) [A.

Proof. Follows from Lemma 2.10.4. [|

Lemma 2.10.6 The languageA is regular.

Proof. The complementA of A is the language consisting of all binary
strings with at least n + 1 many (0; 1)-alternations. If, for example,n = 3,
then A is described by the regular expression

(00110011 0(0[1)) [(110011001(0[1)):

This should convince you that the claim is true for any value of. |

For any b2 f 0; 1g and for anyk 0, we de ne Ay, to be the language
consisting of all binary strings that start with a b and have exactlyk many

(0; 1)-alternations. Then, we have

[1n '

A=fg] Apk
b=0 k=0

2.10. Higman's Theorem 79

Thus, if we de ne
Fok = Apk\ SUBSEQL),

and use the fact that 2 SUBSEQ(L) (which is true becausel 6 ;), then

1 [n
A\ SUBSEQL) = Fox: (2.8)
b=0 k=0

For any b2 f 0;1g and for anyk 0, consider the relation \is a subse-
guence of" on the languag&,x. We de ne My to be the language consisting
of all strings in Fy that are minimal in this relation. Thus,

Mpe = fX 2 Fpe @ there is nox®in Fy n fxg such that x°is a subsequence ofg:
It is clear that

Fok = fy 2 Fue: X is a subsequence ofg:
X2 M pk

If X 2 Mp, ¥ 2 A, and x is a subsequence of, then y must be in
SUBSEQ(L) and, therefore,y must be in F,. To prove this, assume that
y 2 SUBSEQL). Then, x 2 SUBSEQ(L), contradicting the fact that
X2 Mpk Fpx SUBSEQL). It follows that

[
Fok = fy 2 Apc: X is a subsequence ofy: (2.9)

X2 M pk

Lemma 2.10.7 Letb2f0;1gand0 k n, and letx be an element of
Mpk- Then, the language

fy 2 Apc: X is a subsequence gfg
is regular.

Proof. We will prove the claim by means of an example. Assume that=1,
k =3, and x =11110001000. Then, the language

fy 2 Apc: X is a subsequence ofg
is described by the regular expression
11111000011 0000:

This should convince you that the claim is true in general. [|

80

Chapter 2. Finite Automata and Regular Languages

Lemma 2.10.8 For eachb 2 f0;1g and eachO k n, the setMyy is

nite.

Proof.

Again, we will prove the claim by means of an example. Assume

that b= 1 and k = 3. Any string in Fy, can be written as £0°1°09, for some
integersa; b;c;d 1. Consider the function' : Fp! N# that is de ned by
' (120°1°0%) = (a; b;c;d. Then, ' is an injective function, and the following
is true, for any two stringsx and x°in Fyy:

x is a subsequence ofif and only if * (x) is dominated by' (x9.

It follows that the elements of My, are in one-to-one correspondence with
those elements of (Fpx) that are minimal in the relation \is dominated by".
The lemma thus follows from Dickson's Theorem. [|

Now we can complete the proof of Higman's Theorem:

It follows from (2.9) and Lemmas 2.10.7 and 2.10.8, thdEy is the
union of nitely many regular languages. Therefore, by Theorem 2.3,
Fuk IS a regular language.

It follows from (2.8) that A\ SUBSEQ(L) is the union of nitely many
regular languages. Therefore, again by Theorem 2.3A\ SUBSEQ(L)
is a regular language.

SinceA\ SUBSEQ(L) is regular and, by Lemma 2.10.6A is regular,
it follows from Lemma 2.10.5 thatSUBSEQ(L) is the union of two reg-
ular languages. Therefore, by Theorem 2.3.8UBSEQ(L) is a regular
language.

Since SUBSEQ(L) is regular, it follows from Theorem 2.6.4 that the
languageSUBSEQ(L) is regular as well.

Exercises

2.1 For each of the following languages, construct a DFA that acceptbe
language. In all cases, the alphabet i0; 1g.

1.

fw : the length of w is divisible by threeg

Exercises 81

2. fw: 110 is not a substring ofwg

3. fw: w contains at least ve 1g

4. fw : w contains the substring 1014

5. fw : w contains at least two 1s and at most two @p

6. fw : w contains an odd number of 1s or exactly two @s
7. fw: w begins with 1 and ends with §

8. fw: every odd position inw is 1g

9. fw : w has length at least 3 and its third symbol is

10.f ; Og

2.2 For each of the following languages, construct an NFA, with the spieed
number of states, that accepts the language. In all cases, thiplaabet is
f0; 19.

1. The languagef w : w ends with 1@ with three states.
2. The languagef w : w contains the substring 101d with ve states.

3. The languagef w : w contains an odd number of 1s or exactly two @s
with six states.

2.3 For each of the following languages, construct an NFA that accepthe
language. In all cases, the alphabet i0; 1g.

1. fw: w contains the substring 11004
2. fw: w has length at least 2 and does not end with §0

3. fw: w begins with 1 or ends with @

2.4 Convert the following NFA to an equivalent DFA.

82 Chapter 2. Finite Automata and Regular Languages

2.7 In the proof of Theorem 2.6.3, we introduced a new start staig, which
is also an accept state. Explain why the following is not a valid proof of
Theorem 2.6.3:

Let N = (Q1; ; 1;,a;F1) be an NFA, such thatA = L(N). De ne the
NFA M =(Qg; ;;d:;F), where

Exercises 83

1. F =faqg[F:.
2. :Q I'P (Q.) is de ned as follows: For anyr 2 Q; and for any
az2 |,
8 :
< 1(na) if r2Qyandr 62,
(ra)=_ 1(r;a) ifr2F,andaé |,
i(rra)[f qqg ifr2 F,anda=
ThenL(M) = A

2.8 Prove Theorem 2.6.4.

2.9 Let A be a language over the alphabet =f0;1g and let A be the
complementof A. Thus, A is the language consisting of all binary strings
that are not in A.

Assume thatA is a regular language. LeM = (Q; ; ;q;F) be a non-
deterministic nite automaton (NFA) that accepts A.

Consider the NFAN = (Q; ; ;q;F), whereF = QnF is the complement
of F. Thus, N is obtained fromM by turning all accept states into nonaccept
states, and turning all nonaccept states into accept states.

1. Is it true that the language accepted byN is equal toA?

2. Assume now thatM is a deterministic nite automaton (DFA) that
acceptsA. De ne N as above; thus, turn all accept states into nonac-
cept states, and turn all nonaccept states into accept statess it true
that the language accepted b\ is equal toA?

2.10 Recall the alternative de nition for the star of a languageA that we
gave just before Theorem 2.3.1.

In Theorems 2.3.1 and 2.6.2, we have shown that the class of regular
Iangugges Is closed under the union and concatenation operationSince
A = .., A%, why doesn't this imply that the class of regular languages is
closed under the star operation?

2.11 Let A and B be two regular languages over the same alphabet . Prove
that the di erence of A and B, i.e., the language

AnB=fw:w2 A andw 62Bg

is a regular language.

84 Chapter 2. Finite Automata and Regular Languages

2.12 For each of the following regular expressions, give two strings thate
members and two strings that are not members of the language debed by
the expression. The alphabetis =fa; kg.

1. a(ba b
2. (a[b a@[b Ka[b a@[b .

3. (@[ba[bh(a[b) .

2.13 Give regular expressions describing the following languages. In all
cases, the alphabet i$0; 1g.

1. fw: w contains at least three 1g.
2. fw : w contains at least two 1s and at most oned)
3. fw: w contains an even number of Os and exactly two d.s
4. fw: w contains exactly two Os and at least two I
5. fw: w contains an even number of Os and each 0 is followed by at least oge 1
6. fw: every odd position inw is 1g.
2.14 Convert each of the following regular expressions to an NFA.
1. (O[1) 000(O[1)
2. (((10) (00)) [10)

3.(0[1Ay [0

2.15 Convert the following DFA to a regular expression.

Exercises 85

2.16 Convert the following DFA to a regular expression.

2.17 Convert the following DFA to a regular expression.

2.18 1. Let A be a non-empty regular language. Prove that there exists
an NFA that accepts A and that has exactly one accept state.

86 Chapter 2. Finite Automata and Regular Languages

2. For any stringw = w;W, :::w,, we denote bywR the string obtained
by readingw backwards, i.e.wR = w,w, 1:::w,w;. For any language
A, we de ne AR to be the language obtained by reading all strings in
A backwards, i.e.,

AR = fwR w2 Ag:

Let A be a non-empty regular language. Prove that the language?®
is also regular.

219 If n 1is an integer andw = aa,:::a, is a string, then for anyi
with 0 i<n, the string a;a,:::4a is called aproper pre x of w. (If i =0,
thena;a:::a =)

For any languageL, we de ne MIN (L) to be the language

MIN (L) = fw 2 L : no proper pre x of w belongs toLg:

Prove the following claim: IfL is a regular language, theMIN (L) is regular
as well.

2.20 Use the pumping lemma to prove that the following languages are not
regular.

1. faB"c"*m™:n O;m Og.
2. fa"'é® :n Og.
3. fab"a":n O;m Og.
4. fa® :n 0g. (Remark: a® is the string consisting of 2 many a's.)
5.fa'"ck:n Om Ok 0O;n%+ m?=k%g.
6. fuvu:u2fa;lg;ué ;v2falgag.
2.21 Prove that the language
fa"l':m O;n O;mé6 ng

is not regular. (Using the pumping lemma for this one is a bit tricky. You
can avoid using the pumping lemma by combining results about the clasu
under regular operations.)

Exercises 87

2.22 1. Give an example of a regular languag®& and a non-regular lan-
guageB for which A B.

2. Give an example of a non-regular languag® and a regular language
B for which A B.

2.23 Let A be a language consisting of nitely many strings.
1. Prove that A is a regular language.

2. Let n be the maximum length of any string inA. Prove that every
deterministic nite automaton (DFA) that accepts A has at leastn+1
states. Hint: How is the pumping length chosen in the proof of the
pumping lemma?)

2.24 Let L be a regular language, leM be a DFA whose language is equal
to L, and let p be the number of states oM. Prove that L 6 ; if and only
if L contains a string of length less tharp.

2.25 Let L be a regular language, leM be a DFA whose language is equal
to L, and let p be the number of states oM. Prove that L is an in nite
language if and only ifL contains a stringw with p j wj 2p 1.

2.26 Let be a non-empty alphabet, and let L be a language over , i.e.,
L . We de ne a binary relation R on , in the following way:
For any two stringsu and u®in

uR Wifandonlyif (82 :uv2L, uv2L):
Prove that R, is an equivalence relation.
2.27 Let = f0;1g, let
L="fw2 © jwj is oddg;
and consider the relationR, de ned in Exercise 2.26.
1. Prove that for any two stringsu and u®in

uR U, j uj j ufis even.

88 Chapter 2. Finite Automata and Regular Languages

2. Determine all equivalence classes of the relatiét) .

2.28 Let be a non-empty alphabet, and let L be a language over , i.e.,
L . Recall the equivalence relatiofr, that was de ned in Exercise 2.26.

1. Assume thatL is a regular language, and leM = (Q; ; ;qo;F) be
a DFA that accepts L. Let u and u® be strings in . Let g be the
state reached, when following the path in the state diagram o, that
starts in ¢ and that is obtained by reading the stringu. Similarly, let
o° be the state reached, when following the path in the state diagram
of M, that starts in gy and that is obtained by reading the stringu®

Prove the following: Ifg= of, then uR_u®

2. Prove the following claim: IfL is a regular language, then the equiva-
lence relationR_ has a nite number of equivalence classes.

2.29 Let L be the language de ned by
L=fuuR:u2f0;1g g:

In words, a string is inL if and only if its length is even, and the second half
is the reverse of the rst half. Consider the equivalence relatioR,_ that was
de ned in Exercise 2.26.

1. Let m and n be two distinct positive integers and consider the two
stringsu=0™1 andu®=0"1. Prove that: (uR,u9.

2. Prove that L is not a regular language, without using the pumping
lemma.

3. Use the pumping lemma to prove that. is not a regular language.

2.30 In this exercise, we will show that the converse of the pumping lemma
does, in general, not hold. Consider the language

A=fa™®cd:m Ln Og[fBc:n 0k Og

1. Show thatA satis es the conclusion of the pumping lemma fop = 1.
Thus, show that every strings in A whose length is at leasp can be
written as s = xyz, such thaty 6 , jxyj p, andxy'z 2 A for all
i 0.

Exercises 89

2. Consider the equivalence relatioR, that was de ned in Exercise 2.26.
Let n and n°be two distinct non-negative integers and consider the two

stringsu = ab® and u°= al’. Prove that : (URAUO.

3. Prove that A is not a regular language.

90 Chapter 2. Finite Automata and Regular Languages

Chapter 3

Context-Free Languages

In this chapter, we introduce the class of context-free language As we
will see, this class contains all regular languages, as well as someregualar
languages such ag0"1" : n 0Og.

The class of context-free languages consists of languages thatehsome
sort of recursive structure. We will see two equivalent methods tbtain this
class. We start with context-free grammars, which are used foeding the
syntax of programming languages and their compilation. Then we irdduce
the notion of (nondeterministic) pushdown automata, and show it these
automata have the same power as context-free grammars.

3.1 Context-free grammars

We start with an example. Consider the following ve (substitution) ules:

S ! AB
A a
A ! aA
B! b
B ! bB

Here, S, A, and B are variables S is the start variable, and a and b are
terminals. We use these rules to derive strings consisting of terminals (i.e.,
elements off a; by), in the following manner:

1. Initialize the current string to be the string consisting of the start
variable S.

92 Chapter 3. Context-Free Languages

2. Take any variable in the current string and take any rule that hashis
variable on the left-hand side. Then, in the current string, replacthis
variable by the right-hand side of the rule.

3. Repeat 2. until the current string only contains terminals.

For example, the stringaaaabbcan be derived in the following way:

S AB

aAB
aAbB
aaAbB
aaaAbB
aaaabB

aaaabb

N N N N N N NS

This derivation can also be represented using [garse tree as in the gure

VAN
A/

The ve rules in this example constitute a context-free grammar. e
language of this grammar is the set of all strings that

3.1. Context-free grammars 93

can be derived from the start variable and
only contain terminals.
For this example, the language is
fa"l':m 1,n 1g;

because every string of the forna™b', for somem 1 andn 1, can be
derived from the start variable, whereas no other string over thalphabet
fa; g can be derived from the start variable.

De nition 3.1.1 A context-free grammar is a 4-tupleG = (V; ;R;S),
where

1. V is a nite set, whose elements are calledariables
2. is a nite set, whose elements are callederminals,
3.V\ = ;,

4. Sis an element ofV; it is called the start variable,

5. R is a nite set, whose elements are callecules. Each rule has the
form A! w,whereA2V andw2 (V[)

In our example, we have/ = fS;A;Bg, = fa;lkg, and
R=fS! AB;A! aA! aA;B! b;B! bBg:

De nition 3.1.2 Let G=(V; ;R;S)be acontext-free grammar. Le®A be

an element inV and letu, v, andw be stringsin (V[) suchthatA! w

is a rule in R. We say that the string uwv can bederived in one step from
the string uAv, and write this as

UAV) uwv:

In other words, by applying the ruleA ! w to the string uAv, we obtain
the string uwv. In our example, we see thahaAbb) aaaAbb

De nition 3.1.3 Let G = (V; ;R;S) be a context-free grammar. Letu
andv be stringsin (V[) . We say thatv can bederived fromu, and write
this asu) v, if one of the following two conditions holds:

94 Chapter 3. Context-Free Languages

l.u=vor

2. there exist an integerk 2 and a sequencey; Uy;:::; ux of strings in
(V[) ,such that

(@ u=uy,
(b) v = ug, and
() up) uz) i) Uk

In other words, by starting with the string u and applying rules zero or
more times, we obtain the stringv. In our example, we see thataAbB)
aaaabbbB

De nition 3.1.4 Let G = (V; ;R;S) be a context-free grammar. The
languageof G is de ned to be the set of all strings in that can be derived
from the start variable S:

L(G)=fw2 :S) wg

De nition 3.1.5 Alanguagel is calledcontext-freg if there exists a context-
free grammarG such that L(G) = L.

3.2 Examples of context-free grammars

3.2.1 Properly nested parentheses

Consider the context-free grammaiG = (V; ;R;S), whereV = fSg, =
fa; kg, and
R=fS! ;S! aSh;S! SSg:

We write the three rules inR as
S! jaSBhSSs;

where you can think of \" as being a short-hand for \or".

3.2. Examples of context-free grammars 95

By applying the rules inR, starting with the start variable S, we obtain,
for example,

SS

aSbhs
aSbSS
aSSbSS
aaSbSbSS
aabSbSS
aabbS$S
aabbaSbhS
aabbabS
aabbabaSh
aabbabab

N N N N N N N N N N N

What is the languageL (G) of this context-free grammarG? If we think
of a as being a left-parenthesis \(", and ob as being a right-parenthesis \)",
then L(G) is the language consisting of all strings of properly nested paren-
theses. Here is the explanation: Any string of properly nested partheses is
either

empty (which we derive fromS by the rule S!),

consists of a left-parenthesis, followed by an arbitrary string ofrpperly
nested parentheses, followed by a right-parenthesis (these alerived
from S by rst applying the rule S! aSh, or

consists of an arbitrary string of properly nested parenthesefmllowed
by an arbitrary string of properly nested parentheses (these @derived
from S by rst applying the rule S! SS).

3.2.2 A context-free grammar for a nonregular lan-
guage

Consider the languagd.; = f0"1" : n 0g. We have seen in Section 2.9.1
that L, is not a regular language. We claim thak ; is a context-free language.

96 Chapter 3. Context-Free Languages

In order to prove this claim, we have to construct a context-fregrammar
G, such that L(Gl) = L.
Observe that any string inL; is either

empty or
consists of a 0, followed by an arbitrary string irL,, followed by a 1.

This leads to the context-free grammaiG,; = (V;; ;R1;S;), where V; =
fS;9, = f0;1g, and R; consists of the rules

Sl !] OSl 1

Hence,R, = fS; ! ;S;! 0S;1g.
To derive the string 0'1" from the start variable S;, we do the following:

Starting with Sy, apply therule S; ! 0S;1 exactly n times. This gives
the string 0"S,1".

Apply the rule S; ! . This gives the string 0'1".

It is not di cult to see that these are the only strings that can be deived
from the start variable S;. Thus, L(G;) = L;.

In a symmetric way, we see that the context-free gramm#&, = (V,; ;R S,),
whereV, = fS,g, = f0;1g, and R, consists of the rules

S, j1S,0;

has the property that L(G,) = L,, whereL, = f1"0" : n 0g. Thus, L, is
a context-free language.
DenelL=L;[Ly ie,
L=f0"1":n Og[f 1"0":n Og:

The context-free grammarG = (V; ;R;S), whereV = {S;S;;S,9, =
f0; 19, and R consists of the rules

S 1SS,
S, | j0S1

has the property that L(G) = L. Hence,L is a context-free language.

3.2. Examples of context-free grammars 97

3.2.3 A context-free grammar for the complement of
a nonregular language

Let L be the (nonregular) languagd. = f0"1" : n 0g. We want to prove
that the complementL of L is a context-free language. Hence, we want to
construct a context-free grammaiG whose language is equal tb. Observe
that a binary string w is in L if and only if

1. w=0M1", for some integersm andn with O m<n, or
2. w=0"1", for some integeran andn with0 n<m, or
3. w contains 10 as a substring.

Thus, we can writeL as the union of the languages of all strings of type 1.,
type 2., and type 3.
Any string of type 1. is either

the string 1,
consists of a string of type 1., followed by one 1, or

consists of one 0, followed by an arbitrary string of type 1., followealy
one 1.

Thus, using the rules

we can derive, fromS,, all strings of type 1.
Similarly, using the rules

S,! 0j0S,j0S,1;

we can derive, fromS,, all strings of type 2.
Any string of type 3.

consists of an arbitrary binary string, followed by the string 10, filowed
by an arbitrary binary string.

Using the rules
X I joXj1X;

98 Chapter 3. Context-Free Languages

we can derive, fromX, all binary strings. Thus, by combining these with
the rule
S; ! X 10X;

we can derive, fromS;, all strings of type 3.
We arrive at the context-free grammarG = (V; ;R;S), whereV =
fS;S1;S,;S3;Xg, = f0;1g, and R consists of the rules

S ! S1jSSs
S, ! 1jS,1j0S;1
S, | 0j0S,j0S,1
S; 1 X10X

X 1 jOXj1X

To summarize, we have
S;) 0M1"; for all integersm andn with0 m<n,

S,) 0M™1"; for all integersmandnwithO n<m,
X) u; for each stringu in f0; 1g ,

and
S;) w; for every binary string w that contains 10 as a substring.

From these observations, it follows that thatl (G) = L.

3.2.4 A context-free grammar that veri es addition

Consider the language
L=fa"t"c""™:n Om Og:

Using the pumping lemma for regular languages (Theorem 2.9.1), it can
be shown thatL is not a regular language. We will construct a context-
free grammarG whose language is equal tb, thereby proving that L is a
context-free language.

First observe that 2 L. Therefore, we will takeS! to be one of the
rules in the grammar.

Let us see how we can derive all strings in from the start variable S:

3.3. Regular languages are context-free 99

1. Every time we add ana, we also add ac. In this way, we obtain all
strings of the forma"c", wheren 0.

2. Given a string of the forma"c", we start addingbs. Every time we add
a b we also add ac. Observe that everyb has to be added between
the as and thecs. Therefore, we use a variabl® as a \pointer" to
the position in the current string where ab can be added: Instead of
deriving a"c" from S, we derive the stringa"Bc". Then, from B, we
derive all strings of the formb™c™, wherem 0.

We obtain the context-free grammaiG = (V; ;R;S), whereV = fS;A;Bg,
= fa;b;@, and R consists of the rules

S 1A
Al jaAciB
B ! jbBc

The facts that
A) a"Bc", for everyn O,
B) b"c", foreverym O,

imply that the following strings can be derived from the start variableS:
S) a'Bc¢") a'b"c"c" = a'b"c"™ ™, foralln Oandm O.

In fact, no other strings infa;b; @ can be derived fromS. Therefore, we
haveL(G) = L. Since
S) A) B)
we can simplify this grammarG, by eliminating the rulesS! andA'!
This gives the context-free grammaG®= (V; ;R%S), whereV = fS;A;Bg,
= fa;b; @, and R® consists of the rules

S ! A
A ! aAdB
B ! jbBc

Finally, observe that we do not needS; instead, we can useé\ as start
variable. This gives our nal context-free grammaiG®= (V; ;R%A), where
V =fA;Bg, = fa;b;g, and R®consists of the rules

A | aAgB
B ! jbBc

100 Chapter 3. Context-Free Languages

3.3 Regular languages are context-free

We mentioned already that the class of context-free languages ludes the
class of regular languages. In this section, we will prove this claim.

Theorem 3.3.1 Let be an alphabet and lett be a regular language.
Then L is a context-free language.

Proof. Sincel is a regular language, there exists a deterministic nite
automaton M =(Q; ; ;q;F) that acceptsL.

To prove that L is context-free, we have to de ne a context-free grammar
G =(V; ;R;S),suchthatL = L(M) = L(G). Thus, G must have the
following property: For every stringw 2

w2 L(M) if and only if w2 L(G),
which can be reformulated as
M acceptsw ifand only if S) w.

We will de ne the context-free grammarG in such a way that the following
correspondence holds for any stringg = wyW; @ @ : Wy

Assume that M is in state A just after it has read the substring
W1Wa @i W,

Then in the context-free grammarG, we haveS) w;w,:::WA.

In the next step, M reads the symbolw;,; and switches from stateA to,
say, stateB; thus, (A;wi+1) = B. In order to guarantee that the above
correspondence still holds, we have to add the ruke! w;,; B to G.
Consider the moment wherM has read the entire stringw. Let A be the
state M is in at that moment. By the above correspondence, we have

S) wiw,:iiw,A = WA:
Recall that G must have the property that
M acceptsw if and only if S) w,
which is equivalent to

A2F ifandonlyif S) w.

3.3. Regular languages are context-free 101

We guarantee this property by adding toG the rule A! for every accept
state A of M.

We are now ready to give the formal de nition of the context-freeggram-
mar G=(V; ;R;S):

V = Q, i.e., the variables ofG are the states ofM.
S = q, i.e., the start variable of G is the start state of M.
R consists of the rules
A! aB; whereA2Q,a2 , B2Q,and (A;a) = B;

and
Al : whereA 2 F.

In words,

every transition (A;a) = B of M (i.e., whenM is in the state A and
reads the symbola, it switches to the state B) corresponds to a rule
A! aB in the grammar G,

every accept stateA of M correspondsto arulA ! in the grammar
G.

We claim that L(G) = L. In order to prove this, we have to show that
L(G) LandL L(G).

We prove thatL L(G). Let w = wyw,:::w, be an arbitrary string
in L. When the nite automaton M reads the stringw, it visits the states

ro= @, and
ries = (ri;wisp) fori=0;21;:::;n 1.

Sincew 2 L = L(M), we know thatr, 2 F.
It follows from the way we de ned the grammarG that

foreachi=0;1;:::;n 1,r;! wyriy isaruleinR, and

My ! is arule inR.

102 Chapter 3. Context-Free Languages

Therefore, we have
S=q=1rg) Wil1) WiWorz) i) WiWoiiiWalry) WiWoiiiW, = W

This proves thatw 2 L(G).
The proof of the claim thatL(G) L is left as an exercise. |

In Sections 2.9.1 and 3.2.2, we have seen that the langud@81" : n
Og is not regular, but context-free. Therefore, the class of all ctaxt-free
languages properly contains the class of regular languages.

3.3.1 An example
Let L be the language de ned as
L=fw2f0;1g : 101 is a substring ofvg:

In Section 2.2.2, we have seen thdt is a regular language. In that section,
we constructed the following deterministic nite automatonM that accepts
L (we have renamed the states):

We apply the construction given in the proof of Theorem 3.3.1 to coawt

M to a context-free grammarG whose language is equal ta. According

to this construction, we haveG = (V; ;R;S), whereV = fS;A;B;Cg,

= f0;1g, the start variable S is the start state of M, and R consists of the
rules

S | 0Sj1A
A | OBj1A
B | 0SjiC
C ! 0CjiCj

3.4. Chomsky normal form 103

Consider the string 010011011, which is an elementlof When the nite

automaton M reads this string, it visits the states
S;S;A;B; S A A B;C; C:

In the grammar G, this corresponds to the derivation

S) OS

01A

018

0105

0100

01001A

010011

0100110C

01001101C

010011011

p—

N/ N’ N N N N N N

Hence,
S) 010011011

implying that the string 010011011 is in the languagke(G) of the context-free
grammar G.

The string 10011 is not in the languagé.. When the nite automaton
M reads this string, it visits the states

S:A:B:S: A A;

i.e., after the string has been readM is in the non-accept stateA. In the
grammar G, reading the string 10011 corresponds to the derivation

S) 1A
) 108
) 1008
) 1001A
) 10014A:

SinceA is not an accept state inM, the grammar G does not contain the
rule A! . This implies that the string 10011 cannot be derived from the
start variable S. Thus, 10011 is not in the languagé (G) of G.

104 Chapter 3. Context-Free Languages

3.4 Chomsky normal form

The rules in a context-free grammaiG = (V; ;R;S) are of the form
Al w;

where A is a variable andw is a string over the alphabetV [. In this
section, we show that every context-free grammdag can be converted to a
context-free grammarG® such that L(G) = L(G9, and the rules ofG®are of
a restricted form, as speci ed in the following de nition:

De nition 3.4.1 A context-free grammarG = (V; ;R;S) is said to be in
Chomsky normal form if every rule in R has one of the following three forms:

1. A! BC, whereA, B, andC are elementsol/,B 6 S,andC 6 S.
2. Al a, whereA is an element ofV and a is an element of .

3. S! | whereS is the start variable.

You should convince yourself that, for such a grammaR contains the
rule S'! if and only if 2 L(G).

Theorem 3.4.2 Let be an alphabet and left be a context-free lan-
guage. There exists a context-free grammar in Chomsky nornfiarm, whose
language isL.

Proof. Sincel is a context-free language, there exists a context-free gram-
mar G = (V; ;R;S), such that L(G) = L. We will transform G into a
grammar that is in Chomsky normal form and whose language is equal
L(G). The transformation consists of ve steps.

Step 1. Eliminate the start variable from the right-hand side of the rules.

We de ne G; = (Vi1; ;R;1;S1), where S, is the start variable (which is a
new variable),V; = V [f S;g, andR; = R[f S;! Sg. This grammar has
the property that

the start variable S; does not occur on the right-hand side of any rule
in R4, and

L(G1) = L(G).

3.4. Chomsky normal form 105

Step 2. An -rule is a rule that is of the formA ! |, whereA is a variable
that is not equal to the start variable. In the second step, we elimate all
-rules from G;.

We consider all -rules, one after another. LetA ! be one such rule,
whereA 2 V; and A 6 S;. We modify G, as follows:

1. Remove the ruleA ! from the current setRj.
2. For each rule in the current selR, that is of the form

(@ B! A, add the ruleB ! to Ry, unless this rule has already
been deleted fronRy; observe that in this way, we replace the two-
step derivationB) A) by the one-step derivationB) ;

(b) B! uAv (whereu and v are strings that are not both empty),
add the ruleB ! uv to R;; observe that in this way, we replace
the two-step derivationB) uAv) uv by the one-step derivation
B) uv;

(c) B! uAvAw (whereu, v, and w are strings), add the rulesB !
uvw, B! uAvw, andB ! uvAw to R;;ifu=v=w= and
the rule B ! has already been deleted froR,, then we do not
add the ruleB ! ;

(d) treat rules in which A occurs more than twice on the right-hand
side in a similar fashion.

We repeat this process until all -rules have been eliminated. LeR,
be the set of rules, after all -rules have been eliminated. We de né5, =
(V2; 1 R2;Sp), whereV, = V; and S, = S;. This grammar has the property
that

the start variable S, does not occur on the right-hand side of any rule
in R,

R, does not contain any -rule (it may contain the rule S,!), and

L(Gz2) = L(Gy) = L(G).

Step 3: A unit-rule is a rule that is of the formA ! B, whereA and B are
variables. In the third step, we eliminate all unit-rules fromG..

106 Chapter 3. Context-Free Languages

We consider all unit-rules, one after another. LeA ! B be one such
rule, whereA and B are elements ol,. We know that B 6 S,. We modify
G, as follows:

1. Remove the ruleA ! B from the current setR,.

2. For each rule in the current setR, that is of the form B ! u, where
u2 (Vo[) ,addtheruleA! uto the current setR,, unless this is
a unit-rule that has already been eliminated.

Observe that in this way, we replace the two-step derivatioA) B)
u by the one-step derivationA) u.

We repeat this process until all unit-rules have been eliminated. Let
R3 be the set of rules, after all unit-rules have been eliminated. We dee
Gz = (V3; ;R3;S3), whereV; = V, and S; = S,. This grammar has the
property that

the start variable S; does not occur on the right-hand side of any rule
in R,

R3 does not contain any -rule (it may contain the rule S3!),
Rs does not contain any unit-rule, and

L(Gs) = L(G) = L(Gy) = L(G).
Step 4: Eliminate all rules having more than two symbols on the right-hand
side.

For each rule in the current setR3 that is of the form A ! uju,:::uy,
wherek 3 and eachu; is an element o3[, we modify G; as follows:

1. Remove the ruleA ! ujus:::ux from the current setRs.

2. Add the following rules to the current setRs:

A ! usAq
A]_ ! U2A2
A2 ! U3A3
Ac 3 ! Uk 2Ak 2

3.4.

Chomsky normal form 107

set Vs.

Observe that in this way, we replace the one-step derivatioA)
UiUy:::ux by the (k 1)-step derivation

A) UA1) UWAZ) i1) UUz:i:iiUg 2Akx 2) UiUp:::Ug:

Let R4 be the set of rules, and le¥, be the set of variables, after all rules
with more than two symbols on the right-hand side have been eliminate We
dene G4 = (V4 ;R4;S4), whereS, = S3. This grammar has the property

that

the start variable S, does not occur on the right-hand side of any rule
in R4,

R4 does not contain any -rule (it may contain the rule S, !),
R4 does not contain any unit-rule,

R4 does not contain any rule with more than two symbols on the right-
hand side, and

L(G4) = L(Gs) = L(Gz) = L(Gy) = L(G).

Step 5: Eliminate all rules of the formA ! u,u,, whereu; and u, are not
both variables.

For each rule in the current setR, that is of the form A ! uju,, where
u; and u, are elements o, [, but u; and u, are not both contained in
V,, we modify Gz as follows:

1.

If uy 2 and u, 2 V,, then replace the ruleA ! uju, in the current
set R4 by the two rulesA ! Uu, and U; ! uy, whereU; is a new
variable that is added to the current setV,.

Observe that in this way, we replace the one-step derivatioh) u,u,
by the two-step derivationA) U;u,) ujUy.

If u; 2 V, and u, 2 , then replace the rule A! uyu, in the current
set R4 by the two rulesA ! u;U, and U, ! U, whereU, is a new
variable that is added to the current setV,.

Observe that in this way, we replace the one-step derivatioh) uju,
by the two-step derivationA) u;U,) uju,.

108

Chapter 3. Context-Free Languages

3. 1fup2 , u,2 ,and u; 6 uy, then replace the ruleA ! u;u, in the

current set R4 by the three rulesA! U;U,, Uy ! uy,and U, ! Uy,
where U; and U, are new variables that are added to the current set
Va.

Observe that in this way, we replace the one-step derivatiofh) u;u,
by the three-step derivationA) U;U,) u;U,) uju,.

Ifup2 , u,2 ,and u; = u,, then replace the ruleA ! uju, = uuy
in the current set R4 by the two rulesA! U;U; andU; ! uy, where
U, is a new variable that is added to the current seYV,.

Observe that in this way, we replace the one-step derivatioA)
UiUp = uiu; by the three-step derivationA) U;U;) u;U;) uju;.

Let Rs be the set of rules, and leds be the set of variables, after Step 5

has been completed. We de n&s = (Vs; ;Rs; Ss), where Ss = Sy, This
grammar has the property that

the start variable S5 does not occur on the right-hand side of any rule
in Rs,

Rs does not contain any -rule (it may contain the rule Sg!),
Rs does not contain any unit-rule,

Rs does not contain any rule with more than two symbols on the right-
hand side,

Rs does not contain any rule of the formA ! u,u,, whereu; and u,
are not both variables ofVs, and

L(Gs) = L(G4) = L(Gs) = L(Gz) = L(G1) = L(G).

Since the grammaiGs is in Chomsky normal form, the proof is complete .l

3.4. Chomsky normal form 109

3.4.1 An example

Consider the context-free grammaiG = (V; ;R;A), whereV = fA;Bg,
= f0;1g, A is the start variable, andR consists of the rules

A | BAB]Bj
B ! 00

We apply the construction given in the proof of Theorem 3.4.2 to coaut
this grammar to a context-free grammar in Chomsky normal form kose
language is the same as that &&. Throughout the construction, upper case
letters will denote variables.

Step 1. Eliminate the start variable from the right-hand side of the rules.
We introduce a new start variableS, and add the ruleS! A. This gives
the following grammar:
S ! A
A ! BAB|Bj
B !' 00

Step 2: Eliminate all -rules.
We take the -rule A! , and remove it. Then we consider all rules that
contain A on the right-hand side. There are two such rules:

S! A;we add the ruleS! ;
A'! BAB; we add the ruleA! BB.

This gives the following grammar:

S I A
Al BAB jBjBB
B !' 00
We take the -ruleB ! |, and remove it. Then we consider all rules that

contain B on the right-hand side. There are three such rules:
A'! BAB;we addtherulesA! AB,A! BA,andA! A;

A'! B; we do not add the ruleA ! |, because it has already been
removed,;

110 Chapter 3. Context-Free Languages

A! BB; we add the ruleA! B, but not the rule A'! (because it
has already been removed).

At this moment, we have the following grammar:

S I A
A | BAB]jBjBBjABjBAJA
B! 00

Since all -rules have been eliminated, this completes Step 2. (Observe that
the rule S'! is allowed, becausé& is the start variable.)

Step 3: Eliminate all unit-rules.
We take the unit-rule A! A. We can remove this rule, without adding
any new rule. At this moment, we have the following grammar:

S I A
A | BAB]jBjBBjABjBA
B! 00

We take the unit-rule S| A, remove it, and add the rules
S! BAB|BjBBjAB|BA:

This gives the following grammar:

S | jBAB|BjBBjABjBA
A | BAB|BjBBjABjBA
B ! 00

We take the unit-rule S! B, remove it, and add the ruleS! 00. This
gives the following grammar:

S | jBABBBjABjBAj00
A | BABjBjBBjABjBA
B ! 00

We take the unit-rule A! B, remove it, and add the ruleA! 00. This
gives the following grammar:

S | jBABBBjABjBAj0O
A | BABjBBjABjBAj0O
B ! 00

3.5. Pushdown automata 111

Since all unit-rules have been eliminated, this concludes Step 3.

Step 4: Eliminate all rules having more than two symbols on the right-hand
side. There are two such rules:

We take the ruleS! BAB, remove it, and add the rulesS! BA;
andA;! AB.

We take the ruleA! BAB, remove it, and add the rulesA | BA,
and A, ! AB.

This gives the following grammar:

S | |BBjABjBAjOOBA;
A | BBjABjBAjOGBA,
B ! 00

A; | AB

A, | AB

Step 4 is now completed.

Step 5: Eliminate all rules, whose right-hand side contains exactly two
symbols, which are not both variables. There are three such rules:

We replace the ruleS! 00 by the rulesS! AzAz; andAz! O.
We replace the ruleA! 00 by the rulesA! AjA;andA;! 0.
We replace the ruleB ! 00 by the rulesB ! AsAs and As! O.

This gives the following grammar, which is in Chomsky normal form:

S | BBjABjBAjBAjAsA;
A | BBjABjBAjBAjAA,
B | AsAs

A, ! AB

A, | AB

A; ! 0

A, ! 0

As ! 0

112 Chapter 3. Context-Free Languages

3.5 Pushdown automata

In this section, we introduce nondeterministic pushdown automataAs we
will see, the class of languages that can be accepted by these edta is
exactly the class of context-free languages.

We start with an informal description of a deterministic pushdown au-
tomaton. Such an automaton consists of the following, see also FigtB.1.

1. There is atape which is divided into cells Each cell stores a symbol
belonging to a nite set , called the tape alphabet There is a special
symbol 2 that is not contained in ; this symbol is called the blank
symbol If a cell contains2, then this means that the cell is actually

empty.

2. There is atape headwhich can move along the tape, one cell to the
right per move. This tape head can also read the cell it currently soa.

3. There is astack containing symbols from a nite set , called the stack
alphabet This set contains a special symbol $.

4. There is astack headwhich can read the top symbol of the stack. This
head can als@op the top symbol, and it canpush symbols of onto
the stack.

5. There is astate control which can be in any one of a nite number
of states The set of states is denoted by). The set Q contains one
special stateq, called the start state.

The input for a pushdown automaton is a string in . This input string
is stored on the tape of the pushdown automaton and, initially, theape head
is on the leftmost symbol of the input string. Initially, the stack onlycontains
the special symbol $, and the pushdown automaton is in the startege q.
In one computation step, the pushdown automaton does the follovg:

1. Assume that the pushdown automaton is currently in state. Let a be
the symbol of that is read by the tape head, and letA be the symbol
of that is on top of the stack.

2. Depending on the current stater, the tape symbola, and the stack
symbol A,

3.5. Pushdown automata 113

[aJa[b]a[b[b[a]b[a]b]2]| tape

i

state control

Figure 3.1: A pushdown automaton.

(a) the pushdown automaton switches to a state® of Q (which may
be equal tor),
(b) the tape head either moves one cell to the right or stays at the
current cell, and
(c) the top symbol A is replaced by a stringw that belongsto . To
be more precise,
I. if w= |, then A is popped from the stack, whereas
il. if w=B1Bs:::By,with k 1andBq;By;:::;Bx 2 , then
A is replaced byw, and By becomes the new top symbol of
the stack.

Later, we will specify when the pushdown automaton accepts the pat
string.
We now give a formal de nition of a deterministic pushdown automato.

De nition 3.5.1 A deterministic pushdown automatonis a 5-tuple M =
(5 ,Q;;q), where

114 Chapter 3. Context-Free Languages

1. is a nite set, called the tape alphabet the blank symbol 2 is not
contained in

2. is a nite set, called the stack alphabet this alphabet contains the
special symbol $,

3. Qis a nite set, whose elements are callestates
4. gis an element ofQ; it is called the start state,

5. is called thetransition function, which is a function
:Q ([f 29 ' Q f N;Rg

The transition function can be thought of as being the \program" of the
pushdown automaton. This function tells us what the automaton gado in
one \computation step™: Letr 2 Q,a2 [f 2g, andA 2 . Furthermore,
letr°2 Q, 2fR;Ng,andw?2 be such that

(ra;A)=(rS ;w): (3.1)
This transition means that if
the pushdown automaton is in stater,
the tape head reads the symba, and
the top symbol on the stack isA,
then
the pushdown automaton switches to state®,

the tape head moves according to: if = R, then it moves one cell
to the right; if = N, then it does not move, and

the top symbol A on the stack is replaced by the stringv.
We will write the computation step (3.1) in the form of theinstruction
raA ! rOw:

We now specify the computation of the pushdown automatad =(; ;Q; ;q).

3.6. Examples of pushdown automata 115

Start con guration: Initially, the pushdown automaton is in the start state
g, the tape head is on the leftmost symbol of the input stringya; : ::a,, and
the stack only contains the special symbol $.

Computation and termination: Starting in the start con guration, the
pushdown automaton performs a sequence of computation stegssdescribed
above. Itterminates at the moment when the stack becomes empty. (Hence,
if the stack never gets empty, the pushdown automaton do@®t terminate.)

Acceptance: The pushdown automatoracceptsthe input string a;ay:::a, 2
, if
1. the automaton terminates on this input, and

2. at the time of termination (i.e., at the moment when the stack gets
empty), the tape head is on the cell immediately to the right of the dke
containing the symbola, (this cell must contain the blank symbol2).

In all other cases, the pushdown automatorejects the input string. Thus,
the pushdown automaton rejects this string if

1. the automaton does not terminate on this input (i.e., the computzon
\loops forever") or

2. at the time of termination, the tape head is not on the cell immediatly
to the right of the cell containing the symbola,,.

We denote byL (M) the languageacceptedby the pushdown automaton
M. Thus,
L(M)=fw2 . M acceptswag:

The pushdown automaton described above is deterministic. Forreon-
deterministic pushdown automata, the current computation step may not
be uniquely de ned, but the automaton can make a choice out of a ite
number of possibilities. In this case, the transition function is a function

Q ([f2g P «(Q f N;Rg)
wherePs (K) is the set of all nite subsets of the seK.

We say that a nondeterministic pushdown automatoiM acceptsan input
string, if there exists an accepting computation, in the sense as described for
deterministic pushdown automata. We say thaiM rejects an input string, if
every computation on this string is rejecting. As before, we denote dy(M)
the set of all strings in that are accepted byM .

116 Chapter 3. Context-Free Languages

3.6 Examples of pushdown automata

3.6.1 Properly nested parentheses

We will show how to construct a deterministic pushdown automatonthat
accepts the set of all strings of properly nested parenthesesbgerve that a
string w in f(;)g is properly nested if and only if

in every pre x of w, the number of \(" is greater than or equal to the
number of \)", and

in the complete stringw, the number of \(" is equal to the number of

V"

We will use the tape symbola for \(", and the tape symbol b for \)".

The idea is as follows. Recall that initially, the stack only contains the
special symbol $. The pushdown automaton reads the input strirfgpom left
to right. For every a it reads, it pushes the symbolS onto the stack, and
for every b it reads, it pops the top symbol from the stack. In this way, the
number of symbolsS on the stack will always be equal to the number dods
that have been read minus the number df that have been read; additionally,
the bottom of the stack will contain the special symbol $. The inpustring
is properly nested if and only if (i) this di erence is always non-negata/and
(i) this di erence is zero once the entire input string has been readdence,
the input string is accepted if and only if during this process, (i) thetack
always contains at least the special symbol $ and (ii) at the end, thetack
only contains the special symbol $ (which will then be popped in the al
step).

Based on this discussion, we obtain the deterministic pushdown aunta-
tonM =(; ;Q;;q), where = fa;ly, = f$;Sg, Q = fqg, and the
transition function is speci ed by the following instructions:

3.6. Examples of pushdown automata 117

gab! qR$S because of thea, S is pushed onto the stack

gaS! gRSS because of the, S is pushed onto the stack

gbS! gR because of thep, the top element is popped
from the stack

g$! gN the number ofbs read is larger than the number
of as read; the stack is made empty (hence,
the computation terminates before the entire
string has been read), and the input string is rejected

g2%! gN the entire input string has been read; the stack is
made empty, and the input string is accepted

g2S! gNS the entire input string has been read, it contains
more as than bs; no changes are made (thus, the
automaton does not terminate), and the input string
is rejected

3.6.2 Strings of the form 0"1"

We construct a deterministic pushdown automata that accepts #language
fo"1":n Og.

The automaton uses two statesyp and ¢, where @ is the start state.
Initially, the automaton is in state .

For each O that it reads, the automaton pushes one symb8lonto the
stack and stays in stateg.

When the rst 1 is read, the automaton switches to statey. From that
moment,

{ for each 1 that is read, the automaton pops the top symbol from
the stack and stays in stateg;

{ if a 0 is read, the automaton does not make any change and,
therefore, does not terminate.

Based on this discussion, we obtain the deterministic pushdown aunta-
ton M =(; ;Q;;0o), where = f0;1g, = $;Sg, Q = fp; 0, @ Iis
the start state, and the transition function is specied by the following
instructions:

118 Chapter 3. Context-Free Languages

p0$! pR$S push S onto the stack

®0S! @RSS pushS onto the stack

pls! NS rst symbol in the input is 1; loop forever
®lS! oR rst 1 is encountered

®2%! N input string is empty; accept

®2S! NS input only consists of Os; loop forever
q0$! ouN$ 0 to the right of 1; loop forever

0S! qNS 0 to the right of 1; loop forever

ql1$! quN$ too many 1s; loop forever

1SS! oR pop top symbol from the stack

®2$! oN accept

2S! NS too many Os; loop forever

3.6.3 Strings with b in the middle

We will construct a nondeterministic pushdown automaton that acepts the
setL of all strings infa; kg having an odd length and whose middle symbol
is b i.e.,
L=fvbw:v2falg;w2fa;bg;jv= jwjg:
The idea is as follows. The automaton uses two statesand ¢, whereq
is the start state. These states have the following meaning:

If the automaton is in stateq, then it has not reached the middle symbol
b of the input string.

If the automaton is in state ¢, then it has read the middle symbob.

Observe that since the automaton can only make one single passrothe
input string, it has to \guess" (i.e., use nondeterminism) when it redwes the
middle of the string.

If the automaton is in state g, then, when reading the current tape
symbol,
{ it either pushes one symbo§ onto the stack and stays in stateg
{ or, in case the current tape symbol i, it \guesses" that it has
reached the middle of the input string, by switching to stateg’.

If the automaton is in state ¢° then, when reading the current tape
symbol, it pops the top symbolS from the stack and stays in stateg”.

3.7. Equivalence of PDA's and CFG's 119

In this way, the number of symbolsS on the stack will always be equal to the
di erence of (i) the number of symbols in the part to the left of the niddle
symbol b that have been read and (ii) the number of symbols in the part
to the right of the middle symbol b that have been read; additionally, the
bottom of the stack will contain the special symbol $.

The input string is accepted if and only if, at the moment when the blak
symbol 2 is read, the automaton is in stateg® and the top symbol on the
stack is $. In this case, the stack is made empty and, thus, the cpotation
terminates.

We obtain the nondeterministic pushdown automatomM =(; ;Q; ;Q),
where = fajby, = f$;Sg, Q = fq;db, qis the start state, and the
transition function is speci ed by the following instructions:

gad! gR$S pushS onto the stack

gaS! qRSS pushS onto the stack

qib! oR$ reached the middle

gis! gR$S did not reach the middle; pushS onto the stack

qbS! gqRS reached the middle

gbS! gRSS did not reach the middle; pushS onto the stack

g2$! gN$ input string is empty; loop forever

g2S! gNS loop forever

gda$! oN stack is empty; terminate, but reject, because
the entire input string has not been read

gaS! oR pop top symbol from stack

qbd! oN stack is empty; terminate, but reject, because
the entire input string has not been read

qdbS! oR pop top symbol from stack

q2$! N accept

g2S! oNS loop forever

Remark 3.6.1 It can be shown that there is no deterministic pushdown
automaton that accepts the languagé.. The reason is that a deterministic
pushdown automaton cannot determine when it reaches the middlé the
input string. Thus, unlike as for nite automata, nondeterministic pushdown
automata aremore powerfulthan their deterministic counterparts.

120 Chapter 3. Context-Free Languages

3.7 Equivalence of pushdown automata and
context-free grammars

The main result of this section is thatnondeterministic pushdown automata
and context-free grammars are equivalent in power:

Theorem 3.7.1 Let be an alphabet and lef be a language. Then
A is context-free if and only if there exists a nondeterminigt pushdown
automaton that acceptsA.

We will only prove one direction of this theorem. That is, we will show
how to convert an arbitrary context-free grammar to a nondetgninistic push-
down automaton.

Let G = (V; ;R;$%) be a context-free grammar, wher&/ is the set of
variables, is the set of terminals, R is the set of rules, and $ is the start
variable. By Theorem 3.4.2, we may assume th& is in Chomsky normal
form. Hence, every rule irR has one of the following three forms:

1. A! BC, whereA, B, and C are variables,B 6 $, and C 6 $.
2. Al a, whereA is a variable anda is a terminal.
3. $!

We will construct a nondeterministic pushdown automatorM that ac-
cepts the languagd. (G) of this grammar G. Observe thatM must have the
following property: For every stringw = aya,:::a, 2

w2 L(G) if and only if M acceptsw.
This can be reformulated as follows:
$) aa::i:ia,

if and only if there exists a computation ofM that starts in the initial
con guration

@] [a] [a[2]
6

3.7. Equivalence of PDA's and CFG's 121

and ends in the con guration

2 Ja] [a]2]
‘6

—[:]

wherem indicates that the stack is empty.

Assume that $) a;a,:::a,. Then there exists a derivation (using the
rules ofR) of the string a;a; : : : a, from the start variable $. We may assume
that in each step in this derivation, a rule is applied to the leftmost vaable
in the current string. Hence, because the grammas is in Chomsky normal
form, at any moment during the derivation, the current string haghe form

i a 1AAK 10 AL (3.2
for some integersi and k with 1 i n+1and k 0, and variables
A1 Azt Ac. (In particular, at the start of the derivation, we havei =1

and k = 1, and the current string is Ay = $. At the end of the derivation,
we havei = n+1 and k = 0, and the current string isa;a,::: a,.)

We will de ne the pushdown automatonM in such a way that the current
string (3.2) corresponds to the con guration

A [a] [a[2]
6

Based on this discussion, we obtain the nondeterministic pushdown-a
tomaton M =(;V;fqg; ;q), where

the tape alphabet is the set of terminals of G,
the stack alphabet is the selV of variables ofG,
the set of states consists of one statg which is the start state, and

the transition function is obtained from the rules inR, in the following
way:

122 Chapter 3. Context-Free Languages

{ For each rule inR thatis of the form A! BC, with A;B;C 2 V,
the pushdown automatonM has the instructions

gaA! gNCB; forall a2

{ For each rule inR that is of the form A ! a, with A 2 V and
a2 , the pushdown automaton M has the instruction

gaA! gR:
{ If R contains the rule $! , then the pushdown automatonM
has the instruction
g2%! gN:

This concludes the de nition of M. It remains to prove that L(M) =
L(G), i.e., the language of the nondeterministic pushdown automatod is
equal to the language of the context-free grammab. Hence, we have to
show that for every stringw 2

w2 L(G)ifand only if w2 L(M);
which can be rewritten as

$) wif and only if M acceptsw.

Claim 3.7.2 Letaay:::a, beastringin ,let A;;Ay;:::; A be variables
in V, and leti and k be integers with1 i n+1 andk 0. Then the
following holds:

$) arar:iiia 1AAK 11l A

if and only if there exists a computation oM from the initial con guration

@] [a] [a[2]
6

to the con guration

3.7. Equivalence of PDA's and CFG's 123

] (3] [H[2]

Proof. The claim can be proved by induction. Let
W= aa:.::a 1AKAk 1. AL

Assume thatk 1 and assume that the claim is true for the stringv. Then
we have to show that the claim is still true after applying a rule iR to the
leftmost variable A in w. Since the grammar is in Chomsky normal form,
the rule to be applied is either of the formA, ! BC or of the formA¢ ! &;.

In both cases, the property mentioned in the claim is maintained. [|
We now use Claim 3.7.2 to prove that. (M) = L(G). Let w= aya,:::a,
be an arbitrary string in . By applying Claim 3.7.2, withi = n+ 1 and
k =0, we see thatw 2 L(G), i.e.,
$) aa::iian;

if and only if there exists a computation ofM from the initial con guration

@ [a] [a]2]

6

to the con guration

@ [a] [a]2]

‘6

—[:]

But this means that w 2 L(G) if and only if the automaton M accepts the
string w.

This concludes the proof of the fact that every context-free gmmar can
be converted to a nondeterministic pushdown automaton. As meaoned
already, we will not give the conversion in the other direction. We nil this
section with the following observation:

124 Chapter 3. Context-Free Languages

Theorem 3.7.3 Let be an alphabet and leA be a context-free lan-
guage. Then there exists a nondeterministic pushdown autton that ac-
ceptsA and has only one state.

Proof. SinceA is context-free, there exists a context-free grammds, such
that L(Gp) = A. By Theorem 3.4.2, there exists a context-free gramm&
that is in Chomsky normal form and for whichL (G) = L(Gg). The construc-
tion given above convertsG to a nondeterministic pushdown automatorivi
that has only one state and for whichL(M) = L(G). |

3.8 The pumping lemma for context-free lan-
guages

In Section 2.9, we proved the pumping lemma for regular languagesdan
used it to prove that certain languages are not regular. In this sgon, we
generalize the pumping lemma to context-free languages. The ideatds
consider theparse tree (see Section 3.1) that describes the derivation of a
su ciently long string in the context-free languageL. Since the number of
variables in the corresponding context-free gramma® is nite, there is at
least one variable, sayd;, that occurs more than once on the longest root-
to-leaf path in the parse tree. The subtree which is sandwiched beten two
occurrences of\; on this path can be copied any number of times. This will
result in a legal parse tree and, hence, in a \pumped" string that is ithe
languageL .

Theorem 3.8.1 (Pumping Lemma for Context-Free Languages) Let
L be a context-free language. Then there exists an integer 1, called the
pumping length, such that the following holds: Every string in L, with
jSj p, can be written ass = uvxyz, such that

1. jvyj 1(i.e.,, v andy are not both empty),

2. jvxyj p, and

3. uvixy'z2 L, foralli O.

3.8. The pumping lemma for context-free languages 125

3.8.1 Proof of the pumping lemma

The proof of the pumping lemma will use the following result about paes
trees:

Lemma 3.8.2 Let G be a context-free grammar in Chomsky normal form,
let s be a non-empty string inL(G), and let T be a parse tree fors. Let ~ be
the height of T, i.e., ~ is the number of edges on a longest root-to-leaf path
in T. Then

jisi 2

Proof. The claim can be proved by induction on. By looking at some
small values of and using the fact thatG is in Chomsky normal form, you
should be able to verify the claim. [|

Now we can start with the proof of the pumping lemma. Let be a
context-free language and let be the alphabet of.. By Theorem 3.4.2, there
exists a context-free grammar in Chomsky normal formG = (V; ;R;S),
such thatL = L(G).

De ne r to be the number of variables ofc and de ne p = 2. We will
prove that the value ofp can be used as the pumping length. Consider an
arbitrary string sin L such thatjsj p, and let T be a parse tree fos. Let
" be the height of T. Then, by Lemma 3.8.2, we have

jisi 2 &
On the other hand, we have
jsi p=2"

By combining these inequalities, we see that 2 2 1, which can be rewrit-
ten as
r+1:

Consider the nodes on a longest root-to-leaf path ifi. Since this path
consists of edges, it consists of + 1 nodes. The rst ° of these nodes store

node (which is a leaf) stores a terminal, which we denote lay
Since® 1 r 0, the sequence

Al A i A

126 Chapter 3. Context-Free Languages

of variables is well-de ned. Observe that this sequence consists rofr 1
variables. Since the number of variables in the grammds is equal tor,
the pigeonhole principle implies that there is a variable that occurs at dst
twice in this sequence. In other words, there are indicg¢sand k, such that

1 r j<k " landA; = A¢. Refer to the gure below for an
illustration.

r+1
variables

‘ S

Recall that T is a parse tree for the strings. Therefore, the terminals
stored at the leaves of, in the order from left to right, form s. As indicated
in the gure above, the nodes storing the variabled\; and Ay partition s
into ve substrings u, v, X, y, and z, such that s = uvxyz.

3.8. The pumping lemma for context-free languages 127

It remains to prove that the three properties stated in the pumpig lemma
hold. We start with the third property, i.e., we prove that

uv'xy'z2 L; foralli O.

In the grammar G, we have
S) UuAz: (3.3)

SinceA;) VAy and Ag = Aj, we have
Aj) VAy: (3.4)
Finally, since Ay) x and A, = Aj, we have
A) x (3.5)
From (3.3) and (3.5), it follows that
S) UAjz) uxz,

which implies that the string uxz is in the languageL. Similarly, it follows
from (3.3), (3.4), and (3.5) that

S) UAjz) uvAjyz) UvVAYYyzZ) UVVXYYZ:

Hence, the s_tringuvzxyzz is in the languageL. In general, for eachi 0,
the string uv'xy'z is in the languageL , because

S) UAjz) w'Ajy'z) uvxy'z

This proves that the third property in the pumping lemma holds.

Next we show that the second property holds. That is, we prove &
JVXY] p. Consider the subtree rooted at the node storing the variable
A;j. The path from the node storingA; to the leaf storing the terminal
a is a longest path in this subtree. (Convince yourself that this is trug
Moreover, this path consists of | edges. Sincé\;) vxy, this subtree
is a parse tree for the stringvxy (where A; is used as the start variable).
Therefore, by Lemma 3.8.2, we can conclude thatxyj 2 | 1. We know
that© 1 r j,whichis equivalentto® j 1 r. It follows that

jvxyj 2 71 2= p:

128 Chapter 3. Context-Free Languages

Finally, we show that the rst property in the pumping lemma holds.
That is, we prove thatjvy] 1. Recall that

Aj) VAyy:

Let the rst rule used in this derivation be A; ! BC. (Since the variables
A; and Ay, even though they are equal, are stored at di erent nodes of the
parse tree, and since the gramma® is in Chomsky normal form, this rst
rule exists.) Then

Aj) BC) VAwy:

Observe that the stringBC has length two. Moreover, by applying rules of
a grammar in Chomsky normal form, strings cannot become shortgHere,
we use the fact that the start variable does not occur on the rigitand side
of any rule.) Therefore, we havgvAyy) 2. But this implies that jvy; 1.
This completes the proof of the pumping lemma.

3.8.2 Applications of the pumping lemma
First example

Consider the language
A=fa"t'c":n Og:
We will prove by contradiction that A is not a context-free language.

Assume that A is a context-free language. Lep 1 be the pumping
length, as given by the pumping lemma. Consider the string = aPb’c’.
Observe thats2 A and jsj=3p p. Hence, by the pumping lemmas can
be written ass = uvxyz, wherejvyj 1,jvxyj p, anduvixy'z 2 A for all
i 0.

Observe that the pumping lemma does not tell us the location of the
substring vxy in the string s, it only gives us an upper bound on the length
of this substring. Therefore, we have to consider three casegpeénding on
the location ofvxy in s.

Case 1: The substringvxy does not contain anyc.

Consider the string uv?xy?z = uvvxyyz. Sincejvyj 1, this string
contains more thanp many as or more thanp many bs. Since it contains
exactly p many cs, it follows that this string is not in the languageA. This
is a contradiction because, by the pumping lemma, the stringvxy?z is in
A.

3.8. The pumping lemma for context-free languages 129

Case 2: The substring vxy does not contain anya.

Consider the string uv®xy?z = uvvxyyz. Sincejvyj 1, this string
contains more thanp many bs or more thanp many cs. Since it contains
exactly p many as, it follows that this string is not in the languageA. This
is a contradiction because, by the pumping lemma, the stringv®xy?z is in
A.

Case 3: The substring vxy contains at least onea and at least onec.
Sinces = aPkPcP, this implies that jvxyj > p, which again contradicts the
pumping lemma.

Thus, in all of the three cases, we have obtained a contradiction.h&re-
fore, we have shown that the languagA is not context-free.

Second example

Consider the languages
A=fww®:w2fa;lgg;

wherewR is the string obtained by writing w backwards, and
B=fww:w2fa;lgag:

Even though these languages look similar, we will show thatis context-free
and B is not context-free.
Consider the following context-free grammar, in whicl$ is the start vari-
able:
S! jaSgbSh:

It is easy to see that the language of this grammar is exactly the langgeA.

Therefore, A is context-free. Alternatively, we can show thatA is context-
free, by constructing a (nondeterministic) pushdown automatothat accepts
A. This automaton has two statesq and o©, whereq is the start state. If the
automaton is in stateq, then it did not yet nish reading the leftmost half of

the input string; it pushes all symbols read onto the stack. If the @omaton

is in state d, then it is reading the rightmost half of the input string; for each
symbol read, it checks whether it is equal to the symbol on top ohé stack
and, if so, pops the top symbol from the stack. The pushdown aanhaton
uses nondeterminism to \guess" when to switch from statgto state ¢ (i.e.,

when it has completed reading the leftmost half of the input string).

130 Chapter 3. Context-Free Languages

At this point, you should convince yourself that the two approacheabove,
which showed thatA is context-free, donot work for B. The reason why
they do not work is that the languageB is not context-free, as we will prove
now.

Assume that B is a context-free language. Lep 1 be the pumping
length, as given by the pumping lemma. At this point, we must choose a
string s in B, whose length is at leasp, and that does not satisfy the three
properties stated in the pumping lemma. Let us try the strings = aPba’h.
Thens2 B andjsj=2p+2 p. Hence, by the pumping lemmas can be
written as s = uvxyz, where (i)jvyj 1, (i) jvxyj p, and (iii) uv'xy'z 2 B
foralli 0. It may happenthatp 3,u=a’P !l v=a x=Dby=a
and z = a° b If this is the case, then properties (i), (ii), and (iii) hold,
and, thus, we do not get a contradiction. In other words, we havehosen
the \wrong" string s. This string is \wrong", because there is only ond
between theas. Because of thisy can be in the leftmost block ofas, and
y can be in the rightmost block ofas. Observe that if there were at leasp
many bs between theas, then this would not happen, becausg/xyj p.

Based on the discussion above, we choose= aPPaPl’. Observe that
s2 B andjsj=4p p. Hence, by the pumping lemmas can be written as
s = uvxyz, wherejvyj 1,jvxyj p,anduvixy'z2 B foralli 0. Based
on the location ofvxy in the string s, we distinguish three cases:

Case 1: The substringvxy overlaps both the leftmost half and the rightmost
half of s.

Sincejvxyj p, the substringvxy is contained in the \middle" part of s,
i.e., vxy is contained in the blockiaP. Consider the stringuv®xy®z = uxz.
Sincejvy] 1, we know that at least one o and y is non-empty.

If v6& ,then v contains at least oned from the leftmost block ofbs in
s, whereasy does not contain anyb from the rightmost block ofbs in s.
Therefore, in the stringuxz, the leftmost block ofls contains feweibs
than the rightmost block of bs. Hence, the stringuxz is not contained
in B.

If y 8 , then y contains at least onea from the rightmost block of
as in s, whereasv does not contain anya from the leftmost block of
as in s. Therefore, in the stringuxz, the leftmost block ofas contains
more as than the rightmost block ofas. Hence, the stringuxz is not
contained inB.

3.8. The pumping lemma for context-free languages 131

In both cases, we conclude that the stringixz is not an element of the
languageB . But, by the pumping lemma, this string is contained inB.

Case 2: The substringvxy is in the leftmost half of s.

In this case, none of the stringsuxz, uv?xy?z, uv3xy3z, uvixy“z, etc.,
is contained inB. But, by the pumping lemma, each of these strings is
contained inB.

Case 3: The substring vxy is in the rightmost half of s.

This case is symmetric to Case 2: None of the stringsxz, uv?xy?z,
uv3xy3z, uvixy“z, etc., is contained inB. But, by the pumping lemma, each
of these strings is contained irB.

To summarize, in each of the three cases, we have obtained a cadic-
tion. Therefore, the languageB is not context-free.

Third example

We have seen in Section 3.2.4 that the language
fa"g'cd"":m O;n Og

Is context-free. Using the pumping lemma for regular languages, iteégsy to
prove that this language is not regular. In other words, contexfree gram-
mars can verify addition, whereas nite automata are not powerfuenough
for this. We now consider the problem of verifying multiplication: LetA be
the language de ned as

A=fa"d'd™ :m O;n Og:

We will prove by contradiction that A is not a context-free language.
Assume that A is context-free. Letp 1 be the pumping length, as
given by the pumping lemma. Consider the string = aPt’c”. Then, s 2 A
andjsj =2p+ p> p. Hence, by the pumping lemmas can be written as
s = uvxyz, wherejvyj 1,jvxyj p, anduvixy'z2 A foralli O.
There are three possible cases, depending on the locationy @nd y in
the string s.

Case 1: The substring v does not contain anya and does not contain any
b, and the substringy does not contain anya and does not contain anyb.

132 Chapter 3. Context-Free Languages

Consider the string uvxy?z. Sincejvyj 1, this string consists ofp
many as, p many bs, but more thanp? many cs. Therefore, this string is not
contained inA. But, by the pumping lemma, it is contained inA.

Case 2: The substring v does not contain anyc and the substringy does
not contain any c.

Consider again the stringuv?xy?z. This string consists ofp?> many cs.
Sincejvyj 1, in this string,

the number ofas is at leastp+ 1 and the number ofbs is at leastp, or
the number ofas is at leastp and the number ofbs is at leastp + 1.

Therefore, the number ofas multiplied by the number ofbs is at leastp(p+1),
which is larger thanp?. Therefore, uv?xy?2z is not contained inA. But, by
the pumping lemma, this string is contained imA.

Case 3: The substringv contains at least onéb and the substringy contains
at least onec.

Sincejvxyj p, the substring vy does not contain anya. Thus, we can
write vy = bk, wherej 1 andk 1. Consider the stringuxz. We can
write this string as uxz = aPt® ic® k. Since, by the pumping lemma, this
string is contained inA, we havep(p j)= p?> k, which implies thatjp = k.
Thus,

jvxyj jwi=j+k=j+jp 1+p:
But, by the pumping lemma, we havgvxyj p.

Observe that, sincgvxyj p, the above three cases cover all possibilities
for the locations ofv and y in the string s. In each of the three cases, we
have obtained a contradiction. Therefore, the languag is not context-free.

Exercises

3.1 Construct context-free grammars that generate the following fguages.
In all cases, = fO0;1g.

f0*"1":n Og
f w: w contains at least three 1g

f w: the length ofw is odd and its middle symbol is @

Exercises 133

f w: wis a palindromey.

A palindrome is a string w having the property that w = wR, i.e.,
reading w from left to right gives the same result as readingv from
right to left.

f w: w starts and ends with the same symbgl|

f w: w starts and ends with di erent symbolg

3.2 Let G=(V; ;R;S) be the context-free grammar, wher® = fA;B;Sg,
= f0;1g, S is the start variable, andR consists of the rules

S | 0Sjl1Aj
A | O0Bj1S
B | O0AjIB

De ne the following languageL :

L=fw2f0;1g : wis the binary representation of a non-negative
integer that is divisible by threeg [f g:

Prove that L = L(G). (Hint: The variablesS, A, and B are used to
remember the remainder after division by three.)

3.3 Let G=(V; ;R;S)be the context-free grammar, wher® = fA;B;Sg,
= fa;lg, S is the start variable, andR consists of the rules

S ! aBjbA
A | ajaSjBAA
B ! hbSABB

Prove that ababb& L (G).

Prove that L (G) is the set of all non-empty stringsw over the alphabet
fa; g such that the number ofas in w is equal to the number ofos in
W.

3.4 Let A and B be context-free languages over the same alphabet .
Prove that the union A[B of A and B is also context-free.

Prove that the concatenationAB of A and B is also context-free.

134 Chapter 3. Context-Free Languages

Prove that the star A of A is also context-free.

3.5 De ne the following two languagesA and B:
A=fa"d'c":m 0O;n Og

and
B=fa"t"c":m O;n Og:

Prove that both A and B are context-free, by constructing two context-
free grammars, one that generate& and one that generate$.

We have seen in Section 3.8.2 that the language
fa'n'c":n Og

is not context-free. Explain why this implies that the intersection of
two context-free languages is not necessarily context-free.

Use De Morgan's Law to conclude that the complement of a context-
free language is not necessarily context-free.

3.6 Let A be a context-free language and |8 be a regular language.
Prove that the intersection A\ B of A and B is context-free.
Prove that the set-di erence

AnB =fw:w2 A;w62Bg
of A and B is context-free.

Is the set-di erence of two context-free languages necessardgntext-
free?

3.7 Let L be the language consisting of all non-empty stringa over the
alphabetf a; g such that

the number ofas in w is equal to the number ofts in w,
w does not contain the substringabba and

w does not contain the substringobaa

Exercises 135

In this exercise, you will prove thatL is context-free.

Let A be the language consisting of all non-empty string& over the
alphabetf a; g such that the number ofas in w is equal to the number ofos
in w. In Exercise 3.3, you have shown tha# is context-free.

Let B be the language consisting of all strings over the alphabetf a; kg
such that

w does not contain the substringabba and

w does not contain the substringbbaa

1. Give a regular expression that describes the complementB®f
2. Argue that B is a regular language.

3. Use Exercise 3.6 to argue thdt is a context-free language.

3.8 Construct (deterministic or nondeterministic) pushdown automad that
accept the following languages.

1. f0*"1":n Og.
2.f0"1"0":n 1,m 1g.
3. fw2f0;1g : w contains more 1s than 0%

4, fwwR :w2f0;1g g.
(f w= wy:::iw,, thenwR = w, 111wy

5. fw2f0;1g :wis a palindromey.
3.9 Let L be the language
L=fa"@:0 m n 2mg:

1. Prove that L is context-free, by constructing a context-free grammar
whose language is equal th.

2. Prove that L is context-free, by constructing a nondeterministic push-
down automaton that acceptsL.

3.10 Prove that the following languages are not context-free.

136 Chapter 3. Context-Free Languages

fa'ba"ba":n O0g.
fa'g'a’d :n 0Og.
fa"b'c:m 0O;n 0;k=max(m;n)g.

f w# x . wis a substring ofx, andw;x 2 f a;lg g.
For example, the stringaba# abbababbis in the language, whereas the
string aba# baabbaabls not in the language. The alphabet i$a; b;# g.

fw2fa;b;g : w contains morebs than a's and
w contains morec's than a's g:

f 1" : nis a prime numbeqg.

f (ad")" :n 0Og. (The parentheses are not part of the alphabet; thus,
the alphabet isf a; b;g.)

3.11 Let L be a language consisting of nitely many strings. Show thalt
is regular and, therefore, context-free. Lek be the maximum length of any
string in L.

Prove that every context-free grammar in Chomsky normal form that
generatesL has more than log variables. (The logarithm is in base
2.)

Prove that there is a context-free grammar that generatels and that
has only one variable.

3.12 Let L be a context-free language. Prove that there exists an integer
p 1, such that the following is true: For every strings in L with jsj p,
there exists a strings®in L such thatjsj < js§ j sj+ p.

Chapter 4

Turing Machines and the
Church-Turing Thesis

In the previous chapters, we have seen several computationavetes that
can be used to accept or generate regular and context-free laages. Even
though these two classes of languages are fairly large, we havensaeSec-
tion 3.8.2 that these devices are not powerful enough to accept gi® lan-
guages such ad = fa™d'c™ :m 0O;n 0Og. In this chapter, we introduce
the Turing machine, which is a simple model of a real computer. Turinga-
chines can be used to accept all context-free languages, but doguages
such asA. We will argue that every problem that can be solved on a real
computer can also be solved by a Turing machine (this statement is d&wn
as the Church-Turing Thesis). In Chapter 5, we will consider the limétions
of Turing machines and, hence, of real computers.

4.1 De nition of a Turing machine

We start with an informal description of a Turing machine. Such a mdtne
consists of the following, see also Figure 4.1.

1. There arek tapes for some xedk 1. Each tape is divided into
cells and is in nite both to the left and to the right. Each cell stores
a symbol belonging to a nite set , which is called thetape alphabet
The tape alphabet contains theblank symbol2. If a cell contains2,
then this means that the cell is actually empty.

138 Chapter 4. Turing Machines and the Church-Turing Thesis

state control

2]

-|2]2]2]afa]b]a|b[b[a[ba]b[2|2]2] -

o

- [2]2]2]blala[b]2]a]b[2]2]2] -

Figure 4.1: A Turing machine with k = 2 tapes.

2. Each tape has aape headwhich can move along the tape, one cell
per move. It can also read the cell it currently scans and replaceeh
symbol in this cell by another symbol.

3. There is astate control which can be in any one of a nite number of
states The nite set of states is denoted byQ. The set Q contains
three special states: atart state, an accept state and areject state

The Turing machine performs a sequence ebmputation steps In one
such step, it does the following:

1. Immediately before the computation step, the Turing machine is ia
state r of Q, and each of thek tape heads is on a certain cell.

2. Depending on the current state and the k symbols that are read by
the tape heads,

(a) the Turing machine switches to a stater® of Q (which may be
equal tor),

(b) each tape head writes a symbol of in the cell it is currently
scanning (this symbol may be equal to the symbol currently stode
in the cell), and

4.1. De nition of a Turing machine 139

(c) each tape head either moves one cell to the left, moves one tell
the right, or stays at the current cell.

We now give a formal de nition of a deterministic Turing machine.
De nition 4.1.1 A deterministic Turing machine is a 7-tuple

M =(; ;Q; ;d; accept; Feject);
where

1. is a nite set, called the input alphabet the blank symbol 2 is not
contained in

2. is a nite set, called the tape alphabet this alphabet contains the
blank symbol 2, and ,

3. Qis a nite set, whose elements are callestates
4. gis an element ofQ; it is called the start state,

5. Gaceept IS an element ofQ; it is called the accept state

()

. Geject 1S an element ofQ; it is called the reject state
7. is called thetransition function, which is a function
Q K1 Q K fLRNd:

The transition function is basically the \program" of the Turing ma-
chine. This function tells us what the machine can do in \one computain
step™: Letr 2 Q, and let a;;ay;:::;a 2 . Furthermore, let r°2 Q,

(mayag:ia)=(r%ajsad el o 2500 k) (4.1)
This transition means that if
the Turing machine is in stater, and
the head of thei-th tape reads the symbolg;, 1 i Kk,

then

140 Chapter 4. Turing Machines and the Church-Turing Thesis

the Turing machine switches to state®,

the head of thei-th tape replaces the scanned symbal by the symbol

a%1 i k,and

the head of thei-th tape moves accordingto;,1 i k:if =1L,
then the tape head moves one cell to the left; ifi = R, then it moves
one cell to the right; if ; = N, then the tape head does not move.

We will write the computation step (4.1) in the form of theinstruction
rajap::ia ! rfad:iial 1 oo ke
We now specify the computation of the Turing machine

M=(,;,;0Q; » 45 Gaccepts C}eject):

Start con guration: The input is a string over the input alphabet .
Initially, this input string is stored on the rst tape, and the head of this
tape is on the leftmost symbol of the input string. Initially, all otherk 1
tapes are empty, i.e., only contain blank symbols, and the Turing maite is
in the start state g

Computation and termination: Starting in the start con guration, the
Turing machine performs a sequence of computation steps as dissd above.
The computation terminates at the moment when the Turing machine en-
ters the accept stateguccept Or the reject state geject - (Hence, if the Turing
machine never enters the stateccept and Geject , the computation doesnot
terminate.)

Acceptance: The Turing machineM acceptsthe input string w2, if the
computation on this input terminates in the statedaccept. If the computation
on this input terminates in the state geject, then M rejects the input string
W.

We denote byL (M) the languageacceptedby the Turing machine M.
Thus, L(M) is the set of all strings in that are accepted byM .

Observe that a stringw 2 does not belong toL (M) if and only if on
input w,

the computation of M terminates in the state gjeject Of

the computation of M does not terminate.

4.2. Examples of Turing machines 141

4.2 Examples of Turing machines

4.2.1 Accepting palindromes using one tape

We will show how to construct a Turing machine with one tape, that dedes
whether or not any input stringw 2 f a; by is a palindrome Recall that the
string w is called a palindrome, if readingv from left to right gives the same
result as readingw from right to left. Examples of palindromes areabba
baabbbbaaland the empty string .

Start of the computation: The tape contains the input stringw, the tape
head is on the leftmost symbol ofv, and the Turing machine is in the start
state p.

Idea: The tape head reads the leftmost symbol ok, deletes this symbol
and \remembers" it by means of a state. Then the tape head movee
the rightmost symbol and tests whether it is equal to the (alreadyleleted)
leftmost symbol.

If they are equal, then the rightmost symbol is deleted, the tapedad
moves to the new leftmost symbol, and the whole process is repehte

If they are not equal, the Turing machine enters the reject stafeand
the computation terminates.

The Turing machine enters the accept state as soon as the stringriently
stored on the tape is empty.

We will use the input alphabet = fa;kg and the tape alphabet =
fa;b;2g. The setQ of states consists of the following eight states:

o' start state; tape head is on the leftmost symbol

(0N leftmost symbol wasa; tape head is moving to the right

(o leftmost symbol wasb; tape head is moving to the right

o reached rightmost symbol; test whether it is equal t@, and delete it
o reached rightmost symbol; test whether it is equal td, and delete it
q : test was positive; tape head is moving to the left

Checept . ACCEpL state

Geject . reject state

142 Chapter 4. Turing Machines and the Church-Turing Thesis

The transition function is speci ed by the following instructions:

pa! a2R dga! @aR da! gaR
pb! 2R g.b! @bR gb! bR
002 ! Caceept qa2 ! Cﬁz L qb2 ! C@Z L
Oga g2l qga ! Geject qa! qal
Ogb! erect Cﬁb! q_2 L qu! qu
05(1)2 ! Oaccept C€2 ! Oelccept a 2! 002 R

You should go through the computation of this Turing machine for soe
sample inputs, for exampleabba b, abband the empty string (which is a
palindrome).

4.2.2 Accepting palindromes using two tapes

We again consider the palindrome problem, but now we use a Turing nfece
with two tapes.

Start of the computation: The rst tape contains the input string w and

the head of the rst tape is on the leftmost symbol ofv. The second tape is
empty and its tape head is at an arbitrary position. The Turing machie is

in the start state .

Idea: First, the input string w is copied to the second tape. Then the head
of the rst tape moves back to the leftmost symbol ofw, while the head of
the second tape stays at the rightmost symbol ofi. Finally, the actual test
starts: The head of the rst tape moves to the right and, at the ame time,
the head of the second tape moves to the left. While moving, the Tiag
machine tests whether the two tape heads read the same symboleach
step.

The input alphabet is = fa;lg and the tape alphabetis = fa;b;2g.
The setQ of states consists of the following ve states:

O : start state; copy w to the second tape
G : w has been copied; head of rst tape moves to the left
(073 head of rst tape moves to the right; head of second tape moves

to the left; until now, all tests were positive
Ohccept . @CCept state
Qeject - reject state

4.2. Examples of Turing machines 143

The transition function is speci ed by the following instructions:

pa2 ! @maaRR qaa! qaalLN
2 ' gpbbRR gab! qabLN
22 ! q22 LL g.:ba! qbalLN
a.bb! qbbLN
x2a! @g2aRN
2b! ®2bRN
Q122 ! Oaccept
paa! @aaRL
Chab! erect
Chba! erect
pbb! bbRL
q222 ! Claccept

Again, you should run this Turing machine for some sample inputs.

4.2.3 Accepting a"p'c" using one tape

We will construct! a Turing machine with one tape that accepts the language
fa'n'c" :n Og:

Recall that we have proved in Section 3.8.2 that this language is notritext-
free.

Start of the computation: The tape contains the input stringw and the
tape head is on the leftmost symbol ofv. The Turing machine is in the start

State.

Idea: In the previous examples, the tape alphabet was equal to the unm
of the input alphabet and f2g. In this example, we will add one symbol
d to the tape alphabet. As we will see, this simpli es the construction fo
the Turing machine. Thus, the input alphabet is = fa;b; @ and the tape
alphabet is = fa;b;c;d2g. Recall that the input string w belongs to

The general approach is to split the computation into two stages.

1Thanks to Michael Fleming for pointing out an error in a previous verson of this
construction.

144 Chapter 4.

Turing Machines and the Church-Turing Thesis

Stage 1: In this stage, we check if the stringw is in the language described
by the regular expressioma b ¢ . If this is the case, then we walk back to
the leftmost symbol. For this stage, we use the following states, $ides the

states Guecept AN Greject

G :
O
O

q :

Stage 2: In this

start state; we are reading the block o&'s
we are reading the block obis

we are reading the block o€'s

walk to the leftmost symbol

stage, we repeat the following: Walk along the string from

left to right, replace the leftmosta by d, replace the leftmostb by d, replace

the leftmost c by

d, and walk back to the leftmost symbol.

For this stage, we use the following states:

0%:
o

o

o :

The transition fu

ga!
ab!
uC!
Q,d!
L2

ga!
gcb!
g.c!
Qd!

start state of Stage 2; search for the leftmost
leftmost a has been replaced by;

search for the leftmostb

leftmost a has been replaced by;

leftmost b has been replaced by;

search for the leftmostc

leftmost a has been replaced by;

leftmost b has been replaced by;

leftmost ¢ has been replaced by;

walk to the leftmost symbol

nction is speci ed by the following instructions:

GaR Bha! Geject
bR gb! bR
g.CR gc! ogcR
cannot happen gd! cannot happen
I q2L g2 ! q2L
erect ga ! a aL
erect a b! o8 bL
g.CR gc! gcL
cannot happen g d! cannot happen

2! 2L a2! 2R

4.2. Examples of Turing machines 145

ga! dR fa! caR
Ogb ! erect q())b ! Ong
020 ! C}eject 080 ! C}eject
@d! QdR d! R
022 ! Cbccept Oboz ! erect
Oga ! Greject Cfa ! CfaL
! bR fb! fbL
! PdL g’c! dfcL
d! cfdR fd! fdL
B2 ! Geject 2! 2R

We remark that Stage 1 is really necessary for this Turing machinef we
omit this stage, and use only Stage 2, then the stringabcbawill be accepted.

4.2.4 Accepting a"b'c" using tape alphabet fa;b;c2g

We consider again the languagéa™d'c” : n 0Og. In the previous section,
we presented a Turing machine that uses an extra symbal The reader may
wonder if we can construct a Turing machine for this language thataks not
use any extra symbols. We will show below that this is indeed possible.

Start of the computation: The tape contains the input stringw and the
tape head is on the leftmost symbol ofv. The Turing machine is in the start
state .

Idea: Repeat the following Stages 1 and 2, until the string is empty.

Stage 1. Walk along the string from left to right, delete the leftmosta,
delete the leftmostb, and delete the rightmostc.

Stage 2. Shift the substring ofbs andcs one position to the left; then walk
back to the leftmost symbol.

The input alphabetis = fa;b;@andthe tape alphabetis = fa;b;c2g.

146 Chapter 4. Turing Machines and the Church-Turing Thesis

For Stage 1, we use the following states:

start state; tape head is on the leftmost symbol

leftmost a has been deleted; have not reall

leftmost b has been deleted; have not read

leftmost ¢ has been read; tape head moves to the right
tape head is on the rightmostc

rightmost ¢ has been deleted; tape head is on the rightmost
symbol or2

Checept . ACCEPL State

Geject . reject state

2 REE LRSS

The transitions for Stage 1 are speci ed by the following instructiost

pa! 2R dga! gaR
b! Greject Gb! 2R
OC ! erect G.C ! C}eject
%2 ! Oaccept Oaz ! erect
G ! q’eject G.a ! C}eject
Gb! bR qGb! Geject
gc! cR gc! qcR
B2 | Geject g2 ! 2L

! q2L

For Stage 2, we use the following states:

0. : as above; tape head is on the rightmost symbol or ¢h
g° . copyc one cell to the left

o°: copybone cell to the left

& : done with shifting; head moves to the left

Additionally, we use a statec? which has the following meaning: If the input
string is of the forma'bg for somei 1, then after Stage 1, the tape contains
the string @ 122 , the tape head is on the2 immediately to the right of the
as, and the Turing machine is in state,. In this case, we move one cell to
the left; if we then read2, theni = 1, and we accept; otherwise, we read,
and we reject.

4.2. Examples of Turing machines 147

The transitions for Stage 2 are speci ed by the following instructiost

qa! cannot happen fa! Geject

ab! Geject ®b! cannot happen
qc! o2L g’c! cannot happen
h2 ! Oﬂ(_)ZL q?Z ! Chceept

gfa! cannot happen ¢Pa! cannot happen
ob! ocL o°b! obL

g°’c! o‘cL g°c! cannot happen
2! Geject 2! gbL

gpa! oalL

pb! cannot happen
pc! cannot happen
®2! p2R

4.2.5 Accepting a™b'c™ using one tape

We will sketch how to construct a Turing machine with one tape that ecepts
the language
fa"y'c™ :m 0O;n Og:
Recall that we have proved in Section 3.8.2 that this language is notritext-
free.
The input alphabetis = fa;b;gand the tape alphabetis = fa;b;c$;2g,
where the purpose of the symbol $ will become clear below.

Start of the computation: The tape contains the input stringw and the
tape head is on the leftmost symbol ofv. The Turing machine is in the start
state.

Idea: Observe that a stringa™b'c* is in the language if and only if for every
a, the string containsn many cs. Based on this, the computation consists of
the following stages:

Stage 1. Walk along the input string w from left to right and check whether
w is an element of the language described by the regular expresseb c .
If this is not the case, then reject the input string. Otherwise, gto Stage 2.

Stage 2. Walk back to the leftmost symbol ofw. Go to Stage 3.

Stage 3. In this stage, the Turing machine does the following:

148 Chapter 4. Turing Machines and the Church-Turing Thesis

Replace the leftmosta by the blank symbol 2.
Walk to the leftmost b.

Zigzag between thds andcs; each time, replace the leftmogh by the
symbol $, and replace the rightmost by the blank symbol 2. If, for
someb, there is noc left, the Turing machine rejects the input string.

Continue zigzagging until there are ndxs left. Then go to Stage 4.

Observe that in this third stage, the stringa™b'c* is transformed to the
string @™ 1$"ck ",
Stage 4. In this stage, the Turing machine does the following:

Replace each $ by.

Walk to the leftmost a.

Hence, in this fourth stage, the stringa™ $"ck " is transformed to the string
am ek N,

Observe that the input string a™b'c is in the language if and only if the
string a™ 'B'cC " is in the language. Therefore, the Turing machine repeats
Stages 3 and 4, until there are nas left. At that moment, it checks whether
there are anycs left; if so, it rejects the input string; otherwise, it accepts
the input string.

We hope that you believe that this description of the algorithm can be
turned into a formal description of a Turing machine.

4.3 Multi-tape Turing machines

In Section 4.2, we have seen two Turing machines that accept paliodnes;
the rst Turing machine has one tape, whereas the second one he® tapes.
You will have noticed that the two-tape Turing machine was easier tobtain
than the one-tape Turing machine. This leads to the question wheth multi-
tape Turing machines are more powerful than their one-tape cotamparts.
The answer is \no":

Theorem 4.3.1 Let k 1 be an integer. Anyk-tape Turing machine can
be converted to an equivalent one-tape Turing machine.

4.3. Multi-tape Turing machines 149

Proof. 2 We will sketch the proof for the case wherk = 2. Let M =
(5 5Q; 5 0; Gaccept; Geject) bE @ two-tape Turing machine. Our goal is to
convert M to an equivalent one-tape Turing machinéN. That is, N should
have the property that for all stringsw 2

M acceptsw if and only if N acceptsw,
M rejectsw if and only if N rejectsw,

M does not terminate on inputw if and only if N does not terminate
on input w.

The tape alphabet of the one-tape Turing machin®&l is
[f x:x2 g[f #0:

In words, we take the tape alphabet ofM, and add, for eachx 2 , the
symbol x. Moreover, we add a special symbol #.

The Turing machineN will be de ned in such a way that any con gura-
tion of the two-tape Turing machineM , for example

- [2]1]o]of1]2]-
6

- [2]afa]b[a]2]-
6

corresponds to the following con guration of the one-tape Turingnachine
N:

2Thanks to Sergio Cabello for pointing out an error in a previous versia of this proof.

150 Chapter 4. Turing Machines and the Church-Turing Thesis

Thus, the contents of the two tapes oM are encoded on the single tape of
N. The dotted symbols are used to indicate the positions of the two pe
heads ofM , whereas the three occurrences of the special symbol # are dise
to mark the boundaries of the strings on the two tapes ad¥l .

The Turing machine N simulates one computation step oM, in the
following way:

Throughout the simulation of this step, N \remembers" the current
state of M.

At the start of the simulation, the tape head ofN is on the leftmost
symbol #.

N walks along the string to the right until it nds the rst dotted
symbol. (This symbol indicates the location of the head on the rstape
of M.) N remembers this rst dotted symbol and continues walking
to the right until it nds the second dotted symbol. (This symbol
indicates the location of the head on the second tape BF.) Again, N
remembers this second dotted symbol.

At this moment, N is still at the second dotted symbol. N updates
this part of the tape, by making the change thatM would make on its
second tape. (This change is given by the transition function ofl ; it
depends on the current state oM and the two symbols thatM reads
on its two tapes.)

N walks to the left until it nds the rst dotted symbol. Then, it
updates this part of the tape, by making the change thaM would
make on its rst tape.

In the previous two steps, in which the tape is updated, it may be
necessary to shift a part of the tape.

Finally, N remembers the new state oM and walks back to the left-
most symbol #.

It should be clear that the Turing machineN can be constructed by
introducing appropriate states. |

4.4, The Church-Turing Thesis 151

4.4 The Church-Turing Thesis

We all have some intuitive notion of what analgorithm is. This notion will
probably be something like \an algorithm is a procedure consisting obm-
putation steps that can be speci ed in a nite amount of text". For example,
any \computational process" that can be speci ed by a Java pragm, should
be considered an algorithm. Similarly, a Turing machine speci es a \com
putational process" and, therefore, should be considered an aighm. This
leads to the question of whether it is possible to give a mathematicag ahi-
tion of an \algorithm". We just saw that every Java program repreents an
algorithm and that every Turing machine also represents an algorith. Are
these two notions of an algorithm equivalent? The answer is \yes"nlfact,
the following theorem states that many di erent notions of \compuational
process" are equivalent. (We hope that you have gained su cient taition,
so that none of the claims in this theorem comes as a surprise to you.)

Theorem 4.4.1 The following computation models are equivalent, i.e., any
one of them can be converted to any other one:

1. One-tape Turing machines.

2. k-tape Turing machines, for anyk 1.
3. Non-deterministic Turing machines.
4. Java programs.

5. C++ programs.

6. Lisp programs.

In other words, if we de ne the notion of an algorithm using any of the
models in this theorem, then it does not matter which model we takeAll
these models give the same notion of an algorithm.

The problem of de ning the notion of an algorithm goes back to David
Hilbert. On August 8, 1900, at the Second International Congresof Math-
ematicians in Paris, Hilbert presented a list of problems that he congded
crucial for the further development of mathematics. Hilbert's 10t problem
is the following:

152 Chapter 4. Turing Machines and the Church-Turing Thesis

Does there exist anite process that decides whether or not any
given polynomial with integer coe cients has integral roots?

Of course, in our language, Hilbert asked whether or not there etdsan
algorithm that decides, when given an arbitrary polynomial equation (with
integer coe cients) such as

123y +7x%y*z x*+y*z" 2+10=0;

whether or not this equation has a solution in integers. In 1970, Migasevich
proved that such an algorithm doesiot exist. Of course, in order to prove
this claim, we rst have to agree on what amalgorithm is. In the beginning
of the twentieth century, mathematicians gave several de nitiog, such as
Turing machines (1936) and the -calculus (1936), and they proved that all
these are equivalent. Later, after programming languages werevémted, it
was shown that these older notions of an algorithm are equivalent twtions
of an algorithm that are based on C programs, Java programs, Ligoograms,
Pascal programs, etc.

In other words, all attempts to give a rigorous de nition of the noton of
an algorithm led to the same concept. Because of this, computeiesttists
nowadays agree on what is called the Church-Turing Thesis:

Church-Turing Thesis: Every computational process that is intuitively
considered to be an algorithm can be converted to a Turing machine.

In other words, this basically states that wede ne an algorithm to be a
Turing machine. At this point, you should ask yourself, whether th&€hurch-
Turing Thesis can beproved Alternatively, what has to be done in order to
disprove this thesis?

Exercises
4.1 Construct a Turing machine with one tape, that accepts the languge
fo*"1":n Og:

Assume that, at the start of the computation, the tape head is othe leftmost
symbol of the input string.

Exercises 153

4.2 Construct a Turing machine with one tape, that accepts the languge
fw: w contains twice as many 0s as s

Assume that, at the start of the computation, the tape head is othe leftmost
symbol of the input string.

4.3 Let A be the language

A = fw2fayb;g : w contains morebs than as and
w contains morecs than as g:

Give an informal description (in plain English) of a Turing machine with oe
tape, that accepts the languagé\.

4.4 Construct a Turing machine with one tape that receives as input a ma
negative integerx and returns as output the integerx + 1. Integers are
represented as binary strings.

Start of the computation: The tape contains the binary representation
of the input x. The tape head is on the leftmost symbol and the Turing
machine is in the start stateq,. For example, ifx = 431, the tape looks as
follows:

"'\2|2|2|‘1|1|0|1|0|1|1|1|1|2|2|2\
6

End of the computation: The tape contains the binary representation of
the integer x + 1. The tape head is on the leftmost symbol and the Turing
machine is in the nal state q;. For our example, the tape looks as follows:

- [2]2]2]1]1]of1]1]0fo]0]0[2]2]2] ---
‘6

The Turing machine in this exercise does not have an accept state ar
reject state; instead, it has a nal stateq,. As soon as statey, is entered,
the Turing machine terminates. At termination, the contents of tle tape is
the output of the Turing machine.

154 Chapter 4. Turing Machines and the Church-Turing Thesis

4.5 Construct a Turing machine with two tapes that receives as input te
non-negative integersx and y, and returns as output the integerx + vy.
Integers are represented as binary strings.

Start of the computation: The rst tape contains the binary represen-
tation of x and its head is on the rightmost symbol ok. The second tape
contains the binary representation ofy and its head is on the rightmost bit
of y. At the start, the Turing machine is in the start state .

End of the computation: The rst tape contains the binary representation
of x and its head is on the rightmost symbol ok. The second tape contains
the binary representation of the integex + y (thus, the integery is \gone").
The head of the second tape is on the rightmost bit of + y. The Turing
machine is in the nal state q.

4.6 Give an informal description (in plain English) of a Turing machine with
one tape that receives as input two non-negative integexsandy, and returns
as output the integerx + y. Integers are represented as binary strings. If you
are an adventurous student, you may give a formal de nition of yar Turing
machine.

4.7 Construct a Turing machine with one tape that receives as input an
integerx 1 and returns as output the integex 1. Integers are represented
in binary.

Start of the computation: The tape contains the binary representation of
the input x. The tape head is on the rightmost symbol ok and the Turing
machine is in the start stateq.

End of the computation: The tape contains the binary representation of
the integer x 1. The tape head is on the rightmost bit ofix 1 and the
Turing machine is in the nal state g.

4.8 Give an informal description (in plain English) of a Turing machine with
three tapes that receives as input two non-negative integess and y, and
returns as output the integerxy. Integers are represented as binary strings.

Start of the computation: The rst tape contains the binary represen-
tation of x and its head is on the rightmost symbol ok. The second tape
contains the binary representation of and its head is on the rightmost sym-
bol of y. The third tape is empty and its head is at an arbitrary location.
The Turing machine is in the start stateq.

Exercises 155

End of the computation: The rst and second tapes are empty. The third
tape contains the binary representation of the producky and its head is on
the rightmost bit of xy. The Turing machine is in the nal state ¢;.

Hint: Use the Turing machines of Exercises 4.5 and 4.7.

4.9 Construct a Turing machine with one tape that receives as input ashg
of the form 1" for some integem 0O; thus, the input is a string ofn many
1s. The output of the Turing machine is the string 12 1". Thus, this Turing
machine makes a copy of its input.

The input alphabet is = f1g and the tape alphabetis =f1;2g.

Start of the computation: The tape contains a string of the form 1, for
some integem 0, the tape head is on the leftmost symbol, and the Turing
machine is in the start state. For example, ih = 4, the tape looks as follows:

\2|2|2|‘1|1|1|1|2|2|2\
6

End of the computation: The tape contains the string 121", the tape
head is on the2 in the middle of this string, and the Turing machine is in
the nal state. For our example, the tape looks as follows:

\2|2|2|1|1|1|1|2‘|1|1|1|1|2|2|2\
6

The Turing machine in this exercise does not have an accept state ar
reject state; instead, it has a nal state. As soon as this state isntered, the
Turing machine terminates. At termination, the contents of the tge is the
output of the Turing machine.

156 Chapter 4. Turing Machines and the Church-Turing Thesis

Chapter 5

Decidable and Undecidable
Languages

We have seen in Chapter 4 that Turing machines form a model for \ewthing
that is intuitively computable”. In this chapter, we consider the limitations
of Turing machines. That is, we ask ourselves the question whethar not
\everything" is computable. As we will see, the answer is \no". In fat, we
will even see that \most" problems are not solvable by Turing machirseand,
therefore, not solvable by computers.

5.1 Decidability

In Chapter 4, we have de ned when a Turing machine accepts an inpstring
and when it rejects an input string. Based on this, we de ne the follging
class of languages.

De nition 5.1.1 Let be an alphabet and let A be a language. We
say that A is decidable if there exists a Turing machineM, such that for
every stringw 2, the following holds:

1. If w2 A, then the computation of the Turing machineM , on the input
string w, terminates in the accept state.

2. If w 62A, then the computation of the Turing machineM , on the input
string w, terminates in the reject state.

158 Chapter 5. Decidable and Undecidable Languages

In other words, the languageA is decidable, if there exists an algorithm
that (i) terminates on every input string w, and (ii) correctly tells us whether
w2 A orw62A.

A language A that is not decidable is calledundecidable For such a
language, there doesot exist an algorithm that satis es (i) and (ii) above.

In Section 4.2, we have seen several examples of languages thatds-
cidable.

In the following subsections, we will give some examples of decidable an
undecidable languages. These examples involve languageshose elements
are pairs of the form C;w), where C is some computation model (for ex-
ample, a deterministic nite automaton) andw is a string over the alphabet

. The pair (C;w) is in the languageA if and only if the string w is in the
language of the computation modeC. For di erent computation models C,
we will ask the question whetherA is decidable, i.e., whether an algorithm
exists that decides, for any input C;w), whether or not this input belongs
to the languageA. Since the input to any algorithm is a string over some
alphabet, we must encode the pair@;w) as a string. In all cases that we
consider, such a pair can be described using a nite amout of text.h€refore,
we assume, without loss of generality, that binary strings are usddr these
encodings. Throughout the rest of this chapter, we will denote &hbinary
encoding of a pair C;w) by
hC; wi :

5.1.1 The language Apga

We de ne the following language:

Apen = ThM:;wi: M is a deterministic nite automaton that
accepts the stringwg.

Keep in mind that hM;wi denotes the binary string that forms an en-
coding of the nite automaton M and the string w that is given as input to
M.

We claim that the languageApra is decidable. In order to prove this,
we have to construct an algorithm with the following property, for ay given
input string u:

If uis the encoding of a deterministic nite automatonM and a string
w (i.e., u is in the correct format iM;wi), and if M acceptsw, then
the algorithm terminates in its accept state.

5.1. Decidability 159

In all other cases, the algorithm terminates in its reject state.

An algorithm that exactly does this, is easy to obtain: On inputu, the algo-
rithm rst checks whether or not u encodes a deterministic nite automaton
M and a string w. If this is not the case, then it terminates and rejects
the input string u. Otherwise, the algorithm \constructs" M and w, and
then simulates the computation ofM on the input string w. If M accepts
w, then the algorithm terminates and accepts the input stringu. If M does
not acceptw, then the algorithm terminates and rejects the input stringu.
Thus, we have proved the following result:

Theorem 5.1.2 The languageApra is decidable.

5.1.2 The language Anga

We de ne the following language:

Anra = fhM;wi: M is a nondeterministic nite automaton that
accepts the stringwg.

To prove that this language is decidable, consider the algorithm that
does the following: On inputu, the algorithm rst checks whether or not
u encodes a nondeterministic nite automatorM and a stringw. If this is
not the case, then it terminates and rejects the input stringi. Otherwise,
the algorithm constructsM and w. Since a computation oM (on input w)
is not unique, the algorithm rst converts M to an equivalent deterministic
nite automaton N. Then, it proceeds as in Section 5.1.1.

Observe that the construction for converting a nondeterministianite au-
tomaton to a deterministic nite automaton (see Section 2.5) is algathmic,
in the sense that it can be described by an algorithm. Because of thtke
algorithm described above is a valid algorithm; it accepts all strings that
are in Ayra , and it rejects all stringsu that are not in Ayga . Thus, we have
proved the following result:

Theorem 5.1.3 The languageAnra is decidable.

5.1.3 The language Acrc
We de ne the following language:

Acre = thG;wi : G is a context-free grammar such thatv 2 L(G)g:

160 Chapter 5. Decidable and Undecidable Languages

We claim that this language is decidable. In order to prove this claim, oe
sider a stringu that encodes a context-free grammaG = (V; ;S;R) and a
string w 2 . Deciding whether or notw 2 L(G) is equivalent to deciding
whether or notS) w. A rst idea to decide this is by trying all possible
derivations that start with the start variable S and that use rules ofR. The
problem is that, in casew 62_(G), it is not clear how many such derivations
have to be checked before we can be sure thatis not in the language of
G: If w2 L(G), then it may be that w can be derived fromS, only by rst
deriving a very long string, sayv, and then use rules to shorten it so as to
obtain the string w. Since there is no obvious upper bound on the length of
the string v, we have to be careful.

The trick is to do the following. First, convert the grammar G to an
equivalent grammarG° in Chomsky normal form. (The construction given
in Section 3.4 can be described by an algorithm.) Let be the length of the
string w. Then, if w 2 L(G) = L(GY, any derivation of w in G° from the
start variable of G consists of exactly 8 1 steps (where a \step" is de ned
as applying one rule ofc%9. Hence, we can decide whether or nat 2 L(G),
by trying all possible derivations, inG° consisting of 2 1 steps. If one of
these (nite number of) derivations leads to the stringw, then w 2 L(G).
Otherwise,w 62_(G). Thus, we have proved the following result:

Theorem 5.1.4 The languageAcrs is decidable.
In fact, the arguments above imply the following result:
Theorem 5.1.5 Every context-free language is decidable.

Proof. Let be an alphabet and let A be an arbitrary context-free
language. There exists a context-free grammar in Chomsky norhfarm,
whose language is equal t&. Given an arbitrary string w 2 , we have
seen above how we can decide whether or n@tcan be derived from the
start variable of this grammar. |

5.1.4 The language Aqy

After having seen the language®\pra, Anra, and Acrg, it is natural to
consider the language

Amv = fhM;wi : M is a Turing machine that accepts the stringvg:

5.1. Decidability 161

We will prove that this language is undecidable. Before we give the @h
let us mention what this means:

There is no algorithm that, when given an arbitrary algorithmM
and an arbitrary input string w for M, decides in a nite amount
of time, whether or notM acceptsw.

The proof of the claim thatAry is undecidable is by contradiction. Thus,
we assume thatAry, is decidable. Then there exists a Turing machiné
that has the following property. For every input stringhM; wi for H:

If MM;wi2 Amy (i.e., M acceptsw), then H terminates in its accept
state.

If M;wi 62A+y (i.e., M rejectsw or M does not terminate on input
w), then H terminates in its reject state.

In particular, H terminates on any inputhM; wi.

We construct a new Turing machineD, that does the following: On input
hM i, the Turing machine D usesH as a subroutine to determine wha
does when it is given its own description as input. Onc@ has determined
this information, it does the opposite of what H does.

Turing machine D: On input M, whereM is a Turing machine,
the new Turing machineD does the following:

Step 1: Run the Turing machineH on the input hM; M ii .
Step 2:

If H terminates in its accept state, thenD terminates in its
reject state.

If H terminates in its reject state, thenD terminates in its
accept state.

First observe that this new Turing machineD terminates on any input
string M i, becauseH terminates on every input. Next observe that, for any
input string M i for D:

If M; Mii 2 Ay (i.e., M acceptshMi), then D terminates in its
reject state.

162 Chapter 5. Decidable and Undecidable Languages

If AM; hMii 62 Aty (i.e., M rejectshMi or M does not terminate on
input M i), then D terminates in its accept state.

This means that for any stringhM i :
If M acceptshM i, then D rejectshMi.

If M rejectshMi or M does not terminate on inputbMi, then D
acceptshM i.

We now consider what happens if we give the Turing machiri2 the string
hDi as input, i.e., we takeM = D:

If D acceptshDi, then D rejectsiDi.

If D rejectshDi or D does not terminate on inputhDi, then D accepts
HDi.

SinceD terminates on every input string, this means that
If D acceptshDi, then D rejectsiDi.
If D rejectshDi, then D acceptshDi.

This is clearly a contradiction. Therefore, the Turing machingd that decides
the languageAry cannot exist and, thus,Ary is undecidable. We have
proved the following result:

Theorem 5.1.6 The languageAry is undecidable.

5.1.5 The Halting Problem

We de ne the following language:

Halt = fhP;wi: P is a Java program that terminates on
the input string wg.

Theorem 5.1.7 The language Halt is undecidable.

Proof. The proof is by contradiction. Thus, we assume that the language
Halt is decidable. Then there exists a Java prograi that takes as input a
string of the form hP; wi, whereP is an arbitrary Java program andw is an
arbitrary input for P. The programH has the following property:

5.1. Decidability 163

If hP;wi 2 Halt (i.e., program P terminates on input w), then H
outputs true.

If hP;wi 62Halt (i.e., programP does not terminate on inputw), then
H outputs false.

In particular, H terminates on any inputhP; wi.

We will write the output of H asH (P;w). Moreover, we will denote byP (w)
the computation obtained by running the programP on the input w. Hence,

true if P(w) terminates,

H(P;w) = false if P(w) does not terminate.

Consider the following algorithm@Q, which takes as input the encoding
hPi of an arbitrary Java programP:

Algorithm Q(hPi):

while H(P;hPi) = true
do have a beer
endwhile

SinceH is a Java program, this new algorithmQ can also be written as
a Java program. Observe that

Q(hPi) terminates if and only if H(P;hPi) = false.
This means that for every Java progranP,
Q(hPi) terminates if and only if P(hPi) does not terminate. (5.1)

What happens if we run the Java progran on the input string hQi?
In other words, what happens if we rumQ(hQi)? Then, in (5.1), we have to
replace all occurrences d® by Q. Hence,

Q(hQi) terminates if and only if Q(hQi) does not terminate.

This is obviously a contradiction, and we can conclude that the Javapgram
H does not exist. Therefore, the languagalt is undecidable. [|

164 Chapter 5. Decidable and Undecidable Languages

Remark 5.1.8 In this proof, we run the Java programQ on the input hQi.
This means that the input to Q is a description of itself. In other words, we
give Q itself as input. This is an example of what is calledelf-reference An-
other example of self-reference can be found in Remark 5.1.8 of teetbook
Introduction to Theory of Computation by A. Maheshwari and M. Smid.

5.2 Countable sets

The proofs that we gave in Sections 5.1.4 and 5.1.5 seem to be bizaire.
this section, we will convince you that these proofs in fact use a teuque
that you have seen in the course COMP 180%antor's Diagonalization

Let A and B be two sets and letf : A! B be a function. Recall thatf
is called abijection, if

f is one-to-one(or injective), i.e., for any two distinct elementsa and
a’in A, we havef (a) 6 f (a9, and

f is onto (or surjective), i.e., for each element 2 B, there exists an
elementa 2 A, such thatf (a) = b.

The set of natural numbersis denoted byN. Thatis, N= f1;2;3;::.g.

De nition 5.2.1 Let A and B be two sets. We say thatA and B have the
same sizeif there exists a bijectionf : A! B.

De nition 5.2.2 Let A be a set. We say thatA is countable if A is nite,
or A and N have the same size.

In other words, if A is an in nite and countable set, then there exists a
bijection f : N! A, and we can writeA as

A=1f(Q);f(2);f(3);f(4);::0:

Sincef is a bijection, every element oA occurs exactly once in the set on
the right-hand side. This means that we camumber the elements ofA using
the positive integers: Every element of receives a unique number.

Theorem 5.2.3 The following sets are countable:

5.2. Countable sets 165

1. The setZ of integers:
Z=f:::1; 3 2, 1,0,1,2,3;::0
2. The Cartesian productN N:

N N=f(m;n):m2 N;n2 Ng:

3. The setQ of rational numbers:

Q=fm=n:m22Z;n22Z;n600g:

Proof. To prove that the setZ is countable, we have to give each element of
Z a unique number inN. We obtain this numbering, by listing the elements
of Z in the following order:

01 1,20 23 34, 4:::

In this (in nite) list, every element of Z occurs exactly once. The number of
an element ofZ is given by its position in this list.
Formally, de ne the function f : N! Z by

n=2 if n is even

HM=" " 1= itnis odd

This function f is a bijection and, therefore, the set®l and Z have the same
size. Hence, the set is countable.

For the proofs of the other two claims, we refer to the course COmM1805.
|

We now use Cantor's Diagonalization principle to prove that the set of
real numbers is not countable:

Theorem 5.2.4 The setR of real numbers is not countable.

Proof. De ne
A=fx2R:0 x< 1lg

We will prove that the set A is not countable. This will imply that the set
R is not countable, becaus& R.

166 Chapter 5. Decidable and Undecidable Languages

The proof that A is not countable is by contradiction. So we assume that
A is countable. Then there exists a bijectiof : N! A. Thus, for each
n 2 N, f (n) is a real number between zero and one. We can write

A=ff();f(2);f(3);::0; (5.2)

where every element oA occurs exactly once in the set on the right-hand
side.
Consider the real numberf (1). We can write this number in decimal
notation as
f (1) =0:d11d1ods3: 5

where eachdy; is a digit in the setf0; 1;2;:::;9g. In general, for everyn 2 N,
we can write the real numberf (n) as

f(n)=0:dy10n2003: 555

where, again, eacld,; is a digitin f0;1;2;:::;9g.
We de ne the real number

X =0:d1dsd3:
where, for each integen 1,
q = 4 ifd,, 64,
"T 5 ifdy, =4.

Observe thatx is a real number between zero and one, i.&.2 A. Therefore,
by (5.2), there is an elementn 2 N, such thatf (n) = x. We compare the
n-th digits of f (n) and x:

The n-th digit of f (n) is equal tod,,.
The n-th digit of x is equal tod,.

Sincef (n) and x are equal, theirn-th digits must be equal, i.e.,d,, = d,.
But, by the de nition of d,, we haved,, 6 d,. This is a contradiction and,
therefore, the setA is not countable.

Notice how wede ned the real numberx: For eachn 1, the n-th digit
of x is not equal to then-th digit of f (n). Therefore, foreacm 1,x 6 f(n)
and, thus, x 62A. |

5.2. Countable sets 167

The nal result of this section is the fact that for every setA, its power
set
P(A)=fB:B Ag

is \strictly larger" than A. De ne the function f : A!P (A) by
f(a) = fag;

for any ain A. Sincef is one-to-one, we can say thaP (A) is \at least as
large as"A.

Theorem 5.2.5 Let A be an arbitrary set. ThenA and P(A) do not have
the same size.

Proof. The proof is by contradiction. Thus, we assume that there exists a
bijection g: A!'P (A). De ne the setB as

B=fa2A:a6Xx(a)g:

SinceB 2 P (A) and g is a bijection, there exists an elemera in A such that
g(a) = B.

First assume thata 2 B. Sinceg(a) = B, we havea 2 g(a). But then,
from the de nition of the set B, we havea 62B, which is a contradiction.

Next assume thata 62B. Sinceg(a) = B, we havea 62g(a). But
then, from the de nition of the set B, we havea 2 B, which is again a
contradiction.

We conclude that the bijectiong does not exist. ThereforeA and P(A)
do not have the same size. [|

5.2.1 The Halting Problem revisited

Now that we know about countability, we give a di erent way to look atthe
proof in Section 5.1.5 of the fact that the language

Halt = fhP;wi: P is a Java program that terminates on
the input string wg

is undecidable. You should convince yourself that the proof given lbe

follows the same reasoning as the one used in the proof of Theore@ 4
We rst argue that the set of all Java programs is countable. Inded,

every Java programP can be described by a nite amount of text. In fact,

168 Chapter 5. Decidable and Undecidable Languages

we have been usingPi to denote such a description by a binary string. For
any integern 0, there are at most 2 (i.e., nitely many) Java programs
P whose descriptioPi has lengthn. Therefore, to obtain a list of all Java
programs, we do the following:

List all Java programsP whose descriptionhPi has length 0. (Well,
the empty string does not describe any Java program, so in this gte
nothing happens.)

List all Java programsP whose descriptionPi has length 1.
List all Java programsP whose descriptionPi has length 2.
List all Java programsP whose descriptionPi has length 3.

Etcetera, etcetera.

In this in nite list, every Java program occurs exactly once. Theriore, the
set of all Java programs is countable.
Consider an in nite list

PPy Ps; i

in which every Java program occurs exactly once.

Assume that the languageHalt is decidable. Then there exists a Java
programH that decides this language. We may assume that, on inpb®; wi,
H returns true if P terminates on inputw, and falseif P does not terminate
on input w.

We construct a new Java progranD that does the following:

Algorithm D: On input HP,i, wheren is a positive integer, th
new Java programD does the following:

Step 1: Run the Java programH on the input hP,; hP,ii .
Step 2:

If H returns true, then D goes into an in nite loop.

If H returns false, then D returns true and terminates its com
putation.

5.3. Rice's Theorem 169

Observe thatD can be written as a Java program. Therefore, there exists
an integern 1 such thatD = P,,. The next two observations follow from
the pseudocode:

If D terminates on inputhP,i, then H returns falseon input hP,; hP,ii ,
i.e., P, does not terminate on inputhP,i.

If D does not terminate on inputhP,i, then H returns true on input
hP,; hP, i , i.e., P, terminates on input hPi.

Thus,

D terminates on input hP,i if and only if P, does not terminate on
input hP,i.

SinceD = P,, this becomes
D terminates on inputhDi if and only if D does not terminate on input
hDi.

Thus, we have obtained a contradiction.

Remark 5.2.6 We de ned the Java programD in such a way that, for each
n 1, the computation of D on input hP,i di ers from the computation of
P, on input hP,i. Hence, foreacm 1,D 6 P,. However, sinceD is a
Java program, there must be an integen 1 such thatD = P,,.

5.3 Rice's Theorem

We have seen two examples of undecidable languaglsiy and Halt. In this
section, we prove that many languages involving Turing machines (dava
programs) are undecidable.

De ne T to be the set of binary encodings of all Turing machines, i.e.,

T = fhMi : M is a Turing machine with input alphabetf 0,1gg:
Theorem 5.3.1 (Rice) Let P be a subset of such that
1. P & ;, ie., there exists a Turing machineM such thathiMi2 P,

2. P is a proper subset off , i.e., there exists a Turing machineN such
that INi 62 P, and

170 Chapter 5. Decidable and Undecidable Languages

3. for any two Turing machinesM; and M, with L(M1) = L(M,),

(a) either both M i and hM,i are in P or
(b) none of MM i and M ,i isin P.

Then the languageP is undecidable.

You can think of P as the set of all Turing machines that satisfy a certain
property. The rst two conditions state that at least one Turing machine
satis es this property and not all Turing machines satisfy this proprty. The
third condition states that, for any Turing machine M, whether or not M
satis es this property only depends on the language(M) of M.

Here are some examples of languages that satisfy the conditions icd3s
Theorem:

P, = fhMi : M is a Turing machine and 2 L(M)g;

P, = fhMi : M is a Turing machine andL(M) = 1011 00110@g;
P; = fhMi : M is a Turing machine andL(M) is a regular languageg:

You are encouraged to verify that Rice's Theorem indeed implies thaach
of Py, P,, and Pz is undecidable.

5.3.1 Proof of Rice's Theorem

The strategy of the proof is as follows: Assuming that the languadge is
decidable, we show that the language

Halt = fhM;wi: M is a Turing machine that terminates on
the input string wg

is decidable. This will contradict Theorem 5.1.7.

The assumption that P is decidable implies the existence of a Turing
machineH that decidesP. Observe thatH takes as input a binary string
hM i encoding a Turing machineM . In order to show that Halt is decidable,
we need a Turing machine that takes as input a binary stringM; wi encoding
a Turing machine M and a binary string w. In the rest of this section, we
will explain how this Turing machine can be obtained.

5.3. Rice's Theorem 171

Let M; be a Turing machine that, for any input string, switches in its
rst computation step from its start state to its reject state. In other words,
M is a Turing machine withL(M,) = ;. We assume that

hV1i 62 P.

(At the end of the proof, we will consider the case wheM ;i 2 P .) We also
choose a Turing machinéM , such that

HV|2|2P

Consider a xed Turing machineM and a xed binary string w. We
construct a new Turing machineTy,,, that takes as input an arbitrary binary
string X:

Turing machine Ty (X):

run Turing machine M on input w;
if M terminates
then run M, on input x;
if M, terminates in the accept state
then terminate in the accept state
else if M, terminates in the reject state
then terminate in the reject state
endif

endif
endif

We determine the languagé. (Tyw) of this new Turing machine. In other
words, we determine which stringx are accepted byTy, .

Assume thatM terminates on input w, i.e., IM;wi 2 Halt. Then it
follows from the pseudocode that for any string,

X is accepted byTy, if and only if x is accepted byM,.
Thus, L(Tyw) = L(M>).

Assume thatM does not terminate on inputw, i.e., hM;wi 62Halt.
Then it follows from the pseudocode that for any stringc, Ty, does
not terminate on input x. Thus, L(Tyw) = ;. In particular, L(Tyw) =

L(My).

172 Chapter 5. Decidable and Undecidable Languages

Recall that M i 62 P, whereashM,i 2 P . Then the following follows from
the third condition in Rice's Theorem:

If M:;wi 2 Halt, then hiTyi2 P .
If iM:; wi 62Halt, then hTy i 62 P.

Thus, we have obtained a connection between the languagesand Halt.
This suggests that we proceed as follows.

Assume that the languageP is decidable. LetH be a Turing machine
that decidesP. Then, for any Turing machineM,

if Mi2P ,then H accepts the stringhM i,
if Mi62 P, then H rejects the stringhM i, and
H terminates on any input string.

We construct a new Turing machineH ° that takes as input an arbitrary
string hM; wi, whereM is a Turing machine andw is a binary string:

Turing machine HYhM; wi):

construct the Turing machineTy,, described above;
run H on input hTyyi;

if H terminates in the accept state

then terminate in the accept state

else terminate in the reject state

endif

It follows from the pseudocode thatH° terminates on any input. We
observe the following:

Assume thathM; wi 2 Halt. Then we have seen before thdily, i 2 P .
SinceH decides the languag®, it follows that H accepts the string
hTwwi. Therefore, from the pseudocodey ® accepts the stringhM; wi .

Assume thathM; wi 62Halt. Then we have seen before thdily, i 62
P. SinceH decides the languagé®, it follows that H rejects (and
terminates on) the string iTyw i. Therefore, from the pseudocode ©
rejects (and terminates on) the stringiM; wi .

5.4. Enumerability 173

We have shown that the Turing machineH ° decides the languagéialt.
This is a contradiction and, therefore, we conclude that the langge P is
undecidable.

Until now, we assumed thathM;i 62 P. If hM4i 2 P , then we repeat the
proof with P replaced by its complemenP. This revised proof then shows
that P is undecidable. Since for every languade

L is decidable if and only ifL is decidable

we again conclude thatP is undecidable.

5.4 Enumerability

We now come to the last class of languages in this chapter:

De nition 5.4.1 Let be an alphabet and let A be a language. We
say that A is enumerable if there exists a Turing machineM , such that for
every stringw 2, the following holds:

1. If w2 A, then the computation of the Turing machineM , on the input
string w, terminates in the accept state.

2. If w 62A, then the computation of the Turing machineM , on the input
string w, does not terminate in the accept state. That is, either the
computation terminates in the reject state or the computation des not
terminate.

In other words, the languageA is enumerable, if there exists an algorithm
having the following property. Ifw 2 A, then the algorithm terminates on
the input string w and tells us thatw 2 A. On the other hand, ifw 62A,
then either (i) the algorithm terminates on the input string w and tells us
that w 62A or (ii) the algorithm does not terminate on the input string w,
in which case it does not tell us thatw 62A.

In Section 5.5, we will show where the term \enumerable” comes from
The following theorem follows immediately from De nitions 5.1.1 and 5.4.1.

Theorem 5.4.2 Every decidable language is enumerable.

In the following subsections, we will give some examples of enumerable
languages.

174 Chapter 5. Decidable and Undecidable Languages

5.4.1 Hilbert's problem

We have seen Hilbert's problem in Section 4.4: Is there an algorithm tha
decides, for any given polynomiagp with integer coe cients, whether or not
p has integral roots? If we formulate this problem in terms of languag,
then Hilbert asked whether or not the language

Hilbert = fthpi: pis a polynomial with integer coe cients
that has an integral roof

is decidable. As usuallpi denotes the binary string that forms an encoding
of the polynomial p.

As we mentioned in Section 4.4, it was proven by Matiyasevich in 1970
that the language Hilbert is not decidable. We claim, that this language
is enumerable. In order to prove this claim, we have to construct aal-
gorithm Hilbert with the following property: For any input polynomial p
with integer coe cients,

if p has an integral root, then algorithmHilbert ~ will nd one in a
nite amount of time,

if p does not have an integral root, then either algorithnHilbert ter-
minates and tells us thatp does not have an integral root, or algorithm
Hilbert does not terminate.

Recall that Z denotes the set of integers. AlgorithnHilbert does the
following, on any input polynomial p with integer coe cients. Let n de-
note the number of variables inp. Algorithm Hilbert tries all elements

computes p(Xy; Xo;:::;Xy). If this value is zero, then algorithm Hilbert
terminates and accepts the input.
We observe the following:

If p2 Hilbert, then algorithm Hilbert terminates and accept$, pro-

and, therefore, algorithmHilbert does not terminate.

These are exactly the requirements for the languadlbert to be enumerable.

5.4. Enumerability 175

systematic way. For any integerd O, let Hy denote the hypercube inZ"
with sides of length 2l that is centered at the origin. That is, Hq consists
of the set of all points fi;Xx2;:::;%,) in Z", such that d x; d for all
1 i nandthere exists at least one indek for which x; = dor x; = d.
We observe thatHy4 contains a nite number of elements. In fact, ifd 1,
then this number is equal to (21+ 1)" (2d 1)". The algorithm will visit

origin, which is the only element ofHy. Then, it visits all elements ofHq,
followed by all elements oH,, etc., etc.

To summarize, we obtain the following algorithm, proving that the lan-
guageHilbert is enumerable:

Algorithm Hilbert (hpi):

n := the number of variables inp;
d:=0;
while d O

if R=0
then terminate and accept
endif
endfor ;
d=d+1
endwhile

Theorem 5.4.3 The language Hilbert is enumerable.

5.4.2 The language Aqy

We have shown in Section 5.1.4 that the language
Arv = fhM;wi : M is a Turing machine that accepts the stringvg:

is undecidable. In this section, we will prove that this language is enerable.
Thus, we have to construct an algorithmP having the following property,
for any given input string u:

176

Chapter 5. Decidable and Undecidable Languages

{ uencodes a Turing machind and an input string w for M (i.e.,
u is in the correct formathM; wi) and

{ M;wi2 Ay (i.e., M acceptsw),
then algorithm P terminates in its accept state.

In all other cases, either algorithmP terminates in its reject state, or
algorithm P does not terminate.

On input string u = hM;wi, which is in the correct format, algorithmP does
the following:

1.

2.

3.

4.

It simulates the computation ofM on input w.

If M terminates in its accept state, thenP terminates in its accept
state.

If M terminates in its reject state, thenP terminates in its reject state.

If M does not terminate, thenP does not terminate.

Hence, ifu = hM;wi 2 Aty , then M acceptsw and, therefore,P accepts
u. On the other hand, ifu = hM;wi 62Aty , then M does not acceptv. This
means that, on inputw, M either terminates in its reject state or does not
terminate. But this implies that, on input u, P either terminates in its reject
state or does not terminate. This proves that algorithnP has the properties
that are needed in order to show that the languagAry is enumerable. We
have proved the following result:

Theorem 5.4.4 The languageAry is enumerable.

5.5 Where does the term \enumerable" come

from?

In De nition 5.4.1, we have de ned what it means for a language to be
enumerable. In this section, we will see where this term comes from.

5.5. Where does the term \enumerable" come from? 177

De nition 5.5.1 Let be an alphabet and let A be a language. An
enumerator for A is a Turing machineE having the following properties:

1. Besides the standard features as in Section 4H has aprint tape and
a print state. During its computation, E writes symbols of on the
print tape. Each time, E enters the print state, the current string on
the print tape is sent to the printer and the print tape is made empty.

2. At the start of the computation, all tapes are empty andg is in the
start state.

3. Every stringw in A is sent to the printer at least once.

4. Every stringw that is not in A is never sent to the printer.

Thus, an enumeratorE for A really enumerates all strings in the language
A. There is no particular order in which the strings ofA are sent to the
printer. Moreover, a string in A may be sent to the printer multiple times.
If the languageA is in nite, then the Turing machine E obviously does not
terminate; however, every string inA (and only strings in A) will be sent to
the printer at some time during the computation.

To give an example, letA = f0" : n 0g. The following Turing machine
Is an enumerator forA.

Turing machine StringsOfZeros

n:=o0;

while 1+1=2

dofor i:=1ton
do write O on the print tape
endfor ;
enter the print state;
n=n+1

endwhile

In the rest of this section, we will prove the following result.

Theorem 5.5.2 A language is enumerable if and only if it has an enumer-
ator.

178 Chapter 5. Decidable and Undecidable Languages

For the rst part of the proof, assume that the languageA has an enu-
merator E. We construct the following Turing machineM , which takes an
arbitrary string w as input:

Turing machine M (w):

run E; every time E enters the print state:
let v be the string on the print tape;

if w=v
then terminate in the accept state
endif

The Turing machine M has the following properties:

If w2 A, then w will be sent to the printer at some time during the
computation of E. It follows from the pseudocode that, on inputw,
M terminates in the accept state.

If w 62A, then E will never sentw to the printer. It follows from the
pseudocode that, on inputw, M does not terminate.

Thus, M satis es the conditions in De nition 5.4.1. We conclude that the
languageA is enumerable.

To prove the converse, we now assume that is enumerable. LetM be
a Turing machine that satis es the conditions in De nition 5.4.1.

We x an in nite list
S1;,S2; Sz, - i
of all strings in . For example, if = f0;1g, then we can take this list to
be
:0:1;00,011011; 00000010100 011102110 112 : ::

We construct the following Turing machineE, which takes the empty
string as input:

5.6. Most languages are not enumerable 179

Turing machine E:

n:=1;
while 1+1=2
dofor i:==1ton

do run M for n steps on the input strings;;
if M acceptss; within n steps
then write s; on the print tape;
enter the print state
endif

endfor ;
n:=n+1
endwhile

We claim that E is an enumerator for the languagé. To prove this, it
is obvious that any string that is sent to the printer by E belongs toA.

It remains to prove that every string in A will be sent to the printer by E.
Let w be a string inA. Then, on input w, the Turing machineM terminates
in the accept state. Letm be the number of steps made b on input w.
Let i be the index such thatw = s;. Dene n = max(m;i). Consider the
n-th iteration of the while-loop and thei-th iteration of the for-loop. In this

iteration, M acceptss; = win m n steps and, thereforew is sent to the
printer.

5.6 Most languages are not enumerable

In this section, we will prove that most languages are not enumerkgh The
proof is based on the following two facts:

The set consisting of all enumerable languages is countable; we will

prove this in Section 5.6.1.

The set consisting of all languages is not countable; we will prove this
in Section 5.6.2.

180 Chapter 5. Decidable and Undecidable Languages

5.6.1 The set of enumerable languages is countable
We de ne the setE as
E=fA:A f 0;1g is an enumerable language

In words, E is the set whose elements are the enumerable languages. Every
element ofE is an enumerable language. Hence, every element of the Bet
is itself a set consisting of strings.

Lemma 5.6.1 The setE is countable.

Proof. Let A f 0;1g be an enumerable language. There exists a Turing
machine T, that satis es the conditions in De nition 5.4.1. This Turing
machineT, can be uniquely speci ed by a string in English. This string can
be converted to a binary stringsa. Hence, the binary strings, is a unique
encoding of the Turing machin€eT,.

Consider the set

S=1fsp:A f 0;1g is an enumerable language

Observe that the functionf : E!S , dened by f (A) = sa for eachA 2 E,
is a bijection. Therefore, the set€ and S have the same size. Hence, in
order to prove that the setE is countable, it is su cient to prove that the
setS is countable.

Why is the setS countable? For each integen 0, there are exactly 2
binary strings of lengthn. Since there are binary strings that are not encod-
ings of Turing machines, the seS contains at most 2 strings of lengthn.
In particular, the number of strings inS having lengthn is nite. Therefore,
we obtain an in nite list of the elements ofS in the following way:

List all strings in S having length 0. (Well, the empty string is not in
S, so in this step, nothing happens.)

List all strings in S having length 1.
List all strings in S having length 2.
List all strings in S having length 3.

Etcetera, etcetera.

In this in nite list, every element of S occurs exactly once. Therefores is
countable.]

5.6. Most languages are not enumerable 181

5.6.2 The set of all languages is not countable

We de ne the setL as
L=fA:A f 0;1g is alanguage:

In words, L is the set consisting of all languages. Every element of the det
IS a set consisting of strings.

Lemma 5.6.2 The setL is not countable.

Proof. We de ne the setB as
B = fw: wis an in nite binary sequencey:

We claim that this set is not countable. The proof of this claim is almost
identical to the proof of Theorem 5.2.4. We assume that the s& is count-
able. Then there exists a bijectiorf : N!B . Thus, for eachn 2 N, f (n) is
an in nite binary sequence. We can write

B=1f(1);f(2);f(3);::0; (5.3)

where every element oB occurs exactly once in the set on the right-hand
side.

We de ne the in nite binary sequencew = w;wW,ws:::, where, for each
integern 1,

. = 1 ifthen-thbitof f(n)isO,
"~ 0 if the n-th bit of f(n) is 1.

Sincew 2 B, it follows from (5.3) that there is an elementn 2 N, such that
f (n) = w. Hence, then-th bits of f (n) and w are equal. But, by de nition,
thesen-th bits are not equal. This is a contradiction and, therefore, theet
B is not countable.

In the rest of the proof, we will show that the setd. and B have the same
size. SinceB is not countable, this will imply that L is not countable.

In order to prove that L and B have the same size, we have to show that
there exists a bijection

g:L!B

182 Chapter 5. Decidable and Undecidable Languages

We rst observe that the setf0; 1g is countable, because for each integer
n 0, there are only nitely many (to be precise, exactly 2) binary strings
of length n. In fact, we can write

f0;1g =f;0;1,00,0110,11,00000% 010100012101 110112 :: .
For each integern 1, we denote bys, the n-th string in this list. Hence,
f0O;1g = fsy;S,; 83,00 (5.4)
Now we are ready to de ne the bijectiong : L ' B : Let A 2 L, ie,,

A f 0;1g is a language. We de ne the in nite binary sequencg(A) as
follows: For each integem 1, the n-th bit of g(A) is equal to

1 ifs, 2 A,
0 ifs, 62A.

In words, the in nite binary sequenceg(A) contains a 1 exactly in those
positionsn for which the string s, in (5.4) is in the languageA.

To give an example, assume thah is the language consisting of all binary
strings that start with 0. The following table gives the correspondig in nite
binary sequenceg(A) (this sequence is obtained by reading the rightmost
column from top to bottom):

1fo;lg | A | 9(A) |

not in A 0

0 in A 1

1 not in A 0

00 in A 1
01 in A 1
10 not in A 0
11 not in A 0
000 in A 1
001 in A 1
010 in A 1
100 | notin A 0
011 in A 1
101 | notin A 0
110 | notin A 0
111 | notin A 0

5.7. Decidable versus enumerable languages 183

The function g de ned above has the following properties:
If A and A°are two di erent languages inL, then g(A) 6 g(A9.

For every in nite binary sequencew in B, there exists a languag® in
L, such that g(A) = w.

This means that the functiong is a bijection fromL to B. [|

5.6.3 There are languages that are not enumerable

We have proved that the set
E=fA:A f 0;1g is an enumerable languagge
Is countable, whereas the set
L=fA:A f 0;1g is alanguagg

is not countable. This means that there are \more" languages ih than
there are inE, proving the following result:

Theorem 5.6.3 There exist languages that are not enumerable.

The proof given above shows thexistence of languages that are not
enumerable. However, the proof does not give us a speci c examplea
language that is not enumerable. In the next sections, we will seeagxples
of such languages. Before we move on to these examples, we menine
di erence between being countable and being enumerable:

Any languageA is countable, i.e., we can number the elements &f
and, thus, write
A = fs;;S5;S3;S4; 10

If the languageA is enumerable, then, by Theorem 5.5.2, there is an
algorithm that produces this numbering.

If the languageA is not enumerable, then, again by Theorem 5.5.2,
there does not exist an algorithm that produces this numbering.

184 Chapter 5. Decidable and Undecidable Languages

5.7 The relationship between decidable and
enumerable languages

We know from Theorem 5.4.2 that every decidable language is enumdea
On the other hand, we know from Theorems 5.1.6 and 5.4.4 that thero@rse
is not true. The following result should not come as a surprise:

Theorem 5.7.1 Let be an alphabet and lef be a language. Then,
A is decidable if and only if bothA and its complementA are enumerable.

Proof. We rst assume that A is decidable. Then, by Theorem 5.4.2A
is enumerable. Sinceé\ is decidable, it is not di cult to see that A is also
decidable. Then, again by Theorem 5.4.2 is enumerable.

To prove the converse, we assume that botA and A are enumerable.
SinceA is enumerable, there exists a Turing machin®l,, such that for any
stringw 2 , the following holds:

If w2 A, then the computation ofM 4, on the input string w, terminates
in the accept state ofM;.

If w 62A, then the computation ofM ¢, on the input string w, terminates
in the reject state of M, or does not terminate.

Similarly, sinceA is enumerable, there exists a Turing machini! ,, such that
for any stringw 2, the following holds:

If w2 A, then the computation ofM,, on the input string w, terminates
in the accept state ofM,.

If w 62A, then the computation ofM,, on the input string w, terminates
in the reject state of M, or does not terminate.

We construct a two-tape Turing machineM :

5.8. Both A and A not enumerable 185

Two-tape Turing machine M: For any input string w2 , M
does the following:

M simulates the computation ofM,, on input w, on the rst
tape, and, simultaneously, it simulates the computation o ,,
on input w, on the second tape.

If the simulation of M, terminates in the accept state ofM,,
then M terminates in its accept state.

If the simulation of M, terminates in the accept state ofM,,
then M terminates in its reject state.

Observe the following:

If w2 A, then M, terminates in its accept state and, thereforeM
terminates in its accept state.

If w 62A, then M, terminates in its accept state and, thereforeM
terminates in its reject state.

We conclude that the Turing machineM accepts all strings inA, and rejects
all strings that are not in A. This proves that the languageA is decidable.
|

We now use Theorem 5.7.1 to give examples of languages that are not
enumerable:

Theorem 5.7.2 The languageAry is not enumerable.

Proof. We know from Theorems 5.4.4 and 5.1.6 that the languagery is
enumerable but not decidable. Combining these facts with Theorem751
implies that the languageAry is not enumerable. [|

The following result can be proved in exactly the same way:

Theorem 5.7.3 The languageHalt is not enumerable.

186 Chapter 5. Decidable and Undecidable Languages

5.8 Alanguage A such that both A and A are
not enumerable

In Theorem 5.7.2, we have seen that the complement of the languadyey
iIs not enumerable. In Theorem 5.4.4, however, we have shown thdiet
languageAry itself is enumerable. In this section, we consider the language

EQv = fhM; Moz M, and M, are Turing machines
and L(M 1) = L(M 2)g

We will show the following result:

Theorem 5.8.1 Both EQqy, and its complementEQ, are not enumer-
able.

5.8.1 EQqy is not enumerable

Consider a xed Turing machineM and a xed binary string w. We construct
a new Turing machineTy,, that takes as input an arbitrary binary string x:

Turing machine Ty (X):

run Turing machine M on input w;

terminate in the accept state

We determine the languagé. (T) of this new Turing machine. In other
words, we determine which stringx are accepted byTy. .

Assume thatM terminates on inputw, i.e., MM;wi 2 Halt. Then it
follows from the pseudocode that every string is accepted byTy., .
Thus, L(Tww) = f0;1g .

Assume thatM does not terminate on inputw, i.e., lM;wi 2 Halt.
Then it follows from the pseudocode that, for any stringk, Ty, does
not terminate on input x. Thus, L(Tyw) = ;.

Assume that the languageEQ-,, is enumerable. We will show thaHalt
is enumerable as well, which will contradict Theorem 5.7.3.

SinceEQqy, Is enumerable, there exists a Turing machinBl having the
following property, for any two Turing machinesM; and M5:

5.8. Both A and A not enumerable 187

If L(M.) = L(My), then, oninput M {; M»i, H terminates in the accept
state.

If L(M;1) 8 L(My), then, on input M q; M,i, H either terminates in
the reject state or does not terminate.

We construct a new Turing machineH ° that takes as input an arbitrary
string hM; wi, whereM is a Turing machine andw is a binary string:

Turing machine HYhM; wi):

construct a Turing machineM; that rejects every input string;
construct the Turing machine Ty, described above;
run H on input M ¢; Tywi;
if H terminates in the accept state
then terminate in the accept state
else if H terminates in the reject state
then terminate in the reject state
endif
endif

We observe the following:

Assume thathM; wi 2 Halt. Then we have seen before that(Ty,) =
;. By our choice ofM,, we haveL(M,) = ; as well. Therefore,H
accepts (and terminates on) the inputM; Ty i. It follows from the
pseudocode thatH ® accepts (and terminates on) the stringM; wi.

Assume that hM;wi 62Halt, i.e., M;wi 2 Halt. Then we have seen
before that L(Tyw) 6 ; = L(My). Therefore, on inputhMq; Tywi, H
either terminates in the reject state or does not terminate. It fibows
from the pseudocode that, on inputiM; wi, H°either terminates in the
reject state or does not terminate.

Thus, the Turing machine H? has the properties needed to show that
the languageHalt is enumerable. This is a contradiction and, therefore, we
conclude that the languageEQ+,, IS not enumerable.

188 Chapter 5. Decidable and Undecidable Languages

5.8.2 EQqy is not enumerable

This proof is symmetric to the one in Section 5.8.1. For a xed Turing
machineM and a xed binary string w, we will use the same Turing machine
Tuw as in Section 5.8.1.

Assume that the languageEQ-,, is enumerable. We will show thaHalt
Is enumerable as well, which will contradict Theorem 5.7.3.

SinceEQqy, is enumerable, there exists a Turing machingl having the
following property, for any two Turing machinesM; and M5:

If L(M1) 6 L(My), then, oninput M 1; M»i, H terminates in the accept
state.

If L(My) = L(My), then, on input M ; M,i, H either terminates in
the reject state or does not terminate.

We construct a new Turing machineH ° that takes as input an arbitrary
string M; wi, whereM is a Turing machine andw is a binary string:

Turing machine HYhM;wi):

construct a Turing machineM; that accepts every input string;
construct the Turing machineT),,, of Section 5.8.1;
run H on input M q; Tywi;
if H terminates in the accept state
then terminate in the accept state
else if H terminates in the reject state
then terminate in the reject state
endif
endif

We observe the following:

Assume thathM; wi 2 Halt. Then we have seen before thdt(Ty,) =
;. Thus, by our choice oM 1, we havelL (Tyw) 6 L(M;). Therefore,H
accepts (and terminates on) the inputiM; Ty i. It follows from the
pseudocode thatH ® accepts (and terminates on) the stringM; wi .

Assume thathM;wi 62Halt. Then L(Tyw) = f0;1g = L(M,) and, on
input M ; Tuw i, H either terminates in the reject state or does not

Exercises 189

terminate. It follows from the pseudocode that, on inputi; wi, H°
either terminates in the reject state or does not terminate.

Thus, the Turing machine H® has the properties needed to show that
the languageHalt is enumerable. This is a contradiction and, therefore, we
conclude that the languageEQ+,, IS not enumerable.

Exercises
5.1 Prove that the language
fw2f0;1g :wis the binary representation of 2 for somen 0Og

is decidable. In other words, construct a Turing machine that getas input
an arbitrary number x 2 N, represented in binary as a stringv, and that
decides whether or nok is a power of two.

5.2 Let F be the set of all functionsf : N ! N. Prove that F is not
countable.

5.3 A function f : N ! N is called computable if there exists a Turing
machine, that gets as input an arbitrary positive integen, written in binary,
and gives as output the value of (n), again written in binary. This Turing
machine has a nal state. As soon as the Turing machine enters thisal
state, the computation terminates, and the output is the binary ging that
is written on its tape.

Prove that there exist functionsf : N! N that are not computable.

5.4 Let n be a xed positive integer, and letk be the number of bits in the
binary representation ofn. (Hence,k = 1+ blognc.) Construct a Turing
machine with one tape, tape alphabet0;1;2g, and exactly k + 1 states

Start of the computation: The tape is empty, i.e., every cell of the tape
contains 2, and the Turing machine is in the start stateq.

End of the computation: The tape contains the binary representation of
the integer n, the tape head is on the rightmost bit of the binary represen-
tation of n, and the Turing machine is in the nal state ¢.

190 Chapter 5. Decidable and Undecidable Languages

The Turing machine in this exercise does not have an accept state ar
reject state; instead, it has a nal stategc. As soon as statey is entered,
the Turing machine terminates.

5.5 Give an informal description (in plain English) of a Turing machine
with three tapes, that gets as input the binary representation odn arbitrary
integerm 1, and returns as output the unary representation omn.

Start of the computation: The rst tape contains the binary representa-
tion of the input m. The other two tapes are empty (i.e., contain onl\2 s).
The Turing machine is in the start state.

End of the computation: The third tape contains the unary representation
of m, i.e., a string consisting oim many ones. The Turing machine is in the
nal state.

The Turing machine in this exercise does not have an accept state ar
reject state; instead, it has a nal state. As soon as this nal sdte is entered,
the Turing machine terminates.

Hint: Use the second tape to maintain a string of ones, whose length is
a power of two.

5.6 In this exercise, you are asked to prove that théusy beaverfunction
BB : N! N is not computable.

For any integern 1, we de neTM ,, to be the set of all Turing machines
M, such that

M has one tape,

M has exactlyn states,

the tape alphabet ofM isf0;1;2g, and

M terminates, when given the empty string as input.

For every Turing machineM 2 TM ,, we de nef (M) to be the number of
ones on the tape, after the computation oM, on the empty input string,
has terminated.

The busy beaver functionBB : N! N is de ned as

BB(n) :=maxff(M): M 2 TM ,q; for everyn 1.

Exercises 191

In words, BB (n) is the maximum number of ones that any Turing machine
with n states can produce, when given the empty string as input, and as-
suming the Turing machine terminates on this input.

Prove that the function BB is not computable.

Hint: Assume that BB is computable. Then there exists a Turing ma-
chineM that, for any givenn 1, computes the value oBB (n). Fix a large
integern 1. De ne (in plain English) a Turing machine that, when given
the empty string as input, terminates and outputs a string consigtg of more
than BB (n) many ones. Use Exercises 5.4 and 5.5 to argue that there exists
such a Turing machine havingO(logn) states. Then, if you assume than
is large enough, the number of states is at most

5.7 Since the set
T =fM : M is a Turing machingy

is countable, there is an in nite list

such that every Turing machine occurs exactly once in this list.

For any positive integern, let ni denote the binary representation of;
observe thathni is a binary string.

Let A be the language de ned as

A = fthni : the Turing machine M,, terminates on the input string i,
and it rejects this stringg:

Prove that the languageA is undecidable.
5.8 Consider the three languages

Empty = fhMi : M is a Turing machine for whichL(M) = ;g;

UselessState= fhM;gi: M is a Turing machine,q is a state ofM,
for every input string w, the computation of M on
input w never visits stateqg,

and
EQ.v = fhM;M,i: M, and M, are Turing machines
andL(M,) = L(M5)g.

192 Chapter 5. Decidable and Undecidable Languages

Use Rice's Theorem to show thaEmpty is undecidable.

Use the rst part to show that UselessStatas undecidable.

Use the rst part to show that EQ+,, is undecidable.
5.9 Consider the language
REGty = fhMi : M is a Turing machine whose language(M) is regularmg:
Use Rice's Theorem to prove thaREGr),, is undecidable.
5.10 We have seen in Section 5.1.4 that the language

Arv = fhM;wi : M is a Turing machine that acceptswvg

is undecidable. Consider the languad®EGy of Exercise 5.9. The questions
below will lead you through a proof of the claim that the languag®EGy
is undecidable.

Consider a xed Turing machineM and a xed binary string w. We
construct a new Turing machineTy,,, that takes as input an arbitrary binary
string X:

Turing machine Ty (X):

if x=0"1" for somen O
then terminate in the accept state
else run M on the input string w;
if M terminates in the accept state
then terminate in the accept state
else if M terminates in the reject state
then terminate in the reject state
endif
endif
endif

Answer the following two questions:

Assume thatM accepts the stringw. What is the languagelL (T,) of
the new Turing machineTy, ?

Exercises 193

Assume thatM does not accept the stringyv. What is the language
L (Tww) of the new Turing machineTy, ?

The goal is to prove that the languagdREGy is undecidable. We will
prove this by contradiction. Thus, we assume thaR is a Turing machine
that decidesREGTy, . Recall what this means:

If M is a Turing machine whose language is regular, theR, when
given M i as input, will terminate in the accept state.

If M is a Turing machine whose language is not regular, théd, when
given M i as input, will terminate in the reject state.

We construct a new Turing machineR® which takes as input an arbitrary
Turing machine M and an arbitrary binary string w:

Turing machine RYhM;wi):

construct the Turing machineTy,,, described above;
run R on the input hTyi;
if R terminates in the accept state
then terminate in the accept state
else if R terminates in the reject state
then terminate in the reject state
endif
endif

Prove that M acceptsw if and only if R? (when givenhM;wi as input),
terminates in the accept state.

Now nish the proof by arguing that the languageREGy is undecidable.

5.11 A Java programP is called aHello-World-program if the following is
true: When given the empty string as input, P outputs the string Hello
World and then terminates. (We do not care whaf does when the input
string is non-empty.)

Consider the language

HW = thPi : P is a Hello-World-prograny:

The questions below will lead you through a proof of the claim that the
languageHW is undecidable.

194 Chapter 5. Decidable and Undecidable Languages

Consider a xed Java programP and a xed binary string w. We write
a new Java programlp,, Which takes as input an arbitrary binary string x:

Java program Jp(X):

run P on the input w;

print Hello World

Argue that P terminates on inputw if and only if hJp,i2 HW.

The goal is to prove that the languagédW is undecidable. We will prove this
by contradiction. Thus, we assume thatH is a Java program that decides
HW . Recall what this means:

If P is a Hello-World-program, thenH , when givenhPi as input, will
terminate in the accept state.

If P is not a Hello-World-program, thenH , when givenhPi as input,
will terminate in the reject state.

We write a new Java programH ° which takes as input the binary encoding
hP; wi of an arbitrary Java programP and an arbitrary binary string w:

Java program HYhP;wi):

construct the Java programJp,, described above;
run H on the input hpi;

if H terminates in the accept state

then terminate in the accept state

else terminate in the reject state

endif

Argue that the following are true:
For any input hP;wi, H°terminates.

If P terminates on input w, then H® (when given hP;wi as input),
terminates in the accept state.

If P does not terminate on inputw, then H® (when given hP;wi as
input), terminates in the reject state.

Exercises 195

Now nish the proof by arguing that the languageHW is undecidable.
5.12 Prove that the languageHalt, see Section 5.1.5, is enumerable.

5.13 We de ne the following language:

L=fu : u= h;M;wi for somehM;wi2 Aty ,
or u= hi; M;wi for somehM; wi 62A1y g.

Prove that neither L nor its complementL is enumerable.

Hint: There are two ways to solve this exercise. In the rst solution, (i)
you assume thatl is enumerable, and then prove thafty is decidable, and
(i) you assume thatL is enumerable, and then prove thaf\ry is decidable.
In the second solution, (i) you assume thak is enumerable, and then prove
that Ary is enumerable, and (i) you assume that is enumerable, and then
prove that Aty is enumerable.

196 Chapter 5. Decidable and Undecidable Languages

Chapter 6
Complexity Theory

In the previous chapters, we have considered the problem of whedn be
computed by Turing machines (i.e., computers) and what cannot beom-

puted. We did not, however, take the e ciency of the computatiors into

account. In this chapter, we introduce a classi cation of decidablenguages
A, based on the running time of the \best" algorithm that decidesA. That

is, given a decidable languag®, we are interested in the \fastest” algorithm
that, for any given string w, decides whether or notwv 2 A.

6.1 The running time of algorithms

Let M be a Turing machine, and letw be an input string for M. We de ne
the running time ty (w) of M on input w as

tm (w) := the number of computation steps made byM on input w:

As usual, we denote byjwj, the number of symbols in the stringw. We
denote the set of non-negative integers byl,.

De nition 6.1.1 Let be an alphabet, let T : Ng! Ny be a function, let
A be a decidable language, and Idf : ! be a computable
function.

We say that the Turing machineM decides the languagé@ in time T,
if

tm (W) T(wj)
for all strings w in

198 Chapter 6. Complexity Theory

We say that the Turing machineM computes the functionF in time
T, if

tm (W) T(wj)
for all strings w 2

In other words, the \running time function" T is a function of thelength
of the input, which we usually denote byn. For any n, the value of T(n) is
an upper bound on the running time of the Turing machiné/, on any input
string of length n.

To give an example, consider the Turing machine of Section 4.2.1 that
decides, using one tape, the language consisting of all palindromé&ke tape
head of this Turing machine moves from the left to the right, then bek to
the left, then to the right again, back to the left, etc. Each time it reaches
the leftmost or rightmost symbol, it deletes this symbol. The runningime
of this Turing machine, on any input string of lengthn, is

O(1+2+3+ :::+ n)= O(n?:

On the other hand, the running time of the Turing machine of Sectiod.2.2,
which also decides the palindromes, but using two tapes instead o$fwne,
is O(n).

In Section 4.4, we mentioned that all computation models listed thei@re
equivalent, in the sense that if a language can be decided in one modiel,
can be decided in any of the other models. We just saw, howeverattthe
language consisting of all palindromes allows a faster algorithm on aaw
tape Turing machine than on one-tape Turing machines. (Even thgin we
did not prove this, it is true that (n?) is a lower bound on the running
time to decide palindromes on a one-tape Turing machine.) The following
theorem can be proved.

Theorem 6.1.2 Let A be a language (resp. l€t be a function) that can be
decided (resp. computed) in tim&@ by an algorithm of typeM . Then there is
an algorithm of typeN that decidesA (resp. computesF) in time T where

M [N T
k-tape Turing machine | one-tape Turing machine| O(T?)
one-tape Turing machine| Java program O(T?)
Java program k-tape Turing machine | O(T#)

6.2. The complexity class P 199

6.2 The complexity class P

De nition 6.2.1 We say that algorithm M decides the languag@ (resp.
computes the functionF) in polynomial time, if there exists an integelkk 1,
such that the running time of M is O(n*), for any input string of length n.

It follows from Theorem 6.1.2 that this notion of \polynomial time" does
not depend on the model of computation:

Theorem 6.2.2 Consider the models of computation \Java program”, k-

tape Turing machine", and \one-tape Turing machine". If a language can
be decided (resp. a function can be computed) in polynomiahe in one of
these models, then it can be decided (resp. computed) in palgial time in

all of these models.

Because of this theorem, we can de ne the following two complexity
classes:

P := fA: the languageA is decidable in polynomial time;
and

FP :

fF : the function F is computable in polynomial timey:

6.2.1 Some examples
Palindromes
Let Pal be the language
Pal .= fw2fa;bg : wis a palindromey:

We have seen that there exists a one-tape Turing machine that dees Pal
in O(n?) time. Therefore, Pal 2 P.
Some functions in FP
The following functions are in the clas$P :

F1:No! Ngdenedby Fi(x) = x+1,

F2:N3! Nodened by Fa(x;y):

X+Yy,

F3:N3! Npdened by Fs(x;y) := xy.

200 Chapter 6. Complexity Theory

G
b

Figure 6.1: The graph G; is 2-colorable;r stands for red;b stands for blue.
The graph G, is not 2-colorable.

Context-free languages

We have shown in Section 5.1.3 that every context-free language iscitl-
able. The algorithm presented there, however, does not run in palymial
time. Using a technique calleddynamic programming(which you will learn
in COMP 3804), the following result can be shown:

Theorem 6.2.3 Let be an alphabet, and leA be a context-free
language. TherA 2 P.

Observe that, obviously, every language iR is decidable.

The 2-coloring problem

Let G be a graph with vertex setV and edge sett. We say that G is
2-colorable if it is possible to give each vertex oV a color such that

1. for each edgel;v) 2 E, the verticesu and v have di erent colors, and
2. only two colors are used to color all vertices.
See Figure 6.1 for two examples. We de ne the following language:
2Color := fhGi : the graph G is 2-colorablej;

where hGi denotes the binary string that encodes the grap.

6.2. The complexity class P 201

We claim that 2Color 2 P. In order to show this, we have to construct an
algorithm that decides in polynomial time, whether or not any given gph
is 2-colorable.

Let G be an arbitrary graph with vertex setV = f1;2;:::; mg. The edge
set of G is given by anadjacency matrix This matrix, which we denote by
E, is a two-dimensional array withm rows andm columns. For alli and j
withl i mandl | m,we have

E(i]) = 1 if (i;j) is an edge ofG;

’ 0 otherwise.

The length of the input G, i.e., the number of bits needed to specif, is
equal tom? =: n. We will present an algorithm that decides, inO(n) time,
whether or not the graphG is 2-colorable.

The algorithm uses the colors red and blue. It gives the rst vertexhe
color red. Then, the algorithm considers all vertices that are coested by
an edge to the rst vertex, and colors them blue. Now the algorithnis done
with the rst vertex; it marks this rst vertex.

Next, the algorithm chooses a vertex that already has a color, but that
has not been marked. Then it considers all verticgsthat are connected by
an edge toi. If j has the same color as, then the input graph G is not
2-colorable. Otherwise, if vertey does not have a color yet, the algorithm
givesj the color that is di erent from i's color. After having done this for
all neighborsj of i, the algorithm is done with vertexi, so it marksi.

It may happen that there is no vertexi that already has a color but that
has not been marked. (In other words, each vertaxthat is not marked does
not have a color yet.) In this case, the algorithm chooses an arbitsavertex
i having this property, and colors it red. (This vertexi is the rst vertex in
its connected component that gets a color.)

This procedure is repeated until all vertices os have been marked.

We now give a formal description of this algorithm. Vertex has been
marked if

1. i has a color,
2. all vertices that are connected by an edge tohave a color, and

3. the algorithm has veri ed that each vertex that is connected byn edge
to i has a color di erent fromi's color.

202 Chapter 6. Complexity Theory

The algorithm uses two arraysf (1:::m) and a(1:::m), and a variable
M. The value off (i) is equal to the color (red or blue) of vertex; if i does
not have a color yet, thenf (i) = 0. The value of a(i) is equal to

a(i) = 1 if verte_xi has been marked
0 otherwise.

The value of M is equal to the number of marked vertices. The algorithm

is presented in Figure 6.2. You are encouraged to convince yoursslfthe

correctness of this algorithm. That is, you should convince youtl$¢hat this

algorithm returns YES if the graph G is 2-colorable, whereas it returns NO

otherwise.

What is the running time of this algorithm? First we count the number
of iterations of the outer while-loop. In one iteration, eitheM increases by
one, or a vertexi, for which a(i) = 0, gets the color red. In the latter case,
the variable M is increased during the next iteration of the outer while-loop.
Since, during the entire outer while-loop, the value d¥1 is increased from
zero tom, it follows that there are at most 2n iterations of the outer while-
loop. (In fact, the number of iterations is equal tom plus the number of
connected components d& minus one.)

One iteration of the outer while-loop takesO(m) time. Hence, the total
running time of the algorithm is O(m?), which is O(n). Therefore, we have
shown that 2Color 2 P.

6.3 The complexity class NP

Before we de ne the clas$\P , we consider some examples.

Example 6.3.1 Let G be a graph with vertex setV and edge setE, and
let k 1 be an integer. We say thaiG is k-colorable if it is possible to give
each vertex ofV a color such that

1. for each edgel; V) 2 E, the verticesu and v have di erent colors, and
2. at mostk di erent colors are used to color all vertices.

We de ne the following language:

kColor := fhGi : the graph G is k-colorabley:

6.3. The complexity class NP 203

Algorithm 2Color

for i :=1 to mdo f (i) :=0; a(i) :=0 endfor ;

f():=red; M :=0;

while M 6 m

do (Find the minimum index i for which vertex i has not
been marked, but has a color already)

bool := false; i :=1;

while bool = falseandi m

doif a(i)=0and f (i) 60 then bool := true else i := i +1 endif;
endwhile ;

(' If bool = true, then i is the smallest index such that
a(i)=0and (i) 60.
If bool = false, then for all i, the following holds: if a(i) = 0, then
f (i) = 0; becauseM < m , there is at least one suchi.)
if bool = true
then for j :=1to m
doif E(i;j)=1
thenif f(i)=f()
then return NO and terminate
elseif f(j)=0
thenif f(i)=red
then f(j) := blue
else f(j) :=red
endif
endif
endif
endif
endfor ;
a(i)=1;, M =M +1;
elsei :=1;
while a(i) 60 do i :=i+1 endwhile ;
(an unvisited connected component starts at vertexi)
f(i):=red
endif
endwhile ;
return YES

Figure 6.2: An algorithm that decides whether or not a graphG is 2-
colorable.

We have seen that fork = 2, this problem is in the classP. For k 3, it
is not known whether there exists an algorithm that decides, in polymial
time, whether or not any given graph isk-colorable. In other words, for

204 Chapter 6. Complexity Theory

k 3, itis not known whether or notkColor is in the classP.

Example 6.3.2 Let G be a graph with vertex setV = f1;2;:::;mg and
edge sete. A Hamilton cycleis a cycle inG that visits each vertex exactly

once. Formally, it is a sequences; Vo; :::;Vy Of vertices such that
1. fvyvo i vmg =V, and
2. f(vaiv2); (V2;va);iiti (Vi 13 Vim); (Vmsvi)g E.

We de ne the following language:
HC := thGi : the graph G contains a Hamilton cycle:

It is not known whether or not HC is in the classP.

Example 6.3.3 The sum of subsetanguage is de ned as follows:

ol f L,2,:::,mg;, o, & = bo.
Also in this case, no polynomial-time algorithm is known that decides the

languageSOS. That is, it is not known whether or not SOS is in the class
P.

Example 6.3.4 Anintegerx 2is a prime number, if there are n@; b2 N
such thata 6 x, b6 x, and x = ah Hence, the language of all non-primes
that are greater than or equal to two, is

NPrim := fhxi : x 2 andx is not a prime numbeq:

It is not obvious at all, whether or not NPrim is in the classP. In fact, it
was shown only in 2002 thatNPrim is in the classP.

Observation 6.3.5 The four languages above have the following in com-
mon: If someone gives us a \solution" for any given input, tlrewe can
easily, i.e., in polynomial time, verify whether or not thissolution" is a cor-
rect solution. Moreover, for any input to each of these fourrgblems, there
exists a \solution" whose length is polynomial in the lengtbf the input.

6.3. The complexity class NP 205

Let us again consider the languageColor. Let G be a graph with vertex
setV = f1,2;:::;mg and edge setE, and let k be a positive integer. We
want to decide whether or notG is k-colorable. A \solution" is a coloring of
the nodes using at mosk di erent colors. That is, a solution is a sequence
f1;fo; ;. (Interpret this as: vertex i receives colof;, 1 i m). This
sequence is a correct solution if and only if

1.f;211;2;:::;kg, foralliwithl i m,and

2. foralliwithl i m,andforallj withl j m,if(i;j)2E,
then fi 6 fj .

If someone gives us this solution (i.e., the sequentgf,;:::;f), then

we can verify in polynomial time whether or not these two conditionsra
satis ed. The length of this solution isO(m logk): for eachi, we need about
logk bits to representf;. Hence, the length of the solution is polynomial in
the length of the input, i.e., it is polynomial in the number of bits neededo
represent the graphG and the numberk.

For the Hamilton cycle problem, a solution consists of a sequengg,

These two conditions can be veried in polynomial time. Moreover, th
length of the solution is polynomial in the length of the input graph.

It is a correct solution if and only if

1.¢ 2f0;1g, foralli with1l i m,and
P
2. L ca=h
Hence, the set f 1;2;:::;mgin the de nition of SOSis the set of indices

i for which ¢ = 1. Again, these two conditions can be veri ed in polynomial
time, and the length of the solution is polynomial in the length of the inpt.

Finally, let us consider the languageNPrim. Let x 2 be an integer.
The integersa and b form a \solution" for x if and only if

206 Chapter 6. Complexity Theory

1. 2 a<x,
2.2 b<x, and
3. x=ah

Clearly, these three conditions can be veri ed in polynomial time. M@over,
the length of this solution, i.e., the total number of bits in the binary ep-
resentations ofa and b, is polynomial in the number of bits in the binary
representation ofx.

Languages having the property that the correctness of a progped \solu-
tion" can be veri ed in polynomial time, form the classNP :

De nition 6.3.6 A languageA belongs to the clasdNP , if there exist a
polynomial p and a languageB 2 P, such that for every stringw,

w2A(09 s:jsj p(wj) and hw;si2 B:

In words, a languageA is in the classNP , if for every stringw, w 2 A if
and only if the following two conditions are satis ed:

1. There is a \solution" s, whose lengthjsj is polynomial in the length of
w (i.e., jsj p(jwj), wherep is a polynomial).

2. In polynomial time, we can verify whether or nots is a correct \solu-
tion" for w (i.e., hw;si2 B andB 2 P).

Hence, the languag® can be regarded to be the \veri cation language™:
B = fhw;si : sis a correct \solution" for wg:

We have given already informal proofs of the fact that the languag
kColor, HC, SOS, and NPrim are all contained in the clas$\P . Below, we
formally prove that NPrim 2 NP . To prove this claim, we have to specify
the polynomial p and the languageB 2 P. First, we observe that

NPrim = fhxi : there exista and bin N such that

2 a<x;2 b<x andx= abg. (6.1)

We de ne the polynomial p by p(n) := n + 2, and the languageB as

B :=fhx;a;b :x 2,2 a<x;2 b<xandx= aly:

6.3. The complexity class NP 207

It is obvious that B 2 P: For any three positive integersx, a, and b, we
can verify in polynomial time whether or nothx;a;bi 2 B. In order to do
this, we only have to verify whether or notx 2,2 a<x,2 b<x,
and x = ah If all these four conditions are satis ed, thenx;a;hi 2 B. If at
least one of them is not satis ed, therntx; a; bi 62B.

It remains to show that for all x 2 N:

hxi2 NPrim (9 a;b:jha;bj jh xij +2 and hx;a;h 2 B: (6.2)

(Remember thatjhxij denotes the number of bits in the binary representation
of x; jha;kbj denotes the total number of bits ofa and b, i.e., jha;bj =
jhaij + jhbij.)

Let x 2 NPrim . It follows from (6.1) that there exista and bin N, such
that2 a<x,2 b<x,andx = ah Sincex=ab 2 2=4 2/it
follows that hx; a;bi 2 B. Hence, it remains to show that

jha; bj jh xij +2:

The binary representation of containsblogxc+1 bits, i.e., jhxij = blogxc+1.
We have

jha; bj

jhaij + jhbij

(blogac+ 1) + (bloghc + 1)
loga+log b+ 2

log ab+ 2

log x + 2
b logxc+3

jhxij +2:

This proves one direction of (6.2).

To prove the other direction, we assume that there are positive iagers
a and b, such that jha;bj jh xij +2 and hx;a;bi 2 B. Then it follows
immediately from (6.1) and the de nition of the languageB, that x 2 NPrim .
Hence, we have proved the other direction of (6.2). This completdse proof
of the claim that

NPrim 2 NP :

208 Chapter 6. Complexity Theory

6.3.1 P is contained in NP

Intuitively, it is clear that P NP, because a language is

in P, if for every string w, it is possible tocomputethe \solution” sin
polynomial time,

in NP, if for every stringw and for any given \solution" s, it is possible
to verify in polynomial time whether or nots is a correct solution for
w (hence, we do not need to compute the solutiamourselves, we only
have to verify it).

We give a formal proof of this:
Theorem 6.3.7 P NP .

Proof. Let A 2 P. We will prove that A 2 NP . De ne the polynomial p
by p(n) := 0 for all n 2 N, and de ne

B :=fhw; i :w2 Ag:
SinceA 2 P, the languageB is also contained inP. It is easy to see that
W2A(09 s:jsj p(wj)=0and hw;si2 B:

This completes the proof. |

6.3.2 Deciding NP-languages in exponential time

Let us look again at the de nition of the classNP . Let A be a language in
this class. Then there exist a polynomigb and a languageB 2 P, such that
for all strings w,

W2A(09 s:jsj p(wj)andhw;si2 B: (6.3)

How do we decide whether or not any given stringg belongs to the language
A? If we can nd a string s that satis es the right-hand side in (6.3), then
we know thatw 2 A. On the other hand, if there is no such strings, then
w 62A. How much time do we need to decide whether or not such a strisg
exists?

6.3. The complexity class NP 209

Algorithm NonPrime
(decides whether or notxi 2 NPrim)
if x=0orx=1or x=2
then return NO and terminate
else a:= 2;
while a<x
doif xmoda=0
then return YES and terminate
elsea:= a+1
endif
endwhile ;
return NO
endif

Figure 6.3: An algorithm that decides whether or not a numbek is contained
in the languageNPrim .

For example, letA be the languageNPrim, and letx 2 N. The algorithm
in Figure 6.3 decides whether or noltxi 2 NPrim .

It is clear that this algorithm is correct. Let n be the length of the binary
representation ofx, i.e., n = bogxc+ 1. If x> 2 andx is a prime number,
then the while-loop makex 2 iterations. Therefore, sincan 1 = blogxc
logx, the running time of this algorithm is at least

x 2 22t 2

l.e., it is at least exponentialin the length of the input.

We now prove that every language ilNP can be decided in exponential
time. Let A be an arbitrary language inNP . Let p be the polynomial, and
let B 2 P be the language such that for all stringsv,

w2A(09 s:js p(wj) andhw;si2 B: (6.4)

The following algorithm decides, for any given stringyv, whether or not
w 2 A. It does so by looking atall possible stringss for which jsj p(jwj):

for all s with jsj p(jwj)
doif hw;si2 B

210 Chapter 6. Complexity Theory

then return YES and terminate
endif

endfor ;

return NO

The correctness of the algorithm follows from (6.4). What is the ruring
time? We assume thatw and s are represented as binary strings. Lat be
the length of the input, i.e.,n = jwj.

How many binary stringss are there whose length is at mogi(jwj)? Any
suchs can be described by a sequence of lengijwj) = p(n), consisting of
the symbols \0", \1", and the blank symbol. Hence, there are at mst 37"
many binary stringss with jsj p(n). Therefore, the for-loop makes at most
3P jterations.

SinceB 2 P, there is an algorithm and a polynomialg, such that this
algorithm, when given any input stringz, decides inq(jzj) time, whether or
not z 2 B. This input z has the formhw;si, and we have

jzj = jwj+jsj | wj+ p(jwj) = n+ p(n):
It follows that the total running time of our algorithm that decides whether

or notw 2 A, is bounded from above by

3P g(n+ p(n)) 2% qg(n + p(n))
22p(n) oa(n+p(n)

2p0(n);
wherep®is the polynomial that is de ned by pn) := 2p(n) + g(n + p(n)).
If we de ne the classEXP as

EXP = fA: there exists a polynomialp, such that A can be
decided in time 2 g,

then we have proved the following theorem.

Theorem 6.3.8 NP EXP .

6.3.3 Summary

P NP. Itis not known whether P is a proper subclass ofNP , or
whether P = NP . This is one of the most important open problems in

6.4. Non-deterministic algorithms 211

computer science. If you can solve this problem, then you will get en
million dollars; not from us, but from the Clay Mathematics Institute,
see

http://www.claymath.org/prizeproblems/index.htm

Most people believe thatP is a proper subclass ofP .

NP EXP, i.e., each language ilNP can be decided in exponential
time. It is not known whether NP is a proper subclass cEXP , or
whether NP = EXP .

It follows from P NP and NP EXP, that P EXP . It can
be shown thatP is a proper subset oEXP , i.e., there exist languages
that can be decided in exponential time, but that cannot be decideith
polynomial time.

P is the class of those languages that can be decidediently , i.e., in
polynomial time. Sets that are not inP, are not e ciently decidable.

6.4 Non-deterministic algorithms

The abbreviation NP stands for Non-deterministic Polynomial time. The al-
gorithms that we have considered so far ameterministic, which means that
at any time during the computation, the next computation step is umquely
determined. In anon-deterministic algorithm, there are one or more possi-
bilities for being the next computation step, and the algorithm cho@s one
of them.

To give an example, we consider the languagOS, see Example 6.3.3.
Let m, a;, &, :::;am, and b be elements oNy. Then

hay;ap;:::;an; 02 SOS there exisfes; G5 :005 G 2 05 19,
such that =, ga = b

The following non-deterministic algorithm decides the languaggOS.

s:=0;
fori:=1tom
dos:=s | si=s+ g

212 Chapter 6. Complexity Theory

endfor ;

if s=b

then return YES
else return NO
endif

The line
S:=SjS:=s+ g

means that either the instruction \s := s" or the instruction \ s:= s+ &" is
executed.

Letus assume thatay; as;:::;an; b2 SOS. Thenthere arec;;Cy;:::;Cn 2
fO;1gsuchthat =, ga = b Assume our algorithm does the following, for

eachi with 1 i m: In the i-th iteration,
if ¢ =0, then it executes the instruction \s ;= s",
if ¢ =1, then it executes the instruction \s := s+ a".

Then after the for-loop, we haves = b, and the algorithm returns YES;

returns NO, no matter which of the two instructions is executed in ach
iteration of the for-loop. In this case, there isn0 accepting computation

De nition 6.4.1 Let M be a non-deterministic algorithm. We say thatVi
acceptsa string w, if there exists at least one computation that, on inputw,
returns YES.

De nition 6.4.2 We say that a non-deterministic algorithmM decidesa
languageA in time T, if for every string w, the following holds: w 2 A if
and only if there exists at least one computation that, on inputw, returns
YES and that takes at mostT (jwj) time.

The non-deterministic algorithm that we have seen above decideseth
languageSOSin linear time: Let hay; ay;:::;ayn; b2 SOS and let n be the
length of this input. Then

n = jhewij + jhagij + :1:+ jhamij + jhbj m:

6.5. NP-complete languages 213

For this input, there is a computation that returns YES and that takes
O(m) = O(n) time.

As in Section 6.2, we de ne the notion of \polynomial time" for non-
deterministic algorithms. The following theorem relates this notion tdhe
classNP that we de ned in De nition 6.3.6.

Theorem 6.4.3 A languageA is in the classNP if and only if there exists
a non-deterministic Turing machine (or Java program) that dcidesA in
polynomial time.

6.5 NP-complete languages

Languages in the clas® are consideredeasy i.e., they can be decided in
polynomial time. People believe (but cannot prove) thaP is a proper sub-
class ofNP . If this is true, then there are languages ilNP that are hard,
i.e., cannot be decided in polynomial time.

Intuition tells us that if P 6 NP, then the hardestlanguages inNP are
not contained inP. These languages are calledP -complete In this section,
we will give a formal de nition of this concept.

If we want to talk about the \hardest" languages inNP , then we have to
be able to compare two languages according to their \di culty”. Theidea is
as follows: We say that a languag® is \at least as hard" as a language\,
if the following holds: If B can be decided in polynomial time, therA can
also be decided in polynomial time.

Denition 6.5.1 Let A f 0;1g andB f 0;1g be languages. We say
that A p B, if there exists a function

f:f0o;1g !'f 0;1g
such that
1.f 2 FP and
2. for all stringsw in f0; 1g ,

w2A() f(w)2B:

214 Chapter 6. Complexity Theory

If A p B, then we also say that B is at least as hard asA", or \ A is
polynomial-time reducible toB".

We rst show that this formal de nition is in accordance with the intuitive
de nition given above.

Theorem 6.5.2 Let A and B be languages such th& 2 P and A » B.
Then A 2 P.

Proof. Letf :f0;1g !'f 0;1g be the function in FP for which
w2A() f(w)2B: (6.5)

The following algorithm decides whether or not any given binary stringy is
in A:

u:=f(w);
ifu2B

then return YES
else return NO
endif

The correctness of this algorithm follows immediately from (6.5). So it
remains to show that the running time is polynomial in the length of the
input string w.

Sincef 2 FP, there exists a polynomialp such that the function f can
be computed in timep. Similarly, sinceB 2 P, there exists a polynomialg,
such that the languageB can be decided in timeg.

Let n be the length of the input stringw, i.e., n = jwj. Then the length
of the string u is less than or equal tq(jwj) = p(n). (Why?) Therefore, the
running time of our algorithm is bounded from above by

p(jwi) + q(jui) p(n) + q(p(n)):

Since the functionp®, de ned by pn) := p(n)+ g(p(n)), is a polynomial, this
proves thatA 2 P. |

The following theorem states that the relation p is re exive and tran-
sitive. We leave the proof as an exercise.

Theorem 6.5.3 Let A, B, and C be languages. Then

6.5. NP-complete languages 215

1. A p A, and
2.fA pBandB p C,thenA C.
We next show that the languages irP are the easiestlanguages inNP :

Theorem 6.5.4 Let A be a language irP, and let B be an arbitrary lan-
guage such thaB 6 ; andB 6 f0;1g. Then A , B.

Proof. We choose two stringsi andv in f0; 1g , such thatu 2 B andv 62B.
(Observe that this is possible.) De ne the functionf :f0;1g !'f 0;1g by

u ifwz2A;

F(w) = v if w62A:

Then it is clear that for any binary string w,
w2A() f(w)2B:

Since A 2 P, the function f can be computed in polynomial time, i.e.,
f 2 FP. [|

6.5.1 Two examples of reductions
Sum of subsets and knapsacks

We start with a simple reduction. Consider the two languages
SOS:= fhay;:::;an;b ;. myag;:::;am; b2 Ng and therlg exist
Ci;::1;Gn 2f0;1g, such that ", ca = by
and

suchthat =, gw; Wand I cki Kg.

The notation KS stands for knapsack We have m pieces of food. The
i-th piece has weightw; and containsk; calories. We want to decide whether
or not we can Il our knapsack with a subset of the pieces of food &u that
the total weight is at most W, and the total amount of calories is at leasKk .

216 Chapter 6. Complexity Theory

Theorem 6.5.5 SOS ; KS.

Proof. Let us rst see what we have to show. According to De nition 6.5.1,
we need a functiorf 2 FP , that maps input strings for SOSto input strings
for KS, in such a way that

hay;::i;an; b2 SOS() f(hayg;:::;an;b) 2 KS:

In order for f (hay;:::;an;) to be an input string for KS, this function
value has to be of the form

We de ne

P
0 there existcy;:::;cy 2 f 0;1g such that i";l cGa =b
0 there existcy;:::;cn, 2f0;1gsuchthat 0, ¢a band 7, Ga

Cliques and Boolean formulas

We will de ne two languagesA = 3SAT and B = Clique that have, at
rst sight, nothing to do with each other. Then we show that, nevetheless,
A p B.

Let G be a graph with vertex setV and edge seE. A subsetV°ofV is
called aclique if each pair of distinct vertices inV%is connected by an edge
in E. We de ne the following language:

Clique:= thG; ki : k2 N and G has a clique withk verticesy:

We encourage you to prove the following claim:

6.5. NP-complete languages 217

Theorem 6.5.6 Cliqgue2 NP.

Next we considerBoolean formulas' , with variables X1; X2;:::; Xm, hav-
ing the form
= YA O AR SR EAN 0% (6.6)
where eachCi, 1 i Kk, is of the form
Ci="1_%_ %

Each ! is either a variable or the negation of a variable. An example of such
a formula is

e (Xp Xy X)) M (X3 Xo Xa) M (0 Xy X3zl Xg):
A formula ' of the form (6.6) is said to besatis able, if there exists a truth-

formula' is true. Our example formula is satis able: If we takex; =0 and
X2 =1, and give x3 and x4 an arbitrary value, then

"=(0_1_0)"(Xz_1_Xa)™(1_: Xz_: Xq)=1:
We de ne the following language:
3SAT = fh' i :' is of the form (6.6) and is satis abley:
Again, we encourage you to prove the following claim:
Theorem 6.5.7 3SAT 2 NP.

Observe that the elements o€lique (which are pairs consisting of a graph
and a positive integer) are completely di erent from the elements BSAT
(which are Boolean formulas). We will show that SAT p Clique. Recall
that this means the following: If the languageClique can be decided in
polynomial time, then the language SAT can also be decided in polynomial
time. In other words, any polynomial-time algorithm that decidesClique can
be converted to a polynomial-time algorithm that decides SAT .

Theorem 6.5.8 3SAT p Clique.

218 Chapter 6. Complexity Theory

Proof. We have to show that there exists a functiorf 2 FP, that maps
input strings for 3SAT to input strings for Clique, such that for each Boolean
formula’ that is of the form (6.6),

Hi2 3SAT (f(H i) 2 Clique:

The function f maps the binary string encoding an arbitrary Boolean formula
to a binary string encoding a pair G; k), where G is a graph andk is a
positive integer. We have to de ne this functionf in such a way that

is satis able () G has a clique withk vertices

Let
=GN G i M G
be an arbitrary Boolean formula in the variable; X5;:::; Xm, Where each
C,1 i Kk,isofthe form

— i N i
G = 1— 2— 3

Remember that each'! is either a variable or the negation of a variable.
The formula’ is mapped to the pair G; k), where the vertex setV and
the edge sett of the graph G are de ned as follows:

sponds to one term'..
The pair (V.; v{)) of vertices form an edge irkE if and only if
{ i6] and
{ "l is not the negation of ..
To give an example, let be the Boolean formula
e (X Xo i Xg) M (FXe _ Xo_ X3) ™ (X1 _ X2 X3); (6.7)

e, k=3, Ci=X1 X2 X3, Co=:X1 Xp Xz, andCz= X;_ X Xa.
The graph G that corresponds to this formula is given in Figure 6.4.

It is not di cult to see that the function f can be computed in polynomial
time. So it remains to prove that

is satis able () G has a clique withk vertices (6.8)

6.5. NP-complete languages 219

Figure 6.4: The formula' in (6.7) is mapped to this graph. The vertices on
the top representC;; the vertices on the left represenC,; the vertices on
the right represent Cs.

To prove this, we rst assume that the formula
=GN G M G

is satis able. Then there exists a truth-value inf O; 1g for each of the variables

X1, X2, 15 Xm, such that the entire fo_rmula' is true. Hence, for each with
1 i Kk, thereis atleast one term} in
Ci="1_"%_ "%

that is true (i.e., has value 1).

Let VObe the set of vertices obtained by choosing for eachl i Kk,
exactly one vertexv!, such that ", has value 1.

It is clear that V° contains exactlyk vertices. We claim that this set is
a clique in G. To prove this claim, let v, and vi be two distinct vertices in
VO It follows from the de nition of V°that i 6 j and "} = *{ = 1. Hence,
'L is not the negation of . But this means that the verticesv, and v}, are
connected by an edge i1®.

This proves one direction of (6.8). To prove the other direction, wessume
that the graph G contains a cliqueV°with k vertices.

220 Chapter 6. Complexity Theory

The vertices ofG consist ofk groups, where each group contains exactly
three vertices. Since vertices within the same group are not comted by
edges, the clique/°contains exactly one vertex from each group. Hence, for
eachi with 1 i K, there is exactly onea, such that v, 2 V° Consider
the corresponding term’,. We know that this term is either a variable or
the negation of a variable, i.e.,}, is either of the formx; or of the form: x;.

If *L = x;, then we givex; the truth-value 1. Otherwise, we havel = : x;,
in which case we give; the truth-value 0. SinceV°is a clique, each variable
gets at most one truth-value. If a variable has no truth-value yetthen we
give it an arbitrary truth-value.

If we substitute these truth-values into' , then the entire formula has
value 1. Hence, is satis able. |

In order to get a better understanding of this proof, you shoulderify the
proof for the formula' in (6.7) and the graphG in Figure 6.4.

6.5.2 De nition of NP-completeness

Reductions, as de ned in De nition 6.5.1, allow us to compare two langge
according to their diculty. A language B in NP is called NP -complete,
if B belongs to themost di cult languages inNP ; in other words, B is at
least as hard asany other language inNP .

De nition 6.5.9 Let B f 0;1g be a language. We say thaB is NP -
complete if

1. B 2 NP and

2. A p B, for everylanguageA in NP .

Theorem 6.5.10 Let B be anNP -complete language. Then
B2P() P=NP:

Proof. Intuitively, this theorem should be true: If the languageB is in P,
then B is an easy language. On the other hand, sin& is NP -complete,
it belongs to the most di cult languages in NP . Hence, the most di cult
language inNP is easy. But then all languages ilNP must be easy, i.e.,
P=NP.

6.5. NP-complete languages 221

We give a formal proof. Let us rst assume thatB 2 P. We already
know that P NP . Hence, it remains to show thatNP P. Let A be an
arbitrary language inNP . SinceB is NP -complete, we havéd p B. Then,
by Theorem 6.5.2, we havé 2 P.

To prove the converse, assume th@&® = NP . SinceB 2 NP, it follows
immediately that B 2 P. [|

Theorem 6.5.11 Let B and C be languages, such th&& 2 NP andB
C. If B is NP -complete, thenC is alsoNP -complete.

Proof. First, we give an intuitive explanation of the claim: By assumption,
B belongs to the most di cult languages inNP , and C is at least as hard as
B. SinceC 2 NP, it follows that C belongs to the most di cult languages
in NP . Hence,C is NP -complete.

To give a formal proof, we have to show tha® » C, for all languagesA
in NP . Let A be an arbitrary language inNP . SinceB is NP -complete, we
have A p B. SinceB p C, it follows from Theorem 6.5.3, thatA p C.
Therefore, C is NP -complete. [|

Theorem 6.5.11 can be used to prove tHéP -completeness of languages:
Let C be a language, and assume that we want to prove th& is NP -
complete. We can do this in the following way:

1. We rst prove that C 2 NP .

2. Then we nd a languageB that looks \similar" to C, and for which
we already know that it is NP -complete.

3. Finally, we prove thatB p C.
4. Then, Theorem 6.5.11 tells us thaC is NP -complete.

Of course, this leads to the question \How do we know that the langge
B is NP -complete?" In order to apply Theorem 6.5.11, we need a\ rstNP -
complete language; theNP -completeness of this language must be proven
using De nition 6.5.9.

Observe that it is not clear at all that there existNP -complete languages!
For example, consider the languageSAT . If we want to use De nition 6.5.9
to show that this language iSNP -complete, then we have to show that

222 Chapter 6. Complexity Theory

3SAT 2 NP . We know from Theorem 6.5.7 that this is true.

A p 3SAT, for everylanguageA 2 NP . Hence, we have to show this
for languagesA such askColor, HC, SOS, NPrim, KS, Clique, and
for in nitely many other languages.

In 1971, Cook has exactly done this: He showed that the languageAr
is NP -complete. Since his proof is rather technical, we will prove theP -
completeness of another language.

6.5.3 An NP-complete domino game

We are given a nite collection oftile types For each such type, there are
arbitrarily many tiles of this type. A tile is a square that is partitioned into

four triangles. Each of these triangles contains a symbol that beigs to a

nite alphabet . Hence, a tile looks as follows:

@ b

“o

c

We are also given a squarfame, consisting of cells. Each cell has the same
size as a tile, and contains a symbol of .

The problem is to decide whether or not thislomino gamehas a solution.
That is, can we completely Il the frame with tiles such that

for any two neighboring tiless and s the two triangles ofs and s that
touch each other contain the same symbol, and

each triangle that touches the frame contains the same symbol &
cell of the frame that is touched by this triangle.

There is one nal restriction: The orientation of the tiles is xed, they cannot
be rotated.

Let us give a formal de nition of this problem. We assume that the sp-
bols belong to the nite alphabet = fO0;1g™, i.e., each symbol is encoded
as a bit-string of lengthm. Then, a tile type can be encoded as a tuple of
four bit-strings, i.e., as an element of 4. A frame consisting oft rows andt
columns can be encoded as a string in*.

6.5. NP-complete languages 223

We denote the language of all solvable domino games Bpmino:

Domino = fhm Kt R; T 00Tk
m Lk 1t LR2 *:T,2 %1 i Kk
frame R can be lled using tiles of types
Ty Teeg

We will prove the following theorem.
Theorem 6.5.12 The language Domino iNP -complete.

Proof. Itis clear that Domino 2 NP : A solution consists of & t matrix,
in which the (i;j)-entry indicates the type of the tile that occupies position
(i;J) in the frame. The number of bits needed to specify such a solution is
polynomial in the length of the input. Moreover, we can verify in polyamial
time whether or not any given \solution" is correct.

It remains to show that

A p Domino; for every languageA in NP :

Let A be an arbitrary language inNP . Then there exist a polynomialp and
a non-deterministic Turing machineM , that decides the languagé\ in time
p. We may assume that this Turing machine has only one tape.

On input w = a;a,:::a,, the Turing machineM starts in the start state
Zo, With its tape head on the cell containing the symbo&;. We may assume
that during the entire computation, the tape head never moves tthe left of
this initial cell. Hence, the entire computation \takes place" in and tothe
right of the initial cell. We know that

w2A on input w, there exists an accepting computation
that makes at mostp(n) computation steps.

At the end of such an accepting computation, the tape only contasnthe
symbol 1, which we may assume to be in the initial cell, and is in the nal
state z;. In this case, we may assume that the accepting computation make
exactly p(n) computation steps. (If this is not the case, then we extend the
computation using the instructionz;1! z;1N.)

We need one more technical detail: We may assume thaa! z%R and
za! z°YWL are not both instructions of M. Hence, the state of the Turing
machine uniquely determines the direction in which the tape head mae

224 Chapter 6. Complexity Theory

We have to de ne a domino game, that depends on the input stringy
and the Turing machineM, such that

w2 A () this domino game is solvabte

The idea is to encode an accepting computation of the Turing machiné as

a solution of the domino game. In order to do this, we use a frame in igh

each row corresponds to one computation step. This frame comsisf p(n)

rows. Since an accepting computation makes exacthyn) computation steps,

and since the tape head never moves to the left of the initial cell, thispe

head can visit onlyp(n) cells. Therefore, our frame will havgy(n) columns.
The domino game will use the following tile types:

1. For each symbok in the alphabet of the Turing machineM :

@
@a
@
@
a @

Intuition: Before and after the computation step, the tape heads not
on this cell.

2. For each instructionza! z%R of the Turing machineM :

Intuition: Before the computation step, the tape head is on this de
the tape head makes one step to the right.

3. For each instructionza! z%L of the Turing machineM :

@éz;a)
z7@ #
@

b @@

6.5. NP-complete languages 225

Intuition: Before the computation step, the tape head is on this de
the tape head makes one step to the left.

4. For each instructionza! z%N of the Turing machineM :

@ (z;4)
#é@ #
@
(5ha,

Intuition: Before and after the computation step, the tape heads on
this cell.

5. For each statez and for each symbohk in the alphabet of the Turing
machineM, there are two tile types:

@
@? @ 2
z@ # # @ z
@ @
(z; 9@ (z; a)@@

Intuition: The leftmost tile indicates that the tape head enters thiscell
from the left; the righmost tile indicates that the tape head entershis
cell from the right.

This speci es all tile types. Thep(n) p(n) frame is given in Figure 6.5.
The top row corresponds to the start of the computation, wheees the bottom
row corresponds to the end of the computation. The left and rightolumns
correspond to the part of the tape in which the tape head can mave

The encodings of these tile types and the frame can be computed in
polynomial time.

It can be shown that, for any input stringw, any accepting computation
of length p(n) of the Turing machine M can be encoded as a solution of
this domino game. Conversely, any solution of this domino game can be
\translated"” to an accepting computation of length p(n) of M, on input
string w. Hence, the following holds.

w2A | there exists an accepting computation that makes
p(n) computation steps
0 the domino game is solvable.

226 Chapter 6. Complexity Theory

- p(n) >
(zo;a1)| @& an 2 2
#
#
p(n)
#
(z;1) | 2 2 T 2 2 2

Figure 6.5: The p(n) p(n) frame for the domino game.

Therefore, we haveA p Domino. Hence, the languagedomino is NP -
complete. [|

An example of a domino game

We have de ned the domino game corresponding to a Turing machinaét
solves a decision problem. Of course, we can also do this for Turingamaes
that compute functions. In this section, we will exactly do this for aruring
machine that computes the successor function! x + 1.

We will design a Turing machine with one tape, that gets as input the
binary representation of a natural numberx, and that computes the binary
representation ofx + 1.

Start of the computation: The tape contains a 0 followed by the binary
representation of the integerx 2 No. The tape head is on the leftmost bit
(which is 0), and the Turing machine is in the start statez,. Here is an
example, wherex = 431.:

6.5. NP-complete languages 227

[o[1][1]of1]of2]1[1]2]2]
‘6

End of the computation: The tape contains the binary representation of
the number x + 1. The tape head is on the rightmost 1, and the Turing
machine is in the nal state z;. For our example, the tape looks as follows:

\0|1|1|0|1|3‘L|0|0|0|0|2\
6

Our Turing machine will use the following states:

Zo . start state; tape head moves to the right
Z; . nal state
Z, . tape head moves to the left; on its way to the left, it has not read O

The Turing machine has the following instructions:

ZoO ! ZoOR 21! z,0L
Z0l! Zz31R 20! z;IN
202 ! z2,2L

In Figure 6.6, you can see the sequence of states and tape cotstenf this
Turing machine on inputx = 11.

We now construct the domino game that corresponds to the comiation
of this Turing machine on inputx = 11. Following the general construction
in Section 6.5.3, we obtain the following tile types:

1. The three symbols of the alphabet yield three tile types:

@ O @ 1 @ 2
+@ o #@ & +@ &
0 1 2

2. The ve instructions of the Turing machine yield ve tile types:

Chapter 6. Complexity Theory

(20;0) 1 0 1 1 2

0 (20;2) 0 1 1 2

0 1 (20; 0) 1 1 2

0 1 0 @0; 1) 1 2

0 1 0 1 @l 2

0 1 0 1 1 €02)

0 1 0 1 1) 2

0 1 0 @;1) 0 2

0 1 (22;0) 0 0 2

0 1 (z; 1) 0 0 2

Figure 6.6: The computation of the Turing machine on inputx = 11. The
pair (state,symbol) indicates the position of the tape head.

@(20:0) @(z0: 1) @(z0:2) @(z2; 1) @(22;0)
#@@zo #@@zo z@@# z@@# #@@#
0 1 2 0 (z1;1

3. The statesz, and z,, and the three symbols of the alphabet yield twelve

tile types:
@ O @ 1 @ 2 @ © @ 1 @ 2
z@@# z(@@# z(@@# z@@# z@@# z@@#
(Zo;O@ (Zo;l@ (zo;z@ (22;0@ (Zz;l@ (22;2@
@ O @ 1 @ 2 @ O @ 1 @ 2
#@@Zo #@@Zo #@@Zo #@@22 #@@22 #@@22
(z0: Oy GO) (z0; 2@ (z2; 01y (z2; L)@ (z2: 2)@

The computation of the Turing machine on inputx = 11 consists of nine
computation steps. During this computation, the tape head visits>actly
six cells. Therefore, the frame for the domino game has nine rowsdasix
columns. This frame is given in Figure 6.7. In Figure 6.8, you nd the
solution of the domino game. Observe that this solution is nothing but
an equivalent way of writing the computation of Figure 6.6. Hence, th
computation of the Turing machine corresponds to a solution of théomino
game; in fact, the converse also holds.

6.5.

NP-complete languages

229

(20;0)

(z1;1)

Figure 6.7: The frame for the domino game for inputx = 11.

230 Chapter 6. Complexity Theory

0 @ 1 0@@ 1" @ 1 (20;2
@ 0 @1 @ 0 |@ 1 @1@<@Zo;2)

0@)@ 1@@| ()@)@l l@@ (Zg@@ 2
@ O @ 1 @ O @ 1 @(22;1) @ 2

0 @I 1 q 0 (z2; 0 2

@ 0 @ ! @ 0 @zd @ 0 |@ 2
#@ # | #@ y | 2@ 2, | D # | #@ p | 2@ #
@ 1 @<@(22;0) @ 0 @ © |@ 2

4@ # | 4@ # | #@ # | #@ p | @ p | #@ 4
c@ @ @1) @ @ @

@ @ (g Og 2

0 1 (z1;1) 0 0 2

Figure 6.8: The solution for the domino game for inputx = 11.

6.5. NP-complete languages 231

6.5.4 Examples of NP-complete languages

In Section 6.5.3, we have shown thabomino is NP -complete. Using this
result, we will apply Theorem 6.5.11 to prove th&P -completeness of some
other languages.

Satis ability
We consider Boolean formulas, in the variablesxi; Xz;:::; Xm, having the
form

"= CNC N NGy (6.9)
where eachCj, 1 i Kk, is of the following form:

Ci="1_%_i_"§

Each J' is either a variable or the negation of a variable. Such a formula
is said to besatis able, if there exists a truth-value inf 0; 1g for each of the

following language:
SAT :=fh"i:" is of the form (6.9) and is satis able:

We will prove that SAT is NP -complete.
It is clear that SAT 2 NP . If we can show that

Domino p SAT;

then it follows from Theorem 6.5.11 thatSAT is NP -complete. (In Theo-
rem 6.5.11, takeB := Domino and C := SAT.)

Hence, we need a functiof 2 FP, that maps input strings for Domino
to input strings for SAT, in such a way that for every domino gam®, the
following holds:

the formula encoded by the

string f (hD1) is satis able: (6.10)

domino gameD is solvable()

Let us consider an arbitrary domino gaméd. Let k be the number of
tile types, and let the frame havet rows andt columns. We denote the tile

232 Chapter 6. Complexity Theory

We map this domino gameD to a Boolean formula' , such that (6.10)
holds. The formula' will have variables

1 1t o) t1 0k
These variables can be interpretated as follows:
Xj» =1 () thereis atile of type T at position (i;]) of the frame
We de ne:
Foralliandj with1l i tand1l | t:
Ci = Xj1_Xj2_ 1ii_ Xik:
This formula expresses the condition that there is at least one tile at
position (i;j).
Foralli,j, and%with1 i t,1 j t,andl "< 9 ki
Ci o= I Xy _1 X o
This formula expresses the condition that there is at most one tile at
position (i;j).

Foralli,j, and°with1 i t,1 j<t,1 ° kandl "9 Kk,
such thati <t and the right symbol on a tile of typeT- is not equal
to the left symbol on a tile of type T-o:

3 — - . .
Cij“ 0= X+ Xijgj #1000

This formula expresses the condition that neighboring tiles in the sam
row \ t" together. There are symmetric formulas for neighboringtiles
in the same column.

Forallj and withl | tandl ° Kk, such that the top symbol
on a tile of type T- is not equal to the symbol at positiony of the upper
boundary of the frame:

4 ._ . .
Cj‘ . le‘ .

This formula expresses the condition that tiles that touch the uppe
boundary of the frame \t" there. There are symmetric formulasfor
the lower, left, and right boundaries of the frame.

6.5. NP-complete languages 233

The formula* is the conjunction of all these formula<, C&. o, Ct: o, and
Cf‘. The complete formula’ consists of

O(t%k + t?k? + t2k? + tk) = O(t%k?)

terms, i.e., its length is polynomial in the length of the domino game. This
implies that ' can be constructed in polynomial time. Hence, the function
f that maps the domino gameD to the Boolean formula’' , is in the class
FP . It is not di cult to see that (6.10) holds for this function f. Therefore,
we have proved the following result.

Theorem 6.5.13 The language SAT isNP -complete.
In Section 6.5.1, we have de ned the languageSaT .
Theorem 6.5.14 The language3SAT is NP -complete.
Proof. It is clear that 3SAT 2 NP . If we can show that
SAT p 3SAT;
then the claim follows from Theorem 6.5.11. Let

=GN G M G

time, to an input ' °for 3SAT, such that

' issatisable() ' is satis able: (6.11)
For eachi with 1 i k, we do the following. Consider
Ci="1_h_ T

If ki =1, then we de ne
Cl="1_ 1%
If ki =2, then we de ne

0. ~i N NI
Ci T 1—- 2— 2

234 Chapter 6. Complexity Theory

If ki =3, then we de ne

If ki 4, then we de ne

CO = (LG AN CA_ N (A B)n
A(: Z|I(i 3_\:(i l_‘:(i);

wherezi;:::;z, 5 are new variables.
Let
‘0= COn N in g
Then' %is an input for 3SAT, and (6.11) holds. |

Theorems 6.5.6, 6.5.8, 6.5.11, and 6.5.14 imply:

Theorem 6.5.15 The language Clique isNP -complete.

The traveling salesperson problem

We are given two positive integer& and m, a set ofm cities, and an integer
m m matrix M, where

M (i;]) = the cost of driving from city i to city j,

forall i;j 2f1;2;:::;mg. We want to decide whether or not there is a tour
through all cities whose total cost is less than or equal . This problem is
NP -complete.

Bin packing

We are given three positive integersn, k, and °, a set ofm objects having
volumes as; ay;:::;am, and k bins. Each bin has volume . We want to
decide whether or not all objects t within these bins. This problem iSNP -
complete.

Here is another interpretation of this problem: We are givem jobs that

integer *. We want to decide whether or not it is possible to divide the jobs
over the k processors, such that no processor needs more thatme.

Exercises 235

Time tables

We are given a set of courses, class rooms, and professors. Waet wa
decide whether or not there exists a time table such that all courseare
being taught, no two courses are taught at the same time in the santlass
room, no professor teaches two courses at the same time, andditoons such
as \Prof. L. Azy does not teach before 1pm" are satis ed. This mblem is
NP -complete.

Motion planning

We are given two positive integerk and °, a set ofk polyhedra, and two
points s and t in Q3. We want to decide whether or not there exists a path
betweens and t, that does not intersect any of the polyhedra, and whose
length is less than or equal to. This problem isNP -complete.

Map labeling

We are given a map withm cities, where each city is represented by a point.
For each city, we are given a rectangle that is large enough to coimtahe
name of the city. We want to decide whether or not these rectanglean be
placed on the map, such that

no two rectangles overlap,

For eachi with 1 i m, the point that represents cityi is a corner
of its rectangle.

This problem isNP -complete.

This list of NP -complete problems can be extended almost arbitrarily:
For thousands of problems, it is known that they ardNP -complete. For all
of these, it isnot known whether or not they can be solved e ciently (i.e.,
in polynomial time). Collections of NP -complete problems can be found in
the book

M.R. Garey and D.S. JohnsonComputers and Intractability: A Guide
to the Theory of NP -CompletenessW.H. Freeman, New York, 1979,

and on the web page

http://www.nada.kth.se/~viggo/wwwcompendium/

236 Chapter 6. Complexity Theory

Exercises

6.1 Prove that the function F : N! N, de ned by F(x) :=2%,isnotin FP.
6.2 Prove Theorem 6.5.3.

6.3 Prove that the languageClique is in the classNP .

6.4 Prove that the language 3AT is in the classNP .

6.5 We de ne the following languages:

Sum of subset:

X X
SP = fhaj;ap;:::;ami (91 f 1;2;:::;mg; a = ag
i21 i62
Bin packing: BP is the set of all stringshs;; s;;:::;sn;Bi for which
1. O<s; < 1, foralli,
2. B 2N,
3. the numberss;; Sy;:::;Sy tinto B bins, where each bin has size
one, i.e., there existsl:a partition off 1;2;:::; mg into subsetsly,

1 k B,suchthat ,, s 1lforalk, 1 k B.

For example, h1=6; 1=2; 1=5; 1=9; 3=5; 1=5; 1=2; 11=18,3i 2 BP, because
the eight fractions t into three bins:

1-6+19+11=-18 1, 1=2+1=2=1; and 1=5+3=5+1=5=1:

1. Prove that SOS , SP.

2. Prove that the languageSOS is NP -complete. You may use the fact
that the languageSP is NP -complete.

Exercises 237

3. Prove that the languageBP is NP -complete. Again, you may use the
fact that the languageSP is NP -complete.

6.6 Prove that 3Color p 3SAT.
Hint: For each vertexi, and for each of the three color&, introduce a
Boolean variablexi .

6.7 The (0; 1)-integer programminglanguagelP is de ned as follows:

IP := fhA;ci : Ais anintegerm n matrix for somem;n 2 N,
c is an integer vector of lengthm, and
9x 2 f 0; 1g" such that Ax ¢ (componentwise)g.

Prove that the languagelP is NP -complete. You may use the fact that
the languageSOS is NP -complete.

6.8 Let' be a Boolean formula in the variables; X;:: 1 Xm.
We say that' is in disjunctive normal form (DNF) if it is of the form

'=Cy_Co i Cy (6.12)
where eachCi, 1 i Kk, is of the following form:
Ci= A bnant:

Each J' is aliteral, which is either a variable or the negation of a variable.
We say that' is in conjunctive normal form (CNF) if it is of the form

= CMC NN Cyg (6.13)
where eachCj, 1 i Kk, is of the following form:
Ci="1_"h_

Again, each’] is a literal.
We de ne the following two languages:

DNFSAT := fh' i :' is in DNF-form and is satis ableg;

and
CNFSAT :=fh' i :" isin CNF-form and is satis ableg:

238 Chapter 6. Complexity Theory

1. Prove that the languageDNFSAT is in P.

2. What is wrong with the following argument: Since we can rewrite
any Boolean formula in DNF-form, we haveCNFSAT » DNFSAT.
Hence, sinceCNFSAT is NP -complete and sinceDNFSAT 2 P, we
haveP = NP .

3. Prove directly that for every languageA in P, A p CNFSAT. \Di-
rectly" means that you should not use the fact thatCNFSAT is NP -
complete.

6.9 Prove that the polynomial upper bound on the length of the string/ in
the de nition of NP is necessary, in the sense that if it is left out, then any
decidable language would satisfy the condition.

More precisely, we say that the languag® belongs to the clas®, if there
exists a languageB 2 P, such that for every stringw,

W2A(09 vy:hwvyi2 B:

Prove that D is equal to the class of all decidable languages.

Chapter 7

Summary

We have seen several di erent models for \processing" language®., pro-
cessing sets of strings over some nite alphabet. For each of teemodels,
we have asked the question which types of languages can be preegsand
which types of languages cannot be processed. In this nal chapt we give
a brief summary of these results.

Regular languages: This class of languages was considered in Chapter 2.
The following statements are equivalent:

1. The languageA is regular, i.e., there exists a deterministic nite au-
tomaton that acceptsA.

2. There exists a nondeterministic nite automaton that accepts.
3. There exists a regular expression that describés
This claim was proved by the following conversions:

1. Every nondeterministic nite automaton can be converted to arequiv-
alent deterministic nite automaton.

2. Every deterministic nite automaton can be converted to an egualent
regular expression.

3. Every regular expression can be converted to an equivalent miater-
ministic nite automaton.

240 Chapter 7. Summary

We have seen that the class of regular languages is closed underéggilar
operations: IfA and B are regular languages, then

1. A[B isregular,
2. AB is regular,
3. A isregqular,
4. A is regular, and
5. A\ B is regular.

Finally, the pumping lemma for regular languages gives a property tha
every regular language possesses. We have used this to prove raguages
such asfa”@ : n Og are not regular.

Context-free languages: This class of languages was considered in Chap-
ter 3. We have seen that every regular language is context-frekloreover,
there exist languages, for examplea™d' : n 0Og, that are context-free, but
not regular. The following statements are equivalent:

1. The languagéA is context-free, i.e., there exists a context-free grammar
whose language i#\.

2. There exists a context-free grammar in Chomsky normal formhaese
language isA.

3. There exists a nondeterministic pushdown automaton that acets A.
This claim was proved by the following conversions:

1. Every context-free grammar can be converted to an equivatesontext-
free grammar in Chomsky normal form.

2. Every context-free grammar in Chomsky normal form can be oeerted
to an equivalent nondeterministic pushdown automaton.

3. Every nondeterministic pushdown automaton can be converted an
equivalent context-free grammar. (This conversion was not caes in
this book.)

Chapter 7. Summary 241

Nondeterministic pushdown automata are more powerful than detmin-
istic pushdown automata: There exists a nondeterministic pushdowau-
tomaton that accepts the language

fvbw:v2fa;lg;w2fa;lg;jvj= jwjg;

but there is no deterministic pushdown automaton that accepts ik language.
(We did not prove this in this book.)

We have seen that the class of context-free languages is closedeasn
the union, concatenation, and star operations: IA and B are context-free
languages, then

1. A[B is context-free,

2. AB is context-free, and

3. A is context-free.
However,

1. the intersection of two context-free languages is not neceslgacontext-
free, and

2. the complement of a context-free language is not necessarilyntext-
free.

Finally, the pumping lemma for context-free languages gives a prape
that every context-free language possesses. We have used tiiprove that
languages such aga"b'c" : n Og are not context-free.

The Church-Turing Thesis: In Chapter 4, we considered \reasonable”
computational devices that model real computers. Examples aich devices
are Turing machines (with one or more tapes) and Java programst turns
out that all known \reasonable" devices are equivalent, i.e., can bewrverted
to each other. This led to the Church-Turing Thesis:

Every computational process that is intuitively considered to be an
algorithm can be converted to a Turing machine.

242 Chapter 7. Summary

Decidable and enumerable languages: These classes of languages were
considered in Chapter 5. They are de ned based on \reasonablebraputa-
tional devices, such as Turing machines and Java programs. We haseen
that

1. every context-free language is decidable, and
2. every decidable language is enumerable.
Moreover,

1. there exist languages, for exampka"b'c” : n Og, that are decidable,
but not context-free,

2. there exist languages, for example the Halting Problem, that aenu-
merable, but not decidable,

3. there exist languages, for example the complement of the Haltifrgob-
lem, that are not enumerable.

In fact,
1. the class of all languages is not countable, whereas
2. the class of all enumerable languages is countable.
The following statements are equivalent:
1. The languageA is decidable.
2. Both A and its complementA are enumerable.
Complexity classes: These classes of languages were considered in Chap-
ter 6.

1. The classP consists of all languages that can be decided in polynomial
time by a deterministic Turing machine.

2. The classNP consists of all languages that can be decided in poly-
nomial time by a nondeterministic Turing machine. Equivalently, a
languageA is in the classNP , if for every stringw 2 A, there exists a
\solution" s, such that (i) the length of s is polynomial in the length
of w, and (ii) the correctness ofs can be veri ed in polynomial time.

Chapter 7. Summary 243

The following properties hold:
1. Every context-free language is if?. (We did not prove this).
2. Every language inP is also inNP .
3. It is not known if there exist languages that are ifNP , but not in P.
4. Every language inNP is decidable.

We have introduced reductions to de ne the notion of a languagB to be
\at least as hard" as a languagéA. A languageB is calledNP -complete, if

1. B belongs to the clas$\NP , and
2. B is at least as hard as every language in the clasi¥ .

We have seen thatNP -complete exist.

The gure below summarizes the relationships among the various ces
of languages.

244 Chapter 7. Summary

all languages

enumerable

decidable

context-free

