
Introduction to Theory of Computation

Anil Maheshwari Michiel Smid

School of Computer Science

Carleton University

Ottawa

Canada

f anil,michiel g@scs.carleton.ca

March 23, 2017

ii Contents

Contents

Preface vi

1 Introduction 1
1.1 Purpose and motivation . 1

1.1.1 Complexity theory . 2
1.1.2 Computability theory 2
1.1.3 Automata theory . 3
1.1.4 This course . 3

1.2 Mathematical preliminaries 4
1.3 Proof techniques . 7

1.3.1 Direct proofs . 8
1.3.2 Constructive proofs . 9
1.3.3 Nonconstructive proofs 10
1.3.4 Proofs by contradiction 11
1.3.5 The pigeon hole principle 12
1.3.6 Proofs by induction . 13
1.3.7 More examples of proofs 15

Exercises . 18

2 Finite Automata and Regular Languages 21
2.1 An example: Controling a toll gate 21
2.2 Deterministic �nite automata 23

2.2.1 A �rst example of a �nite automaton 26
2.2.2 A second example of a �nite automaton 28
2.2.3 A third example of a �nite automaton 29

2.3 Regular operations . 31
2.4 Nondeterministic �nite automata 35

2.4.1 A �rst example . 35

iv Contents

2.4.2 A second example . 37
2.4.3 A third example . 38
2.4.4 De�nition of nondeterministic �nite automaton 39

2.5 Equivalence of DFAs and NFAs 41
2.5.1 An example . 44

2.6 Closure under the regular operations 48
2.7 Regular expressions . 52
2.8 Equivalence of regular expressions and regular languages . . . 56

2.8.1 Every regular expression describes a regular language . 57
2.8.2 Converting a DFA to a regular expression 60

2.9 The pumping lemma and nonregular languages 67
2.9.1 Applications of the pumping lemma 69

2.10 Higman's Theorem . 76
2.10.1 Dickson's Theorem . 76
2.10.2 Proof of Higman's Theorem 77

Exercises . 80

3 Context-Free Languages 91
3.1 Context-free grammars . 91
3.2 Examples of context-free grammars 94

3.2.1 Properly nested parentheses 94
3.2.2 A context-free grammar for a nonregular language . . . 95
3.2.3 A context-free grammar for the complement of a non-

regular language . 97
3.2.4 A context-free grammar that veri�es addition 98

3.3 Regular languages are context-free 100
3.3.1 An example . 102

3.4 Chomsky normal form . 104
3.4.1 An example . 109

3.5 Pushdown automata . 112
3.6 Examples of pushdown automata 116

3.6.1 Properly nested parentheses 116
3.6.2 Strings of the form 0n1n 117
3.6.3 Strings withb in the middle 118

3.7 Equivalence of pushdown automata and context-free grammars 120
3.8 The pumping lemma for context-free languages 124

3.8.1 Proof of the pumping lemma 125
3.8.2 Applications of the pumping lemma 128

Contents v

Exercises . 132

4 Turing Machines and the Church-Turing Thesis 137
4.1 De�nition of a Turing machine 137
4.2 Examples of Turing machines 141

4.2.1 Accepting palindromes using one tape 141
4.2.2 Accepting palindromes using two tapes 142
4.2.3 Acceptinganbncn using one tape 143
4.2.4 Acceptinganbncn using tape alphabetf a; b; c;2 g 145
4.2.5 Acceptingam bncmn using one tape 147

4.3 Multi-tape Turing machines 148
4.4 The Church-Turing Thesis . 151
Exercises . 152

5 Decidable and Undecidable Languages 157
5.1 Decidability . 157

5.1.1 The languageADFA . 158
5.1.2 The languageANFA . 159
5.1.3 The languageACFG . 159
5.1.4 The languageATM . 160
5.1.5 The Halting Problem 162

5.2 Countable sets . 164
5.2.1 The Halting Problem revisited 167

5.3 Rice's Theorem . 169
5.3.1 Proof of Rice's Theorem 170

5.4 Enumerability . 173
5.4.1 Hilbert's problem . 174
5.4.2 The languageATM . 175

5.5 Where does the term \enumerable" come from? 176
5.6 Most languages are not enumerable 179

5.6.1 The set of enumerable languages is countable 180
5.6.2 The set of all languages is not countable 181
5.6.3 There are languages that are not enumerable 183

5.7 The relationship between decidable and enumerable languages 184
5.8 A languageA such that both A and A are not enumerable . . 186

5.8.1 EQTM is not enumerable 186
5.8.2 EQTM is not enumerable 188

Exercises . 189

vi Contents

6 Complexity Theory 197
6.1 The running time of algorithms 197
6.2 The complexity classP . 199

6.2.1 Some examples . 199
6.3 The complexity classNP . 202

6.3.1 P is contained inNP 208
6.3.2 DecidingNP -languages in exponential time 208
6.3.3 Summary . 210

6.4 Non-deterministic algorithms 211
6.5 NP -complete languages . 213

6.5.1 Two examples of reductions 215
6.5.2 De�nition of NP-completeness 220
6.5.3 An NP -complete domino game 222
6.5.4 Examples ofNP -complete languages 231

Exercises . 235

7 Summary 239

Preface

This is a free textbook for an undergraduate course on the Theory of Com-
putation, which we have been teaching at Carleton University since 2002.
Until the 2011/2012 academic year, this course was o�ered as a second-year
course (COMP 2805) and was compulsory for all Computer Science students.
Starting with the 2012/2013 academic year, the course has been downgraded
to a third-year optional course (COMP 3803).

We have been developing this book since we started teaching this course.
Currently, we cover most of the material from Chapters 2{5 during a 12-week
term with three hours of classes per week.

The material from Chapter 6, on Complexity Theory, is taught in the
third-year course COMP 3804 (Design and Analysis of Algorithms). In the
early years of COMP 2805, we gave a two-lecture overview of Complexity
Theory at the end of the term. Even though this overview has disappeared
from the course, we decided to keep Chapter 6. This chapter has not been
revised/modi�ed for a long time.

The course as we teach it today has been inuenced by the following two
textbooks:

� Introduction to the Theory of Computation (second edition), by Michael
Sipser, Thomson Course Technnology, Boston, 2006.

� Einf•uhrung in die Theoretische Informatik, by Klaus Wagner, Springer-
Verlag, Berlin, 1994.

Besides reading this text, we recommend that you also take a look at
these excellent textbooks, as well as one or more of the following ones:

� Elements of the Theory of Computation (second edition), by Harry
Lewis and Christos Papadimitriou, Prentice-Hall, 1998.

viii

� Introduction to Languages and the Theory of Computation (thirdedi-
tion), by John Martin, McGraw-Hill, 2003.

� Introduction to Automata Theory, Languages, and Computation(third
edition), by John Hopcroft, Rajeev Motwani, Je�rey Ullman, Addison
Wesley, 2007.

Please let us know if you �nd errors, typos, simpler proofs, comments,
omissions, or if you think that some parts of the book \need improvement".

Chapter 1

Introduction

1.1 Purpose and motivation

This course is on theTheory of Computation, which tries to answer the
following questions:

� What are the mathematical properties of computer hardware andsoft-
ware?

� What is a computation and what is analgorithm? Can we give rigorous
mathematical de�nitions of these notions?

� What are the limitations of computers? Can \everything" be com-
puted? (As we will see, the answer to this question is \no".)

Purpose of the Theory of Computation: Develop formal math-
ematical models of computation that reect real-world computers.

This �eld of research was started by mathematicians and logicians in the
1930's, when they were trying to understand the meaning of a \computation".
A central question asked was whether all mathematical problems can be
solved in a systematic way. The research that started in those days led to
computers as we know them today.

Nowadays, the Theory of Computation can be divided into the follow-
ing three areas: Complexity Theory, Computability Theory, and Automata
Theory.

2 Chapter 1. Introduction

1.1.1 Complexity theory

The main question asked in this area is \What makes some problems com-
putationally hard and other problemseasy?"

Informally, a problem is called \easy", if it is e�ciently solvable. Exam-
ples of \easy" problems are (i) sorting a sequence of, say, 1,000,000 numbers,
(ii) searching for a name in a telephone directory, and (iii) computing the
fastest way to drive from Ottawa to Miami. On the other hand, a problem is
called \hard", if it cannot be solved e�ciently, or if we don't know whet her
it can be solved e�ciently. Examples of \hard" problems are (i) time table
scheduling for all courses at Carleton, (ii) factoring a 300-digit integer into
its prime factors, and (iii) computing a layout for chips in VLSI.

Central Question in Complexity Theory: Classify problems ac-
cording to their degree of \di�culty". Give a rigorous proof that
problems that seem to be \hard" are really \hard".

1.1.2 Computability theory

In the 1930's, G•odel, Turing, and Church discovered that some ofthe fun-
damental mathematical problems cannot be solved by a \computer". (This
may sound strange, because computers were invented only in the 1940's).
An example of such a problem is \Is an arbitrary mathematical statement
true or false?" To attack such a problem, we need formal de�nitions of the
notions of

� computer,

� algorithm, and

� computation.

The theoretical models that were proposed in order to understand solvable
and unsolvable problems led to the development of real computers.

Central Question in Computability Theory: Classify problems
as being solvable or unsolvable.

1.1. Purpose and motivation 3

1.1.3 Automata theory

Automata Theory deals with de�nitions and properties of di�erent types of
\computation models". Examples of such models are:

� Finite Automata. These are used in text processing, compilers, and
hardware design.

� Context-Free Grammars. These are used to de�ne programming lan-
guages and in Arti�cial Intelligence.

� Turing Machines. These form a simple abstract model of a \real"
computer, such as your PC at home.

Central Question in Automata Theory: Do these models have
the same power, or can one model solve more problems than the
other?

1.1.4 This course

In this course, we will study the last two areas in reverse order: Wewill start
with Automata Theory, followed by Computability Theory. The �rst a rea,
Complexity Theory, will be covered in COMP 3804.

Actually, before we start, we will review some mathematical proof tech-
niques. As you may guess, this is a fairly theoretical course, with lots of
de�nitions, theorems, and proofs. You may guess this course is fun stu� for
math lovers, but boring and irrelevant for others. You guessed itwrong, and
here are the reasons:

1. This course is about the fundamental capabilities and limitations of
computers. These topics form the core of computer science.

2. It is about mathematical properties of computer hardware andsoftware.

3. This theory is very much relevant to practice, for example, in thedesign
of new programming languages, compilers, string searching, pattern
matching, computer security, arti�cial intelligence, etc., etc.

4. This course helps you to learn problem solving skills. Theory teaches
you how to think, prove, argue, solve problems, express, and abstract.

4 Chapter 1. Introduction

5. This theory simpli�es the complex computers to an abstract and simple
mathematical model, and helps you to understand them better.

6. This course is about rigorously analyzing capabilities and limitations
of systems.

Where does this course �t in the Computer Science Curriculum at Car-
leton University? It is a theory course that is the third part in the series
COMP 1805, COMP 2804, COMP 3803, COMP 3804, and COMP 4804.
This course also widens your understanding of computers and will inuence
other courses including Compilers, Programming Languages, and Arti�cial
Intelligence.

1.2 Mathematical preliminaries

Throughout this course, we will assume that you know the following mathe-
matical concepts:

1. A set is a collection of well-de�ned objects. Examples are (i) the set of
all Dutch Olympic Gold Medallists, (ii) the set of all pubs in Ottawa,
and (iii) the set of all even natural numbers.

2. The set ofnatural numbersis N = f 1; 2; 3; : : :g.

3. The set ofintegers is Z = f : : : ; � 3; � 2; � 1; 0; 1; 2; 3; : : :g.

4. The set ofrational numbers is Q = f m=n : m 2 Z; n 2 Z; n 6= 0g.

5. The set ofreal numbersis denoted byR.

6. If A and B are sets, thenA is a subsetof B , written as A � B , if every
element ofA is also an element ofB . For example, the set of even
natural numbers is a subset of the set of all natural numbers. Every
set A is a subset of itself, i.e.,A � A. The empty set is a subset of
every setA, i.e., ; � A.

7. If B is a set, then thepower setP(B) of B is de�ned to be the set of
all subsets ofB :

P(B) = f A : A � Bg:

Observe that ; 2 P (B) and B 2 P (B).

1.2. Mathematical preliminaries 5

8. If A and B are two sets, then

(a) their union is de�ned as

A [B = f x : x 2 A or x 2 Bg;

(b) their intersection is de�ned as

A \ B = f x : x 2 A and x 2 Bg;

(c) their di�erence is de�ned as

A n B = f x : x 2 A and x 62Bg;

(d) the Cartesian product of A and B is de�ned as

A � B = f (x; y) : x 2 A and y 2 Bg;

(e) the complementof A is de�ned as

A = f x : x 62Ag:

9. A binary relation on two setsA and B is a subset ofA � B .

10. A function f from A to B, denoted byf : A ! B , is a binary relation
R, having the property that for each elementa 2 A, there is exactly
one ordered pair inR, whose �rst component isa. We will also say
that f (a) = b, or f maps a to b, or the image ofa under f is b. The
set A is called thedomain of f , and the set

f b2 B : there is ana 2 A with f (a) = bg

is called therange of f .

11. A function f : A ! B is one-to-one(or injective), if for any two distinct
elementsa and a0 in A, we havef (a) 6= f (a0). The function f is onto
(or surjective), if for each elementb2 B, there exists an elementa 2 A,
such that f (a) = b; in other words, the range off is equal to the set
B . A function f is a bijection, if f is both injective and surjective.

12. A binary relation R � A � A is an equivalence relation, if it satis�es
the following three conditions:

6 Chapter 1. Introduction

(a) R is reexive : For every element ina 2 A, we have (a; a) 2 R.

(b) R is symmetric: For all a and b in A, if (a; b) 2 R, then also
(b; a) 2 R.

(c) R is transitive: For all a, b, and c in A, if (a; b) 2 R and (b; c) 2 R,
then also (a; c) 2 R.

13. A graph G = (V; E) is a pair consisting of a setV, whose elements are
calledvertices, and a setE, where each element ofE is a pair of distinct
vertices. The elements ofE are callededges. The �gure below shows
some well-known graphs:K 5 (the complete graph on �ve vertices),K 3;3

(the complete bipartite graph on 2� 3 = 6 vertices), and the Peterson
graph.

K 5

K 3;3

Peterson graph

The degreeof a vertexv, denoted bydeg(v), is de�ned to be the number
of edges that are incident onv.

A path in a graph is a sequence of vertices that are connected by edges.
A path is a cycle, if it starts and ends at the same vertex. Asimple
path is a path without any repeated vertices. A graph isconnected, if
there is a path between every pair of vertices.

14. In the context of strings, analphabet is a �nite set, whose elements
are calledsymbols. Examples of alphabets are � = f 0; 1g and � =
f a; b; c; : : : ; zg.

15. A string over an alphabet � is a �nite sequence of symbols, where each
symbol is an element of �. The length of a string w, denoted byjwj, is
the number of symbols contained inw. The empty string, denoted by

1.3. Proof techniques 7

� , is the string having length zero. For example, if the alphabet � is
equal to f 0; 1g, then 10, 1000, 0, 101, and� are strings over �, having
lengths 2, 4, 1, 3, and 0, respectively.

16. A languageis a set of strings.

17. The Boolean valuesare 1 and 0, that representtrue and false, respec-
tively. The basic Boolean operations include

(a) negation (or NOT), represented by: ,

(b) conjunction (or AND), represented by^ ,

(c) disjunction (or OR), represented by_,

(d) exclusive-or (orXOR), represented by� ,

(e) equivalence, represented by$ or , ,

(f) implication, represented by! or) .

The following table explains the meanings of these operations.

NOT AND OR XOR equivalence implication
: 0 = 1 0 ^ 0 = 0 0 _ 0 = 0 0 � 0 = 0 0 $ 0 = 1 0 ! 0 = 1
: 1 = 0 0 ^ 1 = 0 0 _ 1 = 1 0 � 1 = 1 0 $ 1 = 0 0 ! 1 = 1

1 ^ 0 = 0 1 _ 0 = 1 1 � 0 = 1 1 $ 0 = 0 1 ! 0 = 0
1 ^ 1 = 1 1 _ 1 = 1 1 � 1 = 0 1 $ 1 = 1 1 ! 1 = 1

1.3 Proof techniques

In mathematics, a theorem is a statement that is true. A proof is a sequence
of mathematical statements that form an argument to show thata theorem is
true. The statements in the proof of a theorem include axioms (assumptions
about the underlying mathematical structures), hypotheses ofthe theorem
to be proved, and previously proved theorems. The main question is\How
do we go about proving theorems?" This question is similar to the question
of how to solve a given problem. Of course, the answer is that �ndingproofs,
or solving problems, is not easy; otherwise life would be dull! There is no
speci�ed way of coming up with a proof, but there are some generic strategies
that could be of help. In this section, we review some of these strategies,
that will be su�cient for this course. The best way to get a feeling ofhow
to come up with a proof is by solving a large number of problems. Here are

8 Chapter 1. Introduction

some useful tips. (You may take a look at the bookHow to Solve It, by G.
P�olya).

1. Read and completely understand the statement of the theoremto be
proved. Most often this is the hardest part.

2. Sometimes, theorems contain theorems inside them. For example,
\Property A if and only if property B", requires showing two state-
ments:

(a) If property A is true, then property B is true (A) B).

(b) If property B is true, then property A is true (B) A).

Another example is the theorem \SetA equals setB ." To prove this,
we need to prove thatA � B and B � A. That is, we need to show
that each element of setA is in set B , and that each element of setB
is in set A.

3. Try to work out a few simple cases of the theorem just to get a grip on
it (i.e., crack a few simple cases �rst).

4. Try to write down the proof once you have it. This is to ensure the
correctness of your proof. Often, mistakes are found at the time of
writing.

5. Finding proofs takes time, we do not come prewired to produce proofs.
Be patient, think, express and write clearly and try to be precise as
much as possible.

In the next sections, we will go through some of the proof strategies.

1.3.1 Direct proofs

As the name suggests, in a direct proof of a theorem, we just approach the
theorem directly.

Theorem 1.3.1 If n is an odd positive integer, thenn2 is odd as well.

1.3. Proof techniques 9

Proof. An odd positive integer n can be written asn = 2k + 1, for some
integer k � 0. Then

n2 = (2 k + 1) 2 = 4k2 + 4k + 1 = 2(2 k2 + 2k) + 1 :

Since 2(2k2 + 2k) is even, and \even plus one is odd", we can conclude that
n2 is odd.

Theorem 1.3.2 Let G = (V; E) be a graph. Then the sum of the degrees of
all vertices is an even integer, i.e.,

X

v2 V

deg(v)

is even.

Proof. If you do not see the meaning of this statement, then �rst try it out
for a few graphs. The reason why the statement holds is very simple: Each
edge contributes 2 to the summation (because an edge is incident onexactly
two distinct vertices).

Actually, the proof above proves the following theorem.

Theorem 1.3.3 Let G = (V; E) be a graph. Then the sum of the degrees of
all vertices is equal to twice the number of edges, i.e.,

X

v2 V

deg(v) = 2 jE j:

1.3.2 Constructive proofs

This technique not only shows the existence of a certain object, it actually
gives a method of creating it. Here is how a constructive proof lookslike:

Theorem 1.3.4 There exists an object with propertyP.

Proof. Here is the object: [: : :]
And here is the proof that the object satis�es propertyP: [: : :]

Here is an example of a constructive proof. A graph is called 3-regular, if
each vertex has degree three.

10 Chapter 1. Introduction

Theorem 1.3.5 For every even integern � 4, there exists a3-regular graph
with n vertices.

Proof. De�ne
V = f 0; 1; 2; : : : ; n � 1g;

and

E = ff i; i +1g : 0 � i � n� 2g[ff n� 1; 0gg[ff i; i + n=2g : 0 � i � n=2� 1g:

Then the graphG = (V; E) is 3-regular.
Convince yourself that this graph is indeed 3-regular. It may help todraw

the graph for, say,n = 8.

1.3.3 Nonconstructive proofs

In a nonconstructive proof, we show that a certain object exists, without
actually creating it. Here is an example of such a proof:

Theorem 1.3.6 There exist irrational numbersx and y such thatxy is ra-
tional.

Proof. There are two possible cases.

Case 1:
p

2
p

2
2 Q.

In this case, we takex = y =
p

2. In Theorem 1.3.9 below, we will prove
that

p
2 is irrational.

Case 2:
p

2
p

2
62Q.

In this case, we takex =
p

2
p

2
and y =

p
2. Since

xy =
� p

2
p

2
� p

2

=
p

2
2

= 2;

the claim in the theorem follows.

Observe that this proof indeed proves the theorem, but it does not give
an example of a pair of irrational numbersx and y such that xy is rational.

1.3. Proof techniques 11

1.3.4 Proofs by contradiction

This is how a proof by contradiction looks like:

Theorem 1.3.7 StatementS is true.

Proof. Assume that statementS is false. Then, derive a contradiction (such
as 1 + 1 = 3).

In other words, show that the statement \:S) false" is true. This is
su�cient, because the contrapositive of the statement \:S) false" is the
statement \true) S ". The latter logical formula is equivalent to S, and
that is what we wanted to show.

Below, we give two examples of proofs by contradiction.

Theorem 1.3.8 Let n be a positive integer. Ifn2 is even, thenn is even.

Proof. We will prove the theorem by contradiction. So we assume thatn2

is even, butn is odd. Sincen is odd, we know from Theorem 1.3.1 thatn2

is odd. This is a contradiction, because we assumed thatn2 is even.

Theorem 1.3.9
p

2 is irrational, i.e.,
p

2 cannot be written as a fraction of
two integersm and n.

Proof. We will prove the theorem by contradiction. So we assume that
p

2
is rational. Then

p
2 can be written as a fraction of two integers,

p
2 = m=n,

where m � 1 and n � 1. We may assume thatm and n do not share any
common factors, i.e., the greatest common divisor ofm and n is equal to
one; if this is not the case, then we can get rid of the common factors. By
squaring

p
2 = m=n, we get 2n2 = m2. This implies that m2 is even. Then,

by Theorem 1.3.8,m is even, which means that we can writem as m = 2k,
for some positive integerk. It follows that 2n2 = m2 = 4k2, which implies
that n2 = 2k2. Hence,n2 is even. Again by Theorem 1.3.8, it follows thatn
is even.

We have shown thatm and n are both even. But we know thatm and
n are not both even. Hence, we have a contradiction. Our assumption thatp

2 is rational is wrong. Thus, we can conclude that
p

2 is irrational.

There is a nice discussion of this proof in the bookMy Brain is Open:
The Mathematical Journeys of Paul Erd}osby B. Schechter.

12 Chapter 1. Introduction

1.3.5 The pigeon hole principle

This is a simple principle with surprising consequences.

Pigeon Hole Principle: If n + 1 or more objects are placed inton
boxes, then there is at least one box containing two or more objects.
In other words, if A and B are two sets such thatjAj > jB j, then
there is no one-to-one function fromA to B.

Theorem 1.3.10 Let n be a positive integer. Every sequence ofn2 + 1 dis-
tinct real numbers contains a subsequence of lengthn + 1 that is either in-
creasing or decreasing.

Proof. For example consider the sequence (20; 10; 9; 7; 11; 2; 21; 1; 20; 31) of
10 = 32 + 1 numbers. This sequence contains an increasing subsequence of
length 4 = 3 + 1, namely (10; 11; 21; 31).

The proof of this theorem is by contradiction, and uses the pigeon hole
principle.

Let (a1; a2; : : : ; an2+1) be an arbitrary sequence ofn2 + 1 distinct real
numbers. For eachi with 1 � i � n2 + 1, let inc i denote the length of
the longest increasing subsequence that starts atai , and let deci denote the
length of the longest decreasing subsequence that starts atai .

Using this notation, the claim in the theorem can be formulated as follows:
There is an indexi such that inc i � n + 1 or deci � n + 1.

We will prove the claim by contradiction. So we assume thatinc i � n
and deci � n for all i with 1 � i � n2 + 1.

Consider the set

B = f (b; c) : 1 � b � n; 1 � c � ng;

and think of the elements ofB as being boxes. For eachi with 1 � i � n2+1,
the pair (inc i ; deci) is an element ofB . So we haven2+1 elements (inc i ; deci),
which are placed in then2 boxes ofB . By the pigeon hole principle, there
must be a box that contains two (or more) elements. In other words, there
exist two integersi and j such that i < j and

(inc i ; deci) = (inc j ; decj):

Recall that the elements in the sequence are distinct. Hence,ai 6= aj . We
consider two cases.

1.3. Proof techniques 13

First assume that ai < a j . Then the length of the longest increasing
subsequence starting atai must be at least 1+inc j , because we can appendai

to the longest increasing subsequence starting ataj . Therefore, inc i 6= inc j ,
which is a contradiction.

The second case is whenai > a j . Then the length of the longest decreasing
subsequence starting atai must be at least 1+decj , because we can appendai

to the longest decreasing subsequence starting ataj . Therefore,deci 6= decj ,
which is again a contradiction.

1.3.6 Proofs by induction

This is a very powerful and important technique for proving theorems.
For each positive integern, let P(n) be a mathematical statement that

depends onn. Assume we wish to prove thatP(n) is true for all positive
integersn. A proof by induction of such a statement is carried out as follows:

Basis: Prove that P(1) is true.

Induction step: Prove that for all n � 1, the following holds: If P(n) is
true, then P(n + 1) is also true.

In the induction step, we choose an arbitrary integern � 1 and assume
that P(n) is true; this is called theinduction hypothesis. Then we prove that
P(n + 1) is also true.

Theorem 1.3.11 For all positive integersn, we have

1 + 2 + 3 + : : : + n =
n(n + 1)

2
:

Proof. We start with the basis of the induction. If n = 1, then the left-hand
side is equal to 1, and so is the right-hand side. So the theorem is true for
n = 1.

For the induction step, let n � 1 and assume that the theorem is true for
n, i.e., assume that

1 + 2 + 3 + : : : + n =
n(n + 1)

2
:

14 Chapter 1. Introduction

We have to prove that the theorem is true forn + 1, i.e., we have to prove
that

1 + 2 + 3 + : : : + (n + 1) =
(n + 1)(n + 2)

2
:

Here is the proof:

1 + 2 + 3 + : : : + (n + 1) = 1 + 2 + 3 + : : : + n| {z }
= n (n +1)

2

+(n + 1)

=
n(n + 1)

2
+ (n + 1)

=
(n + 1)(n + 2)

2
:

By the way, here is an alternative proof of the theorem above: LetS =
1 + 2 + 3 + : : : + n. Then,

S = 1 + 2 + 3 + : : : + (n � 2) + (n � 1) + n
S = n + (n � 1) + (n � 2) + : : : + 3 + 2 + 1

2S = (n + 1) + (n + 1) + (n + 1) + : : : + (n + 1) + (n + 1) + (n + 1)

Since there aren terms on the right-hand side, we have 2S = n(n + 1). This
implies that S = n(n + 1) =2.

Theorem 1.3.12 For every positive integern, a � b is a factor of an � bn .

Proof. A direct proof can be given by providing a factorization ofan � bn :

an � bn = (a � b)(an� 1 + an� 2b+ an� 3b2 + : : : + abn� 2 + bn� 1):

We now prove the theorem by induction. For the basis, letn = 1. The claim
in the theorem is \a � b is a factor ofa � b", which is obviously true.

Let n � 1 and assume thata � b is a factor ofan � bn . We have to prove
that a � b is a factor ofan+1 � bn+1 . We have

an+1 � bn+1 = an+1 � anb+ anb� bn+1 = an (a � b) + (an � bn)b:

The �rst term on the right-hand side is divisible by a � b. By the induction
hypothesis, the second term on the right-hand side is divisible bya � b as
well. Therefore, the entire right-hand side is divisible bya � b. Since the
right-hand side is equal toan+1 � bn+1 , it follows that a � b is a factor of
an+1 � bn+1 .

We now give an alternative proof of Theorem 1.3.3:

1.3. Proof techniques 15

Theorem 1.3.13 Let G = (V; E) be a graph withm edges. Then the sum
of the degrees of all vertices is equal to twice the number of edges, i.e.,

X

v2 V

deg(v) = 2 m:

Proof. The proof is by induction on the numberm of edges. For the basis of
the induction, assume thatm = 0. Then the graph G does not contain any
edges and, therefore,

P
v2 V deg(v) = 0. Thus, the theorem is true if m = 0.

Let m � 0 and assume that the theorem is true for every graph withm
edges. LetG be an arbitrary graph with m + 1 edges. We have to prove thatP

v2 V deg(v) = 2(m + 1).
Let f a; bg be an arbitrary edge inG, and let G0 be the graph obtained

from G by removing the edgef a; bg. SinceG0 has m edges, we know from
the induction hypothesis that the sum of the degrees of all vertices in G0 is
equal to 2m. Using this, we obtain

X

v2 G

deg(v) =
X

v2 G0

deg(v) + 2 = 2 m + 2 = 2(m + 1) :

1.3.7 More examples of proofs

Recall Theorem 1.3.5, which states that for everyeven integer n � 4, there
exists a 3-regular graph withn vertices. The following theorem explains why
we stated this theorem for even values ofn.

Theorem 1.3.14 Let n � 5 be an odd integer. There is no3-regular graph
with n vertices.

Proof. The proof is by contradiction. So we assume that there exists a
graph G = (V; E) with n vertices that is 3-regular. Letm be the number of
edges inG. Sincedeg(v) = 3 for every vertex, we have

X

v2 V

deg(v) = 3 n:

On the other hand, by Theorem 1.3.3, we have
X

v2 V

deg(v) = 2 m:

16 Chapter 1. Introduction

It follows that 3n = 2m, which can be rewritten asm = 3n=2. Sincem is an
integer, and sincegcd(2; 3) = 1, n=2 must be an integer. Hence,n is even,
which is a contradiction.

Let K n be the complete graphon n vertices. This graph has a vertex set
of sizen, and every pair of distinct vertices is joined by an edge.

If G = (V; E) is a graph with n vertices, then thecomplementG of G is
the graph with vertex setV that consists of those edges ofK n that are not
present inG.

Theorem 1.3.15 Let n � 2 and let G be a graph onn vertices. ThenG is
connected orG is connected.

Proof. We prove the theorem by induction on the numbern of vertices. For
the basis, assume thatn = 2. There are two possibilities for the graphG:

1. G contains one edge. In this case,G is connected.

2. G does not contain an edge. In this case, the complementG contains
one edge and, therefore,G is connected.

So forn = 2, the theorem is true.
Let n � 2 and assume that the theorem is true for every graph withn

vertices. Let G be graph with n + 1 vertices. We have to prove thatG is
connected orG is connected. We consider three cases.

Case 1: There is a vertexv whose degree inG is equal ton.
SinceG hasn+1 vertices, v is connected by an edge to every other vertex

of G. Therefore,G is connected.

Case 2: There is a vertexv whose degree inG is equal to 0.
In this case, the degree ofv in the graph G is equal ton. SinceG hasn+1

vertices,v is connected by an edge to every other vertex ofG. Therefore,G
is connected.

Case 3: For every vertexv, the degree ofv in G is in f 1; 2; : : : ; n � 1g.
Let v be an arbitrary vertex of G. Let G0 be the graph obtained by

deleting from G the vertex v, together with all edges that are incident onv.
SinceG0 has n vertices, we know from the induction hypothesis thatG0 is
connected orG0 is connected.

1.3. Proof techniques 17

Let us �rst assume that G0 is connected. Then the graphG is connected
as well, because there is at least one edge inG betweenv and some vertex
of G0.

If G0 is not connected, thenG0 must be connected. Since we are in Case 3,
we know that the degree ofv in G is in the set f 1; 2; : : : ; n � 1g. It follows
that the degree ofv in the graph G is in this set as well. Hence, there is at
least one edge inG betweenv and some vertex inG0. This implies that G is
connected.

The previous theorem can be rephrased as follows:

Theorem 1.3.16 Let n � 2 and consider the complete graphK n on n ver-
tices. Color each edge of this graph as either red or blue. LetR be the graph
consisting of all the red edges, and letB be the graph consisting of all the
blue edges. ThenR is connected orB is connected.

A graph is said to beplanar, if it can be drawn (a better term is \embed-
ded") in the plane in such a way that no two edges intersect, exceptpossibly
at their endpoints. An embedding of a planar graph consists of vertices,
edges, and faces. In the example below, there are 11 vertices, 18edges, and
9 faces (including the unbounded face).

The following theorem is known asEuler's theorem for planar graphs.
Apparently, this theorem was discovered by Euler around 1750. Legendre
gave the �rst proof in 1794, see

http://www.ics.uci.edu/~eppstein/junkyard/euler/

Theorem 1.3.17 (Euler) Consider an embedding of a planar graphG. Let
v, e, and f be the number of vertices, edges, and faces (including the single

18 Chapter 1. Introduction

unbounded face) of this embedding, respectively. Moreover, let c be the number
of connected components ofG. Then

v � e+ f = c + 1:

Proof. The proof is by induction on the number of edges ofG. To be more
precise, we start with a graph having no edges, and prove that thetheorem
holds for this case. Then, we add the edges one by one, and show that the
relation v � e+ f = c + 1 is maintained.

So we �rst assume thatG has no edges, i.e.,e = 0. Then the embedding
consists of a collection ofv points. In this case, we havef = 1 and c = v.
Hence, the relationv � e+ f = c + 1 holds.

Let e > 0 and assume that Euler's formula holds for a subgraph ofG
having e � 1 edges. Letf u; vg be an edge ofG that is not in the subgraph,
and add this edge to the subgraph. There are two cases dependingon whether
this new edge joins two connected components or joins two vertices in the
same connected component.

Case 1: The new edgef u; vg joins two connected components.
In this case, the number of vertices and the number of faces do not change,

the number of connected components goes down by 1, and the number of
edges increases by 1. It follows that the relation in the theorem is still valid.

Case 2: The new edgef u; vg joins two vertices in the same connected com-
ponent.

In this case, the number of vertices and the number of connectedcom-
ponents do not change, the number of edges increases by 1, and the number
of faces increases by 1 (because the new edge splits one face into two faces).
Therefore, the relation in the theorem is still valid.

Euler's theorem is usually stated as follows:

Theorem 1.3.18 (Euler) Consider an embedding of a connected planar
graph G. Let v, e, and f be the number of vertices, edges, and faces (in-
cluding the single unbounded face) of this embedding, respectively. Then

v � e+ f = 2:

If you like surprising proofs of various mathematical results, you should
read the bookProofs from THE BOOK by Aigner and Ziegler.

Exercises 19

Exercises

1.1 Use induction to prove that every integern � 2 can be written as a
product of prime numbers.

1.2 For every prime numberp, prove that
p

p is irrational.

1.3 Let n be a positive integer that is not a perfect square. Prove that
p

n
is irrational.

1.4 Prove by induction that n4 � 4n2 is divisible by 3, for all integersn � 1.

1.5 Prove that
nX

i =1

1
i2

< 2 � 1=n;

for every integern � 2.

1.6 Prove that 9 dividesn3 + (n + 1) 3 + (n + 2) 3, for every integern � 0.

1.7 Prove that in any set of n + 1 numbers from f 1; 2; : : : ; 2ng, there are
always two numbers that are consecutive.

1.8 Prove that in any set of n + 1 numbers from f 1; 2; : : : ; 2ng, there are
always two numbers such that one divides the other.

20 Chapter 1. Introduction

Chapter 2

Finite Automata and Regular
Languages

In this chapter, we introduce and analyze the class of languages that are
known asregular languages. Informally, these languages can be \processed"
by computers having a very small amount of memory.

2.1 An example: Controling a toll gate

Before we give a formal de�nition of a �nite automaton, we consideran
example in which such an automaton shows up in a natural way. We consider
the problem of designing a \computer" that controls atoll gate.

When a car arrives at the toll gate, the gate is closed. The gate opens as
soon as the driver has payed 25 cents. We assume that we have onlythree
coin denominations: 5, 10, and 25 cents. We also assume that no excess
change is returned.

After having arrived at the toll gate, the driver inserts a sequence of coins
into the machine. At any moment, the machine has to decide whetheror not
to open the gate, i.e., whether or not the driver has paid 25 cents (or more).
In order to decide this, the machine is in one of the following sixstates, at
any moment during the process:

� The machine is in stateq0, if it has not collected any money yet.

� The machine is in stateq1, if it has collected exactly 5 cents.

� The machine is in stateq2, if it has collected exactly 10 cents.

22 Chapter 2. Finite Automata and Regular Languages

� The machine is in stateq3, if it has collected exactly 15 cents.

� The machine is in stateq4, if it has collected exactly 20 cents.

� The machine is in stateq5, if it has collected 25 cents or more.

Initially (when a car arrives at the toll gate), the machine is in stateq0.
Assume, for example, that the driver presents the sequence (10,5,5,10) of
coins.

� After receiving the �rst 10 cents coin, the machine switches from state
q0 to state q2.

� After receiving the �rst 5 cents coin, the machine switches from state
q2 to state q3.

� After receiving the second 5 cents coin, the machine switches fromstate
q3 to state q4.

� After receiving the second 10 cents coin, the machine switches from
state q4 to state q5. At this moment, the gate opens. (Remember that
no change is given.)

The �gure below represents the behavior of the machine for all possible
sequences of coins. Stateq5 is represented by two circles, because it is a
special state: As soon as the machine reaches this state, the gate opens.

q0 q1 q2 q3 q4 q5
5 5 5 5

10 10 10

25

25

25

10; 25
5; 10; 25

5; 10

25
start

Observe that the machine (or computer) only has to remember which
state it is in at any given time. Thus, it needs only a very small amount
of memory: It has to be able to distinguish between any one of six possible
cases and, therefore, it only needs a memory ofdlog 6e = 3 bits.

2.2. Deterministic �nite automata 23

2.2 Deterministic �nite automata

Let us look at another example. Consider the followingstate diagram:

q1 q2 q3

0
0

1

1

0;1

We say that q1 is the start state andq2 is an accept state. Consider the
input string 1101. This string is processed in the following way:

� Initially, the machine is in the start state q1.

� After having read the �rst 1, the machine switches from stateq1 to
state q2.

� After having read the second 1, the machine switches from stateq2 to
state q2. (So actually, it does not switch.)

� After having read the �rst 0, the machine switches from stateq2 to
state q3.

� After having read the third 1, the machine switches from stateq3 to
state q2.

After the entire string 1101 has been processed, the machine is in state q2,
which is an accept state. We say that the string 1101 is accepted bythe
machine.

Consider now the input string 0101010. After having read this string
from left to right (starting in the start state q1), the machine is in stateq3.
Sinceq3 is not an accept state, we say that the machine rejects the string
0101010.

We hope you are able to see that this machine accepts every binary string
that ends with a 1. In fact, the machine accepts more strings:

� Every binary string having the property that there are an even number
of 0s following the rightmost 1, is accepted by this machine.

24 Chapter 2. Finite Automata and Regular Languages

� Every other binary string is rejected by the machine. Observe that each
such string is either empty, consists of 0s only, or has an odd number
of 0s following the rightmost 1.

We now come to the formal de�nition of a �nite automaton:

De�nition 2.2.1 A �nite automaton is a 5-tupleM = (Q; � ; �; q; F), where

1. Q is a �nite set, whose elements are calledstates,

2. � is a �nite set, called the alphabet; the elements of � are calledsymbols,

3. � : Q � � ! Q is a function, called thetransition function,

4. q is an element ofQ; it is called the start state,

5. F is a subset ofQ; the elements ofF are calledaccept states.

You can think of the transition function � as being the \program" of the
�nite automaton M = (Q; � ; �; q; F). This function tells us what M can do
in \one step":

� Let r be a state ofQ and let a be a symbol of the alphabet �. If
the �nite automaton M is in state r and reads the symbola, then it
switches from stater to state � (r; a). (In fact, � (r; a) may be equal to
r .)

The \computer" that we designed in the toll gate example in Section 2.1
is a �nite automaton. For this example, we haveQ = f q0; q1; q2; q3; q4; q5g,
� = f 5; 10; 25g, the start state isq0, F = f q5g, and � is given by the following
table:

5 10 25
q0 q1 q2 q5

q1 q2 q3 q5

q2 q3 q4 q5

q3 q4 q5 q5

q4 q5 q5 q5

q5 q5 q5 q5

The example given in the beginning of this section is also a �nite automa-
ton. For this example, we haveQ = f q1; q2; q3g, � = f 0; 1g, the start state
is q1, F = f q2g, and � is given by the following table:

2.2. Deterministic �nite automata 25

0 1
q1 q1 q2

q2 q3 q2

q3 q2 q2

Let us denote this �nite automaton by M . The language ofM , denoted
by L(M), is the set of all binary strings that are accepted byM . As we have
seen before, we have

L(M) = f w : w contains at least one 1 and ends with an even number of 0sg:

We now give a formal de�nition of the language of a �nite automaton:

De�nition 2.2.2 Let M = (Q; � ; �; q; F) be a �nite automaton and let w =
w1w2 : : : wn be a string over �. De�ne the sequencer0; r1; : : : ; rn of states, in
the following way:

� r0 = q,

� r i +1 = � (r i ; wi +1), for i = 0; 1; : : : ; n � 1.

1. If rn 2 F , then we say thatM acceptsw.

2. If rn 62F , then we say thatM rejects w.

In this de�nition, w may be the empty string, which we denote by� , and
whose length is zero; thus in the de�nition above,n = 0. In this case, the
sequencer0; r1; : : : ; rn of states has length one; it consists of just the state
r0 = q. The empty string is accepted byM if and only if the start state q
belongs toF .

De�nition 2.2.3 Let M = (Q; � ; �; q; F) be a �nite automaton. The lan-
guageL(M) acceptedby M is de�ned to be the set of all strings that are
accepted byM :

L(M) = f w : w is a string over � and M acceptsw g:

De�nition 2.2.4 A languageA is calledregular, if there exists a �nite au-
tomaton M such that A = L(M).

26 Chapter 2. Finite Automata and Regular Languages

We �nish this section by presenting an equivalent way of de�ning the
language accepted by a �nite automaton. LetM = (Q; � ; �; q; F) be a �nite
automaton. The transition function � : Q � � ! Q tells us that, when M
is in state r 2 Q and reads symbola 2 �, it switches from state r to state
� (r; a). Let � � denote the set of all strings over the alphabet �. (� � includes
the empty string � .) We extend the function � to a function

� : Q � � � ! Q;

that is de�ned as follows. For any stater 2 Q and for any string w over the
alphabet �,

� (r; w) =
�

r if w = � ,
� (� (r; v); a) if w = va, wherev is a string anda 2 �.

What is the meaning of this function� ? Let r be a state ofQ and let w be
a string over the alphabet �. Then

� � (r; w) is the state that M reaches, when it starts in stater , reads the
string w from left to right, and uses� to switch from state to state.

Using this notation, we have

L(M) = f w : w is a string over � and � (q; w) 2 F g:

2.2.1 A �rst example of a �nite automaton

Let

A = f w : w is a binary string containing an odd number of 1sg:

We claim that this languageA is regular. In order to prove this, we have to
construct a �nite automaton M such that A = L(M).

How to construct M ? Here is a �rst idea: The �nite automaton reads the
input string w from left to right and keeps track of the number of 1s it has
seen. After having read the entire stringw, it checks whether this number
is odd (in which casew is accepted) or even (in which casew is rejected).
Using this approach, the �nite automaton needs a statefor every integer
i � 0, indicating that the number of 1s read so far is equal toi . Hence,
to design a �nite automaton that follows this approach, we need anin�nite

2.2. Deterministic �nite automata 27

number of states. But, the de�nition of �nite automaton requiresthe number
of states to be�nite .

A better, and correct approach, is to keep track of whether thenumber
of 1s read so far is even or odd. This leads to the following �nite automaton:

� The set of states isQ = f qe; qog. If the �nite automaton is in state qe,
then it has read an even number of 1s; if it is in stateqo, then it has
read an odd number of 1s.

� The alphabet is � = f 0; 1g.

� The start state is qe, because at the start, the number of 1s read by the
automaton is equal to 0, and 0 is even.

� The set F of accept states isF = f qog.

� The transition function � is given by the following table:

0 1
qe qe qo

qo qo qe

This �nite automaton M = (Q; � ; �; qe; F) can also be described by itsstate
diagram, which is given in the �gure below. The arrow that comes \out of
the blue" and enters the stateqe, indicates that qe is the start state. The
state depicted with double circles indicates the accept state.

qe qo

0

0

1

1

We have constructed a �nite automatonM that accepts the languageA.
Therefore,A is a regular language.

28 Chapter 2. Finite Automata and Regular Languages

2.2.2 A second example of a �nite automaton

De�ne the languageA as

A = f w : w is a binary string containing 101 as a substringg:

Again, we claim that A is a regular language. In other words, we claim that
there exists a �nite automaton M that acceptsA, i.e., A = L(M).

The �nite automaton M will do the following, when reading an input
string from left to right:

� It skips over all 0s, and stays in the start state.

� At the �rst 1, it switches to the state \maybe the next two symbols are
01".

{ If the next symbol is 1, then it stays in the state \maybe the next
two symbols are 01".

{ On the other hand, if the next symbol is 0, then it switches to the
state \maybe the next symbol is 1".

� If the next symbol is indeed 1, then it switches to the accept
state (but keeps on reading until the end of the string).

� On the other hand, if the next symbol is 0, then it switches
to the start state, and skips 0s until it reads 1 again.

By de�ning the following four states, this process will become clear:

� q1: M is in this state if the last symbol read was 1, but the substring
101 has not been read.

� q10: M is in this state if the last two symbols read were 10, but the
substring 101 has not been read.

� q101: M is in this state if the substring 101 has been read in the input
string.

� q: In all other cases,M is in this state.

Here is the formal description of the �nite automaton that accepts the
languageA:

� Q = f q; q1; q10; q101g,

2.2. Deterministic �nite automata 29

� � = f 0; 1g,

� the start state is q,

� the set F of accept states is equal toF = f q101g, and

� the transition function � is given by the following table:

0 1
q q q1

q1 q10 q1

q10 q q101

q101 q101 q101

The �gure below gives the state diagram of the �nite automatonM =
(Q; � ; �; q; F).

q q1

q10 q101

0

1

1

0

0

1
0;1

This �nite automaton accepts the languageA consisting of all binary
strings that contain the substring 101. As an exercise, how would you obtain
a �nite automaton that accepts the complement ofA, i.e., the language
consisting of all binary strings thatdo not contain the substring 101?

2.2.3 A third example of a �nite automaton

The �nite automata we have seen so far have exactly one accept state. In
this section, we will see an example of a �nite automaton having more accept
states.

30 Chapter 2. Finite Automata and Regular Languages

Let A be the language

A = f w 2 f 0; 1g� : w has a 1 in the third position from the rightg;

wheref 0; 1g� is the set of all binary strings, including the empty string� . We
claim that A is a regular language. To prove this, we have to construct a �nite
automaton M such that A = L(M). At �rst sight, it seems di�cult (or even
impossible?) to construct such a �nite automaton: How does the automaton
\know" that it has reached the third symbol from the right? It is, however,
possible to construct such an automaton. The main idea is to remember the
last three symbols that have been read. Thus, the �nite automaton has eight
states qijk , where i , j , and k range over the two elements off 0; 1g. If the
automaton is in stateqijk , then the following hold:

� If M has read at least three symbols, then the three most recently read
symbols areijk .

� If M has read only two symbols, then these two symbols arejk ; more-
over, i = 0.

� If M has read only one symbol, then this symbol isk; moreover, i =
j = 0.

� If M has not read any symbol, theni = j = k = 0.

The start state is q000 and the set of accept states isf q100; q110; q101; q111g.
The transition function of M is given by the following state diagram.

q000 q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

1

0

1

1

0

1

0

1

0

2.3. Regular operations 31

2.3 Regular operations

In this section, we de�ne three operations on languages. Later, we will answer
the question whether the set of all regular languages is closed under these
operations. LetA and B be two languages over the same alphabet.

1. The union of A and B is de�ned as

A [B = f w : w 2 A or w 2 Bg:

2. The concatenationof A and B is de�ned as

AB = f ww0 : w 2 A and w0 2 Bg:

In words, AB is the set of all strings obtained by taking an arbitrary
string w in A and an arbitrary string w0 in B , and gluing them together
(such that w is to the left of w0).

3. The star of A is de�ned as

A � = f u1u2 : : : uk : k � 0 and ui 2 A for all i = 1; 2; : : : ; kg:

In words, A � is obtained by taking any �nite number of strings inA, and
gluing them together. Observe thatk = 0 is allowed; this corresponds
to the empty string � . Thus, � 2 A � .

To give an example, letA = f 0; 01g and B = f 1; 10g. Then

A [B = f 0; 01; 1; 10g;

AB = f 01; 010; 011; 0110g;

and
A � = f �; 0; 01; 00; 001; 010; 0101; 000; 0001; 00101; : : :g:

As another example, if � = f 0; 1g, then � � is the set of all binary strings
(including the empty string). Observe that a string always has a �nite length.

Before we proceed, we give an alternative (and equivalent) de�nition of
the star of the languageA: De�ne

A0 = f � g

32 Chapter 2. Finite Automata and Regular Languages

and, for k � 1,
Ak = AA k� 1;

i.e., Ak is the concatenation of the two languagesA and Ak� 1. Then we have

A � =
1[

k=0

Ak :

Theorem 2.3.1 The set of regular languages is closed under the union op-
eration, i.e., if A and B are regular languages over the same alphabet� , then
A [B is also a regular language.

Proof. Since A and B are regular languages, there are �nite automata
M1 = (Q1; � ; � 1; q1; F1) and M2 = (Q2; � ; � 2; q2; F2) that accept A and B,
respectively. In order to prove thatA [B is regular, we have to construct a
�nite automaton M that accepts A [B . In other words, M must have the
property that for every string w 2 � � ,

M acceptsw , M1 acceptsw or M2 acceptsw.

As a �rst idea, we may think that M could do the following:

� Starting in the start state q1 of M1, M \runs" M1 on w.

� If, after having read w, M1 is in a state of F1, then w 2 A, thus
w 2 A [B and, therefore,M acceptsw.

� On the other hand, if, after having readw, M1 is in a state that is not
in F1, then w 62A and M \runs" M2 on w, starting in the start state
q2 of M2. If, after having readw, M2 is in a state ofF2, then we know
that w 2 B, thus w 2 A [B and, therefore,M acceptsw. Otherwise,
we know that w 62A [B , and M rejects w.

This idea does not work, because the�nite automaton M can read the input
string w only once. The correct approach is torun M1 and M2 simulta-
neously. We de�ne the set Q of states ofM to be the Cartesian product
Q1 � Q2. If M is in state (r1; r2), this means that

� if M1 would have read the input string up to this point, then it would
be in state r1, and

2.3. Regular operations 33

� if M2 would have read the input string up to this point, then it would
be in state r2.

This leads to the �nite automaton M = (Q; � ; �; q; F), where

� Q = Q1 � Q2 = f (r1; r2) : r1 2 Q1 and r2 2 Q2g. Observe that
jQj = jQ1j � j Q2j, which is �nite.

� � is the alphabet of A and B (recall that we assume thatA and B are
languages over the same alphabet).

� The start state q of M is equal toq = (q1; q2).

� The set F of accept states ofM is given by

F = f (r1; r2) : r1 2 F1 or r2 2 F2g = (F1 � Q2) [(Q1 � F2):

� The transition function � : Q � � ! Q is given by

� ((r1; r2); a) = (� 1(r1; a); � 2(r2; a)) ;

for all r1 2 Q1, r2 2 Q2, and a 2 �.

To �nish the proof, we have to show that this �nite automaton M indeed
accepts the languageA [B . Intuitively, this should be clear from the discus-
sion above. The easiest way to give a formal proof is by using the extended
transition functions � 1 and � 2. (The extended transition function has been
de�ned after De�nition 2.2.4.) Here we go: Recall that we have to prove that

M acceptsw , M1 acceptsw or M2 acceptsw,

i.e,
M acceptsw , � 1(q1; w) 2 F1 or � 2(q2; w) 2 F2.

In terms of the extended transition function� of the transition function � of
M , this becomes

� ((q1; q2); w) 2 F , � 1(q1; w) 2 F1 or � 2(q2; w) 2 F2. (2.1)

By applying the de�nition of the extended transition function, as given after
De�nition 2.2.4, to � , it can be seen that

� ((q1; q2); w) = (� 1(q1; w); � 2(q2; w)):

34 Chapter 2. Finite Automata and Regular Languages

The latter equality implies that (2.1) is true and, therefore,M indeed accepts
the languageA [B .

What about the closure of the regular languages under the concatenation
and star operations? It turns out that the regular languages areclosed under
these operations. But how do we prove this?

Let A and B be two regular languages, and letM1 and M2 be �nite
automata that accept A and B, respectively. How do we construct a �nite
automaton M that accepts the concatenationAB ? Given an input string
u, M has to decide whether or notu can be broken into two stringsw and
w0 (i.e., write u as u = ww0), such that w 2 A and w0 2 B. In words, M
has to decide whether or notu can be broken into two substrings, such that
the �rst substring is accepted byM1 and the second substring is accepted by
M2. The di�culty is caused by the fact that M has to make this decision by
scanning the stringu only once. If u 2 AB , then M has to decide,during
this single scan, where to breaku into two substrings. Similarly, if u 62AB ,
then M has to decide,during this single scan, that u cannot be broken into
two substrings such that the �rst substring is in A and the second substring
is in B .

It seems to be even more di�cult to prove that A � is a regular language,
if A itself is regular. In order to prove this, we need a �nite automaton that,
when given an arbitrary input string u, decides whether or notu can be
broken into substrings such that each substring is inA. The problem is that,
if u 2 A � , the �nite automaton has to determine into how many substrings,
and where, the stringu has to be broken; it has to do this during one single
scan of the stringu.

As we mentioned already, ifA and B are regular languages, then both
AB and A � are also regular. In order to prove these claims, we will introduce
a more general type of �nite automaton.

The �nite automata that we have seen so far aredeterministic. This
means the following:

� If the �nite automaton M is in state r and if it reads the symbola,
then M switches from stater to the uniquely de�ned state � (r; a).

From now on, we will call such a �nite automaton adeterministic �nite
automaton (DFA). In the next section, we will de�ne the notion of anonde-
terministic �nite automaton (NFA) . For such an automaton, there are zero
or more possible states to switch to. At �rst sight, nondeterministic �nite

2.4. Nondeterministic �nite automata 35

automata seem to be more powerful than their deterministic counterparts.
We will prove, however, that DFAs have the same power as NFAs. Aswe will
see, using this fact, it will be easy to prove that the class of regularlanguages
is closed under the concatenation and star operations.

2.4 Nondeterministic �nite automata

We start by giving three examples of nondeterministic �nite automata. These
examples will show the di�erence between this type of automata andthe
deterministic versions that we have considered in the previous sections. After
these examples, we will give a formal de�nition of a nondeterministic �nite
automaton.

2.4.1 A �rst example

Consider the following state diagram:

q1 q2 q3 q4

0;1

1 0;e 1
0;1

You will notice three di�erences with the �nite automata that we have
seen until now. First, if the automaton is in stateq1 and reads the symbol 1,
then it has two options: Either it stays in stateq1, or it switches to stateq2.
Second, if the automaton is in stateq2, then it can switch to stateq3 without
reading a symbol; this is indicated by the edge having the empty string� as
label. Third, if the automaton is in state q3 and reads the symbol 0, then it
cannot continue.

Let us see what this automaton can do when it gets the string 010110 as
input. Initially, the automaton is in the start state q1.

� Since the �rst symbol in the input string is 0, the automaton stays in
state q1 after having read this symbol.

� The second symbol is 1, and the automaton can either stay in stateq1

or switch to state q2.

36 Chapter 2. Finite Automata and Regular Languages

{ If the automaton stays in stateq1, then it is still in this state after
having read the third symbol.

{ If the automaton switches to stateq2, then it again has two op-
tions:

� Either read the third symbol in the input string, which is 0,
and switch to stateq3,

� or switch to state q3, without reading the third symbol.

If we continue in this way, then we see that, for the input string 010110,
there are seven possible computations. All these computations are given in
the �gure below.

q1 q1
0

1

q1 q1
0

1

1

q1

q2

1

1

q1

q2

q1
0

0

e

q3

q3 hang

hang

e
q3 q4

1 0 q4

1

q2

0

e

q3

q3 hang

1 q4
1 q4 q4

0

Consider the lowest path in the �gure above:

� When reading the �rst symbol, the automaton stays in stateq1.

� When reading the second symbol, the automaton switches to stateq2.

� The automaton does not read the third symbol (equivalently, it \reads"
the empty string �), and switches to stateq3. At this moment, the

2.4. Nondeterministic �nite automata 37

automaton cannot continue: The third symbol is 0, but there is no
edge leavingq3 that is labeled 0, and there is no edge leavingq3 that
is labeled� . Therefore, the computationhangsat this point.

From the �gure, you can see that, out of the seven possible computations,
exactly two end in the accept stateq4 (after the entire input string 010110 has
been read). We say that the automaton accepts the string 010110, because
there is at least one computation that ends in the accept state.

Now consider the input string 010. In this case, there are three possible
computations:

1. q1
0! q1

1! q1
0! q1

2. q1
0! q1

1! q2
0! q3

3. q1
0! q1

1! q2
�! q3 ! hang

None of these computations ends in the accept state (after the entire input
string 010 has been read). Therefore, we say that the automaton rejects the
input string 010.

The state diagram given above is an example of a nondeterministic �nite
automaton (NFA). Informally, an NFA accepts a string, if there exists at least
one path in the state diagram that (i) starts in the start state, (ii) does not
hang before the entire string has been read, and (iii) ends in an accept state.
A string for which (i), (ii), and (iii) does not hold is rejected by the NFA.

The NFA given above accepts all binary strings that contain 101 or 11 as
a substring. All other binary strings are rejected.

2.4.2 A second example

Let A be the language

A = f w 2 f 0; 1g� : w has a 1 in the third position from the rightg:

The following state diagram de�nes an NFA that accepts all strings that are
in A, and rejects all strings that are not inA.

q1 q2 q3 q4

0;1

1 0;1 0;1

38 Chapter 2. Finite Automata and Regular Languages

This NFA does the following. If it is in the start state q1 and reads the
symbol 1, then it either stays in stateq1 or it \guesses" that this symbol
is the third symbol from the right in the input string. In the latter case,
the NFA switches to state q2, and then it \veri�es" that there are indeed
exactly two remaining symbols in the input string. If there are more than
two remaining symbols, then the NFA hangs (in stateq4) after having read
the next two symbols.

Observe how this guessing mechanism is used: The automaton can only
read the input string once, from left to right. Hence, it does not know when
it reaches the third symbol from the right. When the NFA reads a 1,it can
guess that this is the third symbol from the right; after having made this
guess, it veri�es whether or not the guess was correct.

In Section 2.2.3, we have seen a DFA for the same languageA. Observe
that the NFA has a much simpler structure than the DFA.

2.4.3 A third example

Consider the following state diagram, which de�nes an NFA whose alphabet
is f 0g.

e

e

0

0

0

0
0

This NFA accepts the language

A = f 0k : k � 0 mod 2 ork � 0 mod 3g;

where 0k is the string consisting ofk many 0s. (If k = 0, then 0k = � .)
Observe thatA is the union of the two languages

A1 = f 0k : k � 0 mod 2g

2.4. Nondeterministic �nite automata 39

and
A2 = f 0k : k � 0 mod 3g:

The NFA basically consists of two DFAs: one of these acceptsA1, whereas the
other acceptsA2. Given an input string w, the NFA has to decide whether
or not w 2 A, which is equivalent to deciding whether or notw 2 A1 or
w 2 A2. The NFA makes this decision in the following way: At the start, it
\guesses" whether (i) it is going to check whether or notw 2 A1 (i.e., the
length of w is even), or (ii) it is going to check whether or notw 2 A2 (i.e.,
the length of w is a multiple of 3). After having made the guess, it veri�es
whether or not the guess was correct. Ifw 2 A, then there exists a way of
making the correct guess and verifying thatw is indeed an element ofA (by
ending in an accept state). Ifw 62A, then no matter which guess is made,
the NFA will never end in an accept state.

2.4.4 De�nition of nondeterministic �nite automaton

The previous examples give you an idea what nondeterministic �nite au-
tomata are and how they work. In this section, we give a formal de�nition
of these automata.

For any alphabet �, we de�ne � � to be the set

� � = � [f � g:

Recall the notion of apower set: For any setQ, the power set ofQ, denoted
by P(Q), is the set of all subsets ofQ, i.e.,

P(Q) = f R : R � Qg:

De�nition 2.4.1 A nondeterministic �nite automaton (NFA) is a 5-tuple
M = (Q; � ; �; q; F), where

1. Q is a �nite set, whose elements are calledstates,

2. � is a �nite set, called the alphabet; the elements of � are calledsymbols,

3. � : Q � � � ! P (Q) is a function, called thetransition function,

4. q is an element ofQ; it is called the start state,

5. F is a subset ofQ; the elements ofF are calledaccept states.

40 Chapter 2. Finite Automata and Regular Languages

As for DFAs, the transition function � can be thought of as the \program"
of the �nite automaton M = (Q; � ; �; q; F):

� Let r 2 Q, and let a 2 � � . Then � (r; a) is a (possibly empty) subset of
Q. If the NFA M is in state r , and if it reads a (where a may be the
empty string �), then M can switch from stater to any state in � (r; a).
If � (r; a) = ; , then M cannot continue and the computation hangs.

The example given in Section 2.4.1 is an NFA, whereQ = f q1; q2; q3; q4g,
� = f 0; 1g, the start state is q1, the set of accept states isF = f q4g, and the
transition function � is given by the following table:

0 1 �
q1 f q1g f q1; q2g ;
q2 f q3g ; f q3g
q3 ; f q4g ;
q4 f q4g f q4g ;

De�nition 2.4.2 Let M = (Q; � ; �; q; F) be an NFA, and let w 2 � � . We
say that M acceptsw, if w can be written asw = y1y2 : : : ym , whereyi 2 � �

for all i with 1 � i � m, and there exists a sequencer0; r1; : : : ; rm of states
in Q, such that

� r0 = q,

� r i +1 2 � (r i ; yi +1), for i = 0; 1; : : : ; m � 1, and

� rm 2 F .

Otherwise, we say thatM rejects the string w.

The NFA in the example in Section 2.4.1 accepts the string 01100. This
can be seen by taking

� w = 01� 100 = y1y2y3y4y5y6, and

� r0 = q1, r1 = q1, r2 = q2, r3 = q3, r4 = q4, r5 = q4, and r6 = q4.

De�nition 2.4.3 Let M = (Q; � ; �; q; F) be an NFA. The languageL(M)
acceptedby M is de�ned as

L(M) = f w 2 � � : M acceptsw g:

2.5. Equivalence of DFAs and NFAs 41

2.5 Equivalence of DFAs and NFAs

You may have the impression that nondeterministic �nite automata are more
powerful than deterministic �nite automata. In this section, we will show
that this is not the case. That is, we will prove that a language can be
accepted by a DFA if and only if it can be accepted by an NFA. In order
to prove this, we will show how to convert an arbitrary NFA to a DFA that
accepts the same language.

What about converting a DFA to an NFA? Well, there is (almost) nothing
to do, because a DFA is also an NFA. This is not quite true, because

� the transition function of a DFA maps a state and a symbol to a state,
whereas

� the transition function of an NFA maps a state and a symbol to aset
of zero or more states.

The formal conversion of a DFA to an NFA is done as follows: LetM =
(Q; � ; �; q; F) be a DFA. Recall that � is a function � : Q � � ! Q. We
de�ne the function � 0 : Q � � � ! P (Q) as follows. For anyr 2 Q and for
any a 2 � � ,

� 0(r; a) =
�

f � (r; a)g if a 6= � ,
; if a = � .

Then N = (Q; � ; � 0; q; F) is an NFA, whose behavior is exactly the same as
that of the DFA M ; the easiest way to see this is by observing that the state
diagrams ofM and N are equal. Therefore, we haveL(M) = L(N).

In the rest of this section, we will show how to convert an NFA to a DFA:

Theorem 2.5.1 Let N = (Q; � ; �; q; F) be a nondeterministic �nite automa-
ton. There exists a deterministic �nite automatonM , such that L(M) =
L(N).

Proof. Recall that the NFA N can (in general) perform more than one
computation on a given input string. The idea of the proof is to construct a
DFA M that runs all these di�erent computations simultaneously. (We have
seen this idea already in the proof of Theorem 2.3.1.) To be more precise,
the DFA M will have the following property:

� the state that M is in after having read an initial part of the input
string corresponds exactly to the set of all states thatN can reach
after having read the same part of the input string.

42 Chapter 2. Finite Automata and Regular Languages

We start by presenting the conversion for the case whenN does not
contain � -transitions. In other words, the state diagram ofN does not contain
any edge that has� as a label. (Later, we will extend the conversion to the
general case.) Let the DFAM be de�ned asM = (Q0; � ; � 0; q0; F 0), where

� the set Q0 of states is equal toQ0 = P(Q); observe that jQ0j = 2 jQj,

� the start state q0 is equal toq0 = f qg; soM has the \same" start state
asN ,

� the set F 0 of accept states is equal to the set of all elementsR of Q0

having the property that R contains at least one accept state ofN , i.e.,

F 0 = f R 2 Q0 : R \ F 6= ;g ;

� the transition function � 0 : Q0 � � ! Q0 is de�ned as follows: For each
R 2 Q0 and for eacha 2 �,

� 0(R; a) =
[

r 2 R

� (r; a):

Let us see what the transition function� 0 of M does. First observe that,
sinceN is an NFA, � (r; a) is a subset ofQ. This implies that � 0(R; a) is the
union of subsets ofQ and, therefore, also a subset ofQ. Hence,� 0(R; a) is
an element ofQ0.

The set � (r; a) is equal to the set of all states of the NFAN that can be
reached from stater by reading the symbola. We take the union of these
sets � (r; a), where r ranges over all elements ofR, to obtain the new set
� 0(R; a). This new set is the state that the DFAM reaches from stateR, by
reading the symbola.

In this way, we obtain the correspondence that was given in the beginning
of this proof.

After this warming-up, we can consider the general case. In other words,
from now on, we allow� -transitions in the NFA N . The DFA M is de�ned as
above, except that the start stateq0 and the transition function � 0 have to be
modi�ed. Recall that a computation of the NFA N consists of the following:

1. Start in the start state q and make zero or more� -transitions.

2. Read one \real" symbol of � and move to a new state (or stay in the
current state).

2.5. Equivalence of DFAs and NFAs 43

3. Make zero or more� -transitions.

4. Read one \real" symbol of � and move to a new state (or stay in the
current state).

5. Make zero or more� -transitions.

6. Etc.

The DFA M will simulate this computation in the following way:

� Simulate 1. in one single step. As we will see below, this simulation is
implicitly encoded in the de�nition of the start state q0 of M .

� Simulate 2. and 3. in one single step.

� Simulate 4. and 5. in one single step.

� Etc.

Thus, in one step, the DFA M simulates the reading of one \real" symbol of
�, followed by making zero or more � -transitions.

To formalize this, we need the notion of� -closure. For any state r of the
NFA N , the � -closure ofr , denoted byC� (r), is de�ned to be the set of all
states ofN that can be reached fromr , by making zero or more� -transitions.
For any state R of the DFA M (hence,R � Q), we de�ne

C� (R) =
[

r 2 R

C� (r):

How do we de�ne the start stateq0 of the DFA M ? Before the NFAN
reads its �rst \real" symbol of �, it makes zero or more � -transitions. In
other words, at the moment whenN reads the �rst symbol of �, it can be
in any state of C� (q). Therefore, we de�neq0 to be

q0 = C� (q) = C� (f qg):

How do we de�ne the transition function� 0 of the DFA M ? Assume that
M is in state R, and reads the symbola. At this moment, the NFA N would
have been in any stater of R. By reading the symbola, N can switch to
any state in � (r; a), and then make zero or more� -transitions. Hence, the

44 Chapter 2. Finite Automata and Regular Languages

NFA can switch to any state in the setC� (� (r; a)). Based on this, we de�ne
� 0(R; a) to be

� 0(R; a) =
[

r 2 R

C� (� (r; a)) :

To summarize, the NFA N = (Q; � ; �; q; F) is converted to the DFA
M = (Q0; � ; � 0; q0; F 0), where

� Q0 = P(Q),

� q0 = C� (f qg),

� F 0 = f R 2 Q0 : R \ F 6= ;g ,

� � 0 : Q0 � � ! Q0 is de�ned as follows: For eachR 2 Q0 and for each
a 2 �,

� 0(R; a) =
[

r 2 R

C� (� (r; a)) :

The results proved until now can be summarized in the following theorem.

Theorem 2.5.2 Let A be a language. ThenA is regular if and only if there
exists a nondeterministic �nite automaton that acceptsA.

2.5.1 An example

Consider the NFAN = (Q; � ; �; q; F), whereQ = f 1; 2; 3g, � = f a; bg, q = 1,
F = f 2g, and � is given by the following table:

a b �
1 f 3g ; f 2g
2 f 1g ; ;
3 f 2g f 2; 3g ;

The state diagram ofN is as follows:

2.5. Equivalence of DFAs and NFAs 45

1 2

3

a

a

�

b

a; b

We will show how to convert this NFA N to a DFA M that accepts the
same language. Following the proof of Theorem 2.5.1, the DFAM is speci�ed
by M = (Q0; � ; � 0; q0; F 0), where each of the components is de�ned below.

� Q0 = P(Q). Hence,

Q0 = f; ; f 1g; f 2g; f 3g; f 1; 2g; f 1; 3g; f 2; 3g; f 1; 2; 3gg:

� q0 = C� (f qg). Hence, the start stateq0 of M is the set of all states of
N that can be reached fromN 's start state q = 1, by making zero or
more � -transitions. We obtain

q0 = C� (f qg) = C� (f 1g) = f 1; 2g:

� F 0 = f R 2 Q0 : R \ F 6= ;g . Hence, the accept states ofM are those
states that contain the accept state 2 ofN . We obtain

F 0 = ff 2g; f 1; 2g; f 2; 3g; f 1; 2; 3gg:

� � 0 : Q0 � � ! Q0 is de�ned as follows: For eachR 2 Q0 and for each
a 2 �,

� 0(R; a) =
[

r 2 R

C� (� (r; a)) :

46 Chapter 2. Finite Automata and Regular Languages

In this example � 0 is given by

� 0(; ; a) = ; � 0(; ; b) = ;

� 0(f 1g; a) = f 3g � 0(f 1g; b) = ;

� 0(f 2g; a) = f 1; 2g � 0(f 2g; b) = ;

� 0(f 3g; a) = f 2g � 0(f 3g; b) = f 2; 3g

� 0(f 1; 2g; a) = f 1; 2; 3g � 0(f 1; 2g; b) = ;

� 0(f 1; 3g; a) = f 2; 3g � 0(f 1; 3g; b) = f 2; 3g

� 0(f 2; 3g; a) = f 1; 2g � 0(f 2; 3g; b) = f 2; 3g

� 0(f 1; 2; 3g; a) = f 1; 2; 3g � 0(f 1; 2; 3g; b) = f 2; 3g

The state diagram of the DFAM is as follows:

/0 f 1g

f 2g

f 3gf 1;2g

f 2;3g f 1;3g

f 1;2;3g

a;b

b

a

b

a a

b

a;ba

b

b

a

b

a

We make the following observations:

2.6. Closure under the regular operations 47

� The statesf 1g and f 1; 3g do not have incoming edges. Therefore, these
two states cannot be reached from the start statef 1; 2g.

� The state f 3g has only one incoming edge; it comes from the state
f 1g. Sincef 1g cannot be reached from the start state,f 3g cannot be
reached from the start state.

� The state f 2g has only one incoming edge; it comes from the state
f 3g. Sincef 3g cannot be reached from the start state,f 2g cannot be
reached from the start state.

Hence, we can remove the four statesf 1g, f 2g, f 3g, and f 1; 3g. The
resulting DFA accepts the same language as the DFA above. This leads
to the following state diagram, which depicts a DFA that accepts thesame
language as the NFAN :

/0

f 1;2g

f 2;3g

f 1;2;3g

a;b

a

b

b

a

b

a

48 Chapter 2. Finite Automata and Regular Languages

2.6 Closure under the regular operations

In Section 2.3, we have de�ned the regular operations union, concatenation,
and star. We proved in Theorem 2.3.1 that the union of two regular lan-
guages is a regular language. We also explained why it is not clear that the
concatenation of two regular languages is regular, and that the star of a reg-
ular language is regular. In this section, we will see that the conceptof NFA,
together with Theorem 2.5.2, can be used to give a simple proof of thefact
that the regular languages are indeed closed under the regular operations.
We start by giving an alternative proof of Theorem 2.3.1:

Theorem 2.6.1 The set of regular languages is closed under the union op-
eration, i.e., if A1 and A2 are regular languages over the same alphabet� ,
then A1 [A2 is also a regular language.

Proof. Since A1 is regular, there is, by Theorem 2.5.2, an NFAM1 =
(Q1; � ; � 1; q1; F1), such that A1 = L(M1). Similarly, there is an NFA M2 =
(Q2; � ; � 2; q2; F2), such that A2 = L(M2). We may assume thatQ1 \ Q2 = ; ,
because otherwise, we can give new \names" to the states ofQ1 and Q2.
From these two NFAs, we will construct an NFAM = (Q; � ; �; q0; F), such
that L(M) = A1 [A2. The construction is illustrated in Figure 2.1. The
NFA M is de�ned as follows:

1. Q = f q0g [Q1 [Q2, whereq0 is a new state.

2. q0 is the start state of M .

3. F = F1 [F2.

4. � : Q � � � ! P (Q) is de�ned as follows: For anyr 2 Q and for any
a 2 � � ,

� (r; a) =

8
>><

>>:

� 1(r; a) if r 2 Q1,
� 2(r; a) if r 2 Q2,
f q1; q2g if r = q0 and a = � ,
; if r = q0 and a 6= � .

2.6. Closure under the regular operations 49

q1

M1

M2

q2

q0

q1

q2

e

e

M

Figure 2.1: The NFA M acceptsL(M1) [L(M2).

Theorem 2.6.2 The set of regular languages is closed under the concatena-
tion operation, i.e., if A1 and A2 are regular languages over the same alphabet
� , then A1A2 is also a regular language.

Proof. Let M1 = (Q1; � ; � 1; q1; F1) be an NFA, such that A1 = L(M1).
Similarly, let M2 = (Q2; � ; � 2; q2; F2) be an NFA, such that A2 = L(M2).
As in the proof of Theorem 2.6.1, we may assume thatQ1 \ Q2 = ; . We
will construct an NFA M = (Q; � ; �; q0; F), such that L(M) = A1A2. The
construction is illustrated in Figure 2.2. The NFAM is de�ned as follows:

1. Q = Q1 [Q2.

2. q0 = q1.

3. F = F2.

50 Chapter 2. Finite Automata and Regular Languages

q1

M1 M2

q2

q2
e

e

e

q0

M

Figure 2.2: The NFA M acceptsL(M1)L(M2).

4. � : Q � � � ! P (Q) is de�ned as follows: For anyr 2 Q and for any
a 2 � � ,

� (r; a) =

8
>><

>>:

� 1(r; a) if r 2 Q1 and r 62F1,
� 1(r; a) if r 2 F1 and a 6= � ,
� 1(r; a) [f q2g if r 2 F1 and a = � ,
� 2(r; a) if r 2 Q2.

Theorem 2.6.3 The set of regular languages is closed under the star oper-
ation, i.e., if A is a regular language, thenA � is also a regular language.

Proof. Let � be the alphabet of A and let N = (Q1; � ; � 1; q1; F1) be an
NFA, such that A = L(N). We will construct an NFA M = (Q; � ; �; q0; F),
such that L(M) = A � . The construction is illustrated in Figure 2.3. The
NFA M is de�ned as follows:

2.6. Closure under the regular operations 51

q1

N

q1

q0

e

e

e

e

M

Figure 2.3: The NFA M accepts(L(N)) � .

1. Q = f q0g [Q1, whereq0 is a new state.

2. q0 is the start state of M .

3. F = f q0g [F1. (Since� 2 A � , q0 has to be an accept state.)

4. � : Q � � � ! P (Q) is de�ned as follows: For anyr 2 Q and for any
a 2 � � ,

� (r; a) =

8
>>>><

>>>>:

� 1(r; a) if r 2 Q1 and r 62F1,
� 1(r; a) if r 2 F1 and a 6= � ,
� 1(r; a) [f q1g if r 2 F1 and a = � ,
f q1g if r = q0 and a = � ,
; if r = q0 and a 6= � .

In the �nal theorem of this section, we mention (without proof) two more
closure properties of the regular languages:

Theorem 2.6.4 The set of regular languages is closed under the complement
and intersection operations:

1. If A is a regular language over the alphabet� , then the complement

A = f w 2 � � : w 62Ag

is also a regular language.

52 Chapter 2. Finite Automata and Regular Languages

2. If A1 and A2 are regular languages over the same alphabet� , then the
intersection

A1 \ A2 = f w 2 � � : w 2 A1 and w 2 A2g

is also a regular language.

2.7 Regular expressions

In this section, we present regular expressions, which are a meansto describe
languages. As we will see, the class of languages that can be described by
regular expressions coincides with the class of regular languages.

Before formally de�ning the notion of a regular expression, we give some
examples. Consider the expression

(0 [1)01� :

The language described by this expression is the set of all binary strings

1. that start with either 0 or 1 (this is indicated by (0 [1)),

2. for which the second symbol is 0 (this is indicated by 0), and

3. that end with zero or more 1s (this is indicated by 1�).

That is, the language described by this expression is

f 00; 001; 0011; 00111; : : : ; 10; 101; 1011; 10111; : : :g:

Here are some more examples (in all cases, the alphabet isf 0; 1g):

� The languagef w : w contains exactly two 0sg is described by the ex-
pression

1� 01� 01� :

� The languagef w : w contains at least two 0sg is described by the ex-
pression

(0 [1)� 0(0 [1)� 0(0 [1)� :

� The languagef w : 1011 is a substring ofwg is described by the ex-
pression

(0 [1)� 1011(0[1)� :

2.7. Regular expressions 53

� The languagef w : the length of w is eveng is described by the expres-
sion

((0 [1)(0 [1))� :

� The languagef w : the length of w is oddg is described by the expres-
sion

(0 [1) ((0 [1)(0 [1))� :

� The languagef 1011; 0g is described by the expression

1011[0:

� The languagef w : the �rst and last symbols of w are equalg is de-
scribed by the expression

0(0 [1)� 0 [1(0 [1)� 1 [0 [1:

After these examples, we give a formal (and inductive) de�nition ofregular
expressions:

De�nition 2.7.1 Let � be a non-empty alphabet.

1. � is a regular expression.

2. ; is a regular expression.

3. For eacha 2 �, a is a regular expression.

4. If R1 and R2 are regular expressions, thenR1 [R2 is a regular expres-
sion.

5. If R1 and R2 are regular expressions, thenR1R2 is a regular expression.

6. If R is a regular expression, thenR� is a regular expression.

You can regard 1., 2., and 3. as being the \building blocks" of regular
expressions. Items 4., 5., and 6. give rules that can be used to combine
regular expressions into new (and \larger") regular expressions.To give an
example, we claim that

(0 [1)� 101(0[1)�

is a regular expression (where the alphabet � is equal tof 0; 1g). In order
to prove this, we have to show that this expression can be \built" using the
\rules" given in De�nition 2.7.1. Here we go:

54 Chapter 2. Finite Automata and Regular Languages

� By 3., 0 is a regular expression.

� By 3., 1 is a regular expression.

� Since 0 and 1 are regular expressions, by 4., 0[1 is a regular expression.

� Since 0[1 is a regular expression, by 6., (0[1)� is a regular expression.

� Since 1 and 0 are regular expressions, by 5., 10 is a regular expression.

� Since 10 and 1 are regular expressions, by 5., 101 is a regular expression.

� Since (0[1)� and 101 are regular expressions, by 5., (0[1)� 101 is a
regular expression.

� Since (0[1)� 101 and (0[1)� are regular expressions, by 5., (0[
1)� 101(0[1)� is a regular expression.

Next we de�ne the language that isdescribedby a regular expression:

De�nition 2.7.2 Let � be a non-empty alphabet.

1. The regular expression� describes the languagef � g.

2. The regular expression; describes the language; .

3. For eacha 2 �, the regular expression a describes the languagef ag.

4. Let R1 and R2 be regular expressions and letL1 and L2 be the lan-
guages described by them, respectively. The regular expressionR1 [R2

describes the languageL1 [L2.

5. Let R1 andR2 be regular expressions and letL1 andL2 be the languages
described by them, respectively. The regular expressionR1R2 describes
the languageL1L2.

6. Let R be a regular expression and letL be the language described by
it. The regular expressionR� describes the languageL � .

We consider some examples:

� The regular expression (0[�)(1 [�) describes the languagef 01; 0; 1; � g.

2.7. Regular expressions 55

� The regular expression 0[� describes the languagef 0; � g, whereas the
regular expression 1� describes the languagef �; 1; 11; 111; : : :g. There-
fore, the regular expression (0[�)1� describes the language

f 0; 01; 011; 0111; : : : ; �; 1; 11; 111; : : :g:

Observe that this language is also described by the regular expression
01� [1� .

� The regular expression 1� ; describes the empty language, i.e., the lan-
guage; . (You should convince yourself that this is correct.)

� The regular expression; � describes the languagef � g.

De�nition 2.7.3 Let R1 and R2 be regular expressions and letL1 and L2

be the languages described by them, respectively. IfL1 = L2 (i.e., R1 and
R2 describe the same language), then we will writeR1 = R2.

Hence, even though (0[�)1� and 01� [1� are di�erent regular expressions,
we write

(0 [�)1� = 01� [1� ;

because they describe the same language.
In Section 2.8.2, we will show that every regular language can be described

by a regular expression. The proof of this fact is purely algebraic and uses
the following algebraic identities involving regular expressions.

Theorem 2.7.4 Let R1, R2, and R3 be regular expressions. The following
identities hold:

1. R1; = ; R1 = ; .

2. R1� = �R 1 = R1.

3. R1 [; = ; [R1 = R1.

4. R1 [R1 = R1.

5. R1 [R2 = R2 [R1.

6. R1(R2 [R3) = R1R2 [R1R3.

56 Chapter 2. Finite Automata and Regular Languages

7. (R1 [R2)R3 = R1R3 [R2R3.

8. R1(R2R3) = (R1R2)R3.

9. ; � = � .

10. � � = � .

11. (� [R1)� = R�
1.

12. (� [R1)(� [R1)� = R�
1.

13. R�
1(� [R1) = (� [R1)R�

1 = R�
1.

14. R�
1R2 [R2 = R�

1R2.

15. R1(R2R1)� = (R1R2)� R1.

16. (R1 [R2)� = (R�
1R2)� R�

1 = (R�
2R1)� R�

2.

We will not present the (boring) proofs of these identities, but urge you
to convince yourself informally that they make perfect sense. To give an
example, we mentioned above that

(0 [�)1� = 01� [1� :

We can verify this identity in the following way:

(0 [�)1� = 01� [� 1� (by identity 7)

= 01� [1� (by identity 2)

2.8 Equivalence of regular expressions and reg-
ular languages

In the beginning of Section 2.7, we mentioned the following result:

Theorem 2.8.1 Let L be a language. ThenL is regular if and only if there
exists a regular expression that describesL.

The proof of this theorem consists of two parts:

2.8. Equivalence of regular expressions and regular langua ges 57

� In Section 2.8.1, we will prove that every regular expression describes
a regular language.

� In Section 2.8.2, we will prove that every DFAM can be converted to
a regular expression that describes the languageL(M).

These two results will prove Theorem 2.8.1.

2.8.1 Every regular expression describes a regular lan-
guage

Let R be an arbitrary regular expression over the alphabet �. We will prove
that the language described byR is a regular language. The proof is by
induction on the structure of R (i.e., by induction on the way R is \built"
using the \rules" given in De�nition 2.7.1).

The �rst base case: Assume that R = � . Then R describes the lan-
guagef � g. In order to prove that this language is regular, it su�ces, by
Theorem 2.5.2, to construct an NFAM = (Q; � ; �; q; F) that accepts this
language. This NFA is obtained by de�ningQ = f qg, q is the start state,
F = f qg, and � (q; a) = ; for all a 2 � � . The �gure below gives the state
diagram of M :

q

The second base case: Assume thatR = ; . Then R describes the language
; . In order to prove that this language is regular, it su�ces, by Theorem 2.5.2,
to construct an NFA M = (Q; � ; �; q; F) that accepts this language. This
NFA is obtained by de�ning Q = f qg, q is the start state, F = ; , and
� (q; a) = ; for all a 2 � � . The �gure below gives the state diagram ofM :

q

The third base case: Let a 2 � and assume that R = a. Then R describes
the languagef ag. In order to prove that this language is regular, it su�ces,
by Theorem 2.5.2, to construct an NFAM = (Q; � ; �; q1; F) that accepts

58 Chapter 2. Finite Automata and Regular Languages

this language. This NFA is obtained by de�ningQ = f q1; q2g, q1 is the start
state, F = f q2g, and

� (q1; a) = f q2g;

� (q1; b) = ; for all b2 � � n f ag,

� (q2; b) = ; for all b2 � � .

The �gure below gives the state diagram ofM :

q1 q2
a

The �rst case of the induction step: Assume that R = R1 [R2, where
R1 and R2 are regular expressions. LetL1 and L2 be the languages described
by R1 and R2, respectively, and assume thatL1 and L2 are regular. ThenR
describes the languageL1 [L2, which, by Theorem 2.6.1, is regular.

The second case of the induction step: Assume thatR = R1R2, where
R1 and R2 are regular expressions. LetL1 and L2 be the languages described
by R1 and R2, respectively, and assume thatL1 and L2 are regular. ThenR
describes the languageL1L2, which, by Theorem 2.6.2, is regular.

The third case of the induction step: Assume that R = (R1)� , where
R1 is a regular expression. LetL1 be the language described byR1 and
assume thatL1 is regular. ThenR describes the language (L1)� , which, by
Theorem 2.6.3, is regular.

This concludes the proof of the claim that every regular expressionde-
scribes a regular language.

To give an example, consider the regular expression

(ab[a)� ;

where the alphabet isf a; bg. We will prove that this regular expression de-
scribes a regular language, by constructing an NFA that accepts the language
described by this regular expression. Observe how the regular expression is
\built":

� Take the regular expressionsa and b, and combine them into the regular
expressionab.

2.8. Equivalence of regular expressions and regular langua ges 59

� Take the regular expressionsab and a, and combine them into the
regular expressionab[a.

� Take the regular expressionab[a, and transform it into the regular
expression (ab[a)� .

First, we construct an NFA M1 that accepts the language described by
the regular expressiona:

a
M1

Next, we construct an NFA M2 that accepts the language described by
the regular expressionb:

M2
b

Next, we apply the construction given in the proof of Theorem 2.6.2 to
M1 and M2. This gives an NFA M3 that accepts the language described by
the regular expressionab:

M3
a e b

Next, we apply the construction given in the proof of Theorem 2.6.1 to
M3 and M1. This gives an NFA M4 that accepts the language described by
the regular expressionab[a:

a e b

a

e

e

M4

Finally, we apply the construction given in the proof of Theorem 2.6.3
to M4. This gives an NFA M5 that accepts the language described by the
regular expression (ab[a)� :

60 Chapter 2. Finite Automata and Regular Languages

a e b

a

e

e

e

e

e

M5

2.8.2 Converting a DFA to a regular expression

In this section, we will prove that every DFAM can be converted to a regular
expression that describes the languageL(M). In order to prove this result,
we need to solve recurrence relations involving languages.

Solving recurrence relations

Let � be an alphabet, let B and C be \known" languages in � � such that
� 62B, and let L be an \unknown" language such that

L = BL [C:

Can we \solve" this equation forL? That is, can we expressL in terms of
B and C?

Consider an arbitrary string u in L. We are going to determine howu
looks like. Sinceu 2 L and L = BL [C, we know that u is a string in
BL [C. Hence, there are two possibilities foru.

1. u is an element ofC.

2. u is an element ofBL . In this case, there are stringsb 2 B and v 2 L
such that u = bv. Since� 62B, we haveb 6= � and, therefore,jvj < juj.
(Recall that jvj denotes the length, i.e., the number of symbols, of the
string v.) Since v is a string in L, which is equal toBL [C, v is a
string in BL [C. Hence, there are two possibilities forv.

2.8. Equivalence of regular expressions and regular langua ges 61

(a) v is an element ofC. In this case,

u = bv; whereb2 B and v 2 C; thus, u 2 BC.

(b) v is an element ofBL . In this case, there are stringsb0 2 B and
w 2 L such that v = b0w. Since � 62B, we haveb0 6= � and,
therefore, jwj < jvj. Sincew is a string in L, which is equal to
BL [C, w is a string in BL [C. Hence, there are two possibilities
for w.

i. w is an element ofC. In this case,

u = bb0w; whereb; b0 2 B and w 2 C; thus, u 2 BBC .

ii. w is an element ofBL . In this case, there are stringsb002 B
and x 2 L such that w = b00x. Since� 62B, we haveb006= �
and, therefore,jxj < jwj. Sincex is a string in L, which is
equal to BL [C, x is a string in BL [C. Hence, there are
two possibilities for x.
A. x is an element ofC. In this case,

u = bb0b00x; whereb; b0; b002 B and x 2 C; thus, u 2 BBBC .

B. x is an element ofBL . Etc., etc.

This process hopefully convinces you that any stringu in L can be written
as the concatenation of zero or more strings inB, followed by one string in
C. In fact, L consists of exactly those strings having this property:

Lemma 2.8.2 Let � be an alphabet, and letB , C, and L be languages in
� � such that� 62B and

L = BL [C:

Then
L = B � C:

Proof. First, we show that B � C � L. Let u be an arbitrary string in B � C.
Then u is the concatenation ofk strings of B , for somek � 0, followed by
one string ofC. We proceed by induction onk.

The base case is whenk = 0. In this case, u is a string in C. Hence,u is
a string in BL [C. SinceBL [C = L, it follows that u is a string in L.

62 Chapter 2. Finite Automata and Regular Languages

Now let k � 1. Then we can writeu = vwc, where v is a string in B ,
w is the concatenation ofk � 1 strings ofB , and c is a string of C. De�ne
y = wc. Observe that y is the concatenation ofk � 1 strings of B followed
by one string ofC. Therefore, by induction, the stringy is an element ofL.
Hence,u = vy, wherev is a string in B and y is a string in L. This shows
that u is a string in BL . Hence,u is a string in BL [C. SinceBL [C = L,
it follows that u is a string in L. This completes the proof thatB � C � L.

It remains to show that L � B � C. Let u be an arbitrary string in L,
and let ` be its length (i.e., ` is the number of symbols inu). We prove by
induction on ` that u is a string in B � C.

The base case is wheǹ= 0. Then u = � . Sinceu 2 L and L = BL [C,
u is a string in BL [C. Since� 62B, u cannot be a string inBL . Hence,u
must be a string inC. SinceC � B � C, it follows that u is a string in B � C.

Let ` � 1. If u is a string in C, then u is a string in B � C and we are done.
So assume thatu is not a string in C. Sinceu 2 L and L = BL [C, u is a
string in BL . Hence, there are stringsb 2 B and v 2 L such that u = bv.
Since� 62B, the length ofb is at least one; hence, the length ofv is less than
the length of u. By induction, v is a string in B � C. Hence,u = bv, where
b 2 B and v 2 B � C. This shows that u 2 B(B � C). SinceB(B � C) � B � C,
it follows that u 2 B � C.

Note that Lemma 2.8.2 holds forany languageB that does not contain
the empty string � . As an example, assume thatB = ; . Then the language
L satis�es the equation

L = BL [C = ; L [C:

Using Theorem 2.7.4, this equation becomes

L = ; [C = C:

We now show that Lemma 2.8.2 also implies thatL = C: Since � 62B,
Lemma 2.8.2 implies thatL = B � C, which, using Theorem 2.7.4, becomes

L = B � C = ; � C = �C = C:

The conversion

We will now use Lemma 2.8.2 to prove that every DFA can be convertedto
a regular expression.

2.8. Equivalence of regular expressions and regular langua ges 63

Let M = (Q; � ; �; q; F) be an arbitrary deterministic �nite automaton.
We will show that there exists a regular expression that describes the lan-
guageL(M).

For each stater 2 Q, we de�ne

L r = f w 2 � � : the path in the state diagram ofM that starts
in state r and that corresponds tow ends in a
state of F g.

In words, L r is the language accepted byM , if r were the start state.
We will show that each such languageL r can be described by a regular

expression. SinceL(M) = Lq, this will prove that L(M) can be described by
a regular expression.

The basic idea is to set up equations for the languagesL r , which we then
solve using Lemma 2.8.2. We claim that

L r =
[

a2 �

a � L � (r;a) if r 62F : (2.2)

Why is this true? Let w be a string in L r . Then the path P in the state
diagram of M that starts in state r and that corresponds tow ends in a
state of F . Sincer 62F , this path contains at least one edge. Letr 0 be the
state that follows the �rst state (i.e., r) of P. Then r 0 = � (r; b) for some
symbol b 2 �. Hence, b is the �rst symbol of w. Write w = bv, wherev is
the remaining part of w. Then the path P0 = P n f rg in the state diagram
of M that starts in state r 0 and that corresponds tov ends in a state ofF .
Therefore,v 2 L r 0 = L � (r;b) . Hence,

w 2 b� L � (r;b) �
[

a2 �

a � L � (r;a) :

Conversely, letw be a string in
S

a2 � a� L � (r;a) . Then there is a symbolb2 �
and a string v 2 L � (r;b) such that w = bv. Let P0 be the path in the state
diagram of M that starts in state � (r; b) and that corresponds tov. Since
v 2 L � (r;b) , this path ends in a state ofF . Let P be the path in the state
diagram ofM that starts in r , follows the edge to� (r; b), and then followsP0.
This path P corresponds tow and ends in a state ofF . Therefore,w 2 L r .
This proves the correctness of (2.2).

64 Chapter 2. Finite Automata and Regular Languages

Similarly, we can prove that

L r = � [

[

a2 �

a � L � (r;a)

!

if r 2 F : (2.3)

So we now have a set of equations in the \unknowns"L r , for r 2 Q. The
number of equations is equal to the size ofQ. In other words, the number
of equations is equal to the number of unknowns. The regular expression for
L(M) = Lq is obtained by solving these equations using Lemma 2.8.2.

Of course, we have to convince ourselves that these equations have a so-
lution for any given DFA. Before we deal with this issue, we give an example.

An example

Consider the deterministic �nite automaton M = (Q; � ; �; q0; F), whereQ =
f q0; q1; q2g, � = f a; bg, q0 is the start state, F = f q2g, and � is given in the
state diagram below. We show how to obtain the regular expression that
describes the language accepted byM .

q0

q1

q2a

aa

b

b

b

For this case, (2.2) and (2.3) give the following equations:
8
<

:

Lq0 = a � Lq0 [b� Lq2

Lq1 = a � Lq0 [b� Lq1

Lq2 = � [a � Lq1 [b� Lq0

2.8. Equivalence of regular expressions and regular langua ges 65

In the third equation, Lq2 is expressed in terms ofLq0 and Lq1 . Hence, if we
substitute the third equation into the �rst one, and use Theorem 2.7.4, then
we get

Lq0 = a � Lq0 [b� (� [a � Lq1 [b� Lq0)

= (a [bb) � Lq0 [ba� Lq1 [b:

We obtain the following set of equations.

�
Lq0 = (a [bb) � Lq0 [ba� Lq1 [b
Lq1 = b� Lq1 [a � Lq0

Let L = Lq1 , B = b, and C = a � Lq0 . Then � 62B and the second equation
readsL = BL [C. Hence, by Lemma 2.8.2,

Lq1 = L = B � C = b� a � Lq0 :

If we substitute Lq1 into the �rst equation, then we get (again using Theo-
rem 2.7.4)

Lq0 = (a [bb) � Lq0 [ba� b� a � Lq0 [b

= (a [bb[bab� a)Lq0 [b:

Again applying Lemma 2.8.2, this time withL = Lq0 , B = a[bb[bab� a and
C = b, gives

Lq0 = (a [bb[bab� a)� b:

Thus, the regular expression that describes the language accepted by M is

(a [bb[bab� a)� b:

Completing the correctness of the conversion

It remains to prove that, for any DFA, the system of equations (2.2) and (2.3)
can be solved. This will follow from the following (more general) lemma.
(You should verify that the equations (2.2) and (2.3) are in the formas
speci�ed in this lemma.)

66 Chapter 2. Finite Automata and Regular Languages

Lemma 2.8.3 Let n � 1 be an integer and, for1 � i � n and 1 � j � n,
let B ij and Ci be regular expressions such that� 62B ij . Let L1; L2; : : : ; Ln be
languages that satisfy

L i =

n[

j =1

B ij L j

!

[Ci for 1 � i � n.

Then L1 can be expressed as a regular expression only involving the regular
expressionsB ij and Ci .

Proof. The proof is by induction onn. The base case is whenn = 1. In
this case, we have

L1 = B11L1 [C1:

Since � 62B11, it follows from Lemma 2.8.2 thatL1 = B �
11C1. This proves

the base case.
Let n � 2 and assume the lemma is true forn � 1. We have

Ln =

n[

j =1

Bnj L j

!

[Cn

= Bnn Ln [

n� 1[

j =1

Bnj L j

!

[Cn :

Since� 62Bnn , it follows from Lemma 2.8.2 that

Ln = B �
nn

n� 1[

j =1

Bnj L j

!

[Cn

!

= B �
nn

n� 1[

j =1

Bnj L j

!

[B �
nn Cn

=

n� 1[

j =1

B �
nn Bnj L j

!

[B �
nn Cn

2.9. The pumping lemma and nonregular languages 67

By substituting this equation for Ln into the equations forL i , 1 � i � n � 1,
we obtain

L i =

n[

j =1

B ij L j

!

[Ci

= B in Ln [

n� 1[

j =1

B ij L j

!

[Ci

=

n� 1[

j =1

(B in B �
nn Bnj [B ij) L j

!

[B in B �
nn Cn [Ci :

Thus, we have obtainedn � 1 equations in L1; L2; : : : ; Ln� 1. Since � 62
B in B �

nn Bnj [B ij , it follows from the induction hypothesis that L1 can be
expressed as a regular expression only involving the regular expressionsB ij

and Ci .

2.9 The pumping lemma and nonregular lan-
guages

In the previous sections, we have seen that the class of regular languages is
closed under various operations, and that these languages can bedescribed by
(deterministic or nondeterministic) �nite automata and regular expressions.
These properties helped in developing techniques for showing that alanguage
is regular. In this section, we will present a tool that can be used toprove
that certain languages arenot regular. Observe that for a regular language,

1. the amount of memory that is needed to determine whether or not a
given string is in the language is �nite and independent of the length
of the string, and

2. if the language consists of an in�nite number of strings, then thislan-
guage should contain in�nite subsets having a fairly repetitive struc-
ture.

Intuitively, languages that do not follow 1. or 2. should be nonregular. For
example, consider the language

f 0n1n : n � 0g:

68 Chapter 2. Finite Automata and Regular Languages

This language should be nonregular, because it seems unlikely that a DFA can
remember how many 0s it has seen when it has reached the border between
the 0s and the 1s. Similarly the language

f 0n : n is a prime numberg

should be nonregular, because the prime numbers do not seem to have any
repetitive structure that can be used by a DFA. To be more rigorous about
this, we will establish a property that all regular languages must possess.
This property is called thepumping lemma. If a language does not have this
property, then it must be nonregular.

The pumping lemma states that any su�ciently long string in a regular
language can bepumped, i.e., there is a section in that string that can be
repeated any number of times, so that the resulting strings are allin the
language.

Theorem 2.9.1 (Pumping Lemma for Regular Languages) Let A be
a regular language. Then there exists an integerp � 1, called the pumping
length, such that the following holds: Every strings in A, with jsj � p, can
be written ass = xyz, such that

1. y 6= � (i.e., jyj � 1),

2. jxyj � p, and

3. for all i � 0, xy i z 2 A.

In words, the pumping lemma states that by replacing the portiony in s
by zero or more copies of it, the resulting string is still in the languageA.

Proof. Let � be the alphabet of A. SinceA is a regular language, there
exists a DFA M = (Q; � ; �; q; F) that accepts A. We de�ne p to be the
number of states inQ.

Let s = s1s2 : : : sn be an arbitrary string in A such that n � p. De�ne
r1 = q, r2 = � (r1; s1), r3 = � (r2; s2), : : :, rn+1 = � (rn ; sn). Thus, when the
DFA M reads the strings from left to right, it visits the states r1; r2; : : : ; rn+1 .
Sinces is a string in A, we know that rn+1 belongs toF .

Consider the �rst p + 1 states r1; r2; : : : ; rp+1 in this sequence. Since the
number of states ofM is equal to p, the pigeonhole principle implies that
there must be a state that occurs twice in this sequence. That is, there are
indices j and ` such that 1 � j < ` � p + 1 and r j = r ` .

2.9. The pumping lemma and nonregular languages 69

q = r1

rn+ 1

r j = r`

readx

ready

readz

We de�ne x = s1s2 : : : sj � 1, y = sj : : : s` � 1, and z = s` : : : sn . Sincej < ` ,
we havey 6= � , proving the �rst claim in the theorem. Since` � p + 1, we
have jxyj = ` � 1 � p, proving the second claim in the theorem. To see that
the third claim also holds, recall that the strings = xyz is accepted byM .
While reading x, M moves from the start stateq to state r j . While reading
y, it moves from stater j to state r ` = r j , i.e., after having ready, M is again
in state r j . While readingz, M moves from stater j to the accept statern+1 .
Therefore, the substringy can be repeated any numberi � 0 of times, and
the corresponding stringxy i z will still be accepted by M . It follows that
xy i z 2 A for all i � 0.

2.9.1 Applications of the pumping lemma

First example

Consider the language
A = f 0n1n : n � 0g:

We will prove by contradiction that A is not a regular language.
Assume that A is a regular language. Letp � 1 be the pumping length,

as given by the pumping lemma. Consider the strings = 0 p1p. It is clear
that s 2 A and jsj = 2p � p. Hence, by the pumping lemma,s can be
written as s = xyz, wherey 6= � , jxyj � p, and xy i z 2 A for all i � 0.

Observe that, sincejxyj � p, the string y contains only 0s. Moreover,
sincey 6= � , y contains at least one 0. But now we are in trouble: None of
the strings xy0z = xz, xy2z = xyyz, xy3z = xyyyz, . . . , is contained inA.
However, by the pumping lemma, all these strings must be inA. Hence, we
have a contradiction and we conclude thatA is not a regular language.

70 Chapter 2. Finite Automata and Regular Languages

Second example

Consider the language

A = f w 2 f 0; 1g� : the number of 0s inw equals the number of 1s inwg:

Again, we prove by contradiction thatA is not a regular language.
Assume that A is a regular language. Letp � 1 be the pumping length,

as given by the pumping lemma. Consider the strings = 0 p1p. Then s 2 A
and jsj = 2p � p. By the pumping lemma, s can be written ass = xyz,
wherey 6= � , jxyj � p, and xy i z 2 A for all i � 0.

Sincejxyj � p, the string y contains only 0s. Sincey 6= � , y contains at
least one 0. Therefore, the stringxy2z = xyyz contains more 0s than 1s,
which implies that this string is not contained in A. But, by the pumping
lemma, this string is contained inA. This is a contradiction and, therefore,
A is not a regular language.

Third example

Consider the language

A = f ww : w 2 f 0; 1g� g:

We prove by contradiction that A is not a regular language.
Assume that A is a regular language. Letp � 1 be the pumping length,

as given by the pumping lemma. Consider the strings = 0 p10p1. Then s 2 A
and jsj = 2p + 2 � p. By the pumping lemma,s can be written ass = xyz,
wherey 6= � , jxyj � p, and xy i z 2 A for all i � 0.

Sincejxyj � p, the string y contains only 0s. Sincey 6= � , y contains at
least one 0. Therefore, the stringxy2z = xyyz is not contained in A. But,
by the pumping lemma, this string is contained inA. This is a contradiction
and, therefore,A is not a regular language.

You should convince yourself that by choosings = 0 2p (which is a string
in A whose length is at leastp), we do not obtain a contradiction. The reason
is that the string y may have an even length. Thus, 02p is the \wrong" string
for showing that A is not regular. By choosings = 0 p10p1, we do obtain
a contradiction; thus, this is the \correct" string for showing that A is not
regular.

2.9. The pumping lemma and nonregular languages 71

Fourth example

Consider the language

A = f 0m1n : m > n � 0g:

We prove by contradiction that A is not a regular language.
Assume that A is a regular language. Letp � 1 be the pumping length,

as given by the pumping lemma. Consider the strings = 0 p+1 1p. Then s 2 A
and jsj = 2p + 1 � p. By the pumping lemma,s can be written ass = xyz,
wherey 6= � , jxyj � p, and xy i z 2 A for all i � 0.

Sincejxyj � p, the string y contains only 0s. Sincey 6= � , y contains at
least one 0. Consider the stringxy0z = xz. The number of 1s in this string
is equal top, whereas the number of 0s is at most equal top. Therefore, the
string xy0z is not contained in A. But, by the pumping lemma, this string
is contained inA. This is a contradiction and, therefore,A is not a regular
language.

Fifth example

Consider the language
A = f 1n2

: n � 0g:

We prove by contradiction that A is not a regular language.
Assume that A is a regular language. Letp � 1 be the pumping length,

as given by the pumping lemma. Consider the strings = 1 p2
. Then s 2 A

and jsj = p2 � p. By the pumping lemma, s can be written ass = xyz,
wherey 6= � , jxyj � p, and xy i z 2 A for all i � 0.

Observe that
jsj = jxyzj = p2

and
jxy2zj = jxyyzj = jxyzj + jyj = p2 + jyj:

Sincejxyj � p, we havejyj � p. Sincey 6= � , we havejyj � 1. It follows that

p2 < jxy2zj � p2 + p < (p + 1) 2:

Hence, the length of the stringxy2z is strictly between two consecutive
squares. It follows that this length is not a square and, therefore, xy2z
is not contained inA. But, by the pumping lemma, this string is contained
in A. This is a contradiction and, therefore,A is not a regular language.

72 Chapter 2. Finite Automata and Regular Languages

Sixth example

Consider the language

A = f 1n : n is a prime numberg:

We prove by contradiction that A is not a regular language.
Assume that A is a regular language. Letp � 1 be the pumping length,

as given by the pumping lemma. Letn � p be a prime number, and consider
the string s = 1 n . Then s 2 A and jsj = n � p. By the pumping lemma,s
can be written ass = xyz, wherey 6= � , jxyj � p, and xy i z 2 A for all i � 0.

Let k be the integer such thaty = 1 k . Sincey 6= � , we havek � 1. For
each i � 0, n + (i � 1)k is a prime number, becausexy i z = 1 n+(i � 1)k 2 A.
For i = n + 1, however, we have

n + (i � 1)k = n + nk = n(1 + k);

which is not a prime number, becausen � 2 and 1 + k � 2. This is a
contradiction and, therefore,A is not a regular language.

Seventh example

Consider the language

A = f w 2 f 0; 1g� : the number of occurrences of 01 inw is equal to
the number of occurrences of 10 inw g.

Since this language has the same avor as the one in the second example,
we may suspect thatA is not a regular language. This is, however, not true:
As we will show,A is a regular language.

The key property is the following one: Letw be an arbitrary string in
f 0; 1g� . Then

the absolute value of the number of occurrences of 01 inw minus
the number of occurrences of 10 inw is at most one.

This property holds, because between any two consecutive occurrences of
01, there must be exactly one occurrence of 10. Similarly, betweenany two
consecutive occurrences of 10, there must be exactly one occurrence of 01.

We will construct a DFA that accepts A. This DFA uses the following
�ve states:

2.9. The pumping lemma and nonregular languages 73

� q: start state; no symbol has been read.

� q01: the last symbol read was 1; in the part of the string read so far, the
number of occurrences of 01 is one more than the number of occurrences
of 10.

� q10: the last symbol read was 0; in the part of the string read so far, the
number of occurrences of 10 is one more than the number of occurrences
of 01.

� q0
equal: the last symbol read was 0; in the part of the string read so far,

the number of occurrences of 01 is equal to the number of occurrences
of 10.

� q1
equal: the last symbol read was 1; in the part of the string read so far,

the number of occurrences of 01 is equal to the number of occurrences
of 10.

The set of accept states is equal tof q; q0
equal; q1

equalg. The state diagram of
the DFA is given below.

q0
equal

q1
equal

q01

q10

q
0

0

1
1

0

1

0

0
1

1

In fact, the key property mentioned above implies that the language A
consists of the empty string� and all non-empty binary strings that start

74 Chapter 2. Finite Automata and Regular Languages

and end with the same symbol. As a result,A is the language described by
the regular expression

� [0 [1 [0(0 [1)� 0 [1(0 [1)� 1:

This gives an alternative proof for the fact thatA is a regular language.

Eighth example

Consider the language

L = f w 2 f 0; 1g� : w is the binary representation of a prime numberg:

We assume that for any positive integer, the leftmost bit in its binaryrepre-
sentation is 1. In other words, we assume that there are no 0's added to the
left of such a binary representation. Thus,

L = f 10; 11; 101; 111; 1011; 1101; 10001; : : :g:

We will prove that L is not a regular language.
Assume that L is a regular language. Letp � 1 be the pumping length.

Let N > 2p be a prime number and lets 2 f 0; 1g� be the binary representa-
tion of N . Observe that jsj � p+ 1. Also, the leftmost and rightmost bits of
s are 1.

Sinces 2 L and jsj � p + 1 � p, the Pumping Lemma implies that we
can write s = xyz, such that

1. jyj � 1,

2. jxyj � p (and, thus, jzj � 1), and

3. for all i � 0, xy i z 2 L, i.e., xy i z is the binary representation of a prime
number.

De�ne A, B , and C to be the integers whose binary representations are
x, y, and z, respectively. Note that bothy and z may have leading 0's. In
fact, y may be a string consisting of 0's only, in which caseB = 0. However,
since the rightmost bit of z is 1, we haveC � 1. Observe that

N = C + B � 2jzj + A � 2jzj+ jyj: (2.4)

2.9. The pumping lemma and nonregular languages 75

Let i = N , consider the bitstring xy i z = xyN z, and let M be the prime
number whose binary representation is given by this bitstring. Then,

M = C +
N � 1X

k=0

B � 2jzj+ kjyj + A � 2jzj+ N jyj

= C + B � 2jzj
N � 1X

k=0

2kjyj + A � 2jzj+ N jyj:

Let

T =
N � 1X

k=0

2kjyj:

Then �
2jyj � 1

�
T = 2N jyj � 1: (2.5)

By Fermat's Little Theorem, we have

2N � 2 (mod N);

implying that

2N jyj � 1 =
�
2N

� jyj
� 1 � 2jyj � 1 (mod N):

Thus, (2.5) implies that
�
2jyj � 1

�
T � 2jyj � 1 (mod N): (2.6)

Observe that 2jyj � 2p < N , becausejyj � j xyj � p. Also, 2jyj � 2, because
y 6= � . It follows that

1 � 2jyj � 1 < N;

implying that
2jyj � 1 6� 0 (mod N):

This, together with (2.6), implies that

T � 1 (mod N):

Since
M = C + B � 2jzj � T + A � 2jzj+ N jyj;

76 Chapter 2. Finite Automata and Regular Languages

it follows that

M � C + B � 2jzj + A � 2jzj+ jyj (mod N):

This, together with (2.4), implies that

M � 0 (mod N);

i.e., N dividesM . SinceM > N , we conclude thatM is not a prime number,
which is a contradiction. Thus, the languageL is not regular.

2.10 Higman's Theorem

Let � be a �nite alphabet. For any two strings x and y in � � , we say thatx
is a subsequenceof y, if x can be obtained by deleting zero or more symbols
from y. For example, 10110 is a subsequence of 0010010101010001. Forany
languageL � � � , we de�ne

SUBSEQ(L) := f x : there exists ay 2 L such that x is a subsequence ofyg:

That is, SUBSEQ(L) is the language consisting of the subsequences of all
strings in L. In 1952, Higman proved the following result:

Theorem 2.10.1 (Higman) For any �nite alphabet � and for any lan-
guageL � � � , the language SUBSEQ(L) is regular.

2.10.1 Dickson's Theorem

Our proof of Higman's Theorem will use a theorem that was proved in 1913
by Dickson.

Recall that N denotes the set of positive integers. Letn 2 N. For any
two points p = (p1; p2; : : : ; pn) and q = (q1; q2; : : : ; qn) in Nn , we say thatp is
dominated by q, if pi � qi for all i with 1 � i � n.

Theorem 2.10.2 (Dickson) Let S � Nn , and let M be the set consisting of
all elements ofS that are minimal in the relation \is dominated by". Thus,

M = f q 2 S : there is nop in S n f qg such thatp is dominated byqg:

Then, the setM is �nite.

2.10. Higman's Theorem 77

We will prove this theorem by induction on the dimensionn. If n = 1,
then either M = ; (if S = ;) or M consists of exactly one element (ifS 6= ;).
Therefore, the theorem holds ifn = 1. Let n � 2 and assume the theorem
holds for all subsets ofNn� 1. Let S be a subset ofNn and consider the set
M of minimal elements inS. If S = ; , then M = ; and, thus, M is �nite.
Assume that S 6= ; . We �x an arbitrary element q in M . If p 2 M n f qg,
then q is not dominated by p. Therefore, there exists an indexi such that
pi � qi � 1. It follows that

M n f qg �
n[

i =1

�
Ni � 1 � [1; qi � 1] � Nn� i

�
:

For all i and k with 1 � i � n and 1� k � qi � 1, we de�ne

Sik = f p 2 S : pi = kg

and
M ik = f p 2 M : pi = kg:

Then,

M n f qg =
n[

i =1

qi � 1[

k=1

M ik : (2.7)

Lemma 2.10.3 M ik is a subset of the set of all elements ofSik that are
minimal in the relation \is dominated by".

Proof. Let p be an element ofM ik , and assume thatp is not minimal in
Sik . Then there is an elementr in Sik , such that r 6= p and r is dominated
by p. Sincep and r are both elements ofS, it follows that p 62M . This is a
contradiction.

Since the setSik is basically a subset ofNn� 1, it follows from the induction
hypothesis thatSik contains �nitely many minimal elements. This, combined
with Lemma 2.10.3, implies thatM ik is a �nite set. Thus, by (2.7), M n f qg
is the union of �nitely many �nite sets. Therefore, the setM is �nite.

2.10.2 Proof of Higman's Theorem

We give the proof of Theorem 2.10.1 for the case when � =f 0; 1g. If L = ;
or SUBSEQ(L) = f 0; 1g� , then SUBSEQ(L) is obviously a regular language.

78 Chapter 2. Finite Automata and Regular Languages

Hence, we may assume thatL is non-empty andSUBSEQ(L) is a proper
subset off 0; 1g� .

We �x a string z of length at least two in the complementSUBSEQ(L) of
the languageSUBSEQ(L). Observe that this is possible, becauseSUBSEQ(L)
is an in�nite language. We insert 0s and 1s intoz, such that, in the result-
ing string z0, 0s and 1s alternate. For example, ifz = 0011101011, then
z0 = 01010101010101. Letn = jz0j � 1, wherejz0j denotes the length ofz0.
Then, n � j zj � 1 � 1.

A (0; 1)-alternation in a binary string x is any occurrence of 01 or 10 inx.
For example, the string 1101001 contains four (0; 1)-alternations. We de�ne

A = f x 2 f 0; 1g� : x has at mostn many (0; 1)-alternationsg:

Lemma 2.10.4 SUBSEQ(L) � A.

Proof. Let x 2 SUBSEQ(L) and assume thatx 62A. Then, x has at least
n + 1 = jz0j many (0; 1)-alternations and, therefore,z0 is a subsequence ofx.
In particular, z is a subsequence ofx. Sincex 2 SUBSEQ(L), it follows that
z 2 SUBSEQ(L), which is a contradiction.

Lemma 2.10.5 SUBSEQ(L) =
�

A \ SUBSEQ(L)
�

[A.

Proof. Follows from Lemma 2.10.4.

Lemma 2.10.6 The languageA is regular.

Proof. The complement A of A is the language consisting of all binary
strings with at least n + 1 many (0; 1)-alternations. If, for example,n = 3,
then A is described by the regular expression

(00� 11� 00� 11� 0(0 [1)�) [(11� 00� 11� 00� 1(0 [1)�) :

This should convince you that the claim is true for any value ofn.

For any b 2 f 0; 1g and for any k � 0, we de�ne Abk to be the language
consisting of all binary strings that start with a b and have exactlyk many
(0; 1)-alternations. Then, we have

A = f � g [

1[

b=0

n[

k=0

Abk

!

:

2.10. Higman's Theorem 79

Thus, if we de�ne
Fbk = Abk \ SUBSEQ(L);

and use the fact that� 2 SUBSEQ(L) (which is true becauseL 6= ;), then

A \ SUBSEQ(L) =
1[

b=0

n[

k=0

Fbk: (2.8)

For any b 2 f 0; 1g and for any k � 0, consider the relation \is a subse-
quence of" on the languageFbk. We de�ne Mbk to be the language consisting
of all strings in Fbk that are minimal in this relation. Thus,

Mbk = f x 2 Fbk : there is nox0 in Fbk n f xg such that x0 is a subsequence ofxg:

It is clear that

Fbk =
[

x2 M bk

f y 2 Fbk : x is a subsequence ofyg:

If x 2 Mbk, y 2 Abk, and x is a subsequence ofy, then y must be in
SUBSEQ(L) and, therefore,y must be in Fbk. To prove this, assume that
y 2 SUBSEQ(L). Then, x 2 SUBSEQ(L), contradicting the fact that
x 2 Mbk � Fbk � SUBSEQ(L). It follows that

Fbk =
[

x2 M bk

f y 2 Abk : x is a subsequence ofyg: (2.9)

Lemma 2.10.7 Let b 2 f 0; 1g and 0 � k � n, and let x be an element of
Mbk. Then, the language

f y 2 Abk : x is a subsequence ofyg

is regular.

Proof. We will prove the claim by means of an example. Assume thatb = 1,
k = 3, and x = 11110001000. Then, the language

f y 2 Abk : x is a subsequence ofyg

is described by the regular expression

11111� 0000� 11� 0000� :

This should convince you that the claim is true in general.

80 Chapter 2. Finite Automata and Regular Languages

Lemma 2.10.8 For each b 2 f 0; 1g and each0 � k � n, the set Mbk is
�nite.

Proof. Again, we will prove the claim by means of an example. Assume
that b= 1 and k = 3. Any string in Fbk can be written as 1a0b1c0d, for some
integersa; b; c; d� 1. Consider the function' : Fbk ! N4 that is de�ned by
' (1a0b1c0d) = (a; b; c; d). Then, ' is an injective function, and the following
is true, for any two stringsx and x0 in Fbk:

x is a subsequence ofx0 if and only if ' (x) is dominated by ' (x0).

It follows that the elements ofMbk are in one-to-one correspondence with
those elements of' (Fbk) that are minimal in the relation \is dominated by".
The lemma thus follows from Dickson's Theorem.

Now we can complete the proof of Higman's Theorem:

� It follows from (2.9) and Lemmas 2.10.7 and 2.10.8, thatFbk is the
union of �nitely many regular languages. Therefore, by Theorem 2.3.1,
Fbk is a regular language.

� It follows from (2.8) that A \ SUBSEQ(L) is the union of �nitely many
regular languages. Therefore, again by Theorem 2.3.1,A\ SUBSEQ(L)
is a regular language.

� SinceA \ SUBSEQ(L) is regular and, by Lemma 2.10.6,A is regular,
it follows from Lemma 2.10.5 thatSUBSEQ(L) is the union of two reg-
ular languages. Therefore, by Theorem 2.3.1,SUBSEQ(L) is a regular
language.

� SinceSUBSEQ(L) is regular, it follows from Theorem 2.6.4 that the
languageSUBSEQ(L) is regular as well.

Exercises

2.1 For each of the following languages, construct a DFA that acceptsthe
language. In all cases, the alphabet isf 0; 1g.

1. f w : the length of w is divisible by threeg

Exercises 81

2. f w : 110 is not a substring ofwg

3. f w : w contains at least �ve 1sg

4. f w : w contains the substring 1011g

5. f w : w contains at least two 1s and at most two 0sg

6. f w : w contains an odd number of 1s or exactly two 0sg

7. f w : w begins with 1 and ends with 0g

8. f w : every odd position inw is 1g

9. f w : w has length at least 3 and its third symbol is 0g

10. f �; 0g

2.2 For each of the following languages, construct an NFA, with the speci�ed
number of states, that accepts the language. In all cases, the alphabet is
f 0; 1g.

1. The languagef w : w ends with 10g with three states.

2. The languagef w : w contains the substring 1011g with �ve states.

3. The languagef w : w contains an odd number of 1s or exactly two 0sg
with six states.

2.3 For each of the following languages, construct an NFA that accepts the
language. In all cases, the alphabet isf 0; 1g.

1. f w : w contains the substring 11001g

2. f w : w has length at least 2 and does not end with 10g

3. f w : w begins with 1 or ends with 0g

2.4 Convert the following NFA to an equivalent DFA.

82 Chapter 2. Finite Automata and Regular Languages

1 2

a

b

a; b

2.5 Convert the following NFA to an equivalent DFA.

1

32

a

a

b

a

e;b

2.6 Convert the following NFA to an equivalent DFA.

0 1 2 3
a; � b a

�

b

2.7 In the proof of Theorem 2.6.3, we introduced a new start stateq0, which
is also an accept state. Explain why the following is not a valid proof of
Theorem 2.6.3:

Let N = (Q1; � ; � 1; q1; F1) be an NFA, such that A = L(N). De�ne the
NFA M = (Q1; � ; �; q1; F), where

Exercises 83

1. F = f q1g [F1.

2. � : Q1 � � � ! P (Q1) is de�ned as follows: For anyr 2 Q1 and for any
a 2 � � ,

� (r; a) =

8
<

:

� 1(r; a) if r 2 Q1 and r 62F1,
� 1(r; a) if r 2 F1 and a 6= � ,
� 1(r; a) [f q1g if r 2 F1 and a = � .

Then L(M) = A � .

2.8 Prove Theorem 2.6.4.

2.9 Let A be a language over the alphabet � = f 0; 1g and let A be the
complementof A. Thus, A is the language consisting of all binary strings
that are not in A.

Assume that A is a regular language. LetM = (Q; � ; �; q; F) be a non-
deterministic �nite automaton (NFA) that accepts A.

Consider the NFAN = (Q; � ; �; q; F), whereF = QnF is the complement
of F . Thus, N is obtained fromM by turning all accept states into nonaccept
states, and turning all nonaccept states into accept states.

1. Is it true that the language accepted byN is equal toA?

2. Assume now thatM is a deterministic �nite automaton (DFA) that
acceptsA. De�ne N as above; thus, turn all accept states into nonac-
cept states, and turn all nonaccept states into accept states.Is it true
that the language accepted byN is equal toA?

2.10 Recall the alternative de�nition for the star of a languageA that we
gave just before Theorem 2.3.1.

In Theorems 2.3.1 and 2.6.2, we have shown that the class of regular
languages is closed under the union and concatenation operations.Since
A � =

S 1
k=0 Ak , why doesn't this imply that the class of regular languages is

closed under the star operation?

2.11 Let A and B be two regular languages over the same alphabet �. Prove
that the di�erence of A and B, i.e., the language

A n B = f w : w 2 A and w 62Bg

is a regular language.

84 Chapter 2. Finite Automata and Regular Languages

2.12 For each of the following regular expressions, give two strings thatare
members and two strings that are not members of the language described by
the expression. The alphabet is � = f a; bg.

1. a(ba)� b.

2. (a [b)� a(a [b)� b(a [b)� a(a [b)� .

3. (a [ba[bb)(a [b)� .

2.13 Give regular expressions describing the following languages. In all
cases, the alphabet isf 0; 1g.

1. f w : w contains at least three 1sg.

2. f w : w contains at least two 1s and at most one 0g,

3. f w : w contains an even number of 0s and exactly two 1sg.

4. f w : w contains exactly two 0s and at least two 1sg.

5. f w : w contains an even number of 0s and each 0 is followed by at least one 1g.

6. f w : every odd position inw is 1g.

2.14 Convert each of the following regular expressions to an NFA.

1. (0 [1)� 000(0[1)�

2. (((10)� (00)) [10)�

3. ((0 [1)(11)� [0)�

2.15 Convert the following DFA to a regular expression.

Exercises 85

1 2

3

a

a

b

b a

b

2.16 Convert the following DFA to a regular expression.

1 2

3

a; b a

a
b

b

2.17 Convert the following DFA to a regular expression.

a; b

2.18 1. Let A be a non-empty regular language. Prove that there exists
an NFA that accepts A and that has exactly one accept state.

86 Chapter 2. Finite Automata and Regular Languages

2. For any string w = w1w2 : : : wn , we denote bywR the string obtained
by readingw backwards, i.e.,wR = wnwn� 1 : : : w2w1. For any language
A, we de�ne AR to be the language obtained by reading all strings in
A backwards, i.e.,

AR = f wR : w 2 Ag:

Let A be a non-empty regular language. Prove that the languageAR

is also regular.

2.19 If n � 1 is an integer andw = a1a2 : : : an is a string, then for any i
with 0 � i < n , the string a1a2 : : : ai is called aproper pre�x of w. (If i = 0,
then a1a2 : : : ai = � .)

For any languageL, we de�ne MIN (L) to be the language

MIN (L) = f w 2 L : no proper pre�x of w belongs toLg:

Prove the following claim: IfL is a regular language, thenMIN (L) is regular
as well.

2.20 Use the pumping lemma to prove that the following languages are not
regular.

1. f anbm cn+ m : n � 0; m � 0g.

2. f anbnc2n : n � 0g.

3. f anbm an : n � 0; m � 0g.

4. f a2n
: n � 0g. (Remark: a2n

is the string consisting of 2n many a's.)

5. f anbm ck : n � 0; m � 0; k � 0; n2 + m2 = k2g.

6. f uvu : u 2 f a; bg� ; u 6= �; v 2 f a; bg� g.

2.21 Prove that the language

f am bn : m � 0; n � 0; m 6= ng

is not regular. (Using the pumping lemma for this one is a bit tricky. You
can avoid using the pumping lemma by combining results about the closure
under regular operations.)

Exercises 87

2.22 1. Give an example of a regular languageA and a non-regular lan-
guageB for which A � B .

2. Give an example of a non-regular languageA and a regular language
B for which A � B .

2.23 Let A be a language consisting of �nitely many strings.

1. Prove that A is a regular language.

2. Let n be the maximum length of any string inA. Prove that every
deterministic �nite automaton (DFA) that accepts A has at leastn + 1
states. (Hint: How is the pumping length chosen in the proof of the
pumping lemma?)

2.24 Let L be a regular language, letM be a DFA whose language is equal
to L, and let p be the number of states ofM . Prove that L 6= ; if and only
if L contains a string of length less thanp.

2.25 Let L be a regular language, letM be a DFA whose language is equal
to L, and let p be the number of states ofM . Prove that L is an in�nite
language if and only ifL contains a stringw with p � j wj � 2p � 1.

2.26 Let � be a non-empty alphabet, and let L be a language over �, i.e.,
L � � � . We de�ne a binary relation RL on � � � � � , in the following way:
For any two strings u and u0 in � � ,

uRL u0 if and only if (8v 2 � � : uv 2 L , u0v 2 L) :

Prove that RL is an equivalence relation.

2.27 Let � = f 0; 1g, let

L = f w 2 � � : jwj is oddg;

and consider the relationRL de�ned in Exercise 2.26.

1. Prove that for any two stringsu and u0 in � � ,

uRL u0 , j uj � j u0j is even.

88 Chapter 2. Finite Automata and Regular Languages

2. Determine all equivalence classes of the relationRL .

2.28 Let � be a non-empty alphabet, and let L be a language over �, i.e.,
L � � � . Recall the equivalence relationRL that was de�ned in Exercise 2.26.

1. Assume thatL is a regular language, and letM = (Q; � ; �; q0; F) be
a DFA that accepts L. Let u and u0 be strings in � � . Let q be the
state reached, when following the path in the state diagram ofM , that
starts in q0 and that is obtained by reading the stringu. Similarly, let
q0 be the state reached, when following the path in the state diagram
of M , that starts in q0 and that is obtained by reading the stringu0.

Prove the following: If q = q0, then uRL u0.

2. Prove the following claim: IfL is a regular language, then the equiva-
lence relationRL has a �nite number of equivalence classes.

2.29 Let L be the language de�ned by

L = f uuR : u 2 f 0; 1g� g:

In words, a string is inL if and only if its length is even, and the second half
is the reverse of the �rst half. Consider the equivalence relationRL that was
de�ned in Exercise 2.26.

1. Let m and n be two distinct positive integers and consider the two
strings u = 0m1 and u0 = 0 n1. Prove that : (uRL u0).

2. Prove that L is not a regular language, without using the pumping
lemma.

3. Use the pumping lemma to prove thatL is not a regular language.

2.30 In this exercise, we will show that the converse of the pumping lemma
does, in general, not hold. Consider the language

A = f ambncn : m � 1; n � 0g [f bnck : n � 0; k � 0g:

1. Show that A satis�es the conclusion of the pumping lemma forp = 1.
Thus, show that every strings in A whose length is at leastp can be
written as s = xyz, such that y 6= � , jxyj � p, and xy i z 2 A for all
i � 0.

Exercises 89

2. Consider the equivalence relationRA that was de�ned in Exercise 2.26.
Let n and n0 be two distinct non-negative integers and consider the two
strings u = abn and u0 = abn0

. Prove that : (uRA u0).

3. Prove that A is not a regular language.

90 Chapter 2. Finite Automata and Regular Languages

Chapter 3

Context-Free Languages

In this chapter, we introduce the class of context-free languages. As we
will see, this class contains all regular languages, as well as some nonregular
languages such asf 0n1n : n � 0g.

The class of context-free languages consists of languages that have some
sort of recursive structure. We will see two equivalent methods toobtain this
class. We start with context-free grammars, which are used for de�ning the
syntax of programming languages and their compilation. Then we introduce
the notion of (nondeterministic) pushdown automata, and show that these
automata have the same power as context-free grammars.

3.1 Context-free grammars

We start with an example. Consider the following �ve (substitution) rules:

S ! AB
A ! a
A ! aA
B ! b
B ! bB

Here, S, A, and B are variables, S is the start variable, and a and b are
terminals. We use these rules to derive strings consisting of terminals (i.e.,
elements off a; bg�), in the following manner:

1. Initialize the current string to be the string consisting of the start
variable S.

92 Chapter 3. Context-Free Languages

2. Take any variable in the current string and take any rule that hasthis
variable on the left-hand side. Then, in the current string, replacethis
variable by the right-hand side of the rule.

3. Repeat 2. until the current string only contains terminals.

For example, the stringaaaabbcan be derived in the following way:

S) AB

) aAB

) aAbB

) aaAbB

) aaaAbB

) aaaabB

) aaaabb

This derivation can also be represented using aparse tree, as in the �gure
below:

S

A

A

A

A

a

a

a

a

b

b

B

B

The �ve rules in this example constitute a context-free grammar. The
language of this grammar is the set of all strings that

3.1. Context-free grammars 93

� can be derived from the start variable and

� only contain terminals.

For this example, the language is

f am bn : m � 1; n � 1g;

because every string of the formam bn , for somem � 1 and n � 1, can be
derived from the start variable, whereas no other string over thealphabet
f a; bg can be derived from the start variable.

De�nition 3.1.1 A context-free grammar is a 4-tupleG = (V;� ; R; S),
where

1. V is a �nite set, whose elements are calledvariables,

2. � is a �nite set, whose elements are calledterminals,

3. V \ � = ; ,

4. S is an element ofV ; it is called the start variable,

5. R is a �nite set, whose elements are calledrules. Each rule has the
form A ! w, whereA 2 V and w 2 (V [�) � .

In our example, we haveV = f S; A; Bg, � = f a; bg, and

R = f S ! AB; A ! a; A ! aA; B ! b; B ! bBg:

De�nition 3.1.2 Let G = (V;� ; R; S) be a context-free grammar. LetA be
an element inV and let u, v, and w be strings in (V [�) � such that A ! w
is a rule in R. We say that the string uwv can bederived in one step from
the string uAv, and write this as

uAv) uwv:

In other words, by applying the ruleA ! w to the string uAv, we obtain
the string uwv. In our example, we see thataaAbb) aaaAbb.

De�nition 3.1.3 Let G = (V;� ; R; S) be a context-free grammar. Letu
and v be strings in (V [�) � . We say that v can bederived from u, and write
this as u �) v, if one of the following two conditions holds:

94 Chapter 3. Context-Free Languages

1. u = v or

2. there exist an integerk � 2 and a sequenceu1; u2; : : : ; uk of strings in
(V [�) � , such that

(a) u = u1,

(b) v = uk , and

(c) u1) u2) : : :) uk .

In other words, by starting with the string u and applying rules zero or
more times, we obtain the stringv. In our example, we see thataaAbB �)
aaaabbbB.

De�nition 3.1.4 Let G = (V;� ; R; S) be a context-free grammar. The
languageof G is de�ned to be the set of all strings in �� that can be derived
from the start variable S:

L(G) = f w 2 � � : S �) wg:

De�nition 3.1.5 A languageL is calledcontext-free, if there exists a context-
free grammarG such that L(G) = L.

3.2 Examples of context-free grammars

3.2.1 Properly nested parentheses

Consider the context-free grammarG = (V;� ; R; S), where V = f Sg, � =
f a; bg, and

R = f S ! �; S ! aSb; S! SSg:

We write the three rules inR as

S ! � jaSbjSS;

where you can think of \j" as being a short-hand for \or".

3.2. Examples of context-free grammars 95

By applying the rules inR, starting with the start variable S, we obtain,
for example,

S) SS

) aSbS

) aSbSS

) aSSbSS

) aaSbSbSS

) aabSbSS

) aabbSS

) aabbaSbS

) aabbabS

) aabbabaSb

) aabbabab

What is the languageL(G) of this context-free grammarG? If we think
of a as being a left-parenthesis \(", and ofb as being a right-parenthesis \)",
then L(G) is the language consisting of all strings of properly nested paren-
theses. Here is the explanation: Any string of properly nested parentheses is
either

� empty (which we derive fromS by the rule S ! �),

� consists of a left-parenthesis, followed by an arbitrary string of properly
nested parentheses, followed by a right-parenthesis (these arederived
from S by �rst applying the rule S ! aSb), or

� consists of an arbitrary string of properly nested parentheses,followed
by an arbitrary string of properly nested parentheses (these are derived
from S by �rst applying the rule S ! SS).

3.2.2 A context-free grammar for a nonregular lan-
guage

Consider the languageL1 = f 0n1n : n � 0g. We have seen in Section 2.9.1
that L1 is not a regular language. We claim thatL1 is a context-free language.

96 Chapter 3. Context-Free Languages

In order to prove this claim, we have to construct a context-freegrammar
G1 such that L(G1) = L1.

Observe that any string inL1 is either

� empty or

� consists of a 0, followed by an arbitrary string inL1, followed by a 1.

This leads to the context-free grammarG1 = (V1; � ; R1; S1), where V1 =
f S1g, � = f 0; 1g, and R1 consists of the rules

S1 ! � j0S11:

Hence,R1 = f S1 ! �; S1 ! 0S11g.
To derive the string 0n1n from the start variable S1, we do the following:

� Starting with S1, apply the rule S1 ! 0S11 exactly n times. This gives
the string 0nS11n .

� Apply the rule S1 ! � . This gives the string 0n1n .

It is not di�cult to see that these are the only strings that can be derived
from the start variable S1. Thus, L(G1) = L1.

In a symmetric way, we see that the context-free grammarG2 = (V2; � ; R2; S2),
whereV2 = f S2g, � = f 0; 1g, and R2 consists of the rules

S2 ! � j1S20;

has the property that L(G2) = L2, whereL2 = f 1n0n : n � 0g. Thus, L2 is
a context-free language.

De�ne L = L1 [L2, i.e.,

L = f 0n1n : n � 0g [f 1n0n : n � 0g:

The context-free grammarG = (V;� ; R; S), where V = f S; S1; S2g, � =
f 0; 1g, and R consists of the rules

S ! S1jS2

S1 ! � j0S11
S2 ! � j1S20;

has the property that L(G) = L. Hence,L is a context-free language.

3.2. Examples of context-free grammars 97

3.2.3 A context-free grammar for the complement of
a nonregular language

Let L be the (nonregular) languageL = f 0n1n : n � 0g. We want to prove
that the complement L of L is a context-free language. Hence, we want to
construct a context-free grammarG whose language is equal toL. Observe
that a binary string w is in L if and only if

1. w = 0m1n , for some integersm and n with 0 � m < n , or

2. w = 0m1n , for some integersm and n with 0 � n < m , or

3. w contains 10 as a substring.

Thus, we can writeL as the union of the languages of all strings of type 1.,
type 2., and type 3.

Any string of type 1. is either

� the string 1,

� consists of a string of type 1., followed by one 1, or

� consists of one 0, followed by an arbitrary string of type 1., followedby
one 1.

Thus, using the rules
S1 ! 1jS11j0S11;

we can derive, fromS1, all strings of type 1.
Similarly, using the rules

S2 ! 0j0S2j0S21;

we can derive, fromS2, all strings of type 2.
Any string of type 3.

� consists of an arbitrary binary string, followed by the string 10, followed
by an arbitrary binary string.

Using the rules
X ! � j0X j1X;

98 Chapter 3. Context-Free Languages

we can derive, fromX , all binary strings. Thus, by combining these with
the rule

S3 ! X 10X;

we can derive, fromS3, all strings of type 3.
We arrive at the context-free grammarG = (V;� ; R; S), where V =

f S; S1; S2; S3; X g, � = f 0; 1g, and R consists of the rules

S ! S1jS2jS3

S1 ! 1jS11j0S11
S2 ! 0j0S2j0S21
S3 ! X 10X
X ! � j0X j1X

To summarize, we have

S1
�) 0m1n ; for all integersm and n with 0 � m < n ,

S2
�) 0m1n ; for all integersm and n with 0 � n < m ,

X �) u; for each stringu in f 0; 1g� ,

and

S3
�) w; for every binary string w that contains 10 as a substring.

From these observations, it follows that thatL(G) = L.

3.2.4 A context-free grammar that veri�es addition

Consider the language

L = f anbm cn+ m : n � 0; m � 0g:

Using the pumping lemma for regular languages (Theorem 2.9.1), it can
be shown that L is not a regular language. We will construct a context-
free grammarG whose language is equal toL, thereby proving that L is a
context-free language.

First observe that � 2 L. Therefore, we will takeS ! � to be one of the
rules in the grammar.

Let us see how we can derive all strings inL from the start variable S:

3.3. Regular languages are context-free 99

1. Every time we add ana, we also add ac. In this way, we obtain all
strings of the formancn , wheren � 0.

2. Given a string of the formancn , we start addingbs. Every time we add
a b, we also add ac. Observe that everyb has to be added between
the as and the cs. Therefore, we use a variableB as a \pointer" to
the position in the current string where ab can be added: Instead of
deriving ancn from S, we derive the stringanBcn . Then, from B, we
derive all strings of the formbm cm , wherem � 0.

We obtain the context-free grammarG = (V;� ; R; S), whereV = f S; A; Bg,
� = f a; b; cg, and R consists of the rules

S ! � jA
A ! � jaAcjB
B ! � jbBc

The facts that

� A �) anBcn , for every n � 0,

� B �) bm cm , for every m � 0,

imply that the following strings can be derived from the start variableS:

� S �) anBcn �) anbm cm cn = anbm cn+ m , for all n � 0 and m � 0.

In fact, no other strings in f a; b; cg� can be derived fromS. Therefore, we
have L(G) = L. Since

S) A) B) �;

we can simplify this grammarG, by eliminating the rulesS ! � and A ! � .
This gives the context-free grammarG0 = (V;� ; R0; S), whereV = f S; A; Bg,
� = f a; b; cg, and R0 consists of the rules

S ! A
A ! aAcjB
B ! � jbBc

Finally, observe that we do not needS; instead, we can useA as start
variable. This gives our �nal context-free grammarG00= (V;� ; R00; A), where
V = f A; B g, � = f a; b; cg, and R00consists of the rules

A ! aAcjB
B ! � jbBc

100 Chapter 3. Context-Free Languages

3.3 Regular languages are context-free

We mentioned already that the class of context-free languages includes the
class of regular languages. In this section, we will prove this claim.

Theorem 3.3.1 Let � be an alphabet and letL � � � be a regular language.
Then L is a context-free language.

Proof. Since L is a regular language, there exists a deterministic �nite
automaton M = (Q; � ; �; q; F) that accepts L.

To prove that L is context-free, we have to de�ne a context-free grammar
G = (V;� ; R; S), such that L = L(M) = L(G). Thus, G must have the
following property: For every stringw 2 � � ,

w 2 L(M) if and only if w 2 L(G),

which can be reformulated as

M acceptsw if and only if S �) w.

We will de�ne the context-free grammarG in such a way that the following
correspondence holds for any stringw = w1w2 : : : wn :

� Assume that M is in state A just after it has read the substring
w1w2 : : : wi .

� Then in the context-free grammarG, we haveS �) w1w2 : : : wi A.

In the next step, M reads the symbolwi +1 and switches from stateA to,
say, state B; thus, � (A; wi +1) = B. In order to guarantee that the above
correspondence still holds, we have to add the ruleA ! wi +1 B to G.

Consider the moment whenM has read the entire stringw. Let A be the
state M is in at that moment. By the above correspondence, we have

S �) w1w2 : : : wnA = wA:

Recall that G must have the property that

M acceptsw if and only if S �) w,

which is equivalent to

A 2 F if and only if S �) w.

3.3. Regular languages are context-free 101

We guarantee this property by adding toG the rule A ! � for every accept
state A of M .

We are now ready to give the formal de�nition of the context-freegram-
mar G = (V;� ; R; S):

� V = Q, i.e., the variables ofG are the states ofM .

� S = q, i.e., the start variable ofG is the start state of M .

� R consists of the rules

A ! aB; whereA 2 Q, a 2 �, B 2 Q, and � (A; a) = B;

and
A ! �; whereA 2 F .

In words,

� every transition � (A; a) = B of M (i.e., whenM is in the state A and
reads the symbola, it switches to the state B) corresponds to a rule
A ! aB in the grammar G,

� every accept stateA of M corresponds to a ruleA ! � in the grammar
G.

We claim that L(G) = L. In order to prove this, we have to show that
L(G) � L and L � L(G).

We prove that L � L(G). Let w = w1w2 : : : wn be an arbitrary string
in L. When the �nite automaton M reads the stringw, it visits the states
r0; r1; : : : ; rn , where

� r0 = q, and

� r i +1 = � (r i ; wi +1) for i = 0; 1; : : : ; n � 1.

Sincew 2 L = L(M), we know that rn 2 F .
It follows from the way we de�ned the grammarG that

� for eachi = 0; 1; : : : ; n � 1, r i ! wi +1 r i +1 is a rule in R, and

� rn ! � is a rule in R.

102 Chapter 3. Context-Free Languages

Therefore, we have

S = q = r0) w1r1) w1w2r2) : : :) w1w2 : : : wn rn) w1w2 : : : wn = w:

This proves that w 2 L(G).
The proof of the claim that L(G) � L is left as an exercise.

In Sections 2.9.1 and 3.2.2, we have seen that the languagef 0n1n : n �
0g is not regular, but context-free. Therefore, the class of all context-free
languages properly contains the class of regular languages.

3.3.1 An example

Let L be the language de�ned as

L = f w 2 f 0; 1g� : 101 is a substring ofwg:

In Section 2.2.2, we have seen thatL is a regular language. In that section,
we constructed the following deterministic �nite automatonM that accepts
L (we have renamed the states):

0

1

1

0

0

1
0;1

S A

B C

We apply the construction given in the proof of Theorem 3.3.1 to convert
M to a context-free grammarG whose language is equal toL. According
to this construction, we haveG = (V;� ; R; S), where V = f S; A; B; Cg,
� = f 0; 1g, the start variable S is the start state ofM , and R consists of the
rules

S ! 0Sj1A
A ! 0B j1A
B ! 0Sj1C
C ! 0Cj1Cj�

3.4. Chomsky normal form 103

Consider the string 010011011, which is an element ofL. When the �nite
automaton M reads this string, it visits the states

S; S; A; B; S; A; A; B; C; C:

In the grammar G, this corresponds to the derivation

S) 0S

) 01A

) 010B

) 0100S

) 01001A

) 010011A

) 0100110B

) 01001101C

) 010011011C

) 010011011:

Hence,
S �) 010011011;

implying that the string 010011011 is in the languageL(G) of the context-free
grammar G.

The string 10011 is not in the languageL. When the �nite automaton
M reads this string, it visits the states

S; A; B; S; A; A;

i.e., after the string has been read,M is in the non-accept stateA. In the
grammar G, reading the string 10011 corresponds to the derivation

S) 1A

) 10B

) 100S

) 1001A

) 10011A:

SinceA is not an accept state inM , the grammar G does not contain the
rule A ! � . This implies that the string 10011 cannot be derived from the
start variable S. Thus, 10011 is not in the languageL(G) of G.

104 Chapter 3. Context-Free Languages

3.4 Chomsky normal form

The rules in a context-free grammarG = (V;� ; R; S) are of the form

A ! w;

where A is a variable andw is a string over the alphabetV [�. In this
section, we show that every context-free grammarG can be converted to a
context-free grammarG0, such that L(G) = L(G0), and the rules ofG0 are of
a restricted form, as speci�ed in the following de�nition:

De�nition 3.4.1 A context-free grammarG = (V;� ; R; S) is said to be in
Chomsky normal form, if every rule in R has one of the following three forms:

1. A ! BC, whereA, B , and C are elements ofV , B 6= S, and C 6= S.

2. A ! a, whereA is an element ofV and a is an element of �.

3. S ! � , whereS is the start variable.

You should convince yourself that, for such a grammar,R contains the
rule S ! � if and only if � 2 L(G).

Theorem 3.4.2 Let � be an alphabet and letL � � � be a context-free lan-
guage. There exists a context-free grammar in Chomsky normal form, whose
language isL.

Proof. SinceL is a context-free language, there exists a context-free gram-
mar G = (V;� ; R; S), such that L(G) = L. We will transform G into a
grammar that is in Chomsky normal form and whose language is equalto
L(G). The transformation consists of �ve steps.

Step 1: Eliminate the start variable from the right-hand side of the rules.
We de�ne G1 = (V1; � ; R1; S1), where S1 is the start variable (which is a

new variable),V1 = V [f S1g, and R1 = R [f S1 ! Sg. This grammar has
the property that

� the start variable S1 does not occur on the right-hand side of any rule
in R1, and

� L(G1) = L(G).

3.4. Chomsky normal form 105

Step 2: An � -rule is a rule that is of the formA ! � , whereA is a variable
that is not equal to the start variable. In the second step, we eliminate all
� -rules from G1.

We consider all� -rules, one after another. LetA ! � be one such rule,
whereA 2 V1 and A 6= S1. We modify G1 as follows:

1. Remove the ruleA ! � from the current set R1.

2. For each rule in the current setR1 that is of the form

(a) B ! A, add the rule B ! � to R1, unless this rule has already
been deleted fromR1; observe that in this way, we replace the two-
step derivation B) A) � by the one-step derivationB) � ;

(b) B ! uAv (where u and v are strings that are not both empty),
add the rule B ! uv to R1; observe that in this way, we replace
the two-step derivationB) uAv) uv by the one-step derivation
B) uv;

(c) B ! uAvAw (where u, v, and w are strings), add the rulesB !
uvw, B ! uAvw, and B ! uvAw to R1; if u = v = w = � and
the rule B ! � has already been deleted fromR1, then we do not
add the rule B ! � ;

(d) treat rules in which A occurs more than twice on the right-hand
side in a similar fashion.

We repeat this process until all� -rules have been eliminated. LetR2

be the set of rules, after all� -rules have been eliminated. We de�neG2 =
(V2; � ; R2; S2), where V2 = V1 and S2 = S1. This grammar has the property
that

� the start variable S2 does not occur on the right-hand side of any rule
in R2,

� R2 does not contain any� -rule (it may contain the rule S2 ! �), and

� L(G2) = L(G1) = L(G).

Step 3: A unit-rule is a rule that is of the formA ! B, whereA and B are
variables. In the third step, we eliminate all unit-rules fromG2.

106 Chapter 3. Context-Free Languages

We consider all unit-rules, one after another. LetA ! B be one such
rule, whereA and B are elements ofV2. We know that B 6= S2. We modify
G2 as follows:

1. Remove the ruleA ! B from the current setR2.

2. For each rule in the current setR2 that is of the form B ! u, where
u 2 (V2 [�) � , add the rule A ! u to the current set R2, unless this is
a unit-rule that has already been eliminated.

Observe that in this way, we replace the two-step derivationA) B)
u by the one-step derivationA) u.

We repeat this process until all unit-rules have been eliminated. Let
R3 be the set of rules, after all unit-rules have been eliminated. We de�ne
G3 = (V3; � ; R3; S3), where V3 = V2 and S3 = S2. This grammar has the
property that

� the start variable S3 does not occur on the right-hand side of any rule
in R3,

� R3 does not contain any� -rule (it may contain the rule S3 ! �),

� R3 does not contain any unit-rule, and

� L(G3) = L(G2) = L(G1) = L(G).

Step 4: Eliminate all rules having more than two symbols on the right-hand
side.

For each rule in the current setR3 that is of the form A ! u1u2 : : : uk ,
wherek � 3 and eachui is an element ofV3 [�, we modify G3 as follows:

1. Remove the ruleA ! u1u2 : : : uk from the current set R3.

2. Add the following rules to the current setR3:

A ! u1A1

A1 ! u2A2

A2 ! u3A3
...

Ak� 3 ! uk� 2Ak� 2

Ak� 2 ! uk� 1uk

3.4. Chomsky normal form 107

whereA1; A2; : : : ; Ak� 2 are new variables that are added to the current
set V3.

Observe that in this way, we replace the one-step derivationA)
u1u2 : : : uk by the (k � 1)-step derivation

A) u1A1) u1u2A2) : : :) u1u2 : : : uk� 2Ak� 2) u1u2 : : : uk :

Let R4 be the set of rules, and letV4 be the set of variables, after all rules
with more than two symbols on the right-hand side have been eliminated. We
de�ne G4 = (V4; � ; R4; S4), where S4 = S3. This grammar has the property
that

� the start variable S4 does not occur on the right-hand side of any rule
in R4,

� R4 does not contain any� -rule (it may contain the rule S4 ! �),

� R4 does not contain any unit-rule,

� R4 does not contain any rule with more than two symbols on the right-
hand side, and

� L(G4) = L(G3) = L(G2) = L(G1) = L(G).

Step 5: Eliminate all rules of the form A ! u1u2, whereu1 and u2 are not
both variables.

For each rule in the current setR4 that is of the form A ! u1u2, where
u1 and u2 are elements ofV4 [�, but u1 and u2 are not both contained in
V4, we modify G3 as follows:

1. If u1 2 � and u2 2 V4, then replace the ruleA ! u1u2 in the current
set R4 by the two rules A ! U1u2 and U1 ! u1, where U1 is a new
variable that is added to the current setV4.

Observe that in this way, we replace the one-step derivationA) u1u2

by the two-step derivation A) U1u2) u1u2.

2. If u1 2 V4 and u2 2 �, then replace the rule A ! u1u2 in the current
set R4 by the two rules A ! u1U2 and U2 ! u2, where U2 is a new
variable that is added to the current setV4.

Observe that in this way, we replace the one-step derivationA) u1u2

by the two-step derivation A) u1U2) u1u2.

108 Chapter 3. Context-Free Languages

3. If u1 2 �, u2 2 �, and u1 6= u2, then replace the ruleA ! u1u2 in the
current set R4 by the three rulesA ! U1U2, U1 ! u1, and U2 ! u2,
where U1 and U2 are new variables that are added to the current set
V4.

Observe that in this way, we replace the one-step derivationA) u1u2

by the three-step derivationA) U1U2) u1U2) u1u2.

4. If u1 2 �, u2 2 �, and u1 = u2, then replace the ruleA ! u1u2 = u1u1

in the current set R4 by the two rules A ! U1U1 and U1 ! u1, where
U1 is a new variable that is added to the current setV4.

Observe that in this way, we replace the one-step derivationA)
u1u2 = u1u1 by the three-step derivationA) U1U1) u1U1) u1u1.

Let R5 be the set of rules, and letV5 be the set of variables, after Step 5
has been completed. We de�neG5 = (V5; � ; R5; S5), where S5 = S4. This
grammar has the property that

� the start variable S5 does not occur on the right-hand side of any rule
in R5,

� R5 does not contain any� -rule (it may contain the rule S5 ! �),

� R5 does not contain any unit-rule,

� R5 does not contain any rule with more than two symbols on the right-
hand side,

� R5 does not contain any rule of the formA ! u1u2, whereu1 and u2

are not both variables ofV5, and

� L(G5) = L(G4) = L(G3) = L(G2) = L(G1) = L(G).

Since the grammarG5 is in Chomsky normal form, the proof is complete.

3.4. Chomsky normal form 109

3.4.1 An example

Consider the context-free grammarG = (V;� ; R; A), where V = f A; B g,
� = f 0; 1g, A is the start variable, andR consists of the rules

A ! BAB jB j�
B ! 00j�

We apply the construction given in the proof of Theorem 3.4.2 to convert
this grammar to a context-free grammar in Chomsky normal form whose
language is the same as that ofG. Throughout the construction, upper case
letters will denote variables.

Step 1: Eliminate the start variable from the right-hand side of the rules.
We introduce a new start variableS, and add the ruleS ! A. This gives

the following grammar:
S ! A
A ! BAB jB j�
B ! 00j�

Step 2: Eliminate all � -rules.
We take the � -rule A ! � , and remove it. Then we consider all rules that

contain A on the right-hand side. There are two such rules:

� S ! A; we add the ruleS ! � ;

� A ! BAB ; we add the ruleA ! BB .

This gives the following grammar:

S ! Aj�
A ! BAB jB jBB
B ! 00j�

We take the � -rule B ! � , and remove it. Then we consider all rules that
contain B on the right-hand side. There are three such rules:

� A ! BAB ; we add the rulesA ! AB , A ! BA , and A ! A;

� A ! B ; we do not add the ruleA ! � , because it has already been
removed;

110 Chapter 3. Context-Free Languages

� A ! BB ; we add the ruleA ! B , but not the rule A ! � (because it
has already been removed).

At this moment, we have the following grammar:

S ! Aj�
A ! BAB jB jBB jAB jBA jA
B ! 00

Since all � -rules have been eliminated, this completes Step 2. (Observe that
the rule S ! � is allowed, becauseS is the start variable.)

Step 3: Eliminate all unit-rules.
We take the unit-rule A ! A. We can remove this rule, without adding

any new rule. At this moment, we have the following grammar:

S ! Aj�
A ! BAB jB jBB jAB jBA
B ! 00

We take the unit-rule S ! A, remove it, and add the rules

S ! BAB jB jBB jAB jBA:

This gives the following grammar:

S ! � jBAB jB jBB jAB jBA
A ! BAB jB jBB jAB jBA
B ! 00

We take the unit-rule S ! B , remove it, and add the ruleS ! 00. This
gives the following grammar:

S ! � jBAB jBB jAB jBA j00
A ! BAB jB jBB jAB jBA
B ! 00

We take the unit-rule A ! B , remove it, and add the ruleA ! 00. This
gives the following grammar:

S ! � jBAB jBB jAB jBA j00
A ! BAB jBB jAB jBA j00
B ! 00

3.5. Pushdown automata 111

Since all unit-rules have been eliminated, this concludes Step 3.

Step 4: Eliminate all rules having more than two symbols on the right-hand
side. There are two such rules:

� We take the rule S ! BAB , remove it, and add the rulesS ! BA 1

and A1 ! AB .

� We take the rule A ! BAB , remove it, and add the rulesA ! BA 2

and A2 ! AB .

This gives the following grammar:

S ! � jBB jAB jBA j00jBA 1

A ! BB jAB jBA j00jBA 2

B ! 00
A1 ! AB
A2 ! AB

Step 4 is now completed.

Step 5: Eliminate all rules, whose right-hand side contains exactly two
symbols, which are not both variables. There are three such rules:

� We replace the ruleS ! 00 by the rulesS ! A3A3 and A3 ! 0.

� We replace the ruleA ! 00 by the rulesA ! A4A4 and A4 ! 0.

� We replace the ruleB ! 00 by the rulesB ! A5A5 and A5 ! 0.

This gives the following grammar, which is in Chomsky normal form:

S ! � jBB jAB jBA jBA 1jA3A3

A ! BB jAB jBA jBA 2jA4A4

B ! A5A5

A1 ! AB
A2 ! AB
A3 ! 0
A4 ! 0
A5 ! 0

112 Chapter 3. Context-Free Languages

3.5 Pushdown automata

In this section, we introduce nondeterministic pushdown automata. As we
will see, the class of languages that can be accepted by these automata is
exactly the class of context-free languages.

We start with an informal description of a deterministic pushdown au-
tomaton. Such an automaton consists of the following, see also Figure 3.1.

1. There is atape which is divided into cells. Each cell stores a symbol
belonging to a �nite set �, called the tape alphabet. There is a special
symbol 2 that is not contained in �; this symbol is called the blank
symbol. If a cell contains2 , then this means that the cell is actually
empty.

2. There is atape headwhich can move along the tape, one cell to the
right per move. This tape head can also read the cell it currently scans.

3. There is astack containing symbols from a �nite set �, called the stack
alphabet. This set contains a special symbol $.

4. There is astack headwhich can read the top symbol of the stack. This
head can alsopop the top symbol, and it canpush symbols of � onto
the stack.

5. There is astate control, which can be in any one of a �nite number
of states. The set of states is denoted byQ. The set Q contains one
special stateq, called thestart state.

The input for a pushdown automaton is a string in �� . This input string
is stored on the tape of the pushdown automaton and, initially, the tape head
is on the leftmost symbol of the input string. Initially, the stack onlycontains
the special symbol $, and the pushdown automaton is in the start state q.
In one computation step, the pushdown automaton does the following:

1. Assume that the pushdown automaton is currently in stater . Let a be
the symbol of � that is read by the tape head, and letA be the symbol
of � that is on top of the stack.

2. Depending on the current stater , the tape symbol a, and the stack
symbol A,

3.5. Pushdown automata 113

state control

a a b a b b a b a b 2 tape

6

$
A
A
B
A

stack

-

Figure 3.1: A pushdown automaton.

(a) the pushdown automaton switches to a stater 0 of Q (which may
be equal tor),

(b) the tape head either moves one cell to the right or stays at the
current cell, and

(c) the top symbol A is replaced by a stringw that belongs to � � . To
be more precise,

i. if w = � , then A is popped from the stack, whereas
ii. if w = B1B2 : : : Bk , with k � 1 and B1; B2; : : : ; Bk 2 �, then

A is replaced byw, and Bk becomes the new top symbol of
the stack.

Later, we will specify when the pushdown automaton accepts the input
string.

We now give a formal de�nition of a deterministic pushdown automaton.

De�nition 3.5.1 A deterministic pushdown automatonis a 5-tuple M =
(� ; � ; Q; �; q), where

114 Chapter 3. Context-Free Languages

1. � is a �nite set, called the tape alphabet; the blank symbol 2 is not
contained in �,

2. � is a �nite set, called the stack alphabet; this alphabet contains the
special symbol $,

3. Q is a �nite set, whose elements are calledstates,

4. q is an element ofQ; it is called the start state,

5. � is called thetransition function, which is a function

� : Q � (� [f 2 g) � � ! Q � f N; Rg � � � :

The transition function � can be thought of as being the \program" of the
pushdown automaton. This function tells us what the automaton can do in
one \computation step": Let r 2 Q, a 2 � [f 2 g, and A 2 �. Furthermore,
let r 0 2 Q, � 2 f R; N g, and w 2 � � be such that

� (r; a; A) = (r 0; �; w): (3.1)

This transition means that if

� the pushdown automaton is in stater ,

� the tape head reads the symbola, and

� the top symbol on the stack isA,

then

� the pushdown automaton switches to stater 0,

� the tape head moves according to� : if � = R, then it moves one cell
to the right; if � = N , then it does not move, and

� the top symbol A on the stack is replaced by the stringw.

We will write the computation step (3.1) in the form of theinstruction

raA ! r 0�w:

We now specify the computation of the pushdown automatonM = (� ; � ; Q; �; q).

3.6. Examples of pushdown automata 115

Start con�guration: Initially, the pushdown automaton is in the start state
q, the tape head is on the leftmost symbol of the input stringa1a2 : : : an , and
the stack only contains the special symbol $.

Computation and termination: Starting in the start con�guration, the
pushdown automaton performs a sequence of computation stepsas described
above. It terminates at the moment when the stack becomes empty. (Hence,
if the stack never gets empty, the pushdown automaton doesnot terminate.)

Acceptance: The pushdown automatonacceptsthe input string a1a2 : : : an 2
� � , if

1. the automaton terminates on this input, and

2. at the time of termination (i.e., at the moment when the stack gets
empty), the tape head is on the cell immediately to the right of the cell
containing the symbolan (this cell must contain the blank symbol2).

In all other cases, the pushdown automatonrejects the input string. Thus,
the pushdown automaton rejects this string if

1. the automaton does not terminate on this input (i.e., the computation
\loops forever") or

2. at the time of termination, the tape head is not on the cell immediately
to the right of the cell containing the symbolan .

We denote byL(M) the languageacceptedby the pushdown automaton
M . Thus,

L(M) = f w 2 � � : M acceptswg:

The pushdown automaton described above is deterministic. For anon-
deterministic pushdown automata, the current computation step may not
be uniquely de�ned, but the automaton can make a choice out of a �nite
number of possibilities. In this case, the transition function� is a function

� : Q � (� [f 2 g) � � ! P f (Q � f N; Rg � � �);

wherePf (K) is the set of all �nite subsets of the setK .
We say that a nondeterministic pushdown automatonM acceptsan input

string, if there existsan accepting computation, in the sense as described for
deterministic pushdown automata. We say thatM rejects an input string, if
every computation on this string is rejecting. As before, we denote byL(M)
the set of all strings in � � that are accepted byM .

116 Chapter 3. Context-Free Languages

3.6 Examples of pushdown automata

3.6.1 Properly nested parentheses

We will show how to construct a deterministic pushdown automaton,that
accepts the set of all strings of properly nested parentheses. Observe that a
string w in f (;)g� is properly nested if and only if

� in every pre�x of w, the number of \(" is greater than or equal to the
number of \)", and

� in the complete stringw, the number of \(" is equal to the number of
\)".

We will use the tape symbola for \(", and the tape symbol b for \)".

The idea is as follows. Recall that initially, the stack only contains the
special symbol $. The pushdown automaton reads the input stringfrom left
to right. For every a it reads, it pushes the symbolS onto the stack, and
for every b it reads, it pops the top symbol from the stack. In this way, the
number of symbolsS on the stack will always be equal to the number ofas
that have been read minus the number ofbs that have been read; additionally,
the bottom of the stack will contain the special symbol $. The inputstring
is properly nested if and only if (i) this di�erence is always non-negative and
(ii) this di�erence is zero once the entire input string has been read.Hence,
the input string is accepted if and only if during this process, (i) the stack
always contains at least the special symbol $ and (ii) at the end, thestack
only contains the special symbol $ (which will then be popped in the �nal
step).

Based on this discussion, we obtain the deterministic pushdown automa-
ton M = (� ; � ; Q; �; q), where � = f a; bg, � = f $; Sg, Q = f qg, and the
transition function � is speci�ed by the following instructions:

3.6. Examples of pushdown automata 117

qa$! qR$S because of thea, S is pushed onto the stack
qaS! qRSS because of thea, S is pushed onto the stack
qbS! qR� because of theb, the top element is popped

from the stack
qb$! qN� the number ofbs read is larger than the number

of as read; the stack is made empty (hence,
the computation terminates before the entire
string has been read), and the input string is rejected

q2 $! qN� the entire input string has been read; the stack is
made empty, and the input string is accepted

q2 S ! qNS the entire input string has been read, it contains
more as than bs; no changes are made (thus, the
automaton does not terminate), and the input string
is rejected

3.6.2 Strings of the form 0n1n

We construct a deterministic pushdown automata that accepts the language
f 0n1n : n � 0g.

The automaton uses two statesq0 and q1, where q0 is the start state.
Initially, the automaton is in state q0.

� For each 0 that it reads, the automaton pushes one symbolS onto the
stack and stays in stateq0.

� When the �rst 1 is read, the automaton switches to stateq1. From that
moment,

{ for each 1 that is read, the automaton pops the top symbol from
the stack and stays in stateq1;

{ if a 0 is read, the automaton does not make any change and,
therefore, does not terminate.

Based on this discussion, we obtain the deterministic pushdown automa-
ton M = (� ; � ; Q; �; q0), where � = f 0; 1g, � = f $; Sg, Q = f q0; q1g, q0 is
the start state, and the transition function � is speci�ed by the following
instructions:

118 Chapter 3. Context-Free Languages

q00$! q0R$S push S onto the stack
q00S ! q0RSS push S onto the stack
q01$! q0N $ �rst symbol in the input is 1; loop forever
q01S ! q1R� �rst 1 is encountered
q02 $! q0N� input string is empty; accept
q02 S ! q0NS input only consists of 0s; loop forever
q10$! q1N $ 0 to the right of 1; loop forever
q10S ! q1NS 0 to the right of 1; loop forever
q11$! q1N $ too many 1s; loop forever
q11S ! q1R� pop top symbol from the stack
q12 $! q1N� accept
q12 S ! q1NS too many 0s; loop forever

3.6.3 Strings with b in the middle

We will construct a nondeterministic pushdown automaton that accepts the
set L of all strings in f a; bg� having an odd length and whose middle symbol
is b, i.e.,

L = f vbw: v 2 f a; bg� ; w 2 f a; bg� ; jvj = jwjg:

The idea is as follows. The automaton uses two statesq and q0, whereq
is the start state. These states have the following meaning:

� If the automaton is in stateq, then it has not reached the middle symbol
b of the input string.

� If the automaton is in state q0, then it has read the middle symbolb.

Observe that since the automaton can only make one single pass over the
input string, it has to \guess" (i.e., use nondeterminism) when it reaches the
middle of the string.

� If the automaton is in state q, then, when reading the current tape
symbol,

{ it either pushes one symbolS onto the stack and stays in stateq

{ or, in case the current tape symbol isb, it \guesses" that it has
reached the middle of the input string, by switching to stateq0.

� If the automaton is in state q0, then, when reading the current tape
symbol, it pops the top symbolS from the stack and stays in stateq0.

3.7. Equivalence of PDA's and CFG's 119

In this way, the number of symbolsS on the stack will always be equal to the
di�erence of (i) the number of symbols in the part to the left of the middle
symbol b that have been read and (ii) the number of symbols in the part
to the right of the middle symbol b that have been read; additionally, the
bottom of the stack will contain the special symbol $.

The input string is accepted if and only if, at the moment when the blank
symbol 2 is read, the automaton is in stateq0 and the top symbol on the
stack is $. In this case, the stack is made empty and, thus, the computation
terminates.

We obtain the nondeterministic pushdown automatonM = (� ; � ; Q; �; q),
where � = f a; bg, � = f $; Sg, Q = f q; q0g, q is the start state, and the
transition function � is speci�ed by the following instructions:

qa$! qR$S push S onto the stack
qaS! qRSS push S onto the stack
qb$! q0R$ reached the middle
qb$! qR$S did not reach the middle; pushS onto the stack
qbS! q0RS reached the middle
qbS! qRSS did not reach the middle; pushS onto the stack
q2 $! qN$ input string is empty; loop forever
q2 S ! qNS loop forever
q0a$! q0N� stack is empty; terminate, but reject, because

the entire input string has not been read
q0aS ! q0R� pop top symbol from stack
q0b$! q0N� stack is empty; terminate, but reject, because

the entire input string has not been read
q0bS ! q0R� pop top symbol from stack
q02 $! q0N� accept
q02 S ! q0NS loop forever

Remark 3.6.1 It can be shown that there is no deterministic pushdown
automaton that accepts the languageL. The reason is that a deterministic
pushdown automaton cannot determine when it reaches the middle of the
input string. Thus, unlike as for �nite automata, nondeterministic pushdown
automata aremore powerful than their deterministic counterparts.

120 Chapter 3. Context-Free Languages

3.7 Equivalence of pushdown automata and
context-free grammars

The main result of this section is thatnondeterministic pushdown automata
and context-free grammars are equivalent in power:

Theorem 3.7.1 Let � be an alphabet and letA � � � be a language. Then
A is context-free if and only if there exists a nondeterministic pushdown
automaton that acceptsA.

We will only prove one direction of this theorem. That is, we will show
how to convert an arbitrary context-free grammar to a nondeterministic push-
down automaton.

Let G = (V;� ; R ; $) be a context-free grammar, whereV is the set of
variables, � is the set of terminals, R is the set of rules, and $ is the start
variable. By Theorem 3.4.2, we may assume thatG is in Chomsky normal
form. Hence, every rule inR has one of the following three forms:

1. A ! BC, whereA, B , and C are variables,B 6= $, and C 6= $.

2. A ! a, whereA is a variable anda is a terminal.

3. $! � .

We will construct a nondeterministic pushdown automatonM that ac-
cepts the languageL(G) of this grammar G. Observe thatM must have the
following property: For every stringw = a1a2 : : : an 2 � � ,

w 2 L(G) if and only if M acceptsw.

This can be reformulated as follows:

$ �) a1a2 : : : an

if and only if there exists a computation ofM that starts in the initial
con�guration

a1 � � � ai � � � an 2
6

$-

3.7. Equivalence of PDA's and CFG's 121

and ends in the con�guration

a1 � � � ai � � � an 2
6

;-

where ; indicates that the stack is empty.

Assume that $ �) a1a2 : : : an . Then there exists a derivation (using the
rules ofR) of the string a1a2 : : : an from the start variable $. We may assume
that in each step in this derivation, a rule is applied to the leftmost variable
in the current string. Hence, because the grammarG is in Chomsky normal
form, at any moment during the derivation, the current string hasthe form

a1a2 : : : ai � 1AkAk� 1 : : : A1; (3.2)

for some integersi and k with 1 � i � n + 1 and k � 0, and variables
A1; A2; : : : ; Ak . (In particular, at the start of the derivation, we have i = 1
and k = 1, and the current string is Ak = $. At the end of the derivation,
we havei = n + 1 and k = 0, and the current string is a1a2 : : : an .)

We will de�ne the pushdown automatonM in such a way that the current
string (3.2) corresponds to the con�guration

a1 � � � ai � � � an 2
6

A1

...

Ak
-

Based on this discussion, we obtain the nondeterministic pushdown au-
tomaton M = (� ; V;f qg; �; q), where

� the tape alphabet is the set � of terminals ofG,

� the stack alphabet is the setV of variables ofG,

� the set of states consists of one stateq, which is the start state, and

� the transition function � is obtained from the rules inR, in the following
way:

122 Chapter 3. Context-Free Languages

{ For each rule inR that is of the form A ! BC, with A; B; C 2 V,
the pushdown automatonM has the instructions

qaA ! qNCB; for all a 2 � :

{ For each rule inR that is of the form A ! a, with A 2 V and
a 2 �, the pushdown automaton M has the instruction

qaA ! qR�:

{ If R contains the rule $! � , then the pushdown automatonM
has the instruction

q2 $! qN�:

This concludes the de�nition of M . It remains to prove that L(M) =
L(G), i.e., the language of the nondeterministic pushdown automatonM is
equal to the language of the context-free grammarG. Hence, we have to
show that for every stringw 2 � � ,

w 2 L(G) if and only if w 2 L(M);

which can be rewritten as

$ �) w if and only if M acceptsw.

Claim 3.7.2 Let a1a2 : : : an be a string in� � , let A1; A2; : : : ; Ak be variables
in V , and let i and k be integers with1 � i � n + 1 and k � 0. Then the
following holds:

$ �) a1a2 : : : ai � 1AkAk� 1 : : : A1

if and only if there exists a computation ofM from the initial con�guration

a1 � � � ai � � � an 2

6
$-

to the con�guration

3.7. Equivalence of PDA's and CFG's 123

a1 � � � ai � � � an 2
6

A1

...

Ak
-

Proof. The claim can be proved by induction. Let

w = a1a2 : : : ai � 1AkAk� 1 : : : A1:

Assume thatk � 1 and assume that the claim is true for the stringw. Then
we have to show that the claim is still true after applying a rule inR to the
leftmost variable Ak in w. Since the grammar is in Chomsky normal form,
the rule to be applied is either of the formAk ! BC or of the form Ak ! ai .
In both cases, the property mentioned in the claim is maintained.

We now use Claim 3.7.2 to prove thatL(M) = L(G). Let w = a1a2 : : : an

be an arbitrary string in � � . By applying Claim 3.7.2, with i = n + 1 and
k = 0, we see thatw 2 L(G), i.e.,

$ �) a1a2 : : : an ;

if and only if there exists a computation ofM from the initial con�guration

a1 � � � ai � � � an 2
6

$-

to the con�guration

a1 � � � ai � � � an 2

6
;-

But this means that w 2 L(G) if and only if the automaton M accepts the
string w.

This concludes the proof of the fact that every context-free grammar can
be converted to a nondeterministic pushdown automaton. As mentioned
already, we will not give the conversion in the other direction. We �nish this
section with the following observation:

124 Chapter 3. Context-Free Languages

Theorem 3.7.3 Let � be an alphabet and letA � � � be a context-free lan-
guage. Then there exists a nondeterministic pushdown automaton that ac-
ceptsA and has only one state.

Proof. SinceA is context-free, there exists a context-free grammarG0 such
that L(G0) = A. By Theorem 3.4.2, there exists a context-free grammarG
that is in Chomsky normal form and for whichL(G) = L(G0). The construc-
tion given above convertsG to a nondeterministic pushdown automatonM
that has only one state and for whichL(M) = L(G).

3.8 The pumping lemma for context-free lan-
guages

In Section 2.9, we proved the pumping lemma for regular languages and
used it to prove that certain languages are not regular. In this section, we
generalize the pumping lemma to context-free languages. The idea isto
consider theparse tree (see Section 3.1) that describes the derivation of a
su�ciently long string in the context-free languageL. Since the number of
variables in the corresponding context-free grammarG is �nite, there is at
least one variable, sayA j , that occurs more than once on the longest root-
to-leaf path in the parse tree. The subtree which is sandwiched between two
occurrences ofA j on this path can be copied any number of times. This will
result in a legal parse tree and, hence, in a \pumped" string that is inthe
languageL.

Theorem 3.8.1 (Pumping Lemma for Context-Free Languages) Let
L be a context-free language. Then there exists an integerp � 1, called the
pumping length, such that the following holds: Every strings in L, with
jsj � p, can be written ass = uvxyz, such that

1. jvyj � 1 (i.e., v and y are not both empty),

2. jvxyj � p, and

3. uvi xy i z 2 L, for all i � 0.

3.8. The pumping lemma for context-free languages 125

3.8.1 Proof of the pumping lemma

The proof of the pumping lemma will use the following result about parse
trees:

Lemma 3.8.2 Let G be a context-free grammar in Chomsky normal form,
let s be a non-empty string inL(G), and let T be a parse tree fors. Let ` be
the height ofT, i.e., ` is the number of edges on a longest root-to-leaf path
in T. Then

jsj � 2` � 1:

Proof. The claim can be proved by induction oǹ . By looking at some
small values of̀ and using the fact that G is in Chomsky normal form, you
should be able to verify the claim.

Now we can start with the proof of the pumping lemma. LetL be a
context-free language and let � be the alphabet ofL. By Theorem 3.4.2, there
exists a context-free grammar in Chomsky normal form,G = (V;� ; R; S),
such that L = L(G).

De�ne r to be the number of variables ofG and de�ne p = 2 r . We will
prove that the value of p can be used as the pumping length. Consider an
arbitrary string s in L such that jsj � p, and let T be a parse tree fors. Let
` be the height ofT. Then, by Lemma 3.8.2, we have

jsj � 2` � 1:

On the other hand, we have

jsj � p = 2 r :

By combining these inequalities, we see that 2r � 2` � 1, which can be rewrit-
ten as

` � r + 1:

Consider the nodes on a longest root-to-leaf path inT. Since this path
consists of̀ edges, it consists of̀ + 1 nodes. The �rst ` of these nodes store
variables, which we denote byA0; A1; : : : ; A` � 1 (whereA0 = S), and the last
node (which is a leaf) stores a terminal, which we denote bya.

Since` � 1 � r � 0, the sequence

A` � 1� r ; A` � r ; : : : ; A` � 1

126 Chapter 3. Context-Free Languages

of variables is well-de�ned. Observe that this sequence consists ofr + 1
variables. Since the number of variables in the grammarG is equal to r ,
the pigeonhole principle implies that there is a variable that occurs at least
twice in this sequence. In other words, there are indicesj and k, such that
` � 1 � r � j < k � ` � 1 and A j = Ak . Refer to the �gure below for an
illustration.

S

A j

Ak

u v x y z

s

A0 = S

A1

A`� 1� r

A`� r

A`� 2

A`� 1

a

r + 1
variables

Recall that T is a parse tree for the strings. Therefore, the terminals
stored at the leaves ofT, in the order from left to right, form s. As indicated
in the �gure above, the nodes storing the variablesA j and Ak partition s
into �ve substrings u, v, x, y, and z, such that s = uvxyz.

3.8. The pumping lemma for context-free languages 127

It remains to prove that the three properties stated in the pumping lemma
hold. We start with the third property, i.e., we prove that

uvi xy i z 2 L; for all i � 0.

In the grammar G, we have
S �) uA j z: (3.3)

SinceA j
�) vAky and Ak = A j , we have

A j
�) vAj y: (3.4)

Finally, since Ak
�) x and Ak = A j , we have

A j
�) x: (3.5)

From (3.3) and (3.5), it follows that

S �) uA j z
�) uxz;

which implies that the string uxz is in the languageL. Similarly, it follows
from (3.3), (3.4), and (3.5) that

S �) uA j z
�) uvAj yz �) uvvAj yyz �) uvvxyyz:

Hence, the stringuv2xy2z is in the languageL. In general, for eachi � 0,
the string uvi xy i z is in the languageL, because

S �) uA j z
�) uvi A j yi z �) uvi xy i z:

This proves that the third property in the pumping lemma holds.
Next we show that the second property holds. That is, we prove that

jvxyj � p. Consider the subtree rooted at the node storing the variable
A j . The path from the node storingA j to the leaf storing the terminal
a is a longest path in this subtree. (Convince yourself that this is true.)
Moreover, this path consists of̀ � j edges. SinceA j

�) vxy, this subtree
is a parse tree for the stringvxy (where A j is used as the start variable).
Therefore, by Lemma 3.8.2, we can conclude thatjvxyj � 2` � j � 1. We know
that ` � 1 � r � j , which is equivalent to` � j � 1 � r . It follows that

jvxyj � 2` � j � 1 � 2r = p:

128 Chapter 3. Context-Free Languages

Finally, we show that the �rst property in the pumping lemma holds.
That is, we prove that jvyj � 1. Recall that

A j
�) vAky:

Let the �rst rule used in this derivation be A j ! BC. (Since the variables
A j and Ak , even though they are equal, are stored at di�erent nodes of the
parse tree, and since the grammarG is in Chomsky normal form, this �rst
rule exists.) Then

A j) BC �) vAky:

Observe that the stringBC has length two. Moreover, by applying rules of
a grammar in Chomsky normal form, strings cannot become shorter. (Here,
we use the fact that the start variable does not occur on the right-hand side
of any rule.) Therefore, we havejvAkyj � 2. But this implies that jvyj � 1.
This completes the proof of the pumping lemma.

3.8.2 Applications of the pumping lemma

First example

Consider the language
A = f anbncn : n � 0g:

We will prove by contradiction that A is not a context-free language.
Assume that A is a context-free language. Letp � 1 be the pumping

length, as given by the pumping lemma. Consider the strings = apbpcp.
Observe thats 2 A and jsj = 3p � p. Hence, by the pumping lemma,s can
be written as s = uvxyz, where jvyj � 1, jvxyj � p, and uvi xy i z 2 A for all
i � 0.

Observe that the pumping lemma does not tell us the location of the
substring vxy in the string s, it only gives us an upper bound on the length
of this substring. Therefore, we have to consider three cases, depending on
the location of vxy in s.

Case 1: The substring vxy does not contain anyc.
Consider the string uv2xy2z = uvvxyyz. Since jvyj � 1, this string

contains more thanp many as or more thanp many bs. Since it contains
exactly p many cs, it follows that this string is not in the languageA. This
is a contradiction because, by the pumping lemma, the stringuv2xy2z is in
A.

3.8. The pumping lemma for context-free languages 129

Case 2: The substring vxy does not contain anya.
Consider the string uv2xy2z = uvvxyyz. Since jvyj � 1, this string

contains more thanp many bs or more thanp many cs. Since it contains
exactly p many as, it follows that this string is not in the languageA. This
is a contradiction because, by the pumping lemma, the stringuv2xy2z is in
A.

Case 3: The substring vxy contains at least onea and at least onec.
Sinces = apbpcp, this implies that jvxyj > p, which again contradicts the

pumping lemma.

Thus, in all of the three cases, we have obtained a contradiction. There-
fore, we have shown that the languageA is not context-free.

Second example

Consider the languages

A = f wwR : w 2 f a; bg� g;

wherewR is the string obtained by writing w backwards, and

B = f ww : w 2 f a; bg� g:

Even though these languages look similar, we will show thatA is context-free
and B is not context-free.

Consider the following context-free grammar, in whichS is the start vari-
able:

S ! � jaSajbSb:

It is easy to see that the language of this grammar is exactly the languageA.
Therefore, A is context-free. Alternatively, we can show thatA is context-
free, by constructing a (nondeterministic) pushdown automatonthat accepts
A. This automaton has two statesq and q0, whereq is the start state. If the
automaton is in stateq, then it did not yet �nish reading the leftmost half of
the input string; it pushes all symbols read onto the stack. If the automaton
is in state q0, then it is reading the rightmost half of the input string; for each
symbol read, it checks whether it is equal to the symbol on top of the stack
and, if so, pops the top symbol from the stack. The pushdown automaton
uses nondeterminism to \guess" when to switch from stateq to state q0 (i.e.,
when it has completed reading the leftmost half of the input string).

130 Chapter 3. Context-Free Languages

At this point, you should convince yourself that the two approaches above,
which showed thatA is context-free, donot work for B . The reason why
they do not work is that the languageB is not context-free, as we will prove
now.

Assume that B is a context-free language. Letp � 1 be the pumping
length, as given by the pumping lemma. At this point, we must choose a
string s in B, whose length is at leastp, and that does not satisfy the three
properties stated in the pumping lemma. Let us try the strings = apbapb.
Then s 2 B and jsj = 2p + 2 � p. Hence, by the pumping lemma,s can be
written as s = uvxyz, where (i) jvyj � 1, (ii) jvxyj � p, and (iii) uvi xy i z 2 B
for all i � 0. It may happen that p � 3, u = ap� 1, v = a, x = b, y = a,
and z = ap� 1b. If this is the case, then properties (i), (ii), and (iii) hold,
and, thus, we do not get a contradiction. In other words, we havechosen
the \wrong" string s. This string is \wrong", because there is only oneb
between theas. Because of this,v can be in the leftmost block ofas, and
y can be in the rightmost block ofas. Observe that if there were at leastp
many bs between theas, then this would not happen, becausejvxyj � p.

Based on the discussion above, we chooses = apbpapbp. Observe that
s 2 B and jsj = 4p � p. Hence, by the pumping lemma,s can be written as
s = uvxyz, where jvyj � 1, jvxyj � p, and uvi xy i z 2 B for all i � 0. Based
on the location ofvxy in the string s, we distinguish three cases:

Case 1: The substringvxy overlaps both the leftmost half and the rightmost
half of s.

Sincejvxyj � p, the substringvxy is contained in the \middle" part of s,
i.e., vxy is contained in the blockbpap. Consider the stringuv0xy0z = uxz.
Sincejvyj � 1, we know that at least one ofv and y is non-empty.

� If v 6= � , then v contains at least oneb from the leftmost block ofbs in
s, whereasy does not contain anyb from the rightmost block ofbs in s.
Therefore, in the stringuxz, the leftmost block ofbs contains fewerbs
than the rightmost block of bs. Hence, the stringuxz is not contained
in B.

� If y 6= � , then y contains at least onea from the rightmost block of
as in s, whereasv does not contain anya from the leftmost block of
as in s. Therefore, in the stringuxz, the leftmost block ofas contains
more as than the rightmost block ofas. Hence, the stringuxz is not
contained in B.

3.8. The pumping lemma for context-free languages 131

In both cases, we conclude that the stringuxz is not an element of the
languageB. But, by the pumping lemma, this string is contained inB.

Case 2: The substring vxy is in the leftmost half of s.
In this case, none of the stringsuxz, uv2xy2z, uv3xy3z, uv4xy4z, etc.,

is contained in B. But, by the pumping lemma, each of these strings is
contained in B.

Case 3: The substring vxy is in the rightmost half of s.
This case is symmetric to Case 2: None of the stringsuxz, uv2xy2z,

uv3xy3z, uv4xy4z, etc., is contained inB. But, by the pumping lemma, each
of these strings is contained inB.

To summarize, in each of the three cases, we have obtained a contradic-
tion. Therefore, the languageB is not context-free.

Third example

We have seen in Section 3.2.4 that the language

f ambncm+ n : m � 0; n � 0g

is context-free. Using the pumping lemma for regular languages, it iseasy to
prove that this language is not regular. In other words, context-free gram-
mars can verify addition, whereas �nite automata are not powerful enough
for this. We now consider the problem of verifying multiplication: LetA be
the language de�ned as

A = f ambncmn : m � 0; n � 0g:

We will prove by contradiction that A is not a context-free language.
Assume that A is context-free. Let p � 1 be the pumping length, as

given by the pumping lemma. Consider the strings = apbpcp2
. Then, s 2 A

and jsj = 2p + p2 � p. Hence, by the pumping lemma,s can be written as
s = uvxyz, wherejvyj � 1, jvxyj � p, and uvi xy i z 2 A for all i � 0.

There are three possible cases, depending on the locations ofv and y in
the string s.

Case 1: The substring v does not contain anya and does not contain any
b, and the substringy does not contain anya and does not contain anyb.

132 Chapter 3. Context-Free Languages

Consider the string uv2xy2z. Since jvyj � 1, this string consists ofp
many as, p many bs, but more thanp2 many cs. Therefore, this string is not
contained in A. But, by the pumping lemma, it is contained inA.

Case 2: The substring v does not contain anyc and the substringy does
not contain any c.

Consider again the stringuv2xy2z. This string consists ofp2 many cs.
Sincejvyj � 1, in this string,

� the number ofas is at leastp+ 1 and the number ofbs is at leastp, or

� the number ofas is at leastp and the number ofbs is at leastp + 1.

Therefore, the number ofas multiplied by the number ofbs is at leastp(p+1),
which is larger thanp2. Therefore,uv2xy2z is not contained in A. But, by
the pumping lemma, this string is contained inA.

Case 3: The substringv contains at least oneband the substringy contains
at least onec.

Sincejvxyj � p, the substring vy does not contain anya. Thus, we can
write vy = bj ck , where j � 1 and k � 1. Consider the stringuxz. We can
write this string as uxz = apbp� j cp2 � k . Since, by the pumping lemma, this
string is contained inA, we havep(p� j) = p2 � k, which implies that jp = k.
Thus,

jvxyj � j vyj = j + k = j + jp � 1 + p:

But, by the pumping lemma, we havejvxyj � p.

Observe that, sincejvxyj � p, the above three cases cover all possibilities
for the locations ofv and y in the string s. In each of the three cases, we
have obtained a contradiction. Therefore, the languageA is not context-free.

Exercises

3.1 Construct context-free grammars that generate the following languages.
In all cases, � = f 0; 1g.

� f 02n1n : n � 0g

� f w : w contains at least three 1sg

� f w : the length of w is odd and its middle symbol is 0g

Exercises 133

� f w : w is a palindromeg.
A palindrome is a string w having the property that w = wR , i.e.,
reading w from left to right gives the same result as readingw from
right to left.

� f w : w starts and ends with the same symbolg

� f w : w starts and ends with di�erent symbolsg

3.2 Let G = (V;� ; R; S) be the context-free grammar, whereV = f A; B; Sg,
� = f 0; 1g, S is the start variable, andR consists of the rules

S ! 0Sj1Aj�
A ! 0B j1S
B ! 0Aj1B

De�ne the following languageL:

L = f w 2 f 0; 1g� : w is the binary representation of a non-negative
integer that is divisible by threeg [f � g:

Prove that L = L(G). (Hint: The variables S, A, and B are used to
remember the remainder after division by three.)

3.3 Let G = (V;� ; R; S) be the context-free grammar, whereV = f A; B; Sg,
� = f a; bg, S is the start variable, andR consists of the rules

S ! aBjbA
A ! ajaSjBAA
B ! bjbSjABB

� Prove that ababba2 L(G).

� Prove that L(G) is the set of all non-empty stringsw over the alphabet
f a; bg such that the number ofas in w is equal to the number ofbs in
w.

3.4 Let A and B be context-free languages over the same alphabet �.

� Prove that the union A [B of A and B is also context-free.

� Prove that the concatenationAB of A and B is also context-free.

134 Chapter 3. Context-Free Languages

� Prove that the star A � of A is also context-free.

3.5 De�ne the following two languagesA and B:

A = f am bncn : m � 0; n � 0g

and
B = f ambm cn : m � 0; n � 0g:

� Prove that both A and B are context-free, by constructing two context-
free grammars, one that generatesA and one that generatesB.

� We have seen in Section 3.8.2 that the language

f anbncn : n � 0g

is not context-free. Explain why this implies that the intersection of
two context-free languages is not necessarily context-free.

� Use De Morgan's Law to conclude that the complement of a context-
free language is not necessarily context-free.

3.6 Let A be a context-free language and letB be a regular language.

� Prove that the intersection A \ B of A and B is context-free.

� Prove that the set-di�erence

A n B = f w : w 2 A; w 62Bg

of A and B is context-free.

� Is the set-di�erence of two context-free languages necessarilycontext-
free?

3.7 Let L be the language consisting of all non-empty stringsw over the
alphabet f a; bg such that

� the number ofas in w is equal to the number ofbs in w,

� w does not contain the substringabba, and

� w does not contain the substringbbaa.

Exercises 135

In this exercise, you will prove thatL is context-free.
Let A be the language consisting of all non-empty stringsw over the

alphabet f a; bg such that the number ofas in w is equal to the number ofbs
in w. In Exercise 3.3, you have shown thatA is context-free.

Let B be the language consisting of all stringsw over the alphabetf a; bg
such that

� w does not contain the substringabba, and

� w does not contain the substringbbaa.

1. Give a regular expression that describes the complement ofB .

2. Argue that B is a regular language.

3. Use Exercise 3.6 to argue thatL is a context-free language.

3.8 Construct (deterministic or nondeterministic) pushdown automata that
accept the following languages.

1. f 02n1n : n � 0g.

2. f 0n1m0n : n � 1; m � 1g.

3. f w 2 f 0; 1g� : w contains more 1s than 0sg.

4. f wwR : w 2 f 0; 1g� g.
(If w = w1 : : : wn , then wR = wn : : : w1.)

5. f w 2 f 0; 1g� : w is a palindromeg.

3.9 Let L be the language

L = f ambn : 0 � m � n � 2mg:

1. Prove that L is context-free, by constructing a context-free grammar
whose language is equal toL.

2. Prove that L is context-free, by constructing a nondeterministic push-
down automaton that acceptsL.

3.10 Prove that the following languages are not context-free.

136 Chapter 3. Context-Free Languages

� f an b a2n b a3n : n � 0g.

� f anbnanbn : n � 0g.

� f ambnck : m � 0; n � 0; k = max(m; n)g.

� f w# x : w is a substring ofx, and w; x 2 f a; bg� g.
For example, the stringaba# abbababbbis in the language, whereas the
string aba# baabbaabbis not in the language. The alphabet isf a; b;# g.

�
f w 2 f a; b; cg� : w contains moreb's than a's and

w contains morec's than a's g:

� f 1n : n is a prime numberg.

� f (abn)n : n � 0g. (The parentheses are not part of the alphabet; thus,
the alphabet isf a; b;g.)

3.11 Let L be a language consisting of �nitely many strings. Show thatL
is regular and, therefore, context-free. Letk be the maximum length of any
string in L.

� Prove that every context-free grammar in Chomsky normal form that
generatesL has more than logk variables. (The logarithm is in base
2.)

� Prove that there is a context-free grammar that generatesL and that
has only one variable.

3.12 Let L be a context-free language. Prove that there exists an integer
p � 1, such that the following is true: For every strings in L with jsj � p,
there exists a strings0 in L such that jsj < js0j � j sj + p.

Chapter 4

Turing Machines and the
Church-Turing Thesis

In the previous chapters, we have seen several computational devices that
can be used to accept or generate regular and context-free languages. Even
though these two classes of languages are fairly large, we have seen in Sec-
tion 3.8.2 that these devices are not powerful enough to accept simple lan-
guages such asA = f ambncmn : m � 0; n � 0g. In this chapter, we introduce
the Turing machine, which is a simple model of a real computer. Turingma-
chines can be used to accept all context-free languages, but alsolanguages
such asA. We will argue that every problem that can be solved on a real
computer can also be solved by a Turing machine (this statement is known
as the Church-Turing Thesis). In Chapter 5, we will consider the limitations
of Turing machines and, hence, of real computers.

4.1 De�nition of a Turing machine

We start with an informal description of a Turing machine. Such a machine
consists of the following, see also Figure 4.1.

1. There arek tapes, for some �xed k � 1. Each tape is divided into
cells, and is in�nite both to the left and to the right. Each cell stores
a symbol belonging to a �nite set �, which is called thetape alphabet.
The tape alphabet contains theblank symbol2 . If a cell contains2 ,
then this means that the cell is actually empty.

138 Chapter 4. Turing Machines and the Church-Turing Thesis

state control

. . . 2 2 2 a a b a b b a b a b 2 2 2 . . .
?

. . . 2 2 2 b a a b 2 a b 2 2 2 . . .
?

Figure 4.1: A Turing machine with k = 2 tapes.

2. Each tape has atape headwhich can move along the tape, one cell
per move. It can also read the cell it currently scans and replace the
symbol in this cell by another symbol.

3. There is astate control, which can be in any one of a �nite number of
states. The �nite set of states is denoted byQ. The set Q contains
three special states: astart state, an accept state, and a reject state.

The Turing machine performs a sequence ofcomputation steps. In one
such step, it does the following:

1. Immediately before the computation step, the Turing machine is ina
state r of Q, and each of thek tape heads is on a certain cell.

2. Depending on the current stater and the k symbols that are read by
the tape heads,

(a) the Turing machine switches to a stater 0 of Q (which may be
equal to r),

(b) each tape head writes a symbol of � in the cell it is currently
scanning (this symbol may be equal to the symbol currently stored
in the cell), and

4.1. De�nition of a Turing machine 139

(c) each tape head either moves one cell to the left, moves one cellto
the right, or stays at the current cell.

We now give a formal de�nition of a deterministic Turing machine.

De�nition 4.1.1 A deterministic Turing machine is a 7-tuple

M = (� ; � ; Q; �; q; qaccept; qreject);

where

1. � is a �nite set, called the input alphabet; the blank symbol 2 is not
contained in �,

2. � is a �nite set, called the tape alphabet; this alphabet contains the
blank symbol 2 , and � � �,

3. Q is a �nite set, whose elements are calledstates,

4. q is an element ofQ; it is called the start state,

5. qaccept is an element ofQ; it is called the accept state,

6. qreject is an element ofQ; it is called the reject state,

7. � is called thetransition function, which is a function

� : Q � � k ! Q � � k � f L; R; N gk :

The transition function � is basically the \program" of the Turing ma-
chine. This function tells us what the machine can do in \one computation
step": Let r 2 Q, and let a1; a2; : : : ; ak 2 �. Furthermore, let r 0 2 Q,
a0

1; a0
2; : : : ; a0

k 2 �, and � 1; � 2; : : : ; � k 2 f L; R; N g be such that

� (r; a1; a2; : : : ; ak) = (r 0; a0
1; a0

2; : : : ; a0
k ; � 1; � 2; : : : ; � k): (4.1)

This transition means that if

� the Turing machine is in stater , and

� the head of thei -th tape reads the symbolai , 1 � i � k,

then

140 Chapter 4. Turing Machines and the Church-Turing Thesis

� the Turing machine switches to stater 0,

� the head of thei -th tape replaces the scanned symbolai by the symbol
a0

i , 1 � i � k, and

� the head of thei -th tape moves according to� i , 1 � i � k: if � i = L,
then the tape head moves one cell to the left; if� i = R, then it moves
one cell to the right; if � i = N , then the tape head does not move.

We will write the computation step (4.1) in the form of theinstruction

ra1a2 : : : ak ! r 0a0
1a0

2 : : : a0
k � 1� 2 : : : � k :

We now specify the computation of the Turing machine

M = (� ; � ; Q; �; q; qaccept; qreject):

Start con�guration: The input is a string over the input alphabet �.
Initially, this input string is stored on the �rst tape, and the head of this
tape is on the leftmost symbol of the input string. Initially, all other k � 1
tapes are empty, i.e., only contain blank symbols, and the Turing machine is
in the start state q.

Computation and termination: Starting in the start con�guration, the
Turing machine performs a sequence of computation steps as described above.
The computation terminates at the moment when the Turing machine en-
ters the accept stateqaccept or the reject stateqreject . (Hence, if the Turing
machine never enters the statesqaccept and qreject , the computation doesnot
terminate.)

Acceptance: The Turing machineM acceptsthe input string w 2 � � , if the
computation on this input terminates in the stateqaccept. If the computation
on this input terminates in the state qreject , then M rejects the input string
w.

We denote byL(M) the languageacceptedby the Turing machine M .
Thus, L(M) is the set of all strings in � � that are accepted byM .

Observe that a stringw 2 � � does not belong toL(M) if and only if on
input w,

� the computation of M terminates in the stateqreject or

� the computation of M does not terminate.

4.2. Examples of Turing machines 141

4.2 Examples of Turing machines

4.2.1 Accepting palindromes using one tape

We will show how to construct a Turing machine with one tape, that decides
whether or not any input string w 2 f a; bg� is a palindrome. Recall that the
string w is called a palindrome, if readingw from left to right gives the same
result as readingw from right to left. Examples of palindromes areabba,
baabbbbaab, and the empty string � .

Start of the computation: The tape contains the input stringw, the tape
head is on the leftmost symbol ofw, and the Turing machine is in the start
state q0.

Idea: The tape head reads the leftmost symbol ofw, deletes this symbol
and \remembers" it by means of a state. Then the tape head movesto
the rightmost symbol and tests whether it is equal to the (alreadydeleted)
leftmost symbol.

� If they are equal, then the rightmost symbol is deleted, the tape head
moves to the new leftmost symbol, and the whole process is repeated.

� If they are not equal, the Turing machine enters the reject state, and
the computation terminates.

The Turing machine enters the accept state as soon as the string currently
stored on the tape is empty.

We will use the input alphabet � = f a; bg and the tape alphabet � =
f a; b;2 g. The set Q of states consists of the following eight states:

q0 : start state; tape head is on the leftmost symbol
qa : leftmost symbol wasa; tape head is moving to the right
qb : leftmost symbol wasb; tape head is moving to the right
q0

a : reached rightmost symbol; test whether it is equal toa, and delete it
q0

b : reached rightmost symbol; test whether it is equal tob, and delete it
qL : test was positive; tape head is moving to the left
qaccept : accept state
qreject : reject state

142 Chapter 4. Turing Machines and the Church-Turing Thesis

The transition function � is speci�ed by the following instructions:

q0a ! qa2 R qaa ! qaaR qba ! qbaR
q0b ! qb2 R qab ! qabR qbb ! qbbR
q02 ! qaccept qa2 ! q0

a2 L qb2 ! q0
b2 L

q0
aa ! qL 2 L q0

ba ! qreject qL a ! qL aL
q0

ab ! qreject q0
bb ! qL 2 L qL b ! qL bL

q0
a2 ! qaccept q0

b2 ! qaccept qL 2 ! q02 R

You should go through the computation of this Turing machine for some
sample inputs, for exampleabba, b, abband the empty string (which is a
palindrome).

4.2.2 Accepting palindromes using two tapes

We again consider the palindrome problem, but now we use a Turing machine
with two tapes.

Start of the computation: The �rst tape contains the input string w and
the head of the �rst tape is on the leftmost symbol ofw. The second tape is
empty and its tape head is at an arbitrary position. The Turing machine is
in the start state q0.

Idea: First, the input string w is copied to the second tape. Then the head
of the �rst tape moves back to the leftmost symbol ofw, while the head of
the second tape stays at the rightmost symbol ofw. Finally, the actual test
starts: The head of the �rst tape moves to the right and, at the same time,
the head of the second tape moves to the left. While moving, the Turing
machine tests whether the two tape heads read the same symbol ineach
step.

The input alphabet is � = f a; bg and the tape alphabet is � = f a; b;2 g.
The set Q of states consists of the following �ve states:

q0 : start state; copy w to the second tape
q1 : w has been copied; head of �rst tape moves to the left
q2 : head of �rst tape moves to the right; head of second tape moves

to the left; until now, all tests were positive
qaccept : accept state
qreject : reject state

4.2. Examples of Turing machines 143

The transition function � is speci�ed by the following instructions:

q0a2 ! q0aaRR q1aa ! q1aaLN
q0b2 ! q0bbRR q1ab! q1abLN
q022 ! q122 LL q1ba! q1baLN

q1bb! q1bbLN
q12 a ! q22 aRN
q12 b ! q22 bRN
q122 ! qaccept

q2aa ! q2aaRL
q2ab! qreject

q2ba! qreject

q2bb! q2bbRL
q222 ! qaccept

Again, you should run this Turing machine for some sample inputs.

4.2.3 Accepting anbncn using one tape

We will construct1 a Turing machine with one tape that accepts the language

f anbncn : n � 0g:

Recall that we have proved in Section 3.8.2 that this language is not context-
free.

Start of the computation: The tape contains the input stringw and the
tape head is on the leftmost symbol ofw. The Turing machine is in the start
state.

Idea: In the previous examples, the tape alphabet � was equal to the union
of the input alphabet � and f 2 g. In this example, we will add one symbol
d to the tape alphabet. As we will see, this simpli�es the construction of
the Turing machine. Thus, the input alphabet is � = f a; b; cg and the tape
alphabet is � = f a; b; c; d;2 g. Recall that the input string w belongs to � � .

The general approach is to split the computation into two stages.

1Thanks to Michael Fleming for pointing out an error in a previous version of this
construction.

144 Chapter 4. Turing Machines and the Church-Turing Thesis

Stage 1: In this stage, we check if the stringw is in the language described
by the regular expressiona� b� c� . If this is the case, then we walk back to
the leftmost symbol. For this stage, we use the following states, besides the
statesqaccept and qreject :

qa : start state; we are reading the block ofa's
qb : we are reading the block ofb's
qc : we are reading the block ofc's
qL : walk to the leftmost symbol

Stage 2: In this stage, we repeat the following: Walk along the string from
left to right, replace the leftmost a by d, replace the leftmostb by d, replace
the leftmost c by d, and walk back to the leftmost symbol.

For this stage, we use the following states:

q0
a : start state of Stage 2; search for the leftmosta

q0
b : leftmost a has been replaced byd;

search for the leftmostb
q0

c : leftmost a has been replaced byd;
leftmost b has been replaced byd;
search for the leftmostc

q0
L : leftmost a has been replaced byd;

leftmost b has been replaced byd;
leftmost c has been replaced byd;
walk to the leftmost symbol

The transition function � is speci�ed by the following instructions:

qaa ! qaaR qba ! qreject

qab ! qbbR qbb ! qbbR
qac ! qccR qbc ! qccR
qad ! cannot happen qbd ! cannot happen
qa2 ! qL 2 L qb2 ! qL 2 L

qca ! qreject qL a ! qL aL
qcb ! qreject qL b ! qL bL
qcc ! qccR qL c ! qL cL
qcd ! cannot happen qL d ! cannot happen
qc2 ! qL 2 L qL 2 ! q0

a2 R

4.2. Examples of Turing machines 145

q0
aa ! q0

bdR q0
ba ! q0

baR
q0

ab ! qreject q0
bb ! q0

cdR
q0

ac ! qreject q0
bc ! qreject

q0
ad ! q0

adR q0
bd ! q0

bdR
q0

a2 ! qaccept q0
b2 ! qreject

q0
ca ! qreject q0

L a ! q0
L aL

q0
cb ! q0

cbR q0
L b ! q0

L bL
q0

cc ! q0
L dL q0

L c ! q0
L cL

q0
cd ! q0

cdR q0
L d ! q0

L dL
q0

c2 ! qreject q0
L 2 ! q0

a2 R

We remark that Stage 1 is really necessary for this Turing machine: If we
omit this stage, and use only Stage 2, then the stringaabcbcwill be accepted.

4.2.4 Accepting anbncn using tape alphabet f a; b; c;2 g

We consider again the languagef anbncn : n � 0g. In the previous section,
we presented a Turing machine that uses an extra symbold. The reader may
wonder if we can construct a Turing machine for this language that does not
use any extra symbols. We will show below that this is indeed possible.

Start of the computation: The tape contains the input stringw and the
tape head is on the leftmost symbol ofw. The Turing machine is in the start
state q0.

Idea: Repeat the following Stages 1 and 2, until the string is empty.

Stage 1. Walk along the string from left to right, delete the leftmost a,
delete the leftmostb, and delete the rightmostc.

Stage 2. Shift the substring of bs andcs one position to the left; then walk
back to the leftmost symbol.

The input alphabet is � = f a; b; cg and the tape alphabet is � = f a; b; c;2 g.

146 Chapter 4. Turing Machines and the Church-Turing Thesis

For Stage 1, we use the following states:

q0 : start state; tape head is on the leftmost symbol
qa : leftmost a has been deleted; have not readb
qb : leftmost b has been deleted; have not readc
qc : leftmost c has been read; tape head moves to the right
q0

c : tape head is on the rightmostc
q1 : rightmost c has been deleted; tape head is on the rightmost

symbol or 2
qaccept : accept state
qreject : reject state

The transitions for Stage 1 are speci�ed by the following instructions:

q0a ! qa2 R qaa ! qaaR
q0b ! qreject qab ! qb2 R
q0c ! qreject qac ! qreject

q02 ! qaccept qa2 ! qreject

qba ! qreject qca ! qreject

qbb ! qbbR qcb ! qreject

qbc ! qccR qcc ! qccR
qb2 ! qreject qc2 ! q0

c2 L
q0

cc ! q12 L

For Stage 2, we use the following states:

q1 : as above; tape head is on the rightmost symbol or on2
qc : copy c one cell to the left
qb : copy b one cell to the left
q2 : done with shifting; head moves to the left

Additionally, we use a stateq0
1 which has the following meaning: If the input

string is of the formai bc, for somei � 1, then after Stage 1, the tape contains
the string ai � 122 , the tape head is on the2 immediately to the right of the
as, and the Turing machine is in stateq1. In this case, we move one cell to
the left; if we then read2 , then i = 1, and we accept; otherwise, we reada,
and we reject.

4.2. Examples of Turing machines 147

The transitions for Stage 2 are speci�ed by the following instructions:

q1a ! cannot happen q0
1a ! qreject

q1b ! qreject q0
1b ! cannot happen

q1c ! qc2 L q0
1c ! cannot happen

q12 ! q0
12 L q0

12 ! qaccept

qca ! cannot happen qba ! cannot happen
qcb ! qbcL qbb ! qbbL
qcc ! qccL qbc ! cannot happen
qc2 ! qreject qb2 ! q2bL

q2a ! q2aL
q2b ! cannot happen
q2c ! cannot happen
q22 ! q02 R

4.2.5 Accepting ambncmn using one tape

We will sketch how to construct a Turing machine with one tape that accepts
the language

f am bncmn : m � 0; n � 0g:

Recall that we have proved in Section 3.8.2 that this language is not context-
free.

The input alphabet is � = f a; b; cg and the tape alphabet is � = f a; b; c;$; 2 g,
where the purpose of the symbol $ will become clear below.

Start of the computation: The tape contains the input stringw and the
tape head is on the leftmost symbol ofw. The Turing machine is in the start
state.

Idea: Observe that a stringam bnck is in the language if and only if for every
a, the string containsn many cs. Based on this, the computation consists of
the following stages:

Stage 1. Walk along the input string w from left to right and check whether
w is an element of the language described by the regular expressiona� b� c� .
If this is not the case, then reject the input string. Otherwise, goto Stage 2.

Stage 2. Walk back to the leftmost symbol ofw. Go to Stage 3.

Stage 3. In this stage, the Turing machine does the following:

148 Chapter 4. Turing Machines and the Church-Turing Thesis

� Replace the leftmosta by the blank symbol2 .

� Walk to the leftmost b.

� Zigzag between thebs andcs; each time, replace the leftmostb by the
symbol $, and replace the rightmostc by the blank symbol 2 . If, for
someb, there is noc left, the Turing machine rejects the input string.

� Continue zigzagging until there are nobs left. Then go to Stage 4.

Observe that in this third stage, the string ambnck is transformed to the
string am� 1$nck� n .

Stage 4. In this stage, the Turing machine does the following:

� Replace each $ byb.

� Walk to the leftmost a.

Hence, in this fourth stage, the stringam� 1$nck� n is transformed to the string
am� 1bnck� n .

Observe that the input string am bnck is in the language if and only if the
string am� 1bnck� n is in the language. Therefore, the Turing machine repeats
Stages 3 and 4, until there are noas left. At that moment, it checks whether
there are anycs left; if so, it rejects the input string; otherwise, it accepts
the input string.

We hope that you believe that this description of the algorithm can be
turned into a formal description of a Turing machine.

4.3 Multi-tape Turing machines

In Section 4.2, we have seen two Turing machines that accept palindromes;
the �rst Turing machine has one tape, whereas the second one hastwo tapes.
You will have noticed that the two-tape Turing machine was easier toobtain
than the one-tape Turing machine. This leads to the question whether multi-
tape Turing machines are more powerful than their one-tape counterparts.
The answer is \no":

Theorem 4.3.1 Let k � 1 be an integer. Anyk-tape Turing machine can
be converted to an equivalent one-tape Turing machine.

4.3. Multi-tape Turing machines 149

Proof. 2 We will sketch the proof for the case whenk = 2. Let M =
(� ; � ; Q; �; q; qaccept; qreject) be a two-tape Turing machine. Our goal is to
convert M to an equivalent one-tape Turing machineN . That is, N should
have the property that for all strings w 2 � � ,

� M acceptsw if and only if N acceptsw,

� M rejects w if and only if N rejectsw,

� M does not terminate on inputw if and only if N does not terminate
on input w.

The tape alphabet of the one-tape Turing machineN is

� [f _x : x 2 � g [f # g:

In words, we take the tape alphabet � ofM , and add, for eachx 2 �, the
symbol _x. Moreover, we add a special symbol #.

The Turing machine N will be de�ned in such a way that any con�gura-
tion of the two-tape Turing machineM , for example

. . . 2 1 0 0 1 2 . . .
6

. . . 2 a a b a 2 . . .
6

corresponds to the following con�guration of the one-tape Turingmachine
N :

. . . 2 # 1 0 _0 1 # a _a b a # 2 . . .

6

2Thanks to Sergio Cabello for pointing out an error in a previous version of this proof.

150 Chapter 4. Turing Machines and the Church-Turing Thesis

Thus, the contents of the two tapes ofM are encoded on the single tape of
N . The dotted symbols are used to indicate the positions of the two tape
heads ofM , whereas the three occurrences of the special symbol # are used
to mark the boundaries of the strings on the two tapes ofM .

The Turing machine N simulates one computation step ofM , in the
following way:

� Throughout the simulation of this step, N \remembers" the current
state of M .

� At the start of the simulation, the tape head ofN is on the leftmost
symbol #.

� N walks along the string to the right until it �nds the �rst dotted
symbol. (This symbol indicates the location of the head on the �rst tape
of M .) N remembers this �rst dotted symbol and continues walking
to the right until it �nds the second dotted symbol. (This symbol
indicates the location of the head on the second tape ofM .) Again, N
remembers this second dotted symbol.

� At this moment, N is still at the second dotted symbol. N updates
this part of the tape, by making the change thatM would make on its
second tape. (This change is given by the transition function ofM ; it
depends on the current state ofM and the two symbols thatM reads
on its two tapes.)

� N walks to the left until it �nds the �rst dotted symbol. Then, it
updates this part of the tape, by making the change thatM would
make on its �rst tape.

� In the previous two steps, in which the tape is updated, it may be
necessary to shift a part of the tape.

� Finally, N remembers the new state ofM and walks back to the left-
most symbol #.

It should be clear that the Turing machineN can be constructed by
introducing appropriate states.

4.4. The Church-Turing Thesis 151

4.4 The Church-Turing Thesis

We all have some intuitive notion of what analgorithm is. This notion will
probably be something like \an algorithm is a procedure consisting of com-
putation steps that can be speci�ed in a �nite amount of text". For example,
any \computational process" that can be speci�ed by a Java program, should
be considered an algorithm. Similarly, a Turing machine speci�es a \com-
putational process" and, therefore, should be considered an algorithm. This
leads to the question of whether it is possible to give a mathematical de�ni-
tion of an \algorithm". We just saw that every Java program represents an
algorithm and that every Turing machine also represents an algorithm. Are
these two notions of an algorithm equivalent? The answer is \yes". In fact,
the following theorem states that many di�erent notions of \computational
process" are equivalent. (We hope that you have gained su�cient intuition,
so that none of the claims in this theorem comes as a surprise to you.)

Theorem 4.4.1 The following computation models are equivalent, i.e., any
one of them can be converted to any other one:

1. One-tape Turing machines.

2. k-tape Turing machines, for anyk � 1.

3. Non-deterministic Turing machines.

4. Java programs.

5. C++ programs.

6. Lisp programs.

In other words, if we de�ne the notion of an algorithm using any of the
models in this theorem, then it does not matter which model we take:All
these models give the same notion of an algorithm.

The problem of de�ning the notion of an algorithm goes back to David
Hilbert. On August 8, 1900, at the Second International Congress of Math-
ematicians in Paris, Hilbert presented a list of problems that he considered
crucial for the further development of mathematics. Hilbert's 10th problem
is the following:

152 Chapter 4. Turing Machines and the Church-Turing Thesis

Does there exist a�nite process that decides whether or not any
given polynomial with integer coe�cients has integral roots?

Of course, in our language, Hilbert asked whether or not there exists an
algorithm that decides, when given an arbitrary polynomial equation (with
integer coe�cients) such as

12x3y7z5 + 7x2y4z � x4 + y2z7 � z3 + 10 = 0 ;

whether or not this equation has a solution in integers. In 1970, Matiyasevich
proved that such an algorithm doesnot exist. Of course, in order to prove
this claim, we �rst have to agree on what analgorithm is. In the beginning
of the twentieth century, mathematicians gave several de�nitions, such as
Turing machines (1936) and the� -calculus (1936), and they proved that all
these are equivalent. Later, after programming languages were invented, it
was shown that these older notions of an algorithm are equivalent tonotions
of an algorithm that are based on C programs, Java programs, Lispprograms,
Pascal programs, etc.

In other words, all attempts to give a rigorous de�nition of the notion of
an algorithm led to the same concept. Because of this, computer scientists
nowadays agree on what is called the Church-Turing Thesis:

Church-Turing Thesis: Every computational process that is intuitively
considered to be an algorithm can be converted to a Turing machine.

In other words, this basically states that wede�ne an algorithm to be a
Turing machine. At this point, you should ask yourself, whether theChurch-
Turing Thesis can beproved. Alternatively, what has to be done in order to
disprove this thesis?

Exercises

4.1 Construct a Turing machine with one tape, that accepts the language

f 02n1n : n � 0g:

Assume that, at the start of the computation, the tape head is onthe leftmost
symbol of the input string.

Exercises 153

4.2 Construct a Turing machine with one tape, that accepts the language

f w : w contains twice as many 0s as 1sg:

Assume that, at the start of the computation, the tape head is onthe leftmost
symbol of the input string.

4.3 Let A be the language

A = f w 2 f a; b; cg� : w contains morebs than as and
w contains morecs than as g:

Give an informal description (in plain English) of a Turing machine with one
tape, that accepts the languageA.

4.4 Construct a Turing machine with one tape that receives as input a non-
negative integerx and returns as output the integerx + 1. Integers are
represented as binary strings.

Start of the computation: The tape contains the binary representation
of the input x. The tape head is on the leftmost symbol and the Turing
machine is in the start stateq0. For example, if x = 431, the tape looks as
follows:

. . . 2 2 2 1 1 0 1 0 1 1 1 1 2 2 2 . . .

6

End of the computation: The tape contains the binary representation of
the integer x + 1. The tape head is on the leftmost symbol and the Turing
machine is in the �nal state q1. For our example, the tape looks as follows:

. . . 2 2 2 1 1 0 1 1 0 0 0 0 2 2 2 . . .

6

The Turing machine in this exercise does not have an accept state ora
reject state; instead, it has a �nal stateq1. As soon as stateq1 is entered,
the Turing machine terminates. At termination, the contents of the tape is
the output of the Turing machine.

154 Chapter 4. Turing Machines and the Church-Turing Thesis

4.5 Construct a Turing machine with two tapes that receives as input two
non-negative integersx and y, and returns as output the integerx + y.
Integers are represented as binary strings.

Start of the computation: The �rst tape contains the binary represen-
tation of x and its head is on the rightmost symbol ofx. The second tape
contains the binary representation ofy and its head is on the rightmost bit
of y. At the start, the Turing machine is in the start state q0.

End of the computation: The �rst tape contains the binary representation
of x and its head is on the rightmost symbol ofx. The second tape contains
the binary representation of the integerx + y (thus, the integer y is \gone").
The head of the second tape is on the rightmost bit ofx + y. The Turing
machine is in the �nal state q1.

4.6 Give an informal description (in plain English) of a Turing machine with
one tape that receives as input two non-negative integersx and y, and returns
as output the integerx + y. Integers are represented as binary strings. If you
are an adventurous student, you may give a formal de�nition of your Turing
machine.

4.7 Construct a Turing machine with one tape that receives as input an
integerx � 1 and returns as output the integerx� 1. Integers are represented
in binary.

Start of the computation: The tape contains the binary representation of
the input x. The tape head is on the rightmost symbol ofx and the Turing
machine is in the start stateq0.

End of the computation: The tape contains the binary representation of
the integer x � 1. The tape head is on the rightmost bit ofx � 1 and the
Turing machine is in the �nal state q1.

4.8 Give an informal description (in plain English) of a Turing machine with
three tapes that receives as input two non-negative integersx and y, and
returns as output the integerxy. Integers are represented as binary strings.

Start of the computation: The �rst tape contains the binary represen-
tation of x and its head is on the rightmost symbol ofx. The second tape
contains the binary representation ofy and its head is on the rightmost sym-
bol of y. The third tape is empty and its head is at an arbitrary location.
The Turing machine is in the start stateq0.

Exercises 155

End of the computation: The �rst and second tapes are empty. The third
tape contains the binary representation of the productxy and its head is on
the rightmost bit of xy. The Turing machine is in the �nal state q1.

Hint: Use the Turing machines of Exercises 4.5 and 4.7.

4.9 Construct a Turing machine with one tape that receives as input a string
of the form 1n for some integern � 0; thus, the input is a string ofn many
1s. The output of the Turing machine is the string 1n2 1n . Thus, this Turing
machine makes a copy of its input.

The input alphabet is � = f 1g and the tape alphabet is � = f 1; 2 g.

Start of the computation: The tape contains a string of the form 1n , for
some integern � 0, the tape head is on the leftmost symbol, and the Turing
machine is in the start state. For example, ifn = 4, the tape looks as follows:

. . . 2 2 2 1 1 1 1 2 2 2 . . .

6

End of the computation: The tape contains the string 1n2 1n , the tape
head is on the2 in the middle of this string, and the Turing machine is in
the �nal state. For our example, the tape looks as follows:

. . . 2 2 2 1 1 1 1 2 1 1 1 1 2 2 2 . . .

6

The Turing machine in this exercise does not have an accept state ora
reject state; instead, it has a �nal state. As soon as this state isentered, the
Turing machine terminates. At termination, the contents of the tape is the
output of the Turing machine.

156 Chapter 4. Turing Machines and the Church-Turing Thesis

Chapter 5

Decidable and Undecidable
Languages

We have seen in Chapter 4 that Turing machines form a model for \everything
that is intuitively computable". In this chapter, we consider the limitations
of Turing machines. That is, we ask ourselves the question whetheror not
\everything" is computable. As we will see, the answer is \no". In fact, we
will even see that \most" problems are not solvable by Turing machines and,
therefore, not solvable by computers.

5.1 Decidability

In Chapter 4, we have de�ned when a Turing machine accepts an input string
and when it rejects an input string. Based on this, we de�ne the following
class of languages.

De�nition 5.1.1 Let � be an alphabet and let A � � � be a language. We
say that A is decidable, if there exists a Turing machineM , such that for
every string w 2 � � , the following holds:

1. If w 2 A, then the computation of the Turing machineM , on the input
string w, terminates in the accept state.

2. If w 62A, then the computation of the Turing machineM , on the input
string w, terminates in the reject state.

158 Chapter 5. Decidable and Undecidable Languages

In other words, the languageA is decidable, if there exists an algorithm
that (i) terminates on every input string w, and (ii) correctly tells us whether
w 2 A or w 62A.

A language A that is not decidable is calledundecidable. For such a
language, there doesnot exist an algorithm that satis�es (i) and (ii) above.

In Section 4.2, we have seen several examples of languages that are de-
cidable.

In the following subsections, we will give some examples of decidable and
undecidable languages. These examples involve languagesA whose elements
are pairs of the form (C; w), where C is some computation model (for ex-
ample, a deterministic �nite automaton) and w is a string over the alphabet
�. The pair (C; w) is in the languageA if and only if the string w is in the
language of the computation modelC. For di�erent computation models C,
we will ask the question whetherA is decidable, i.e., whether an algorithm
exists that decides, for any input (C; w), whether or not this input belongs
to the languageA. Since the input to any algorithm is a string over some
alphabet, we must encode the pair (C; w) as a string. In all cases that we
consider, such a pair can be described using a �nite amout of text. Therefore,
we assume, without loss of generality, that binary strings are usedfor these
encodings. Throughout the rest of this chapter, we will denote the binary
encoding of a pair (C; w) by

hC; wi :

5.1.1 The language ADFA

We de�ne the following language:

ADFA = fhM; wi : M is a deterministic �nite automaton that
accepts the stringwg.

Keep in mind that hM; wi denotes the binary string that forms an en-
coding of the �nite automaton M and the string w that is given as input to
M .

We claim that the languageADFA is decidable. In order to prove this,
we have to construct an algorithm with the following property, for any given
input string u:

� If u is the encoding of a deterministic �nite automatonM and a string
w (i.e., u is in the correct format hM; wi), and if M acceptsw, then
the algorithm terminates in its accept state.

5.1. Decidability 159

� In all other cases, the algorithm terminates in its reject state.

An algorithm that exactly does this, is easy to obtain: On inputu, the algo-
rithm �rst checks whether or not u encodes a deterministic �nite automaton
M and a string w. If this is not the case, then it terminates and rejects
the input string u. Otherwise, the algorithm \constructs" M and w, and
then simulates the computation ofM on the input string w. If M accepts
w, then the algorithm terminates and accepts the input stringu. If M does
not accept w, then the algorithm terminates and rejects the input stringu.
Thus, we have proved the following result:

Theorem 5.1.2 The languageADFA is decidable.

5.1.2 The language ANFA

We de�ne the following language:

ANFA = fhM; wi : M is a nondeterministic �nite automaton that
accepts the stringwg.

To prove that this language is decidable, consider the algorithm that
does the following: On inputu, the algorithm �rst checks whether or not
u encodes a nondeterministic �nite automatonM and a string w. If this is
not the case, then it terminates and rejects the input stringu. Otherwise,
the algorithm constructsM and w. Since a computation ofM (on input w)
is not unique, the algorithm �rst converts M to an equivalent deterministic
�nite automaton N . Then, it proceeds as in Section 5.1.1.

Observe that the construction for converting a nondeterministic�nite au-
tomaton to a deterministic �nite automaton (see Section 2.5) is algorithmic,
in the sense that it can be described by an algorithm. Because of this, the
algorithm described above is a valid algorithm; it accepts all stringsu that
are in ANFA , and it rejects all stringsu that are not in ANFA . Thus, we have
proved the following result:

Theorem 5.1.3 The languageANFA is decidable.

5.1.3 The language ACFG

We de�ne the following language:

ACFG = fhG; wi : G is a context-free grammar such thatw 2 L(G)g:

160 Chapter 5. Decidable and Undecidable Languages

We claim that this language is decidable. In order to prove this claim, con-
sider a stringu that encodes a context-free grammarG = (V;� ; S; R) and a
string w 2 � � . Deciding whether or notw 2 L(G) is equivalent to deciding
whether or not S �) w. A �rst idea to decide this is by trying all possible
derivations that start with the start variable S and that use rules ofR. The
problem is that, in casew 62L(G), it is not clear how many such derivations
have to be checked before we can be sure thatw is not in the language of
G: If w 2 L(G), then it may be that w can be derived fromS, only by �rst
deriving a very long string, sayv, and then use rules to shorten it so as to
obtain the string w. Since there is no obvious upper bound on the length of
the string v, we have to be careful.

The trick is to do the following. First, convert the grammar G to an
equivalent grammarG0 in Chomsky normal form. (The construction given
in Section 3.4 can be described by an algorithm.) Letn be the length of the
string w. Then, if w 2 L(G) = L(G0), any derivation of w in G0, from the
start variable of G0, consists of exactly 2n � 1 steps (where a \step" is de�ned
as applying one rule ofG0). Hence, we can decide whether or notw 2 L(G),
by trying all possible derivations, inG0, consisting of 2n � 1 steps. If one of
these (�nite number of) derivations leads to the stringw, then w 2 L(G).
Otherwise,w 62L(G). Thus, we have proved the following result:

Theorem 5.1.4 The languageACFG is decidable.

In fact, the arguments above imply the following result:

Theorem 5.1.5 Every context-free language is decidable.

Proof. Let � be an alphabet and let A � � � be an arbitrary context-free
language. There exists a context-free grammar in Chomsky normal form,
whose language is equal toA. Given an arbitrary string w 2 � � , we have
seen above how we can decide whether or notw can be derived from the
start variable of this grammar.

5.1.4 The language ATM

After having seen the languagesADFA , ANFA , and ACFG , it is natural to
consider the language

ATM = fhM; wi : M is a Turing machine that accepts the stringwg:

5.1. Decidability 161

We will prove that this language is undecidable. Before we give the proof,
let us mention what this means:

There is no algorithm that, when given an arbitrary algorithmM
and an arbitrary input string w for M , decides in a �nite amount
of time, whether or not M acceptsw.

The proof of the claim thatATM is undecidable is by contradiction. Thus,
we assume thatATM is decidable. Then there exists a Turing machineH
that has the following property. For every input stringhM; wi for H :

� If hM; wi 2 ATM (i.e., M acceptsw), then H terminates in its accept
state.

� If hM; wi 62ATM (i.e., M rejects w or M does not terminate on input
w), then H terminates in its reject state.

� In particular, H terminates on any input hM; wi .

We construct a new Turing machineD, that does the following: On input
hM i , the Turing machine D usesH as a subroutine to determine whatM
does when it is given its own description as input. OnceD has determined
this information, it does the oppositeof what H does.

Turing machine D: On input hM i , whereM is a Turing machine,
the new Turing machineD does the following:

Step 1: Run the Turing machineH on the input hM; hM ii .

Step 2:

� If H terminates in its accept state, thenD terminates in its
reject state.

� If H terminates in its reject state, then D terminates in its
accept state.

First observe that this new Turing machineD terminates on any input
string hM i , becauseH terminates on every input. Next observe that, for any
input string hM i for D:

� If hM; hM ii 2 ATM (i.e., M acceptshM i), then D terminates in its
reject state.

162 Chapter 5. Decidable and Undecidable Languages

� If hM; hM ii 62 ATM (i.e., M rejects hM i or M does not terminate on
input hM i), then D terminates in its accept state.

This means that for any stringhM i :

� If M acceptshM i , then D rejectshM i .

� If M rejects hM i or M does not terminate on input hM i , then D
acceptshM i .

We now consider what happens if we give the Turing machineD the string
hDi as input, i.e., we takeM = D:

� If D acceptshDi , then D rejectshDi .

� If D rejectshDi or D does not terminate on inputhDi , then D accepts
hDi .

SinceD terminates on every input string, this means that

� If D acceptshDi , then D rejectshDi .

� If D rejects hDi , then D acceptshDi .

This is clearly a contradiction. Therefore, the Turing machineH that decides
the languageATM cannot exist and, thus,ATM is undecidable. We have
proved the following result:

Theorem 5.1.6 The languageATM is undecidable.

5.1.5 The Halting Problem

We de�ne the following language:

Halt = fhP; wi : P is a Java program that terminates on
the input string wg.

Theorem 5.1.7 The language Halt is undecidable.

Proof. The proof is by contradiction. Thus, we assume that the language
Halt is decidable. Then there exists a Java programH that takes as input a
string of the form hP; wi , whereP is an arbitrary Java program andw is an
arbitrary input for P. The programH has the following property:

5.1. Decidability 163

� If hP; wi 2 Halt (i.e., program P terminates on input w), then H
outputs true.

� If hP; wi 62Halt (i.e., programP does not terminate on inputw), then
H outputs false.

� In particular, H terminates on any input hP; wi .

We will write the output of H asH (P; w). Moreover, we will denote byP(w)
the computation obtained by running the programP on the input w. Hence,

H (P; w) =
�

true if P(w) terminates,
false if P(w) does not terminate.

Consider the following algorithmQ, which takes as input the encoding
hPi of an arbitrary Java programP:

Algorithm Q(hPi):

while H (P;hPi) = true
do have a beer
endwhile

SinceH is a Java program, this new algorithmQ can also be written as
a Java program. Observe that

Q(hPi) terminates if and only if H (P;hPi) = false.

This means that for every Java programP,

Q(hPi) terminates if and only if P(hPi) does not terminate. (5.1)

What happens if we run the Java programQ on the input string hQi ?
In other words, what happens if we runQ(hQi)? Then, in (5.1), we have to
replace all occurrences ofP by Q. Hence,

Q(hQi) terminates if and only if Q(hQi) does not terminate.

This is obviously a contradiction, and we can conclude that the Java program
H does not exist. Therefore, the languageHalt is undecidable.

164 Chapter 5. Decidable and Undecidable Languages

Remark 5.1.8 In this proof, we run the Java programQ on the input hQi .
This means that the input to Q is a description of itself. In other words, we
give Q itself as input. This is an example of what is calledself-reference. An-
other example of self-reference can be found in Remark 5.1.8 of thetextbook
Introduction to Theory of Computation by A. Maheshwari and M. Smid.

5.2 Countable sets

The proofs that we gave in Sections 5.1.4 and 5.1.5 seem to be bizarre.In
this section, we will convince you that these proofs in fact use a technique
that you have seen in the course COMP 1805:Cantor's Diagonalization.

Let A and B be two sets and letf : A ! B be a function. Recall thatf
is called abijection, if

� f is one-to-one(or injective), i.e., for any two distinct elementsa and
a0 in A, we havef (a) 6= f (a0), and

� f is onto (or surjective), i.e., for each elementb 2 B, there exists an
elementa 2 A, such that f (a) = b.

The set ofnatural numbersis denoted byN. That is, N = f 1; 2; 3; : : :g.

De�nition 5.2.1 Let A and B be two sets. We say thatA and B have the
same size, if there exists a bijectionf : A ! B .

De�nition 5.2.2 Let A be a set. We say thatA is countable, if A is �nite,
or A and N have the same size.

In other words, if A is an in�nite and countable set, then there exists a
bijection f : N ! A, and we can writeA as

A = f f (1); f (2); f (3); f (4); : : :g:

Sincef is a bijection, every element ofA occurs exactly once in the set on
the right-hand side. This means that we cannumber the elements ofA using
the positive integers: Every element ofA receives a unique number.

Theorem 5.2.3 The following sets are countable:

5.2. Countable sets 165

1. The setZ of integers:

Z = f : : : ; � 3; � 2; � 1; 0; 1; 2; 3; : : :g:

2. The Cartesian productN � N:

N � N = f (m; n) : m 2 N; n 2 Ng:

3. The setQ of rational numbers:

Q = f m=n : m 2 Z; n 2 Z; n 6= 0g:

Proof. To prove that the set Z is countable, we have to give each element of
Z a unique number inN. We obtain this numbering, by listing the elements
of Z in the following order:

0; 1; � 1; 2; � 2; 3; � 3; 4; � 4; : : :

In this (in�nite) list, every element of Z occurs exactly once. The number of
an element ofZ is given by its position in this list.

Formally, de�ne the function f : N ! Z by

f (n) =
�

n=2 if n is even;
� (n � 1)=2 if n is odd:

This function f is a bijection and, therefore, the setsN and Z have the same
size. Hence, the setZ is countable.

For the proofs of the other two claims, we refer to the course COMP 1805.

We now use Cantor's Diagonalization principle to prove that the set of
real numbers is not countable:

Theorem 5.2.4 The setR of real numbers is not countable.

Proof. De�ne
A = f x 2 R : 0 � x < 1g:

We will prove that the set A is not countable. This will imply that the set
R is not countable, becauseA � R.

166 Chapter 5. Decidable and Undecidable Languages

The proof that A is not countable is by contradiction. So we assume that
A is countable. Then there exists a bijectionf : N ! A. Thus, for each
n 2 N, f (n) is a real number between zero and one. We can write

A = f f (1); f (2); f (3); : : :g; (5.2)

where every element ofA occurs exactly once in the set on the right-hand
side.

Consider the real numberf (1). We can write this number in decimal
notation as

f (1) = 0 :d11d12d13 : : : ;

where eachd1i is a digit in the set f 0; 1; 2; : : : ; 9g. In general, for everyn 2 N,
we can write the real numberf (n) as

f (n) = 0 :dn1dn2dn3 : : : ;

where, again, eachdni is a digit in f 0; 1; 2; : : : ; 9g.
We de�ne the real number

x = 0:d1d2d3 : : : ;

where, for each integern � 1,

dn =
�

4 if dnn 6= 4,
5 if dnn = 4.

Observe thatx is a real number between zero and one, i.e.,x 2 A. Therefore,
by (5.2), there is an elementn 2 N, such that f (n) = x. We compare the
n-th digits of f (n) and x:

� The n-th digit of f (n) is equal to dnn .

� The n-th digit of x is equal todn .

Sincef (n) and x are equal, theirn-th digits must be equal, i.e.,dnn = dn .
But, by the de�nition of dn , we havednn 6= dn . This is a contradiction and,
therefore, the setA is not countable.

Notice how wede�ned the real numberx: For eachn � 1, the n-th digit
of x is not equal to then-th digit of f (n). Therefore, for eachn � 1, x 6= f (n)
and, thus, x 62A.

5.2. Countable sets 167

The �nal result of this section is the fact that for every setA, its power
set

P(A) = f B : B � Ag

is \strictly larger" than A. De�ne the function f : A ! P (A) by

f (a) = f ag;

for any a in A. Sincef is one-to-one, we can say thatP(A) is \at least as
large as"A.

Theorem 5.2.5 Let A be an arbitrary set. ThenA and P(A) do not have
the same size.

Proof. The proof is by contradiction. Thus, we assume that there exists a
bijection g : A ! P (A). De�ne the set B as

B = f a 2 A : a 62g(a)g:

SinceB 2 P (A) and g is a bijection, there exists an elementa in A such that
g(a) = B.

First assume that a 2 B. Sinceg(a) = B, we havea 2 g(a). But then,
from the de�nition of the set B , we havea 62B, which is a contradiction.

Next assume that a 62B. Since g(a) = B, we have a 62g(a). But
then, from the de�nition of the set B , we havea 2 B, which is again a
contradiction.

We conclude that the bijectiong does not exist. Therefore,A and P(A)
do not have the same size.

5.2.1 The Halting Problem revisited

Now that we know about countability, we give a di�erent way to look atthe
proof in Section 5.1.5 of the fact that the language

Halt = fhP; wi : P is a Java program that terminates on
the input string wg

is undecidable. You should convince yourself that the proof given below
follows the same reasoning as the one used in the proof of Theorem 5.2.4.

We �rst argue that the set of all Java programs is countable. Indeed,
every Java programP can be described by a �nite amount of text. In fact,

168 Chapter 5. Decidable and Undecidable Languages

we have been usinghPi to denote such a description by a binary string. For
any integer n � 0, there are at most 2n (i.e., �nitely many) Java programs
P whose descriptionhPi has lengthn. Therefore, to obtain a list of all Java
programs, we do the following:

� List all Java programs P whose descriptionhPi has length 0. (Well,
the empty string does not describe any Java program, so in this step,
nothing happens.)

� List all Java programsP whose descriptionhPi has length 1.

� List all Java programsP whose descriptionhPi has length 2.

� List all Java programsP whose descriptionhPi has length 3.

� Etcetera, etcetera.

In this in�nite list, every Java program occurs exactly once. Therefore, the
set of all Java programs is countable.

Consider an in�nite list

P1; P2; P3; : : :

in which every Java program occurs exactly once.
Assume that the languageHalt is decidable. Then there exists a Java

programH that decides this language. We may assume that, on inputhP; wi ,
H returns true if P terminates on input w, and false if P does not terminate
on input w.

We construct a new Java programD that does the following:

Algorithm D: On input hPn i , where n is a positive integer, the
new Java programD does the following:

Step 1: Run the Java programH on the input hPn ; hPn ii .

Step 2:

� If H returns true, then D goes into an in�nite loop.

� If H returns false, then D returns true and terminates its com-
putation.

5.3. Rice's Theorem 169

Observe thatD can be written as a Java program. Therefore, there exists
an integer n � 1 such that D = Pn . The next two observations follow from
the pseudocode:

� If D terminates on inputhPn i , then H returns falseon input hPn ; hPn ii ,
i.e., Pn does not terminate on inputhPn i .

� If D does not terminate on inputhPn i , then H returns true on input
hPn ; hPn ii , i.e., Pn terminates on input hPn i .

Thus,

� D terminates on input hPn i if and only if Pn does not terminate on
input hPn i .

SinceD = Pn , this becomes

� D terminates on input hDi if and only if D does not terminate on input
hDi .

Thus, we have obtained a contradiction.

Remark 5.2.6 We de�ned the Java programD in such a way that, for each
n � 1, the computation ofD on input hPn i di�ers from the computation of
Pn on input hPn i . Hence, for eachn � 1, D 6= Pn . However, sinceD is a
Java program, there must be an integern � 1 such that D = Pn .

5.3 Rice's Theorem

We have seen two examples of undecidable languages:ATM and Halt . In this
section, we prove that many languages involving Turing machines (orJava
programs) are undecidable.

De�ne T to be the set of binary encodings of all Turing machines, i.e.,

T = fhM i : M is a Turing machine with input alphabet f 0,1gg:

Theorem 5.3.1 (Rice) Let P be a subset ofT such that

1. P 6= ; , i.e., there exists a Turing machineM such thathM i 2 P ,

2. P is a proper subset ofT , i.e., there exists a Turing machineN such
that hN i 62 P, and

170 Chapter 5. Decidable and Undecidable Languages

3. for any two Turing machinesM1 and M2 with L(M1) = L(M2),

(a) either both hM1i and hM2i are in P or

(b) none of hM1i and hM2i is in P.

Then the languageP is undecidable.

You can think of P as the set of all Turing machines that satisfy a certain
property. The �rst two conditions state that at least one Turing machine
satis�es this property and not all Turing machines satisfy this property. The
third condition states that, for any Turing machine M , whether or not M
satis�es this property only depends on the languageL(M) of M .

Here are some examples of languages that satisfy the conditions in Rice's
Theorem:

P1 = fhM i : M is a Turing machine and� 2 L(M)g;

P2 = fhM i : M is a Turing machine andL(M) = f 1011; 001100gg;

P3 = fhM i : M is a Turing machine andL(M) is a regular languageg:

You are encouraged to verify that Rice's Theorem indeed implies thateach
of P1, P2, and P3 is undecidable.

5.3.1 Proof of Rice's Theorem

The strategy of the proof is as follows: Assuming that the languageP is
decidable, we show that the language

Halt = fhM; wi : M is a Turing machine that terminates on
the input string wg

is decidable. This will contradict Theorem 5.1.7.
The assumption that P is decidable implies the existence of a Turing

machineH that decidesP. Observe that H takes as input a binary string
hM i encoding a Turing machineM . In order to show that Halt is decidable,
we need a Turing machine that takes as input a binary stringhM; wi encoding
a Turing machine M and a binary string w. In the rest of this section, we
will explain how this Turing machine can be obtained.

5.3. Rice's Theorem 171

Let M1 be a Turing machine that, for any input string, switches in its
�rst computation step from its start state to its reject state. In other words,
M1 is a Turing machine with L(M1) = ; . We assume that

hM1i 62 P:

(At the end of the proof, we will consider the case whenhM1i 2 P .) We also
choose a Turing machineM2 such that

hM2i 2 P :

Consider a �xed Turing machine M and a �xed binary string w. We
construct a new Turing machineTMw that takes as input an arbitrary binary
string x:

Turing machine TMw (x):

run Turing machine M on input w;
if M terminates
then run M2 on input x;

if M2 terminates in the accept state
then terminate in the accept state
else if M2 terminates in the reject state

then terminate in the reject state
endif

endif
endif

We determine the languageL(TMw) of this new Turing machine. In other
words, we determine which stringsx are accepted byTMw .

� Assume that M terminates on input w, i.e., hM; wi 2 Halt . Then it
follows from the pseudocode that for any stringx,

x is accepted byTMw if and only if x is accepted byM2.

Thus, L(TMw) = L(M2).

� Assume that M does not terminate on inputw, i.e., hM; wi 62Halt .
Then it follows from the pseudocode that for any stringx, TMw does
not terminate on input x. Thus, L(TMw) = ; . In particular, L(TMw) =
L(M1).

172 Chapter 5. Decidable and Undecidable Languages

Recall that hM1i 62 P, whereashM2i 2 P . Then the following follows from
the third condition in Rice's Theorem:

� If hM; wi 2 Halt , then hTMw i 2 P .

� If hM; wi 62Halt , then hTMw i 62 P.

Thus, we have obtained a connection between the languagesP and Halt .
This suggests that we proceed as follows.

Assume that the languageP is decidable. LetH be a Turing machine
that decidesP. Then, for any Turing machineM ,

� if hM i 2 P , then H accepts the stringhM i ,

� if hM i 62 P, then H rejects the stringhM i , and

� H terminates on any input string.

We construct a new Turing machineH 0 that takes as input an arbitrary
string hM; wi , whereM is a Turing machine andw is a binary string:

Turing machine H 0(hM; wi):

construct the Turing machineTMw described above;
run H on input hTMw i ;
if H terminates in the accept state
then terminate in the accept state
else terminate in the reject state
endif

It follows from the pseudocode thatH 0 terminates on any input. We
observe the following:

� Assume thathM; wi 2 Halt . Then we have seen before thathTMw i 2 P .
SinceH decides the languageP, it follows that H accepts the string
hTMw i . Therefore, from the pseudocode,H 0 accepts the stringhM; wi .

� Assume that hM; wi 62Halt . Then we have seen before thathTMw i 62
P. Since H decides the languageP, it follows that H rejects (and
terminates on) the string hTMw i . Therefore, from the pseudocode,H 0

rejects (and terminates on) the stringhM; wi .

5.4. Enumerability 173

We have shown that the Turing machineH 0 decides the languageHalt .
This is a contradiction and, therefore, we conclude that the language P is
undecidable.

Until now, we assumed thathM1i 62 P. If hM1i 2 P , then we repeat the
proof with P replaced by its complementP. This revised proof then shows
that P is undecidable. Since for every languageL,

L is decidable if and only ifL is decidable;

we again conclude thatP is undecidable.

5.4 Enumerability

We now come to the last class of languages in this chapter:

De�nition 5.4.1 Let � be an alphabet and let A � � � be a language. We
say that A is enumerable, if there exists a Turing machineM , such that for
every string w 2 � � , the following holds:

1. If w 2 A, then the computation of the Turing machineM , on the input
string w, terminates in the accept state.

2. If w 62A, then the computation of the Turing machineM , on the input
string w, does not terminate in the accept state. That is, either the
computation terminates in the reject state or the computation does not
terminate.

In other words, the languageA is enumerable, if there exists an algorithm
having the following property. If w 2 A, then the algorithm terminates on
the input string w and tells us that w 2 A. On the other hand, if w 62A,
then either (i) the algorithm terminates on the input string w and tells us
that w 62A or (ii) the algorithm does not terminate on the input string w,
in which case it does not tell us thatw 62A.

In Section 5.5, we will show where the term \enumerable" comes from.
The following theorem follows immediately from De�nitions 5.1.1 and 5.4.1.

Theorem 5.4.2 Every decidable language is enumerable.

In the following subsections, we will give some examples of enumerable
languages.

174 Chapter 5. Decidable and Undecidable Languages

5.4.1 Hilbert's problem

We have seen Hilbert's problem in Section 4.4: Is there an algorithm that
decides, for any given polynomialp with integer coe�cients, whether or not
p has integral roots? If we formulate this problem in terms of languages,
then Hilbert asked whether or not the language

Hilbert = fhpi : p is a polynomial with integer coe�cients
that has an integral rootg

is decidable. As usual,hpi denotes the binary string that forms an encoding
of the polynomial p.

As we mentioned in Section 4.4, it was proven by Matiyasevich in 1970
that the language Hilbert is not decidable. We claim, that this language
is enumerable. In order to prove this claim, we have to construct anal-
gorithm Hilbert with the following property: For any input polynomial p
with integer coe�cients,

� if p has an integral root, then algorithmHilbert will �nd one in a
�nite amount of time,

� if p does not have an integral root, then either algorithmHilbert ter-
minates and tells us thatp does not have an integral root, or algorithm
Hilbert does not terminate.

Recall that Z denotes the set of integers. AlgorithmHilbert does the
following, on any input polynomial p with integer coe�cients. Let n de-
note the number of variables inp. Algorithm Hilbert tries all elements
(x1; x2; : : : ; xn) 2 Zn , in a systematic way, and for each such element, it
computesp(x1; x2; : : : ; xn). If this value is zero, then algorithm Hilbert
terminates and accepts the input.

We observe the following:

� If p 2 Hilbert , then algorithm Hilbert terminates and acceptsp, pro-
vided we are able to visit all elements (x1; x2; : : : ; xn) 2 Zn in a \sys-
tematic way".

� If p 62Hilbert , then p(x1; x2; : : : ; xn) 6= 0 for all (x1; x2; : : : ; xn) 2 Zn

and, therefore, algorithmHilbert does not terminate.

These are exactly the requirements for the languageHilbert to be enumerable.

5.4. Enumerability 175

It remains to explain how we visit all elements (x1; x2; : : : ; xn) 2 Zn in a
systematic way. For any integerd � 0, let Hd denote the hypercube inZn

with sides of length 2d that is centered at the origin. That is, Hd consists
of the set of all points (x1; x2; : : : ; xn) in Zn , such that � d � x i � d for all
1 � i � n and there exists at least one indexj for which x j = d or x j = � d.
We observe thatHd contains a �nite number of elements. In fact, ifd � 1,
then this number is equal to (2d + 1) n � (2d � 1)n . The algorithm will visit
all elements (x1; x2; : : : ; xn) 2 Zn , in the following order: First, it visits the
origin, which is the only element ofH0. Then, it visits all elements ofH1,
followed by all elements ofH2, etc., etc.

To summarize, we obtain the following algorithm, proving that the lan-
guageHilbert is enumerable:

Algorithm Hilbert (hpi):

n := the number of variables inp;
d := 0;
while d � 0
do for each (x1; x2; : : : ; xn) 2 Hd

do R := p(x1; x2; : : : ; xn);
if R = 0
then terminate and accept
endif

endfor ;
d := d + 1

endwhile

Theorem 5.4.3 The language Hilbert is enumerable.

5.4.2 The language ATM

We have shown in Section 5.1.4 that the language

ATM = fhM; wi : M is a Turing machine that accepts the stringwg:

is undecidable. In this section, we will prove that this language is enumerable.
Thus, we have to construct an algorithmP having the following property,
for any given input string u:

176 Chapter 5. Decidable and Undecidable Languages

� If

{ u encodes a Turing machineM and an input string w for M (i.e.,
u is in the correct format hM; wi) and

{ hM; wi 2 ATM (i.e., M acceptsw),

then algorithm P terminates in its accept state.

� In all other cases, either algorithmP terminates in its reject state, or
algorithm P does not terminate.

On input string u = hM; wi , which is in the correct format, algorithmP does
the following:

1. It simulates the computation ofM on input w.

2. If M terminates in its accept state, thenP terminates in its accept
state.

3. If M terminates in its reject state, thenP terminates in its reject state.

4. If M does not terminate, thenP does not terminate.

Hence, ifu = hM; wi 2 ATM , then M acceptsw and, therefore,P accepts
u. On the other hand, ifu = hM; wi 62ATM , then M does not acceptw. This
means that, on input w, M either terminates in its reject state or does not
terminate. But this implies that, on input u, P either terminates in its reject
state or does not terminate. This proves that algorithmP has the properties
that are needed in order to show that the languageATM is enumerable. We
have proved the following result:

Theorem 5.4.4 The languageATM is enumerable.

5.5 Where does the term \enumerable" come
from?

In De�nition 5.4.1, we have de�ned what it means for a language to be
enumerable. In this section, we will see where this term comes from.

5.5. Where does the term \enumerable" come from? 177

De�nition 5.5.1 Let � be an alphabet and let A � � � be a language. An
enumerator for A is a Turing machineE having the following properties:

1. Besides the standard features as in Section 4.1,E has aprint tape and
a print state. During its computation, E writes symbols of � on the
print tape. Each time, E enters the print state, the current string on
the print tape is sent to the printer and the print tape is made empty.

2. At the start of the computation, all tapes are empty andE is in the
start state.

3. Every string w in A is sent to the printer at least once.

4. Every string w that is not in A is never sent to the printer.

Thus, an enumeratorE for A really enumerates all strings in the language
A. There is no particular order in which the strings ofA are sent to the
printer. Moreover, a string in A may be sent to the printer multiple times.
If the languageA is in�nite, then the Turing machine E obviously does not
terminate; however, every string inA (and only strings in A) will be sent to
the printer at some time during the computation.

To give an example, letA = f 0n : n � 0g. The following Turing machine
is an enumerator forA.

Turing machine StringsOfZeros :

n := 0;
while 1 + 1 = 2
do for i := 1 to n

do write 0 on the print tape
endfor ;
enter the print state;
n := n + 1

endwhile

In the rest of this section, we will prove the following result.

Theorem 5.5.2 A language is enumerable if and only if it has an enumer-
ator.

178 Chapter 5. Decidable and Undecidable Languages

For the �rst part of the proof, assume that the languageA has an enu-
merator E. We construct the following Turing machineM , which takes an
arbitrary string w as input:

Turing machine M (w):

run E; every time E enters the print state:
let v be the string on the print tape;
if w = v
then terminate in the accept state
endif

The Turing machine M has the following properties:

� If w 2 A, then w will be sent to the printer at some time during the
computation of E. It follows from the pseudocode that, on inputw,
M terminates in the accept state.

� If w 62A, then E will never sent w to the printer. It follows from the
pseudocode that, on inputw, M does not terminate.

Thus, M satis�es the conditions in De�nition 5.4.1. We conclude that the
languageA is enumerable.

To prove the converse, we now assume thatA is enumerable. LetM be
a Turing machine that satis�es the conditions in De�nition 5.4.1.

We �x an in�nite list

s1; s2; s3; : : :

of all strings in � � . For example, if � = f 0; 1g, then we can take this list to
be

�; 0; 1; 00; 01; 10; 11; 000; 001; 010; 100; 011; 101; 110; 111; : : :

We construct the following Turing machineE, which takes the empty
string as input:

5.6. Most languages are not enumerable 179

Turing machine E:

n := 1;
while 1 + 1 = 2
do for i := 1 to n

do run M for n steps on the input stringsi ;
if M acceptssi within n steps
then write si on the print tape;

enter the print state
endif

endfor ;
n := n + 1

endwhile

We claim that E is an enumerator for the languageA. To prove this, it
is obvious that any string that is sent to the printer by E belongs toA.

It remains to prove that every string inA will be sent to the printer by E.
Let w be a string inA. Then, on input w, the Turing machineM terminates
in the accept state. Letm be the number of steps made byM on input w.
Let i be the index such thatw = si . De�ne n = max(m; i). Consider the
n-th iteration of the while-loop and the i -th iteration of the for-loop. In this
iteration, M acceptssi = w in m � n steps and, therefore,w is sent to the
printer.

5.6 Most languages are not enumerable

In this section, we will prove that most languages are not enumerable. The
proof is based on the following two facts:

� The set consisting of all enumerable languages is countable; we will
prove this in Section 5.6.1.

� The set consisting of all languages is not countable; we will prove this
in Section 5.6.2.

180 Chapter 5. Decidable and Undecidable Languages

5.6.1 The set of enumerable languages is countable

We de�ne the setE as

E = f A : A � f 0; 1g� is an enumerable languageg:

In words, E is the set whose elements are the enumerable languages. Every
element ofE is an enumerable language. Hence, every element of the setE
is itself a set consisting of strings.

Lemma 5.6.1 The setE is countable.

Proof. Let A � f 0; 1g� be an enumerable language. There exists a Turing
machine TA that satis�es the conditions in De�nition 5.4.1. This Turing
machineTA can be uniquely speci�ed by a string in English. This string can
be converted to a binary stringsA . Hence, the binary stringsA is a unique
encoding of the Turing machineTA .

Consider the set

S = f sA : A � f 0; 1g� is an enumerable languageg:

Observe that the functionf : E ! S , de�ned by f (A) = sA for eachA 2 E,
is a bijection. Therefore, the setsE and S have the same size. Hence, in
order to prove that the setE is countable, it is su�cient to prove that the
set S is countable.

Why is the set S countable? For each integern � 0, there are exactly 2n

binary strings of lengthn. Since there are binary strings that are not encod-
ings of Turing machines, the setS contains at most 2n strings of length n.
In particular, the number of strings inS having lengthn is �nite. Therefore,
we obtain an in�nite list of the elements ofS in the following way:

� List all strings in S having length 0. (Well, the empty string is not in
S, so in this step, nothing happens.)

� List all strings in S having length 1.

� List all strings in S having length 2.

� List all strings in S having length 3.

� Etcetera, etcetera.

In this in�nite list, every element of S occurs exactly once. Therefore,S is
countable.

5.6. Most languages are not enumerable 181

5.6.2 The set of all languages is not countable

We de�ne the setL as

L = f A : A � f 0; 1g� is a languageg:

In words, L is the set consisting of all languages. Every element of the setL
is a set consisting of strings.

Lemma 5.6.2 The setL is not countable.

Proof. We de�ne the setB as

B = f w : w is an in�nite binary sequenceg:

We claim that this set is not countable. The proof of this claim is almost
identical to the proof of Theorem 5.2.4. We assume that the setB is count-
able. Then there exists a bijectionf : N ! B . Thus, for eachn 2 N, f (n) is
an in�nite binary sequence. We can write

B = f f (1); f (2); f (3); : : :g; (5.3)

where every element ofB occurs exactly once in the set on the right-hand
side.

We de�ne the in�nite binary sequencew = w1w2w3 : : :, where, for each
integer n � 1,

wn =
�

1 if the n-th bit of f (n) is 0,
0 if the n-th bit of f (n) is 1.

Sincew 2 B, it follows from (5.3) that there is an elementn 2 N, such that
f (n) = w. Hence, then-th bits of f (n) and w are equal. But, by de�nition,
thesen-th bits are not equal. This is a contradiction and, therefore, the set
B is not countable.

In the rest of the proof, we will show that the setsL and B have the same
size. SinceB is not countable, this will imply that L is not countable.

In order to prove that L and B have the same size, we have to show that
there exists a bijection

g : L ! B :

182 Chapter 5. Decidable and Undecidable Languages

We �rst observe that the set f 0; 1g� is countable, because for each integer
n � 0, there are only �nitely many (to be precise, exactly 2n) binary strings
of length n. In fact, we can write

f 0; 1g� = f �; 0; 1; 00; 01; 10; 11; 000; 001; 010; 100; 011; 101; 110; 111; : : :g:

For each integern � 1, we denote bysn the n-th string in this list. Hence,

f 0; 1g� = f s1; s2; s3; : : :g: (5.4)

Now we are ready to de�ne the bijectiong : L ! B : Let A 2 L , i.e.,
A � f 0; 1g� is a language. We de�ne the in�nite binary sequenceg(A) as
follows: For each integern � 1, the n-th bit of g(A) is equal to

�
1 if sn 2 A,
0 if sn 62A.

In words, the in�nite binary sequenceg(A) contains a 1 exactly in those
positionsn for which the string sn in (5.4) is in the languageA.

To give an example, assume thatA is the language consisting of all binary
strings that start with 0. The following table gives the corresponding in�nite
binary sequenceg(A) (this sequence is obtained by reading the rightmost
column from top to bottom):

f 0; 1g� A g(A)
� not in A 0
0 in A 1
1 not in A 0
00 in A 1
01 in A 1
10 not in A 0
11 not in A 0
000 in A 1
001 in A 1
010 in A 1
100 not in A 0
011 in A 1
101 not in A 0
110 not in A 0
111 not in A 0

...
...

...

5.7. Decidable versus enumerable languages 183

The function g de�ned above has the following properties:

� If A and A0 are two di�erent languages inL , then g(A) 6= g(A0).

� For every in�nite binary sequencew in B, there exists a languageA in
L , such that g(A) = w.

This means that the functiong is a bijection from L to B.

5.6.3 There are languages that are not enumerable

We have proved that the set

E = f A : A � f 0; 1g� is an enumerable languageg

is countable, whereas the set

L = f A : A � f 0; 1g� is a languageg

is not countable. This means that there are \more" languages inL than
there are inE, proving the following result:

Theorem 5.6.3 There exist languages that are not enumerable.

The proof given above shows theexistence of languages that are not
enumerable. However, the proof does not give us a speci�c exampleof a
language that is not enumerable. In the next sections, we will see examples
of such languages. Before we move on to these examples, we mention the
di�erence between being countable and being enumerable:

� Any languageA is countable, i.e., we can number the elements ofA
and, thus, write

A = f s1; s2; s3; s4; : : :g:

� If the languageA is enumerable, then, by Theorem 5.5.2, there is an
algorithm that produces this numbering.

� If the languageA is not enumerable, then, again by Theorem 5.5.2,
there does not exist an algorithm that produces this numbering.

184 Chapter 5. Decidable and Undecidable Languages

5.7 The relationship between decidable and
enumerable languages

We know from Theorem 5.4.2 that every decidable language is enumerable.
On the other hand, we know from Theorems 5.1.6 and 5.4.4 that the converse
is not true. The following result should not come as a surprise:

Theorem 5.7.1 Let � be an alphabet and letA � � � be a language. Then,
A is decidable if and only if bothA and its complementA are enumerable.

Proof. We �rst assume that A is decidable. Then, by Theorem 5.4.2,A
is enumerable. SinceA is decidable, it is not di�cult to see that A is also
decidable. Then, again by Theorem 5.4.2,A is enumerable.

To prove the converse, we assume that bothA and A are enumerable.
SinceA is enumerable, there exists a Turing machineM1, such that for any
string w 2 � � , the following holds:

� If w 2 A, then the computation ofM1, on the input string w, terminates
in the accept state ofM1.

� If w 62A, then the computation ofM1, on the input string w, terminates
in the reject state ofM1 or does not terminate.

Similarly, sinceA is enumerable, there exists a Turing machineM2, such that
for any string w 2 � � , the following holds:

� If w 2 A, then the computation ofM2, on the input string w, terminates
in the accept state ofM2.

� If w 62A, then the computation ofM2, on the input string w, terminates
in the reject state ofM2 or does not terminate.

We construct a two-tape Turing machineM :

5.8. Both A and A not enumerable 185

Two-tape Turing machine M : For any input string w 2 � � , M
does the following:

� M simulates the computation ofM1, on input w, on the �rst
tape, and, simultaneously, it simulates the computation ofM2,
on input w, on the second tape.

� If the simulation of M1 terminates in the accept state ofM1,
then M terminates in its accept state.

� If the simulation of M2 terminates in the accept state ofM2,
then M terminates in its reject state.

Observe the following:

� If w 2 A, then M1 terminates in its accept state and, therefore,M
terminates in its accept state.

� If w 62A, then M2 terminates in its accept state and, therefore,M
terminates in its reject state.

We conclude that the Turing machineM accepts all strings inA, and rejects
all strings that are not in A. This proves that the languageA is decidable.

We now use Theorem 5.7.1 to give examples of languages that are not
enumerable:

Theorem 5.7.2 The languageATM is not enumerable.

Proof. We know from Theorems 5.4.4 and 5.1.6 that the languageATM is
enumerable but not decidable. Combining these facts with Theorem 5.7.1
implies that the languageATM is not enumerable.

The following result can be proved in exactly the same way:

Theorem 5.7.3 The languageHalt is not enumerable.

186 Chapter 5. Decidable and Undecidable Languages

5.8 A language A such that both A and A are
not enumerable

In Theorem 5.7.2, we have seen that the complement of the languageATM

is not enumerable. In Theorem 5.4.4, however, we have shown that the
languageATM itself is enumerable. In this section, we consider the language

EQTM = fhM1; M2i : M1 and M2 are Turing machines
and L(M1) = L(M2)g.

We will show the following result:

Theorem 5.8.1 Both EQTM and its complementEQTM are not enumer-
able.

5.8.1 EQTM is not enumerable

Consider a �xed Turing machineM and a �xed binary string w. We construct
a new Turing machineTMw that takes as input an arbitrary binary string x:

Turing machine TMw (x):

run Turing machine M on input w;
terminate in the accept state

We determine the languageL(TMw) of this new Turing machine. In other
words, we determine which stringsx are accepted byTMw .

� Assume that M terminates on input w, i.e., hM; wi 2 Halt . Then it
follows from the pseudocode that every stringx is accepted byTMw .
Thus, L(TMw) = f 0; 1g� .

� Assume that M does not terminate on inputw, i.e., hM; wi 2 Halt .
Then it follows from the pseudocode that, for any stringx, TMw does
not terminate on input x. Thus, L(TMw) = ; .

Assume that the languageEQTM is enumerable. We will show thatHalt
is enumerable as well, which will contradict Theorem 5.7.3.

SinceEQTM is enumerable, there exists a Turing machineH having the
following property, for any two Turing machinesM1 and M2:

5.8. Both A and A not enumerable 187

� If L(M1) = L(M2), then, on input hM1; M2i , H terminates in the accept
state.

� If L(M1) 6= L(M2), then, on input hM1; M2i , H either terminates in
the reject state or does not terminate.

We construct a new Turing machineH 0 that takes as input an arbitrary
string hM; wi , whereM is a Turing machine andw is a binary string:

Turing machine H 0(hM; wi):

construct a Turing machineM1 that rejects every input string;
construct the Turing machineTMw described above;
run H on input hM1; TMw i ;
if H terminates in the accept state
then terminate in the accept state
else if H terminates in the reject state

then terminate in the reject state
endif

endif

We observe the following:

� Assume thathM; wi 2 Halt . Then we have seen before thatL(TMw) =
; . By our choice ofM1, we haveL(M1) = ; as well. Therefore,H
accepts (and terminates on) the inputhM1; TMw i . It follows from the
pseudocode thatH 0 accepts (and terminates on) the stringhM; wi .

� Assume that hM; wi 62Halt , i.e., hM; wi 2 Halt . Then we have seen
before that L(TMw) 6= ; = L(M1). Therefore, on input hM1; TMw i , H
either terminates in the reject state or does not terminate. It follows
from the pseudocode that, on inputhM; wi , H 0 either terminates in the
reject state or does not terminate.

Thus, the Turing machine H 0 has the properties needed to show that
the languageHalt is enumerable. This is a contradiction and, therefore, we
conclude that the languageEQTM is not enumerable.

188 Chapter 5. Decidable and Undecidable Languages

5.8.2 EQTM is not enumerable

This proof is symmetric to the one in Section 5.8.1. For a �xed Turing
machineM and a �xed binary string w, we will use the same Turing machine
TMw as in Section 5.8.1.

Assume that the languageEQTM is enumerable. We will show thatHalt
is enumerable as well, which will contradict Theorem 5.7.3.

SinceEQTM is enumerable, there exists a Turing machineH having the
following property, for any two Turing machinesM1 and M2:

� If L(M1) 6= L(M2), then, on input hM1; M2i , H terminates in the accept
state.

� If L(M1) = L(M2), then, on input hM1; M2i , H either terminates in
the reject state or does not terminate.

We construct a new Turing machineH 0 that takes as input an arbitrary
string hM; wi , whereM is a Turing machine andw is a binary string:

Turing machine H 0(hM; wi):

construct a Turing machineM1 that accepts every input string;
construct the Turing machineTMw of Section 5.8.1;
run H on input hM1; TMw i ;
if H terminates in the accept state
then terminate in the accept state
else if H terminates in the reject state

then terminate in the reject state
endif

endif

We observe the following:

� Assume thathM; wi 2 Halt . Then we have seen before thatL(TMw) =
; . Thus, by our choice ofM1, we haveL(TMw) 6= L(M1). Therefore,H
accepts (and terminates on) the inputhM1; TMw i . It follows from the
pseudocode thatH 0 accepts (and terminates on) the stringhM; wi .

� Assume thathM; wi 62Halt . Then L(TMw) = f 0; 1g� = L(M1) and, on
input hM1; TMw i , H either terminates in the reject state or does not

Exercises 189

terminate. It follows from the pseudocode that, on inputhM; wi , H 0

either terminates in the reject state or does not terminate.

Thus, the Turing machine H 0 has the properties needed to show that
the languageHalt is enumerable. This is a contradiction and, therefore, we
conclude that the languageEQTM is not enumerable.

Exercises

5.1 Prove that the language

f w 2 f 0; 1g� : w is the binary representation of 2n for somen � 0g

is decidable. In other words, construct a Turing machine that getsas input
an arbitrary number x 2 N, represented in binary as a stringw, and that
decides whether or notx is a power of two.

5.2 Let F be the set of all functionsf : N ! N. Prove that F is not
countable.

5.3 A function f : N ! N is called computable, if there exists a Turing
machine, that gets as input an arbitrary positive integern, written in binary,
and gives as output the value off (n), again written in binary. This Turing
machine has a �nal state. As soon as the Turing machine enters this�nal
state, the computation terminates, and the output is the binary string that
is written on its tape.

Prove that there exist functionsf : N ! N that are not computable.

5.4 Let n be a �xed positive integer, and letk be the number of bits in the
binary representation ofn. (Hence, k = 1 + blognc.) Construct a Turing
machine with one tape, tape alphabetf 0; 1; 2 g, and exactly k + 1 states
q0; q1; : : : ; qk , that does the following:

Start of the computation: The tape is empty, i.e., every cell of the tape
contains 2 , and the Turing machine is in the start stateq0.

End of the computation: The tape contains the binary representation of
the integer n, the tape head is on the rightmost bit of the binary represen-
tation of n, and the Turing machine is in the �nal state qk .

190 Chapter 5. Decidable and Undecidable Languages

The Turing machine in this exercise does not have an accept state ora
reject state; instead, it has a �nal stateqk . As soon as stateqk is entered,
the Turing machine terminates.

5.5 Give an informal description (in plain English) of a Turing machine
with three tapes, that gets as input the binary representation ofan arbitrary
integer m � 1, and returns as output the unary representation ofm.

Start of the computation: The �rst tape contains the binary representa-
tion of the input m. The other two tapes are empty (i.e., contain only2 s).
The Turing machine is in the start state.

End of the computation: The third tape contains the unary representation
of m, i.e., a string consisting ofm many ones. The Turing machine is in the
�nal state.

The Turing machine in this exercise does not have an accept state ora
reject state; instead, it has a �nal state. As soon as this �nal state is entered,
the Turing machine terminates.

Hint: Use the second tape to maintain a string of ones, whose length is
a power of two.

5.6 In this exercise, you are asked to prove that thebusy beaverfunction
BB : N ! N is not computable.

For any integern � 1, we de�neTM n to be the set of all Turing machines
M , such that

� M has one tape,

� M has exactlyn states,

� the tape alphabet ofM is f 0; 1; 2 g, and

� M terminates, when given the empty string� as input.

For every Turing machineM 2 TM n , we de�ne f (M) to be the number of
ones on the tape, after the computation ofM , on the empty input string,
has terminated.

The busy beaver functionBB : N ! N is de�ned as

BB (n) := max f f (M) : M 2 TM ng; for every n � 1.

Exercises 191

In words, BB(n) is the maximum number of ones that any Turing machine
with n states can produce, when given the empty string as input, and as-
suming the Turing machine terminates on this input.

Prove that the function BB is not computable.
Hint: Assume that BB is computable. Then there exists a Turing ma-

chineM that, for any given n � 1, computes the value ofBB (n). Fix a large
integer n � 1. De�ne (in plain English) a Turing machine that, when given
the empty string as input, terminates and outputs a string consisting of more
than BB (n) many ones. Use Exercises 5.4 and 5.5 to argue that there exists
such a Turing machine havingO(logn) states. Then, if you assume thatn
is large enough, the number of states is at mostn.

5.7 Since the set

T = f M : M is a Turing machineg

is countable, there is an in�nite list

M1; M2; M3; M4; : : : ;

such that every Turing machine occurs exactly once in this list.
For any positive integern, let hni denote the binary representation ofn;

observe thathni is a binary string.
Let A be the language de�ned as

A = fhni : the Turing machine Mn terminates on the input string hni ,
and it rejects this stringg:

Prove that the languageA is undecidable.

5.8 Consider the three languages

Empty = fhM i : M is a Turing machine for whichL(M) = ;g ;

UselessState= fhM; qi : M is a Turing machine,q is a state ofM ,
for every input string w, the computation of M on
input w never visits stateqg,

and
EQTM = fhM1; M2i : M1 and M2 are Turing machines

and L(M1) = L(M2)g.

192 Chapter 5. Decidable and Undecidable Languages

� Use Rice's Theorem to show thatEmpty is undecidable.

� Use the �rst part to show that UselessStateis undecidable.

� Use the �rst part to show that EQTM is undecidable.

5.9 Consider the language

REGTM = fhM i : M is a Turing machine whose languageL(M) is regularg:

Use Rice's Theorem to prove thatREGTM is undecidable.

5.10 We have seen in Section 5.1.4 that the language

ATM = fhM; wi : M is a Turing machine that acceptswg

is undecidable. Consider the languageREGTM of Exercise 5.9. The questions
below will lead you through a proof of the claim that the languageREGTM

is undecidable.

Consider a �xed Turing machine M and a �xed binary string w. We
construct a new Turing machineTMw that takes as input an arbitrary binary
string x:

Turing machine TMw (x):

if x = 0 n1n for somen � 0
then terminate in the accept state
else run M on the input string w;

if M terminates in the accept state
then terminate in the accept state
else if M terminates in the reject state

then terminate in the reject state
endif

endif
endif

Answer the following two questions:

� Assume thatM accepts the stringw. What is the languageL(TMw) of
the new Turing machineTMw ?

Exercises 193

� Assume that M does not accept the stringw. What is the language
L(TMw) of the new Turing machineTMw ?

The goal is to prove that the languageREGTM is undecidable. We will
prove this by contradiction. Thus, we assume thatR is a Turing machine
that decidesREGTM . Recall what this means:

� If M is a Turing machine whose language is regular, thenR, when
given hM i as input, will terminate in the accept state.

� If M is a Turing machine whose language is not regular, thenR, when
given hM i as input, will terminate in the reject state.

We construct a new Turing machineR0 which takes as input an arbitrary
Turing machine M and an arbitrary binary string w:

Turing machine R0(hM; wi):

construct the Turing machineTMw described above;
run R on the input hTMw i ;
if R terminates in the accept state
then terminate in the accept state
else if R terminates in the reject state

then terminate in the reject state
endif

endif

Prove that M acceptsw if and only if R0 (when givenhM; wi as input),
terminates in the accept state.

Now �nish the proof by arguing that the languageREGTM is undecidable.

5.11 A Java program P is called aHello-World-program, if the following is
true: When given the empty string� as input, P outputs the string Hello
World and then terminates. (We do not care whatP does when the input
string is non-empty.)

Consider the language

HW = fhPi : P is a Hello-World-programg:

The questions below will lead you through a proof of the claim that the
languageHW is undecidable.

194 Chapter 5. Decidable and Undecidable Languages

Consider a �xed Java programP and a �xed binary string w. We write
a new Java programJP w which takes as input an arbitrary binary stringx:

Java program JP w(x):

run P on the input w;
print Hello World

� Argue that P terminates on input w if and only if hJP w i 2 HW .

The goal is to prove that the languageHW is undecidable. We will prove this
by contradiction. Thus, we assume thatH is a Java program that decides
HW . Recall what this means:

� If P is a Hello-World-program, thenH , when givenhPi as input, will
terminate in the accept state.

� If P is not a Hello-World-program, thenH , when givenhPi as input,
will terminate in the reject state.

We write a new Java programH 0 which takes as input the binary encoding
hP; wi of an arbitrary Java programP and an arbitrary binary string w:

Java program H 0(hP; wi):

construct the Java programJP w described above;
run H on the input hJP w i ;
if H terminates in the accept state
then terminate in the accept state
else terminate in the reject state
endif

Argue that the following are true:

� For any input hP; wi , H 0 terminates.

� If P terminates on input w, then H 0 (when given hP; wi as input),
terminates in the accept state.

� If P does not terminate on inputw, then H 0 (when given hP; wi as
input), terminates in the reject state.

Exercises 195

Now �nish the proof by arguing that the languageHW is undecidable.

5.12 Prove that the languageHalt , see Section 5.1.5, is enumerable.

5.13 We de�ne the following language:

L = f u : u = h0; M; wi for somehM; wi 2 ATM ,
or u = h1; M; wi for somehM; wi 62ATM g .

Prove that neither L nor its complementL is enumerable.
Hint: There are two ways to solve this exercise. In the �rst solution, (i)

you assume thatL is enumerable, and then prove thatATM is decidable, and
(ii) you assume thatL is enumerable, and then prove thatATM is decidable.
In the second solution, (i) you assume thatL is enumerable, and then prove
that ATM is enumerable, and (ii) you assume thatL is enumerable, and then
prove that ATM is enumerable.

196 Chapter 5. Decidable and Undecidable Languages

Chapter 6

Complexity Theory

In the previous chapters, we have considered the problem of whatcan be
computed by Turing machines (i.e., computers) and what cannot be com-
puted. We did not, however, take the e�ciency of the computations into
account. In this chapter, we introduce a classi�cation of decidablelanguages
A, based on the running time of the \best" algorithm that decidesA. That
is, given a decidable languageA, we are interested in the \fastest" algorithm
that, for any given string w, decides whether or notw 2 A.

6.1 The running time of algorithms

Let M be a Turing machine, and letw be an input string for M . We de�ne
the running time tM (w) of M on input w as

tM (w) := the number of computation steps made byM on input w:

As usual, we denote byjwj, the number of symbols in the stringw. We
denote the set of non-negative integers byN0.

De�nition 6.1.1 Let � be an alphabet, let T : N0 ! N0 be a function, let
A � � � be a decidable language, and letF : � � ! � � be a computable
function.

� We say that the Turing machineM decides the languageA in time T,
if

tM (w) � T(jwj)

for all strings w in � � .

198 Chapter 6. Complexity Theory

� We say that the Turing machineM computes the functionF in time
T, if

tM (w) � T(jwj)

for all strings w 2 � � .

In other words, the \running time function" T is a function of thelength
of the input, which we usually denote byn. For any n, the value ofT(n) is
an upper bound on the running time of the Turing machineM , on any input
string of length n.

To give an example, consider the Turing machine of Section 4.2.1 that
decides, using one tape, the language consisting of all palindromes.The tape
head of this Turing machine moves from the left to the right, then back to
the left, then to the right again, back to the left, etc. Each time it reaches
the leftmost or rightmost symbol, it deletes this symbol. The runningtime
of this Turing machine, on any input string of lengthn, is

O(1 + 2 + 3 + : : : + n) = O(n2):

On the other hand, the running time of the Turing machine of Section4.2.2,
which also decides the palindromes, but using two tapes instead of just one,
is O(n).

In Section 4.4, we mentioned that all computation models listed thereare
equivalent, in the sense that if a language can be decided in one model,it
can be decided in any of the other models. We just saw, however, that the
language consisting of all palindromes allows a faster algorithm on a two-
tape Turing machine than on one-tape Turing machines. (Even though we
did not prove this, it is true that
(n2) is a lower bound on the running
time to decide palindromes on a one-tape Turing machine.) The following
theorem can be proved.

Theorem 6.1.2 Let A be a language (resp. letF be a function) that can be
decided (resp. computed) in timeT by an algorithm of typeM . Then there is
an algorithm of typeN that decidesA (resp. computesF) in time T0, where

M N T0

k-tape Turing machine one-tape Turing machine O(T2)
one-tape Turing machine Java program O(T2)
Java program k-tape Turing machine O(T4)

6.2. The complexity class P 199

6.2 The complexity class P

De�nition 6.2.1 We say that algorithm M decides the languageA (resp.
computes the functionF) in polynomial time, if there exists an integerk � 1,
such that the running time of M is O(nk), for any input string of length n.

It follows from Theorem 6.1.2 that this notion of \polynomial time" does
not depend on the model of computation:

Theorem 6.2.2 Consider the models of computation \Java program", \k-
tape Turing machine", and \one-tape Turing machine". If a language can
be decided (resp. a function can be computed) in polynomial time in one of
these models, then it can be decided (resp. computed) in polynomial time in
all of these models.

Because of this theorem, we can de�ne the following two complexity
classes:

P := f A : the languageA is decidable in polynomial timeg;

and

FP := f F : the function F is computable in polynomial timeg:

6.2.1 Some examples

Palindromes

Let Pal be the language

Pal := f w 2 f a; bg� : w is a palindromeg:

We have seen that there exists a one-tape Turing machine that decides Pal
in O(n2) time. Therefore, Pal 2 P.

Some functions in FP

The following functions are in the classFP :

� F1 : N0 ! N0 de�ned by F1(x) := x + 1,

� F2 : N2
0 ! N0 de�ned by F2(x; y) := x + y,

� F3 : N2
0 ! N0 de�ned by F3(x; y) := xy.

200 Chapter 6. Complexity Theory

r

b

b

b

r

r
b

G1

G2

Figure 6.1: The graph G1 is 2-colorable;r stands for red;b stands for blue.
The graph G2 is not 2-colorable.

Context-free languages

We have shown in Section 5.1.3 that every context-free language is decid-
able. The algorithm presented there, however, does not run in polynomial
time. Using a technique calleddynamic programming(which you will learn
in COMP 3804), the following result can be shown:

Theorem 6.2.3 Let � be an alphabet, and letA � � � be a context-free
language. ThenA 2 P.

Observe that, obviously, every language inP is decidable.

The 2-coloring problem

Let G be a graph with vertex setV and edge setE. We say that G is
2-colorable, if it is possible to give each vertex ofV a color such that

1. for each edge (u; v) 2 E, the verticesu and v have di�erent colors, and

2. only two colors are used to color all vertices.

See Figure 6.1 for two examples. We de�ne the following language:

2Color := fhGi : the graph G is 2-colorableg;

wherehGi denotes the binary string that encodes the graphG.

6.2. The complexity class P 201

We claim that 2Color 2 P. In order to show this, we have to construct an
algorithm that decides in polynomial time, whether or not any given graph
is 2-colorable.

Let G be an arbitrary graph with vertex setV = f 1; 2; : : : ; mg. The edge
set of G is given by anadjacency matrix. This matrix, which we denote by
E, is a two-dimensional array withm rows andm columns. For all i and j
with 1 � i � m and 1� j � m, we have

E(i; j) =
�

1 if (i; j) is an edge ofG;
0 otherwise.

The length of the input G, i.e., the number of bits needed to specifyG, is
equal to m2 =: n. We will present an algorithm that decides, inO(n) time,
whether or not the graphG is 2-colorable.

The algorithm uses the colors red and blue. It gives the �rst vertexthe
color red. Then, the algorithm considers all vertices that are connected by
an edge to the �rst vertex, and colors them blue. Now the algorithmis done
with the �rst vertex; it marks this �rst vertex.

Next, the algorithm chooses a vertexi that already has a color, but that
has not been marked. Then it considers all verticesj that are connected by
an edge toi . If j has the same color asi , then the input graph G is not
2-colorable. Otherwise, if vertexj does not have a color yet, the algorithm
gives j the color that is di�erent from i 's color. After having done this for
all neighborsj of i , the algorithm is done with vertex i , so it marks i .

It may happen that there is no vertexi that already has a color but that
has not been marked. (In other words, each vertexi that is not marked does
not have a color yet.) In this case, the algorithm chooses an arbitrary vertex
i having this property, and colors it red. (This vertexi is the �rst vertex in
its connected component that gets a color.)

This procedure is repeated until all vertices ofG have been marked.

We now give a formal description of this algorithm. Vertexi has been
marked, if

1. i has a color,

2. all vertices that are connected by an edge toi have a color, and

3. the algorithm has veri�ed that each vertex that is connected byan edge
to i has a color di�erent from i 's color.

202 Chapter 6. Complexity Theory

The algorithm uses two arraysf (1 : : : m) and a(1 : : : m), and a variable
M . The value off (i) is equal to the color (red or blue) of vertexi ; if i does
not have a color yet, thenf (i) = 0. The value of a(i) is equal to

a(i) =
�

1 if vertex i has been marked;
0 otherwise.

The value of M is equal to the number of marked vertices. The algorithm
is presented in Figure 6.2. You are encouraged to convince yourselfof the
correctness of this algorithm. That is, you should convince yourself that this
algorithm returns YES if the graph G is 2-colorable, whereas it returns NO
otherwise.

What is the running time of this algorithm? First we count the number
of iterations of the outer while-loop. In one iteration, eitherM increases by
one, or a vertexi , for which a(i) = 0, gets the color red. In the latter case,
the variable M is increased during the next iteration of the outer while-loop.
Since, during the entire outer while-loop, the value ofM is increased from
zero to m, it follows that there are at most 2m iterations of the outer while-
loop. (In fact, the number of iterations is equal tom plus the number of
connected components ofG minus one.)

One iteration of the outer while-loop takesO(m) time. Hence, the total
running time of the algorithm is O(m2), which is O(n). Therefore, we have
shown that 2Color 2 P.

6.3 The complexity class NP

Before we de�ne the classNP , we consider some examples.

Example 6.3.1 Let G be a graph with vertex setV and edge setE, and
let k � 1 be an integer. We say thatG is k-colorable, if it is possible to give
each vertex ofV a color such that

1. for each edge (u; v) 2 E, the verticesu and v have di�erent colors, and

2. at most k di�erent colors are used to color all vertices.

We de�ne the following language:

kColor := fhGi : the graph G is k-colorableg:

6.3. The complexity class NP 203

Algorithm 2Color
for i := 1 to m do f (i) := 0; a(i) := 0 endfor ;
f (1) := red; M := 0;
while M 6= m
do (� Find the minimum index i for which vertex i has not

been marked, but has a color already�)
bool := false; i := 1;
while bool = false and i � m
do if a(i) = 0 and f (i) 6= 0 then bool := true else i := i + 1 endif ;
endwhile ;
(� If bool = true, then i is the smallest index such that

a(i) = 0 and f (i) 6= 0.
If bool = false, then for all i , the following holds: if a(i) = 0, then
f (i) = 0; becauseM < m , there is at least one suchi . �)

if bool = true
then for j := 1 to m

do if E (i; j) = 1
then if f (i) = f (j)

then return NO and terminate
else if f (j) = 0

then if f (i) = red
then f (j) := blue
else f (j) := red
endif

endif
endif

endif
endfor ;
a(i) := 1; M := M + 1;

else i := 1;
while a(i) 6= 0 do i := i + 1 endwhile ;
(� an unvisited connected component starts at vertexi �)
f (i) := red

endif
endwhile ;
return YES

Figure 6.2: An algorithm that decides whether or not a graphG is 2-
colorable.

We have seen that fork = 2, this problem is in the classP. For k � 3, it
is not known whether there exists an algorithm that decides, in polynomial
time, whether or not any given graph isk-colorable. In other words, for

204 Chapter 6. Complexity Theory

k � 3, it is not known whether or not kColor is in the classP.

Example 6.3.2 Let G be a graph with vertex setV = f 1; 2; : : : ; mg and
edge setE. A Hamilton cycle is a cycle inG that visits each vertex exactly
once. Formally, it is a sequencev1; v2; : : : ; vm of vertices such that

1. f v1; v2; : : : ; vm g = V, and

2. f (v1; v2); (v2; v3); : : : ; (vm� 1; vm); (vm ; v1)g � E.

We de�ne the following language:

HC := fhGi : the graph G contains a Hamilton cycleg:

It is not known whether or not HC is in the classP.

Example 6.3.3 The sum of subsetlanguage is de�ned as follows:

SOS:= fha1; a2; : : : ; am ; bi : m; a1; a2; : : : ; am ; b2 N0 and
9I � f 1; 2; : : : ; mg;

P
i 2 I ai = bg.

Also in this case, no polynomial-time algorithm is known that decides the
languageSOS. That is, it is not known whether or not SOS is in the class
P.

Example 6.3.4 An integer x � 2 is a prime number, if there are noa; b2 N
such that a 6= x, b 6= x, and x = ab. Hence, the language of all non-primes
that are greater than or equal to two, is

NPrim := fhxi : x � 2 and x is not a prime numberg:

It is not obvious at all, whether or not NPrim is in the classP. In fact, it
was shown only in 2002 thatNPrim is in the classP.

Observation 6.3.5 The four languages above have the following in com-
mon: If someone gives us a \solution" for any given input, then we can
easily, i.e., in polynomial time, verify whether or not this\solution" is a cor-
rect solution. Moreover, for any input to each of these four problems, there
exists a \solution" whose length is polynomial in the lengthof the input.

6.3. The complexity class NP 205

Let us again consider the languagekColor. Let G be a graph with vertex
set V = f 1; 2; : : : ; mg and edge setE, and let k be a positive integer. We
want to decide whether or notG is k-colorable. A \solution" is a coloring of
the nodes using at mostk di�erent colors. That is, a solution is a sequence
f 1; f 2; : : : ; f m . (Interpret this as: vertex i receives colorf i , 1 � i � m). This
sequence is a correct solution if and only if

1. f i 2 f 1; 2; : : : ; kg, for all i with 1 � i � m, and

2. for all i with 1 � i � m, and for all j with 1 � j � m, if (i; j) 2 E,
then f i 6= f j .

If someone gives us this solution (i.e., the sequencef 1; f 2; : : : ; f m), then
we can verify in polynomial time whether or not these two conditions are
satis�ed. The length of this solution isO(m logk): for eachi , we need about
logk bits to represent f i . Hence, the length of the solution is polynomial in
the length of the input, i.e., it is polynomial in the number of bits neededto
represent the graphG and the numberk.

For the Hamilton cycle problem, a solution consists of a sequencev1,
v2; : : : ; vm of vertices. This sequence is a correct solution if and only if

1. f v1; v2; : : : ; vmg = f 1; 2; : : : ; mg and

2. f (v1; v2); (v2; v3); : : : ; (vm� 1; vm); (vm ; v1)g � E.

These two conditions can be veri�ed in polynomial time. Moreover, the
length of the solution is polynomial in the length of the input graph.

Consider the sum of subset problem. A solution is a sequencec1; c2; : : : ; cm .
It is a correct solution if and only if

1. ci 2 f 0; 1g, for all i with 1 � i � m, and

2.
P m

i =1 ci ai = b.

Hence, the setI � f 1; 2; : : : ; mg in the de�nition of SOS is the set of indices
i for which ci = 1. Again, these two conditions can be veri�ed in polynomial
time, and the length of the solution is polynomial in the length of the input.

Finally, let us consider the languageNPrim . Let x � 2 be an integer.
The integersa and b form a \solution" for x if and only if

206 Chapter 6. Complexity Theory

1. 2 � a < x ,

2. 2 � b < x, and

3. x = ab.

Clearly, these three conditions can be veri�ed in polynomial time. Moreover,
the length of this solution, i.e., the total number of bits in the binary rep-
resentations ofa and b, is polynomial in the number of bits in the binary
representation ofx.

Languages having the property that the correctness of a proposed \solu-
tion" can be veri�ed in polynomial time, form the classNP :

De�nition 6.3.6 A languageA belongs to the classNP , if there exist a
polynomial p and a languageB 2 P, such that for every stringw,

w 2 A () 9 s : jsj � p(jwj) and hw; si 2 B:

In words, a languageA is in the classNP , if for every string w, w 2 A if
and only if the following two conditions are satis�ed:

1. There is a \solution" s, whose lengthjsj is polynomial in the length of
w (i.e., jsj � p(jwj), where p is a polynomial).

2. In polynomial time, we can verify whether or nots is a correct \solu-
tion" for w (i.e., hw; si 2 B and B 2 P).

Hence, the languageB can be regarded to be the \veri�cation language":

B = fhw; si : s is a correct \solution" for wg:

We have given already informal proofs of the fact that the languages
kColor, HC, SOS, and NPrim are all contained in the classNP . Below, we
formally prove that NPrim 2 NP . To prove this claim, we have to specify
the polynomial p and the languageB 2 P. First, we observe that

NPrim = fhxi : there exist a and b in N such that
2 � a < x; 2 � b < x and x = ab g.

(6.1)

We de�ne the polynomial p by p(n) := n + 2, and the languageB as

B := fhx; a; bi : x � 2; 2 � a < x; 2 � b < x and x = abg:

6.3. The complexity class NP 207

It is obvious that B 2 P: For any three positive integersx, a, and b, we
can verify in polynomial time whether or nothx; a; bi 2 B . In order to do
this, we only have to verify whether or notx � 2, 2 � a < x , 2 � b < x,
and x = ab. If all these four conditions are satis�ed, thenhx; a; bi 2 B . If at
least one of them is not satis�ed, thenhx; a; bi 62B.

It remains to show that for all x 2 N:

hxi 2 NPrim () 9 a; b: jha; bij � jh xij + 2 and hx; a; bi 2 B: (6.2)

(Remember thatjhxij denotes the number of bits in the binary representation
of x; jha; bij denotes the total number of bits ofa and b, i.e., jha; bij =
jhaij + jhbij .)

Let x 2 NPrim . It follows from (6.1) that there exist a and b in N, such
that 2 � a < x , 2 � b < x, and x = ab. Sincex = ab � 2 � 2 = 4 � 2, it
follows that hx; a; bi 2 B . Hence, it remains to show that

jha; bij � jh xij + 2:

The binary representation ofx containsblogxc+1 bits, i.e., jhxij = blogxc+1.
We have

jha; bij = jhaij + jhbij

= (blogac + 1) + (blogbc + 1)

� loga + log b+ 2

= log ab+ 2

= log x + 2

� b logxc + 3

= jhxij + 2:

This proves one direction of (6.2).
To prove the other direction, we assume that there are positive integers

a and b, such that jha; bij � jh xij + 2 and hx; a; bi 2 B . Then it follows
immediately from (6.1) and the de�nition of the languageB, that x 2 NPrim .
Hence, we have proved the other direction of (6.2). This completesthe proof
of the claim that

NPrim 2 NP :

208 Chapter 6. Complexity Theory

6.3.1 P is contained in NP

Intuitively, it is clear that P � NP , because a language is

� in P, if for every string w, it is possible tocomputethe \solution" s in
polynomial time,

� in NP , if for every string w and for any given \solution" s, it is possible
to verify in polynomial time whether or not s is a correct solution for
w (hence, we do not need to compute the solutions ourselves, we only
have to verify it).

We give a formal proof of this:

Theorem 6.3.7 P � NP .

Proof. Let A 2 P. We will prove that A 2 NP . De�ne the polynomial p
by p(n) := 0 for all n 2 N0, and de�ne

B := fhw; � i : w 2 Ag:

SinceA 2 P, the languageB is also contained inP. It is easy to see that

w 2 A () 9 s : jsj � p(jwj) = 0 and hw; si 2 B:

This completes the proof.

6.3.2 Deciding NP-languages in exponential time

Let us look again at the de�nition of the classNP . Let A be a language in
this class. Then there exist a polynomialp and a languageB 2 P, such that
for all strings w,

w 2 A () 9 s : jsj � p(jwj) and hw; si 2 B: (6.3)

How do we decide whether or not any given stringw belongs to the language
A? If we can �nd a string s that satis�es the right-hand side in (6.3), then
we know that w 2 A. On the other hand, if there is no such strings, then
w 62A. How much time do we need to decide whether or not such a strings
exists?

6.3. The complexity class NP 209

Algorithm NonPrime
(� decides whether or nothxi 2 NPrim �)
if x = 0 or x = 1 or x = 2
then return NO and terminate
else a := 2;

while a < x
do if x mod a = 0

then return YES and terminate
else a := a + 1
endif

endwhile ;
return NO

endif

Figure 6.3: An algorithm that decides whether or not a numberx is contained
in the languageNPrim .

For example, letA be the languageNPrim , and let x 2 N. The algorithm
in Figure 6.3 decides whether or nothxi 2 NPrim .

It is clear that this algorithm is correct. Let n be the length of the binary
representation ofx, i.e., n = blogxc + 1. If x > 2 and x is a prime number,
then the while-loop makesx � 2 iterations. Therefore, sincen� 1 = blogxc �
logx, the running time of this algorithm is at least

x � 2 � 2n� 1 � 2;

i.e., it is at least exponential in the length of the input.
We now prove that every language inNP can be decided in exponential

time. Let A be an arbitrary language inNP . Let p be the polynomial, and
let B 2 P be the language such that for all stringsw,

w 2 A () 9 s : jsj � p(jwj) and hw; si 2 B: (6.4)

The following algorithm decides, for any given stringw, whether or not
w 2 A. It does so by looking atall possible stringss for which jsj � p(jwj):

for all s with jsj � p(jwj)
do if hw; si 2 B

210 Chapter 6. Complexity Theory

then return YES and terminate
endif

endfor ;
return NO

The correctness of the algorithm follows from (6.4). What is the running
time? We assume thatw and s are represented as binary strings. Letn be
the length of the input, i.e., n = jwj.

How many binary stringss are there whose length is at mostp(jwj)? Any
suchs can be described by a sequence of lengthp(jwj) = p(n), consisting of
the symbols \0", \1", and the blank symbol. Hence, there are at most 3p(n)

many binary stringss with jsj � p(n). Therefore, the for-loop makes at most
3p(n) iterations.

SinceB 2 P, there is an algorithm and a polynomialq, such that this
algorithm, when given any input stringz, decides inq(jzj) time, whether or
not z 2 B. This input z has the formhw; si , and we have

jzj = jwj + jsj � j wj + p(jwj) = n + p(n):

It follows that the total running time of our algorithm that decides whether
or not w 2 A, is bounded from above by

3p(n) � q(n + p(n)) � 22p(n) � q(n + p(n))

� 22p(n) � 2q(n+ p(n))

= 2 p0(n) ;

wherep0 is the polynomial that is de�ned by p0(n) := 2 p(n) + q(n + p(n)).
If we de�ne the classEXP as
EXP := f A : there exists a polynomialp, such that A can be

decided in time 2p(n) g ,

then we have proved the following theorem.

Theorem 6.3.8 NP � EXP .

6.3.3 Summary

� P � NP . It is not known whether P is a proper subclass ofNP , or
whether P = NP . This is one of the most important open problems in

6.4. Non-deterministic algorithms 211

computer science. If you can solve this problem, then you will get one
million dollars; not from us, but from the Clay Mathematics Institute,
see

http://www.claymath.org/prizeproblems/index.htm

Most people believe thatP is a proper subclass ofNP .

� NP � EXP , i.e., each language inNP can be decided in exponential
time. It is not known whether NP is a proper subclass ofEXP , or
whether NP = EXP .

� It follows from P � NP and NP � EXP , that P � EXP . It can
be shown thatP is a proper subset ofEXP , i.e., there exist languages
that can be decided in exponential time, but that cannot be decidedin
polynomial time.

� P is the class of those languages that can be decidede�ciently , i.e., in
polynomial time. Sets that are not inP, are not e�ciently decidable.

6.4 Non-deterministic algorithms

The abbreviationNP stands for Non-deterministic Polynomial time. The al-
gorithms that we have considered so far aredeterministic, which means that
at any time during the computation, the next computation step is uniquely
determined. In anon-deterministic algorithm, there are one or more possi-
bilities for being the next computation step, and the algorithm chooses one
of them.

To give an example, we consider the languageSOS, see Example 6.3.3.
Let m, a1, a2, : : : ; am , and b be elements ofN0. Then

ha1; a2; : : : ; am ; bi 2 SOS () there exist c1; c2; : : : ; cm 2 f 0; 1g,
such that

P m
i =1 ci ai = b.

The following non-deterministic algorithm decides the languageSOS:

Algorithm SOS(m; a1; a2; : : : ; am ; b):
s := 0;
for i := 1 to m
do s := s j s := s + ai

212 Chapter 6. Complexity Theory

endfor ;
if s = b
then return YES
else return NO
endif

The line
s := s j s := s + ai

means that either the instruction \s := s" or the instruction \ s := s + ai " is
executed.

Let us assume thatha1; a2; : : : ; am ; bi 2 SOS. Then there arec1; c2; : : : ; cm 2
f 0; 1g such that

P m
i =1 ci ai = b. Assume our algorithm does the following, for

eachi with 1 � i � m: In the i -th iteration,

� if ci = 0, then it executes the instruction \s := s",

� if ci = 1, then it executes the instruction \s := s + ai ".

Then after the for-loop, we haves = b, and the algorithm returns YES;
hence, the algorithm has correctly found out thatha1; a2; : : : ; am ; bi 2 SOS.
In other words, in this case,there exists at least one accepting computation.

On the other hand, ifha1; a2; : : : ; am ; bi 62SOS, then the algorithm always
returns NO, no matter which of the two instructions is executed in each
iteration of the for-loop. In this case, there isno accepting computation.

De�nition 6.4.1 Let M be a non-deterministic algorithm. We say thatM
acceptsa string w, if there exists at least one computation that, on inputw,
returns YES.

De�nition 6.4.2 We say that a non-deterministic algorithmM decidesa
languageA in time T, if for every string w, the following holds: w 2 A if
and only if there exists at least one computation that, on inputw, returns
YES and that takes at mostT(jwj) time.

The non-deterministic algorithm that we have seen above decides the
languageSOS in linear time: Let ha1; a2; : : : ; am ; bi 2 SOS, and let n be the
length of this input. Then

n = jha1ij + jha2ij + : : : + jham ij + jhbij � m:

6.5. NP-complete languages 213

For this input, there is a computation that returns YES and that takes
O(m) = O(n) time.

As in Section 6.2, we de�ne the notion of \polynomial time" for non-
deterministic algorithms. The following theorem relates this notion tothe
classNP that we de�ned in De�nition 6.3.6.

Theorem 6.4.3 A languageA is in the classNP if and only if there exists
a non-deterministic Turing machine (or Java program) that decidesA in
polynomial time.

6.5 NP-complete languages

Languages in the classP are consideredeasy, i.e., they can be decided in
polynomial time. People believe (but cannot prove) thatP is a proper sub-
class ofNP . If this is true, then there are languages inNP that are hard,
i.e., cannot be decided in polynomial time.

Intuition tells us that if P 6= NP , then the hardest languages inNP are
not contained inP. These languages are calledNP -complete. In this section,
we will give a formal de�nition of this concept.

If we want to talk about the \hardest" languages inNP , then we have to
be able to compare two languages according to their \di�culty". Theidea is
as follows: We say that a languageB is \at least as hard" as a languageA,
if the following holds: If B can be decided in polynomial time, thenA can
also be decided in polynomial time.

De�nition 6.5.1 Let A � f 0; 1g� and B � f 0; 1g� be languages. We say
that A � P B, if there exists a function

f : f 0; 1g� ! f 0; 1g�

such that

1. f 2 FP and

2. for all strings w in f 0; 1g� ,

w 2 A () f (w) 2 B:

214 Chapter 6. Complexity Theory

If A � P B, then we also say that \B is at least as hard asA", or \ A is
polynomial-time reducible toB".

We �rst show that this formal de�nition is in accordance with the intu itive
de�nition given above.

Theorem 6.5.2 Let A and B be languages such thatB 2 P and A � P B.
Then A 2 P.

Proof. Let f : f 0; 1g� ! f 0; 1g� be the function in FP for which

w 2 A () f (w) 2 B: (6.5)

The following algorithm decides whether or not any given binary stringw is
in A:

u := f (w);
if u 2 B
then return YES
else return NO
endif

The correctness of this algorithm follows immediately from (6.5). So it
remains to show that the running time is polynomial in the length of the
input string w.

Sincef 2 FP , there exists a polynomialp such that the function f can
be computed in timep. Similarly, sinceB 2 P, there exists a polynomialq,
such that the languageB can be decided in timeq.

Let n be the length of the input string w, i.e., n = jwj. Then the length
of the string u is less than or equal top(jwj) = p(n). (Why?) Therefore, the
running time of our algorithm is bounded from above by

p(jwj) + q(juj) � p(n) + q(p(n)):

Since the functionp0, de�ned by p0(n) := p(n)+ q(p(n)), is a polynomial, this
proves that A 2 P.

The following theorem states that the relation� P is reexive and tran-
sitive. We leave the proof as an exercise.

Theorem 6.5.3 Let A, B , and C be languages. Then

6.5. NP-complete languages 215

1. A � P A, and

2. if A � P B and B � P C, then A � P C.

We next show that the languages inP are the easiestlanguages inNP :

Theorem 6.5.4 Let A be a language inP, and let B be an arbitrary lan-
guage such thatB 6= ; and B 6= f 0; 1g� . Then A � P B.

Proof. We choose two stringsu and v in f 0; 1g� , such that u 2 B and v 62B.
(Observe that this is possible.) De�ne the functionf : f 0; 1g� ! f 0; 1g� by

f (w) :=
�

u if w 2 A;
v if w 62A:

Then it is clear that for any binary string w,

w 2 A () f (w) 2 B:

Since A 2 P, the function f can be computed in polynomial time, i.e.,
f 2 FP .

6.5.1 Two examples of reductions

Sum of subsets and knapsacks

We start with a simple reduction. Consider the two languages

SOS:= fha1; : : : ; am ; bi : m; a1; : : : ; am ; b2 N0 and there exist
c1; : : : ; cm 2 f 0; 1g, such that

P m
i =1 ci ai = bg

and

KS := fhw1; : : : ; wm ; k1; : : : ; km ; W; K i :

m; w1; : : : ; wm ; k1; : : : ; km ; W; K 2 N0

and there existc1; : : : ; cm 2 f 0; 1g,

such that
P m

i =1 ci wi � W and
P m

i =1 ci ki � K g.

The notation KS stands for knapsack: We have m pieces of food. The
i -th piece has weightwi and containski calories. We want to decide whether
or not we can �ll our knapsack with a subset of the pieces of food such that
the total weight is at most W, and the total amount of calories is at leastK .

216 Chapter 6. Complexity Theory

Theorem 6.5.5 SOS� P KS.

Proof. Let us �rst see what we have to show. According to De�nition 6.5.1,
we need a functionf 2 FP , that maps input strings for SOSto input strings
for KS, in such a way that

ha1; : : : ; am ; bi 2 SOS() f (ha1; : : : ; am ; bi) 2 KS:

In order for f (ha1; : : : ; am ; bi) to be an input string for KS, this function
value has to be of the form

f (ha1; : : : ; am ; bi) = hw1; : : : ; wm ; k1; : : : ; km ; W; K i :

We de�ne

f (ha1; : : : ; am ; bi) := ha1; : : : ; am ; a1; : : : ; am ; b; bi :

It is clear that f 2 FP . We have

ha1; : : : ; am ; bi 2 SOS

() there exist c1; : : : ; cm 2 f 0; 1g such that
P m

i =1 ci ai = b

() there exist c1; : : : ; cm 2 f 0; 1g such that
P m

i =1 ci ai � b and
P m

i =1 ci ai � b

() h a1; : : : ; am ; a1; : : : ; am ; b; bi 2 KS

() f (ha1; : : : ; am ; bi) 2 KS:

Cliques and Boolean formulas

We will de�ne two languagesA = 3SAT and B = Clique that have, at
�rst sight, nothing to do with each other. Then we show that, nevertheless,
A � P B.

Let G be a graph with vertex setV and edge setE. A subsetV 0 of V is
called aclique, if each pair of distinct vertices inV 0 is connected by an edge
in E. We de�ne the following language:

Clique := fhG; ki : k 2 N and G has a clique withk verticesg:

We encourage you to prove the following claim:

6.5. NP-complete languages 217

Theorem 6.5.6 Clique 2 NP .

Next we considerBoolean formulas' , with variables x1; x2; : : : ; xm , hav-
ing the form

' = C1 ^ C2 ^ : : : ^ Ck ; (6.6)

where eachCi , 1 � i � k, is of the form

Ci = ` i
1 _ ` i

2 _ ` i
3:

Each ` i
a is either a variable or the negation of a variable. An example of such

a formula is

' = (x1 _ : x1 _ : x2) ^ (x3 _ x2 _ x4) ^ (: x1 _ : x3 _ : x4):

A formula ' of the form (6.6) is said to besatis�able, if there exists a truth-
value in f 0; 1g for each of the variablesx1; x2; : : : ; xm , such that the entire
formula ' is true. Our example formula is satis�able: If we takex1 = 0 and
x2 = 1, and give x3 and x4 an arbitrary value, then

' = (0 _ 1 _ 0) ^ (x3 _ 1 _ x4) ^ (1 _ : x3 _ : x4) = 1 :

We de�ne the following language:

3SAT := fh' i : ' is of the form (6.6) and is satis�ableg:

Again, we encourage you to prove the following claim:

Theorem 6.5.7 3SAT 2 NP .

Observe that the elements ofClique (which are pairs consisting of a graph
and a positive integer) are completely di�erent from the elements of3SAT
(which are Boolean formulas). We will show that 3SAT � P Clique. Recall
that this means the following: If the languageClique can be decided in
polynomial time, then the language 3SAT can also be decided in polynomial
time. In other words, any polynomial-time algorithm that decidesClique can
be converted to a polynomial-time algorithm that decides 3SAT .

Theorem 6.5.8 3SAT � P Clique.

218 Chapter 6. Complexity Theory

Proof. We have to show that there exists a functionf 2 FP , that maps
input strings for 3SAT to input strings for Clique, such that for each Boolean
formula ' that is of the form (6.6),

h' i 2 3SAT () f (h' i) 2 Clique:

The function f maps the binary string encoding an arbitrary Boolean formula
' to a binary string encoding a pair (G; k), where G is a graph andk is a
positive integer. We have to de�ne this functionf in such a way that

' is satis�able () G has a clique withk vertices:

Let
' = C1 ^ C2 ^ : : : ^ Ck

be an arbitrary Boolean formula in the variablesx1; x2; : : : ; xm , where each
Ci , 1 � i � k, is of the form

Ci = ` i
1 _ ` i

2 _ ` i
3:

Remember that each̀ i
a is either a variable or the negation of a variable.

The formula ' is mapped to the pair (G; k), where the vertex setV and
the edge setE of the graphG are de�ned as follows:

� V = f v1
1; v1

2; v1
3; : : : ; vk

1 ; vk
2 ; vk

3g. The idea is that each vertexvi
a corre-

sponds to one term̀ i
a.

� The pair (vi
a; vj

b) of vertices form an edge inE if and only if

{ i 6= j and

{ ` i
a is not the negation of` j

b.

To give an example, let' be the Boolean formula

' = (x1 _ : x2 _ : x3) ^ (: x1 _ x2 _ x3) ^ (x1 _ x2 _ x3); (6.7)

i.e., k = 3, C1 = x1 _ : x2 _ : x3, C2 = : x1 _ x2 _ x3, and C3 = x1 _ x2 _ x3.
The graph G that corresponds to this formula is given in Figure 6.4.

It is not di�cult to see that the function f can be computed in polynomial
time. So it remains to prove that

' is satis�able () G has a clique withk vertices: (6.8)

6.5. NP-complete languages 219

: x2 : x3x1

: x1

x2

x3

x1

x2

x3

Figure 6.4: The formula ' in (6.7) is mapped to this graph. The vertices on
the top representC1; the vertices on the left representC2; the vertices on
the right representC3.

To prove this, we �rst assume that the formula

' = C1 ^ C2 ^ : : : ^ Ck

is satis�able. Then there exists a truth-value inf 0; 1g for each of the variables
x1; x2; : : : ; xm , such that the entire formula ' is true. Hence, for eachi with
1 � i � k, there is at least one term̀ i

a in

Ci = ` i
1 _ ` i

2 _ ` i
3

that is true (i.e., has value 1).
Let V 0 be the set of vertices obtained by choosing for eachi , 1 � i � k,

exactly one vertexvi
a such that ` i

a has value 1.
It is clear that V 0 contains exactlyk vertices. We claim that this set is

a clique in G. To prove this claim, let vi
a and vj

b be two distinct vertices in
V 0. It follows from the de�nition of V 0 that i 6= j and ` i

a = ` j
b = 1. Hence,

` i
a is not the negation of` j

b. But this means that the verticesvi
a and vj

b are
connected by an edge inG.

This proves one direction of (6.8). To prove the other direction, weassume
that the graph G contains a cliqueV 0 with k vertices.

220 Chapter 6. Complexity Theory

The vertices ofG consist ofk groups, where each group contains exactly
three vertices. Since vertices within the same group are not connected by
edges, the cliqueV 0 contains exactly one vertex from each group. Hence, for
each i with 1 � i � k, there is exactly onea, such that vi

a 2 V 0. Consider
the corresponding term` i

a. We know that this term is either a variable or
the negation of a variable, i.e.,̀ i

a is either of the formx j or of the form : x j .
If ` i

a = x j , then we givex j the truth-value 1. Otherwise, we havè i
a = : x j ,

in which case we givex j the truth-value 0. SinceV 0 is a clique, each variable
gets at most one truth-value. If a variable has no truth-value yet, then we
give it an arbitrary truth-value.

If we substitute these truth-values into ' , then the entire formula has
value 1. Hence,' is satis�able.

In order to get a better understanding of this proof, you should verify the
proof for the formula ' in (6.7) and the graphG in Figure 6.4.

6.5.2 De�nition of NP-completeness

Reductions, as de�ned in De�nition 6.5.1, allow us to compare two language
according to their di�culty. A language B in NP is called NP -complete,
if B belongs to themost di�cult languages inNP ; in other words, B is at
least as hard asany other language inNP .

De�nition 6.5.9 Let B � f 0; 1g� be a language. We say thatB is NP -
complete, if

1. B 2 NP and

2. A � P B, for every languageA in NP .

Theorem 6.5.10 Let B be anNP -complete language. Then

B 2 P () P = NP :

Proof. Intuitively, this theorem should be true: If the languageB is in P,
then B is an easy language. On the other hand, sinceB is NP -complete,
it belongs to the most di�cult languages in NP . Hence, the most di�cult
language inNP is easy. But then all languages inNP must be easy, i.e.,
P = NP .

6.5. NP-complete languages 221

We give a formal proof. Let us �rst assume thatB 2 P. We already
know that P � NP . Hence, it remains to show thatNP � P. Let A be an
arbitrary language inNP . SinceB is NP -complete, we haveA � P B. Then,
by Theorem 6.5.2, we haveA 2 P.

To prove the converse, assume thatP = NP . SinceB 2 NP , it follows
immediately that B 2 P.

Theorem 6.5.11 Let B and C be languages, such thatC 2 NP and B � P

C. If B is NP -complete, thenC is alsoNP -complete.

Proof. First, we give an intuitive explanation of the claim: By assumption,
B belongs to the most di�cult languages inNP , and C is at least as hard as
B. SinceC 2 NP , it follows that C belongs to the most di�cult languages
in NP . Hence,C is NP -complete.

To give a formal proof, we have to show thatA � P C, for all languagesA
in NP . Let A be an arbitrary language inNP . SinceB is NP -complete, we
have A � P B. SinceB � P C, it follows from Theorem 6.5.3, thatA � P C.
Therefore,C is NP -complete.

Theorem 6.5.11 can be used to prove theNP -completeness of languages:
Let C be a language, and assume that we want to prove thatC is NP -
complete. We can do this in the following way:

1. We �rst prove that C 2 NP .

2. Then we �nd a languageB that looks \similar" to C, and for which
we already know that it is NP -complete.

3. Finally, we prove that B � P C.

4. Then, Theorem 6.5.11 tells us thatC is NP -complete.

Of course, this leads to the question \How do we know that the language
B is NP -complete?" In order to apply Theorem 6.5.11, we need a \�rst"NP -
complete language; theNP -completeness of this language must be proven
using De�nition 6.5.9.

Observe that it is not clear at all that there existNP -complete languages!
For example, consider the language 3SAT . If we want to use De�nition 6.5.9
to show that this language isNP -complete, then we have to show that

222 Chapter 6. Complexity Theory

� 3SAT 2 NP . We know from Theorem 6.5.7 that this is true.

� A � P 3SAT , for every languageA 2 NP . Hence, we have to show this
for languagesA such askColor, HC, SOS, NPrim , KS, Clique, and
for in�nitely many other languages.

In 1971, Cook has exactly done this: He showed that the language 3SAT
is NP -complete. Since his proof is rather technical, we will prove theNP -
completeness of another language.

6.5.3 An NP-complete domino game

We are given a �nite collection oftile types. For each such type, there are
arbitrarily many tiles of this type. A tile is a square that is partitioned into
four triangles. Each of these triangles contains a symbol that belongs to a
�nite alphabet �. Hence, a tile looks as follows:

�
�

�
��@

@
@

@@

a
b

c
d

We are also given a squareframe, consisting of cells. Each cell has the same
size as a tile, and contains a symbol of �.

The problem is to decide whether or not thisdomino gamehas a solution.
That is, can we completely �ll the frame with tiles such that

� for any two neighboring tiless and s0, the two triangles ofs and s0 that
touch each other contain the same symbol, and

� each triangle that touches the frame contains the same symbol asthe
cell of the frame that is touched by this triangle.

There is one �nal restriction: The orientation of the tiles is �xed, they cannot
be rotated.

Let us give a formal de�nition of this problem. We assume that the sym-
bols belong to the �nite alphabet � = f 0; 1gm , i.e., each symbol is encoded
as a bit-string of length m. Then, a tile type can be encoded as a tuple of
four bit-strings, i.e., as an element of �4. A frame consisting oft rows andt
columns can be encoded as a string in �4t .

6.5. NP-complete languages 223

We denote the language of all solvable domino games byDomino:

Domino := fhm; k; t; R; T1; : : : ; Tk i :

m � 1; k � 1; t � 1; R 2 � 4t ; Ti 2 � 4; 1 � i � k;

frame R can be �lled using tiles of types

T1; : : : ; Tk :g

We will prove the following theorem.

Theorem 6.5.12 The language Domino isNP -complete.

Proof. It is clear that Domino 2 NP : A solution consists of at � t matrix,
in which the (i; j)-entry indicates the type of the tile that occupies position
(i; j) in the frame. The number of bits needed to specify such a solution is
polynomial in the length of the input. Moreover, we can verify in polynomial
time whether or not any given \solution" is correct.

It remains to show that

A � P Domino; for every languageA in NP :

Let A be an arbitrary language inNP . Then there exist a polynomialp and
a non-deterministic Turing machineM , that decides the languageA in time
p. We may assume that this Turing machine has only one tape.

On input w = a1a2 : : : an , the Turing machineM starts in the start state
z0, with its tape head on the cell containing the symbola1. We may assume
that during the entire computation, the tape head never moves tothe left of
this initial cell. Hence, the entire computation \takes place" in and tothe
right of the initial cell. We know that

w 2 A () on input w, there exists an accepting computation
that makes at mostp(n) computation steps.

At the end of such an accepting computation, the tape only contains the
symbol 1, which we may assume to be in the initial cell, andM is in the �nal
state z1. In this case, we may assume that the accepting computation makes
exactly p(n) computation steps. (If this is not the case, then we extend the
computation using the instruction z11 ! z11N .)

We need one more technical detail: We may assume thatza ! z0bR and
za0 ! z00b0L are not both instructions ofM . Hence, the state of the Turing
machine uniquely determines the direction in which the tape head moves.

224 Chapter 6. Complexity Theory

We have to de�ne a domino game, that depends on the input stringw
and the Turing machineM , such that

w 2 A () this domino game is solvable:

The idea is to encode an accepting computation of the Turing machineM as
a solution of the domino game. In order to do this, we use a frame in which
each row corresponds to one computation step. This frame consists of p(n)
rows. Since an accepting computation makes exactlyp(n) computation steps,
and since the tape head never moves to the left of the initial cell, thistape
head can visit onlyp(n) cells. Therefore, our frame will havep(n) columns.

The domino game will use the following tile types:

1. For each symbola in the alphabet of the Turing machineM :

�
�

�
�

�
�@

@
@

@
@

@

#
a

#
a

Intuition: Before and after the computation step, the tape headis not
on this cell.

2. For each instructionza ! z0bR of the Turing machineM :

�
�

�
�

�
�@

@
@

@
@

@

#

(z; a)

z0

b

Intuition: Before the computation step, the tape head is on this cell;
the tape head makes one step to the right.

3. For each instructionza ! z0bL of the Turing machineM :

�
�

�
�

�
�@

@
@

@
@

@

z0

(z; a)

#
b

6.5. NP-complete languages 225

Intuition: Before the computation step, the tape head is on this cell;
the tape head makes one step to the left.

4. For each instructionza ! z0bN of the Turing machineM :

�
�

�
�

�
�@

@
@

@
@

@

#

(z; a)

#

(z0; b)

Intuition: Before and after the computation step, the tape headis on
this cell.

5. For each statez and for each symbola in the alphabet of the Turing
machineM , there are two tile types:

�
�

�
�

�
�@

@
@

@
@

@

z
a

#

(z; a) �
�

�
�

�
�@

@
@

@
@

@

#
a

z

(z; a)

Intuition: The leftmost tile indicates that the tape head enters thiscell
from the left; the righmost tile indicates that the tape head entersthis
cell from the right.

This speci�es all tile types. Thep(n) � p(n) frame is given in Figure 6.5.
The top row corresponds to the start of the computation, whereas the bottom
row corresponds to the end of the computation. The left and rightcolumns
correspond to the part of the tape in which the tape head can move.

The encodings of these tile types and the frame can be computed in
polynomial time.

It can be shown that, for any input string w, any accepting computation
of length p(n) of the Turing machine M can be encoded as a solution of
this domino game. Conversely, any solution of this domino game can be
\translated" to an accepting computation of length p(n) of M , on input
string w. Hence, the following holds.

w 2 A () there exists an accepting computation that makes

p(n) computation steps

() the domino game is solvable.

226 Chapter 6. Complexity Theory

(z0; a1) a2 : : : an 2 : : : 2

#

#

#

#

#

...

#

...

2 2 222: : :(z1; 1)

p(n)

p(n)

Figure 6.5: The p(n) � p(n) frame for the domino game.

Therefore, we haveA � P Domino. Hence, the languageDomino is NP -
complete.

An example of a domino game

We have de�ned the domino game corresponding to a Turing machine that
solves a decision problem. Of course, we can also do this for Turing machines
that compute functions. In this section, we will exactly do this for aTuring
machine that computes the successor functionx ! x + 1.

We will design a Turing machine with one tape, that gets as input the
binary representation of a natural numberx, and that computes the binary
representation ofx + 1.

Start of the computation: The tape contains a 0 followed by the binary
representation of the integerx 2 N0. The tape head is on the leftmost bit
(which is 0), and the Turing machine is in the start statez0. Here is an
example, wherex = 431:

6.5. NP-complete languages 227

0 1 1 0 1 0 1 1 1 1 2

6

End of the computation: The tape contains the binary representation of
the number x + 1. The tape head is on the rightmost 1, and the Turing
machine is in the �nal state z1. For our example, the tape looks as follows:

0 1 1 0 1 1 0 0 0 0 2
6

Our Turing machine will use the following states:

z0 : start state; tape head moves to the right
z1 : �nal state
z2 : tape head moves to the left; on its way to the left, it has not read 0

The Turing machine has the following instructions:

z00 ! z00R z21 ! z20L
z01 ! z01R z20 ! z11N
z02 ! z22 L

In Figure 6.6, you can see the sequence of states and tape contents of this
Turing machine on input x = 11.

We now construct the domino game that corresponds to the computation
of this Turing machine on input x = 11. Following the general construction
in Section 6.5.3, we obtain the following tile types:

1. The three symbols of the alphabet yield three tile types:

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

2

2

2. The �ve instructions of the Turing machine yield �ve tile types:

228 Chapter 6. Complexity Theory

(z0; 0) 1 0 1 1 2
0 (z0; 1) 0 1 1 2
0 1 (z0; 0) 1 1 2
0 1 0 (z0; 1) 1 2
0 1 0 1 (z0; 1) 2
0 1 0 1 1 (z0; 2)
0 1 0 1 (z2; 1) 2
0 1 0 (z2; 1) 0 2
0 1 (z2; 0) 0 0 2
0 1 (z1; 1) 0 0 2

Figure 6.6: The computation of the Turing machine on inputx = 11. The
pair (state,symbol) indicates the position of the tape head.

�
�

�
��@

@
@

@@

z0

0

(z0 ; 0)

�
�

�
��@

@
@

@@

z0

1

(z0 ; 1)

�
�

�
��@

@
@

@@

z2 #

2

(z0 ; 2)

�
�

�
��@

@
@

@@

z2 #

0

(z2 ; 1)

�
�

�
��@

@
@

@@

#

(z1 ; 1)

(z2 ; 0)

3. The statesz0 and z2, and the three symbols of the alphabet yield twelve
tile types:

�
�

�
��@

@
@

@@

z0

(z0 ; 0)

0

�
�

�
��@

@
@

@@

z0 #

(z0 ; 0)

0

�
�

�
��@

@
@

@@

z0

(z0 ; 1)

1

�
�

�
��@

@
@

@@

z0 #

(z0 ; 1)

1

�
�

�
��@

@
@

@@

z0

(z0 ; 2)

2

�
�

�
��@

@
@

@@

z0 #

(z0 ; 2)

2

�
�

�
��@

@
@

@@

z2

(z2 ; 0)

0

�
�

�
��@

@
@

@@

z2 #

(z2 ; 0)

0

�
�

�
��@

@
@

@@

z2

(z2 ; 1)

1

�
�

�
��@

@
@

@@

z2 #

(z2 ; 1)

1

�
�

�
��@

@
@

@@

z2

(z2 ; 2)

2

�
�

�
��@

@
@

@@

z2 #

(z2 ; 2)

2

The computation of the Turing machine on inputx = 11 consists of nine
computation steps. During this computation, the tape head visits exactly
six cells. Therefore, the frame for the domino game has nine rows and six
columns. This frame is given in Figure 6.7. In Figure 6.8, you �nd the
solution of the domino game. Observe that this solution is nothing but
an equivalent way of writing the computation of Figure 6.6. Hence, the
computation of the Turing machine corresponds to a solution of thedomino
game; in fact, the converse also holds.

6.5. NP-complete languages 229

0 1 (z1; 1) 0 0 2

(z0; 0) 1 0 1 1 2

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Figure 6.7: The frame for the domino game for inputx = 11.

230 Chapter 6. Complexity Theory

0 1 (z1; 1) 0 0 2

(z0; 0) 1 0 1 1 2

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

(z1 ; 1)

(z2 ; 0)

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

#

2

2
�

�
�

��@
@

@
@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

z2

(z2 ; 0)

0

�
�

�
��@

@
@

@@

z2 #

0

(z2 ; 1)

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

#

2

2
�

�
�

��@
@

@
@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

z2

(z2 ; 1)

1

�
�

�
��@

@
@

@@

z2 #

0

(z2 ; 1)

�
�

�
��@

@
@

@@

#

2

2
�

�
�

��@
@

@
@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

z2

(z2 ; 1)

1

�
�

�
��@

@
@

@@

z2 #

2

(z0 ; 2)
�

�
�

��@
@

@
@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

z0

1

(z0 ; 1)

�
�

�
��@

@
@

@@

z0 #

(z0 ; 2)

2
�

�
�

��@
@

@
@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

z0

1

(z0 ; 1)

�
�

�
��@

@
@

@@

z0 #

(z0 ; 1)

1

�
�

�
��@

@
@

@@

#

2

2
�

�
�

��@
@

@
@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

z0

0

(z0 ; 0)

�
�

�
��@

@
@

@@

z0 #

(z0 ; 1)

1

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

2

2
�

�
�

��@
@

@
@@

#

0

0

�
�

�
��@

@
@

@@

z0

1

(z0 ; 1)

�
�

�
��@

@
@

@@

z0 #

(z0 ; 0)

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

2

2
�

�
�

��@
@

@
@@

z0

0

(z0 ; 0)

�
�

�
��@

@
@

@@

z0 #

(z0 ; 1)

1

�
�

�
��@

@
@

@@

#

0

0

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

1

1

�
�

�
��@

@
@

@@

#

2

2

Figure 6.8: The solution for the domino game for inputx = 11.

6.5. NP-complete languages 231

6.5.4 Examples of NP-complete languages

In Section 6.5.3, we have shown thatDomino is NP -complete. Using this
result, we will apply Theorem 6.5.11 to prove theNP -completeness of some
other languages.

Satis�ability

We consider Boolean formulas' , in the variablesx1; x2; : : : ; xm , having the
form

' = C1 ^ C2 ^ : : : ^ Ck ; (6.9)

where eachCi , 1 � i � k, is of the following form:

Ci = ` i
1 _ ` i

2 _ : : : _ ` i
k i

:

Each ` i
j is either a variable or the negation of a variable. Such a formula'

is said to besatis�able, if there exists a truth-value in f 0; 1g for each of the
variablesx1; x2; : : : ; xm , such that the entire formula' is true. We de�ne the
following language:

SAT := fh' i : ' is of the form (6.9) and is satis�ableg:

We will prove that SAT is NP -complete.
It is clear that SAT 2 NP . If we can show that

Domino � P SAT ;

then it follows from Theorem 6.5.11 thatSAT is NP -complete. (In Theo-
rem 6.5.11, takeB := Domino and C := SAT .)

Hence, we need a functionf 2 FP , that maps input strings for Domino
to input strings for SAT , in such a way that for every domino gameD, the
following holds:

domino gameD is solvable()
the formula encoded by the
string f (hDi) is satis�able:

(6.10)

Let us consider an arbitrary domino gameD. Let k be the number of
tile types, and let the frame havet rows andt columns. We denote the tile
types by T1; T2; : : : ; Tk .

232 Chapter 6. Complexity Theory

We map this domino gameD to a Boolean formula' , such that (6.10)
holds. The formula' will have variables

x ij` ; 1 � i � t; 1 � j � t; 1 � ` � k:

These variables can be interpretated as follows:

x ij` = 1 () there is a tile of typeT` at position (i; j) of the frame:

We de�ne:

� For all i and j with 1 � i � t and 1 � j � t:

C1
ij := x ij 1 _ x ij 2 _ : : : _ x ijk :

This formula expresses the condition that there is at least one tile at
position (i; j).

� For all i , j , ` and `0 with 1 � i � t, 1 � j � t, and 1� ` < ` 0 � k:

C2
ij`` 0 := : x ij` _ : x ij` 0:

This formula expresses the condition that there is at most one tile at
position (i; j).

� For all i , j , ` and `0with 1 � i � t, 1 � j < t , 1 � ` � k and 1� `0 � k,
such that i < t and the right symbol on a tile of typeT` is not equal
to the left symbol on a tile of typeT`0:

C3
ij`` 0 := : x ij` _ : x i;j +1 ;`0:

This formula expresses the condition that neighboring tiles in the same
row \�t" together. There are symmetric formulas for neighboring tiles
in the same column.

� For all j and ` with 1 � j � t and 1� ` � k, such that the top symbol
on a tile of type T` is not equal to the symbol at positionj of the upper
boundary of the frame:

C4
j` := : x1j` :

This formula expresses the condition that tiles that touch the upper
boundary of the frame \�t" there. There are symmetric formulas for
the lower, left, and right boundaries of the frame.

6.5. NP-complete languages 233

The formula ' is the conjunction of all these formulasC1
ij , C2

ij`` 0, C3
ij`` 0, and

C4
j` . The complete formula' consists of

O(t2k + t2k2 + t2k2 + tk) = O(t2k2)

terms, i.e., its length is polynomial in the length of the domino game. This
implies that ' can be constructed in polynomial time. Hence, the function
f that maps the domino gameD to the Boolean formula' , is in the class
FP . It is not di�cult to see that (6.10) holds for this function f . Therefore,
we have proved the following result.

Theorem 6.5.13 The language SAT isNP -complete.

In Section 6.5.1, we have de�ned the language 3SAT .

Theorem 6.5.14 The language3SAT is NP -complete.

Proof. It is clear that 3SAT 2 NP . If we can show that

SAT � P 3SAT ;

then the claim follows from Theorem 6.5.11. Let

' = C1 ^ C2 ^ : : : ^ Ck

be an input forSAT , in the variablesx1; x2; : : : ; xm . We map' , in polynomial
time, to an input ' 0 for 3SAT , such that

' is satis�able () ' 0 is satis�able: (6.11)

For eachi with 1 � i � k, we do the following. Consider

Ci = ` i
1 _ ` i

2 _ : : : _ ` i
k i

:

� If ki = 1, then we de�ne

C0
i := ` i

1 _ ` i
1 _ ` i

1:

� If ki = 2, then we de�ne

C0
i := ` i

1 _ ` i
2 _ ` i

2:

234 Chapter 6. Complexity Theory

� If ki = 3, then we de�ne
C0

i := Ci :

� If ki � 4, then we de�ne

C0
i := (` i

1 _ ` i
2 _ zi

1) ^ (: zi
1 _ ` i

3 _ zi
2) ^ (: zi

2 _ ` i
4 _ zi

3) ^ : : :

^ (: zi
k i � 3 _ ` i

k i � 1 _ ` i
k i

);

wherezi
1; : : : ; zi

k i � 3 are new variables.

Let
' 0 := C0

1 ^ C0
2 ^ : : : ^ C0

k :

Then ' 0 is an input for 3SAT , and (6.11) holds.

Theorems 6.5.6, 6.5.8, 6.5.11, and 6.5.14 imply:

Theorem 6.5.15 The language Clique isNP -complete.

The traveling salesperson problem

We are given two positive integersk and m, a set ofm cities, and an integer
m � m matrix M , where

M (i; j) = the cost of driving from city i to city j ,

for all i; j 2 f 1; 2; : : : ; mg. We want to decide whether or not there is a tour
through all cities whose total cost is less than or equal tok. This problem is
NP -complete.

Bin packing

We are given three positive integersm, k, and `, a set ofm objects having
volumes a1; a2; : : : ; am , and k bins. Each bin has volumè . We want to
decide whether or not all objects �t within these bins. This problem isNP -
complete.

Here is another interpretation of this problem: We are givenm jobs that
need timea1; a2; : : : ; am to complete. We are also givenk processors, and an
integer `. We want to decide whether or not it is possible to divide the jobs
over the k processors, such that no processor needs more than` time.

Exercises 235

Time tables

We are given a set of courses, class rooms, and professors. We want to
decide whether or not there exists a time table such that all courses are
being taught, no two courses are taught at the same time in the same class
room, no professor teaches two courses at the same time, and conditions such
as \Prof. L. Azy does not teach before 1pm" are satis�ed. This problem is
NP -complete.

Motion planning

We are given two positive integersk and `, a set of k polyhedra, and two
points s and t in Q3. We want to decide whether or not there exists a path
betweens and t, that does not intersect any of the polyhedra, and whose
length is less than or equal tò . This problem isNP -complete.

Map labeling

We are given a map withm cities, where each city is represented by a point.
For each city, we are given a rectangle that is large enough to contain the
name of the city. We want to decide whether or not these rectangles can be
placed on the map, such that

� no two rectangles overlap,

� For eachi with 1 � i � m, the point that represents city i is a corner
of its rectangle.

This problem is NP -complete.

This list of NP -complete problems can be extended almost arbitrarily:
For thousands of problems, it is known that they areNP -complete. For all
of these, it isnot known, whether or not they can be solved e�ciently (i.e.,
in polynomial time). Collections ofNP -complete problems can be found in
the book

� M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide
to the Theory ofNP -Completeness.W.H. Freeman, New York, 1979,

and on the web page

http://www.nada.kth.se/~viggo/wwwcompendium/

236 Chapter 6. Complexity Theory

Exercises

6.1 Prove that the function F : N ! N, de�ned by F (x) := 2 x , is not in FP .

6.2 Prove Theorem 6.5.3.

6.3 Prove that the languageClique is in the classNP .

6.4 Prove that the language 3SAT is in the classNP .

6.5 We de�ne the following languages:

� Sum of subset:

SOS:= fha1; a2; : : : ; am ; bi : 9I � f 1; 2; : : : ; mg;
X

i 2 I

ai = bg:

� Set partition:

SP := fha1; a2; : : : ; am i : 9I � f 1; 2; : : : ; mg;
X

i 2 I

ai =
X

i 62I

ai g:

� Bin packing: BP is the set of all stringshs1; s2; : : : ; sm ; B i for which

1. 0 < s i < 1, for all i ,

2. B 2 N,

3. the numberss1; s2; : : : ; sm �t into B bins, where each bin has size
one, i.e., there exists a partition off 1; 2; : : : ; mg into subsetsI k ,
1 � k � B , such that

P
i 2 I k

si � 1 for all k, 1 � k � B .

For example,h1=6; 1=2; 1=5; 1=9; 3=5; 1=5; 1=2; 11=18; 3i 2 BP, because
the eight fractions �t into three bins:

1=6 + 1=9 + 11=18 � 1; 1=2 + 1=2 = 1; and 1=5 + 3=5 + 1=5 = 1:

1. Prove that SOS� P SP.

2. Prove that the languageSOS is NP -complete. You may use the fact
that the languageSP is NP -complete.

Exercises 237

3. Prove that the languageBP is NP -complete. Again, you may use the
fact that the languageSP is NP -complete.

6.6 Prove that 3Color � P 3SAT .
Hint: For each vertexi , and for each of the three colorsk, introduce a

Boolean variablex ik .

6.7 The (0; 1)-integer programminglanguageIP is de�ned as follows:

IP := fhA; ci : A is an integerm � n matrix for somem; n 2 N,
c is an integer vector of lengthm, and
9x 2 f 0; 1gn such that Ax � c (componentwise)g.

Prove that the languageIP is NP -complete. You may use the fact that
the languageSOS is NP -complete.

6.8 Let ' be a Boolean formula in the variablesx1; x2; : : : ; xm .
We say that ' is in disjunctive normal form (DNF) if it is of the form

' = C1 _ C2 _ : : : _ Ck ; (6.12)

where eachCi , 1 � i � k, is of the following form:

Ci = ` i
1 ^ ` i

2 ^ : : : ^ ` i
k i

:

Each ` i
j is a literal , which is either a variable or the negation of a variable.

We say that ' is in conjunctive normal form (CNF) if it is of the form

' = C1 ^ C2 ^ : : : ^ Ck ; (6.13)

where eachCi , 1 � i � k, is of the following form:

Ci = ` i
1 _ ` i

2 _ : : : _ ` i
k i

:

Again, each` i
j is a literal.

We de�ne the following two languages:

DNFSAT := fh' i : ' is in DNF-form and is satis�ableg;

and
CNFSAT := fh' i : ' is in CNF-form and is satis�ableg:

238 Chapter 6. Complexity Theory

1. Prove that the languageDNFSAT is in P.

2. What is wrong with the following argument: Since we can rewrite
any Boolean formula in DNF-form, we haveCNFSAT � P DNFSAT .
Hence, sinceCNFSAT is NP -complete and sinceDNFSAT 2 P, we
have P = NP .

3. Prove directly that for every languageA in P, A � P CNFSAT . \Di-
rectly" means that you should not use the fact thatCNFSAT is NP -
complete.

6.9 Prove that the polynomial upper bound on the length of the stringy in
the de�nition of NP is necessary, in the sense that if it is left out, then any
decidable language would satisfy the condition.

More precisely, we say that the languageA belongs to the classD , if there
exists a languageB 2 P, such that for every stringw,

w 2 A () 9 y : hw; yi 2 B:

Prove that D is equal to the class of all decidable languages.

Chapter 7

Summary

We have seen several di�erent models for \processing" languages, i.e., pro-
cessing sets of strings over some �nite alphabet. For each of these models,
we have asked the question which types of languages can be processed, and
which types of languages cannot be processed. In this �nal chapter, we give
a brief summary of these results.

Regular languages: This class of languages was considered in Chapter 2.
The following statements are equivalent:

1. The languageA is regular, i.e., there exists a deterministic �nite au-
tomaton that acceptsA.

2. There exists a nondeterministic �nite automaton that acceptsA.

3. There exists a regular expression that describesA.

This claim was proved by the following conversions:

1. Every nondeterministic �nite automaton can be converted to anequiv-
alent deterministic �nite automaton.

2. Every deterministic �nite automaton can be converted to an equivalent
regular expression.

3. Every regular expression can be converted to an equivalent nondeter-
ministic �nite automaton.

240 Chapter 7. Summary

We have seen that the class of regular languages is closed under theregular
operations: If A and B are regular languages, then

1. A [B is regular,

2. AB is regular,

3. A � is regular,

4. A is regular, and

5. A \ B is regular.

Finally, the pumping lemma for regular languages gives a property that
every regular language possesses. We have used this to prove that languages
such asf anbn : n � 0g are not regular.

Context-free languages: This class of languages was considered in Chap-
ter 3. We have seen that every regular language is context-free.Moreover,
there exist languages, for examplef anbn : n � 0g, that are context-free, but
not regular. The following statements are equivalent:

1. The languageA is context-free, i.e., there exists a context-free grammar
whose language isA.

2. There exists a context-free grammar in Chomsky normal form whose
language isA.

3. There exists a nondeterministic pushdown automaton that accepts A.

This claim was proved by the following conversions:

1. Every context-free grammar can be converted to an equivalent context-
free grammar in Chomsky normal form.

2. Every context-free grammar in Chomsky normal form can be converted
to an equivalent nondeterministic pushdown automaton.

3. Every nondeterministic pushdown automaton can be convertedto an
equivalent context-free grammar. (This conversion was not covered in
this book.)

Chapter 7. Summary 241

Nondeterministic pushdown automata are more powerful than determin-
istic pushdown automata: There exists a nondeterministic pushdown au-
tomaton that accepts the language

f vbw: v 2 f a; bg� ; w 2 f a; bg� ; jvj = jwjg;

but there is no deterministic pushdown automaton that accepts this language.
(We did not prove this in this book.)

We have seen that the class of context-free languages is closed under
the union, concatenation, and star operations: IfA and B are context-free
languages, then

1. A [B is context-free,

2. AB is context-free, and

3. A � is context-free.

However,

1. the intersection of two context-free languages is not necessarily context-
free, and

2. the complement of a context-free language is not necessarily context-
free.

Finally, the pumping lemma for context-free languages gives a property
that every context-free language possesses. We have used thisto prove that
languages such asf anbncn : n � 0g are not context-free.

The Church-Turing Thesis: In Chapter 4, we considered \reasonable"
computational devices that model real computers. Examples of such devices
are Turing machines (with one or more tapes) and Java programs. It turns
out that all known \reasonable" devices are equivalent, i.e., can be converted
to each other. This led to the Church-Turing Thesis:

� Every computational process that is intuitively considered to be an
algorithm can be converted to a Turing machine.

242 Chapter 7. Summary

Decidable and enumerable languages: These classes of languages were
considered in Chapter 5. They are de�ned based on \reasonable" computa-
tional devices, such as Turing machines and Java programs. We have seen
that

1. every context-free language is decidable, and

2. every decidable language is enumerable.

Moreover,

1. there exist languages, for examplef anbncn : n � 0g, that are decidable,
but not context-free,

2. there exist languages, for example the Halting Problem, that areenu-
merable, but not decidable,

3. there exist languages, for example the complement of the HaltingProb-
lem, that are not enumerable.

In fact,

1. the class of all languages is not countable, whereas

2. the class of all enumerable languages is countable.

The following statements are equivalent:

1. The languageA is decidable.

2. Both A and its complementA are enumerable.

Complexity classes: These classes of languages were considered in Chap-
ter 6.

1. The classP consists of all languages that can be decided in polynomial
time by a deterministic Turing machine.

2. The classNP consists of all languages that can be decided in poly-
nomial time by a nondeterministic Turing machine. Equivalently, a
languageA is in the classNP , if for every string w 2 A, there exists a
\solution" s, such that (i) the length of s is polynomial in the length
of w, and (ii) the correctness ofs can be veri�ed in polynomial time.

Chapter 7. Summary 243

The following properties hold:

1. Every context-free language is inP. (We did not prove this).

2. Every language inP is also inNP .

3. It is not known if there exist languages that are inNP , but not in P.

4. Every language inNP is decidable.

We have introduced reductions to de�ne the notion of a languageB to be
\at least as hard" as a languageA. A languageB is calledNP -complete, if

1. B belongs to the classNP , and

2. B is at least as hard as every language in the classNP .

We have seen thatNP -complete exist.

The �gure below summarizes the relationships among the various classes
of languages.

244 Chapter 7. Summary

regular

context-free

P

NP

decidable

enumerable

all languages

