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Abstract. Algorithms for determining quality/cost/price tradeoffs in saturated markets
are considered. A product is modeled by d real-valued qualities whose sum determines
the unit cost of producing the product. This leads to the following optimization problem:
given a set of n customers, each of whom has certain minimum quality requirements and
a maximum price they are willing to pay, design a new product and select a price for that
product in order to maximize the resulting profit.

An O(n log n) time algorithm is given for the case, d = 1, of products having a
single quality, and O(n(log n)d+1) time approximation algorithms are given for products
with any constant number, d, of qualities. To achieve the latter result, an O(nkd−1) bound
on the complexity of an arrangement of homothetic simplices in Rd is given, where k is the
maximum number of simplices that all contain a single points.

1 Introduction

Revealed preference theory [13] is a method of determining a course of business action
through the review of historical consumer behaviour. In particular, it is a method of in-
ferring an individual’s or a group’s preferences based on their past choices. The marketing
mix [10] of a product consists of the 4 Ps: Product, price, place, and promotion. In the
current paper, we present algorithms for optimizing the first two of these by using data
about consumers’ preferences. That is, we show how, given data on consumer preferences,
to efficiently choose a product and a price for that product in order to maximize profit.

Refer to Figure 1. A product P = (p, q1, . . . , qd) is defined by a real-valued price,
p, and a number of real-valued orthogonal qualities, q1, . . . , qd. The market for a product
is a collection of customers C = {C1, . . . , Cn}, where Ci = (pi, qi,1, . . . , qi,d). A customer
will purchase the least expensive product that meets all her minimum quality requirements
and whose price is below her maximum price. That is, the customer Ci will consider the
product P = (p, q1, . . . , qd) if p ≤ pi and qj ≥ qi,j for all j ∈ {1, . . . , d}. The customer Ci

will purchase the product if it has the minimum price among all available products that Ci

considers.

We consider markets that are saturated. That is, for every customer Ci there is
an existing product that satisfies Ci’s requirements and among all products that satisfy
Ci’s requirements, Ci will choose the least expensive product. From the point of view of
a manufacturer introducing one or more new products, this means that all customers are
Pareto optimal, i.e., there are no two customers Ci and Cj such that qi,k > qj,k for all
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Figure 1: A sample market with d = 1 and n = 3. A customer will consider any product
that is in their upper left quadrant.

k ∈ {1, . . . , d} and pi < pj . This is because no customer will every purchase a product
that is not Pareto optimal, since there is a lower-priced alternative that also satisfies all
their minimum quality requirements. Therefore, every customer Ci can be replaced with
the (Pareto optimal) product that they purchase.

As an example, consider a market for computers in which an example customer
Ci may be looking for a computer with a minimum of 8 GB of RAM, a CPU benchmark
score of at least 3000, a GPU benchmark score of at least 2000, and be willing to pay at
most $1500. In addition, there is already a computer on the market which meets these
requirements and retails for $1200. Thus, this customer would be described by the vector
(1200, 8, 3000, 2000). If a manufacturer introduces a new product (1199, 8, 3500, 2000) (a
computer with 8 GB of RAM, a CPU benchmark score of 3500 and a GPU benchmark
score of 2000 retailing for $1199) then this customer would select this new product over
their current choice.

By appropriately reparameterizing the axes, we can assume that the cost, cost(P ),
of manufacturing a product P = (p, q1, . . . , qd) is equal to the sum of its qualities

cost(P ) =
d∑

i=1

qi .

The profit per unit sold of P is therefore

ppu(P ) = p− cost(P ) .

In this paper we consider algorithms that a manufacturer can use when planning a new
product to introduce into an existing saturated market with the goal being to maximize
the profit obtained. More precisely, given a Pareto-optimal market of customers M =
{C1, . . . , Cn}, each having d qualities, the ProductDesign(d) problem is to find a product
P ∗ ∈ Rd+1 such that

profit(P ∗) = ppu(P ∗)× |{i : Ci purchases P ∗}|
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is maximized.

The term marketing mix is probably the most famous phrase in marketing. Not
surprisingly, economists and market researchers have considered methods of optimizing the
marketing mix in various scenarios. As there are many different models of the problem, it
is difficult to compare algorithms.

Most models of marketing-mix problems involve a constant number of real-valued
input parameters. This sometimes leads to problems where the optimal solution is one
of a constant number of possible closed forms (see, e.g., Thomson and Teng’s optimal
constant price model [12]). In other cases, a closed form is not achievable, but a (sometimes
approximate) solution can be obtained using numerical optimization techniques (see, e.g.,
Balanchandran and Gensch [2], Thomson and Teng [12], Naik et al. [11], Deal [6], Erickson
[9]). In all cases, it is expected that the model parameters are derived from real-world data,
such as surveys or sales figures, and involves fitting of the model parameters to the available
data.

The work in the current paper is different from this previous work in several ways.
For one, it is one of the few works that deals primarily with the first two P’s, product and
pricing. Most existing literature focuses on the marketing P’s, namely place and promotion,
and to a lesser extent, pricing of an existing product. Secondly, it deals directly with data
about individual consumers rather than aggregating this data so that it fits a particular
model of consumer behaviour.

We believe that this models very well what happens in online shopping for high cost
products such as computers, cameras, and televisions. In such markets, savvy consumers
have good data available about both the specifications and the cost of all available products
so that marketing efforts are (arguably) less important than the quality and prices of the
products. On the other hand, online sellers such as Amazon have large amounts of data
about users’ past purchases and can use this data as input to the problem. In particular,
these sellers know the specifications qi,1, . . . , qi,d and prices pi of huge quantities of items
sold and can use this data to advise a manufacturer that is designing a new product.

In the remainder of the paper we give anO(n log n) time algorithm for ProductDesign(1)
(Section 2), andO(n(log n)d+1) time approximation schemes for ProductDesign(d) (Section 3
and Section 4). Section 5 summarizes our results and concludes with directions for future
research.

2 One-dimensional products

In this section, we consider the simplest case, when a manufacturer wishes to introduce
a new product in which the quality of a product has only one dimension. Examples of
such markets include, for example, suppliers to the construction industry in which items
(steel I-beams, finished lumber, logs) must have a certain minimum length to be used for a
particular application. An overly long piece can be cut down to size, but using two short
pieces instead of one long piece is not an option.

Throughout this section, since d = 1, we will use the shorthand P = (p, q) for
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Figure 2: profit(p, q) ≤ profit(p, q′) implies that profit(p′, q) ≤ profit(p′, q′) for all p′ ≤ p.

the product being designed and qi for qi,1. Thus, we have a set of customers M =
{(p1, q1), . . . , (pn, qn)} and we are searching for a point P ∗ = (p∗, q∗) that maximizes

profit(p∗, q∗) = (p∗ − q∗)|{i : p∗ ≤ pi and q∗ ≥ qi}| .

Our algorithm is an implementation of the plane-sweep paradigm [4]. The correct-
ness of the algorithm relies on two lemmas about the structure of the solution space. The
first lemma is quite easy:

Lemma 1. The value (p∗, q∗) that maximizes profit(p∗, q∗) is obtained when p∗ = pi and
q∗ = qj for some i, j ∈ {1, . . . , n}.

Proof. First, observe the obvious bounds on p∗ and q∗:

min{pi : i ∈ {1, . . . , n}} ≤ p∗ ≤ max{pi : i ∈ {1, . . . , n}}

and
min{qi : i ∈ {1, . . . , n}} ≤ q∗ ≤ max{qi : i ∈ {1, . . . , n}} .

Consider the arrangement of lines obtained by drawing a horizontal and vertical line through
each customer (pi, qi) for i ∈ {1, . . . , n}. Within each cell of this arrangement, the function
profit(p, q) is a linear function of p and q and it is bounded. Therefore, within a particular
cell, the function is maximized at a vertex. Since each vertex is the intersection of a
horizontal and vertical line through a pair of customers, the lemma follows.

The following lemma, illustrated in Figure 2, is a little more subtle and illustrates
a manufacturer’s preference for lower-quality products:

Lemma 2. Let q′ ≤ q and let p be such that 0 < profit(p, q) ≤ profit(p, q′). Then, for any
p′ ≤ p, profit(p′, q) ≤ profit(p′, q′).
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Proof. By definition, profit(p, q) = a(p − q) and profit(p, q′) = a′(p − q′), where a and
a′ are the number of customers who would consider (p, q) and (p, q′), respectively. These
customers are all taken from the set M≥ = {(pi, qi) ∈M : pi ≥ p}.

Now, consider the customers in the set M ′ = {(pi, qi) ∈ M : p′ ≤ pi < p}. By the
assumption that customers are Pareto optimal, any customer (pi, qi) in M ′ has qi ≤ q′, so
all of these customers will consider either (p′, q′) or (p′, q) if either one is offered. Therefore,

profit(p′, q′) = (a′ + |M ′|)(p′ − q′)
= a′(p′ − q′) + |M ′|(p′ − q′)
≥ a′(p′ − q′) + |M ′|(p′ − q) since q > q′

= a′(p− q′) + a′(p′ − p) + |M ′|(p′ − q)
≥ a′(p− q′) + a(p′ − p) + |M ′|(p′ − q) since a ≥ a′ and (p′ − p) < 0
≥ a(p− q) + a(p′ − p) + |M ′|(p′ − q) by assumption
= a(p′ − q) + |M ′|(p′ − q)
= profit(p′, q) ,

as required.

Lemma 2 allows us to apply the plane sweep paradigm with a sweep by decreasing
price. It tells us that, if a product (p, q′) gives better profit than the higher-quality product
(p, q) at the current price p, then it will always give a better profit for the remainder of the
sweep. In particular, there will never be a reason to consider a product with quality q for
the remainder of the algorithm’s execution.

Let the customers be labelled (p1, q1), . . . , (pn, qn) in decreasing order of pi, so that
pi+1 ≤ pi for all i ∈ {1, . . . , n− 1}. At any point in the sweep algorithm, there is a current
price p, which starts at p =∞ and decreases during the execution of the algorithm. At the
start of the algorithm the algorithm’s event queue Q, which is represented as a balanced
binary search tree, is initialized to contain the values pn, . . . , p1. At all times, the algorithm
maintains a list L of qualities q∗1 > q∗2 > · · · > q∗m such that profit(p, q∗1) > profit(p, q∗2) >
· · · > profit(p, q∗m). The quality q∗1 is the optimal quality for the current price, p. By
the time the algorithm terminates, the quality of the globally-optimal solution will have
appeared as the first element in L. To complete the description of the algorithm, all that
remains is to show how L and Q are updated during the processing of events in the event
queue.

There are two kinds of events in the event queue. Insertions occur at the values
p1, . . . , pn. Deletions, which we describe next, occur when the relative order of two adjacent
items in L changes. Consider a consecutive pair of the elements q∗i and q∗i+1 in L. When
q∗i and q∗i+1 became adjacent in L, it was at some price p = pt such that profit(pt, q

∗
i ) >

profit(pt, q
∗
i+1). Let ai and ai+1 be the number of customers who would consider (pt, q

∗
i )

and (pt, q
∗
i+1), respectively. Then,

profit(pt, q
∗
i ) = (pt − q∗i )ai

and
profit(pt, q

∗
i+1) = (pt − q∗i+1)ai+1
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Now, looking forward in time to a later step in the execution of the algorithm, when p = pt′ ,
with t′ > t, we find that

profit(pt′ , q
∗
i ) = (pt′ − q∗i )(ai + t′ − t)

and
profit(pt′ , q

∗
i+1) = (pt′ − q∗i+1)(ai+1 + t′ − t) .

We are interested in identifying the price pt′ where the inequality profit(pt′ , q
∗
i ) > profit(pt′ , q

∗
i+1)

changes to profit(pt′ , q
∗
i ) ≤ profit(pt′ , q

∗
i+1). When this happens, q∗i can be safely discarded

from L since, by Lemma 2, profit(p, q∗i ) will never again exceed profit(p, q∗i+1) for the re-
mainder of the sweep. The value pt′ is a deletion event.

Note that Lemma 2 also allows for binary search on the value pt′ . In particular, the
interval [pj , pj+1] containing pt′ can be found in O(log n) time, after which the value of pt′

can be obtained by solving the linear equation

(pt′ − q∗i )(ai + t′ − t) ≤ (pt′ − q∗i+1)(ai+1 + t′ − t) ,

for t′. (The equation is linear because the values ai and ai+1 are constant in the interval
(pj , pj+1).) Thus, whenever two new elements become adjacent in L, we can add the
appropriate deletion event to Q in O(log n) time.

When processing an insertion event pi, we remove from the tail of L all values q∗j such
that profit(pi, q

∗
j ) ≤ profit(pi, qi) and then append qi onto L. While deleting the elements

of L, we also remove all the associated deletion events from Q. Appending qi to L causes at
most one new pair of elements in L to become adjacent, so we add the appropriate deletion
event to Q as described above. The time to process the event pi is there O((ki + 1) log n),
where ki is the number of elements that are deleted from L.

When processing a deletion event that deletes q∗i from L, we simply delete q∗i from
L and its (at most two) associated deletion events from Q. This may cause a new pair of
elements, q∗i−1 and q∗i+1, in L to become adjacent, so we add the appropriate deletion event
to Q. In this way, a deletion event can be processed in O(log n) time.

Note that, after all the processing associated with an event pt is complete, the first
element, q∗1, in L is the value that maximizes profit(pt, q

∗
1). Thus, the algorithm need only

keep track, throughout its execution, of the highest profit obtained from the first element
of L, and output this value at the end of its execution. This completes the description of
the algorithm.

Theorem 1. There exists an O(n log n) time algorithm for ProductDesign(1).

Proof. The correctness of the algorithm described above follows from 2 facts: Lemma 1
ensures that the optimal solution is of the form (pi, q

∗) for some i ∈ {1, . . . , n}, and Lemma 2
ensures that the optimal solution appears at some point as the first element of the list L.

The running time of the algorithm can be bounded as follows: The total number of
deletion events processed is at most n, since each such event removes some value qi from L for
some i ∈ {1, . . . , n}. Thus, the cost of processing all deletion events is O(n log n). Similarly,
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Figure 3: Reducing Element-Uniqueness to ProductDesign(1,1).

∑n
i=1 ki ≤ n since ki is the number of elements deleted from L during the processing of pi.

Thus, the time required to handle all insertion events, and therefore the running time of
the entire algorithm, is O(n log n)

The following theorem shows that a running time of Ω(n log n) is inherent in this
problem, even when considering approximation algorithms.

Theorem 2. Let M be an instance of ProductDesign(1) and (p∗, q∗) be a solution that
maximizes profit(p∗, q∗). In the algebraic decision tree model of computation, any algorithm
that can find a solution (p, q) such that 2 ·profit(p, q) > profit(p∗, q∗) has Ω(n log n) running
time in the worst-case.

Proof. We reduce from the integer Element-Uniqueness problem, which has an Ω(n log n)
lower bound in the algebraic decision tree model [14]: Given an array A = [x1, . . . , xn]
containing n integers, are all the elements of A unique?

We convert A into an instance of ProductDesign(1) in O(n) time as follows (refer
to Figure 3). For each xi, i ∈ {1, . . . , n} we introduce a customer (pi, qi) with pi = qi + 1/2
and qi = xi. If there exists a value x in A that occurs 2 or more times, then the product
(x + 1/2, x) gives a value profit(x + 1/2, x) ≥ 1. On the other hand, if there is no such x,
then

1. any product (p, q) with p− q > 1/2 can not be sold to any customers and

2. any product (p, q) with p− q > 0 can be sold to at most 1 customer.

Therefore, if all the elements ofA are unique, then profit(p∗, q∗) = 1/2, otherwise profit(p∗, q∗) ≥
1. The result follows.
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3 A near-linear approximation algorithm for bidimensional products

In this section, we consider algorithms for ProductDesign(2), in which products have
2 qualities. As a baseline, we first observe that, if we fix the value of q2, then the op-
timal solution of the form (p, q1, q2) can be found using a single application of the al-
gorithm in Theorem 1. Therefore, by successively solving the problem for each q2 ∈
{q2,1, . . . , q2,n} and taking the best overall solution we obtain an O(n2 log n) time algorithm
for ProductDesign(2).

More generally, ProductDesign(d) can be solved using O(nd−1) applications of
Theorem 1 resulting in an O(nd log n) time algorithm. Unfortunately, these are the best
results known for d ≥ 2, and, as discussed in Section 5, we suspect that an algorithm with
running time o(nd) will be difficult to achieve using existing techniques. Therefore, in this
section we focus our efforts on obtaining a near-linear approximation algorithm.

Fix some constant ε > 0. Given an instance M of ProductDesign(d), a point
P ∈ Rd+1 is a (1 − ε)-approximate solution for M if profit(P ) ≥ (1 − ε) profit(P ∗) for
all P ∗ ∈ Rd+1. An algorithm is a (high probability) Monte-Carlo (1 − ε)-approximation
algorithm for ProductDesign(d) if, given an instance M of size n, the algorithm outputs
a (1 − ε)-approximate solution for M with probability at least 1 − n−c for some constant
c > 0.

Let r = max{ppu(Ci) : i ∈ {1, . . . , n}} and observe that r is the maximum profit
per unit that can be achieved in this market. Let E = 1/(1 − ε) and let ` = dlogE ne
and observe that ` = O(ε−1 log n).1 For each i ∈ {0, 1, 2, . . . , `}, define the plane Hi =
{(p, q1, q2) : p − q1 − q2 = r(1 − ε)i}. The following lemma says that a search for an
approximate solution can be restricted to be contained in one of the planes Hi.

Lemma 3. For any product P ∗ = (p∗, q∗1, q
∗
2), there exists a product P = (p, q1, q2) such

that P ∈ Hi for some i ∈ {0, . . . , `} and profit(P ) ≥ (1− ε) profit(P ∗).

Proof. There are two cases to consider. If ppu(P ∗) ≤ r/n then profit(P ∗) ≤ r, in which
case we set P = Ci where ppu(Ci) = r, so that P ∈ H0 and profit(P ) = r ≥ profit(P ∗) ≥
(1− ε) profit(P ∗), as required.

Otherwise, r/n < ppu(P ∗) ≤ r. In this case, consider the plane Hi where i =
dlogE(r/ppu(P ∗))e. Notice, that for any point P ∈ Hi, ppu(P ) ≥ (1 − ε) ppu(P ∗). More
specifically, the orthogonal projection P = (p, q1, q2) of P ∗ onto Hi is a product with p ≤ p∗,
q1 ≥ q∗1, and q2 ≥ q∗2. Therefore, any customer who would consider P ∗ would also consider
P , so profit(P ) ≥ (1− ε) profit(P ∗), as required.

Lemma 3 implies that the problem of finding an approximate solution to ProductDesign(2)
can be reduced to a sequence of problems on the planes H0, . . . ,H`. Refer to Figure 4. Each
customer Cj considers all products in a quadrant whose corner is Cj . The intersection of
this quadrant with Hi is a (possibly empty) equilateral triangle ∆i,j . The customer Cj

will consider a product P in Hi if and only P is in ∆i,j . Thus, the problem of solving

1This can be seen by taking the limit limε→0+(ε/ log(E)) using one application of L’Hôpital’s Rule.
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Figure 4: The intersection of Hi with customers’ quadrants is a set of homothetic equilateral
triangles.

ProductDesign(2) restricted to the plane Hi is the problem of finding a point contained
in the largest number of equilateral triangles from the set ∆i = {∆i,j : j ∈ {1, . . . , n}}.

Note that the elements in ∆i are homothets (translations and scalings) of an equi-
lateral triangle, so they form a collection of pseudodisks and we wish to find the deepest
point in this collection of pseudodisks. No algorithm with running time o(n2) is known for
solving this problem exactly, but Aronov and Har-Peled [1] have recently given a Monte-
Carlo (1− ε)-approximation algorithm for this problem that runs in time O(ε−2n log n). By
applying this algorithm to each of ∆i for i ∈ {1, . . . , `}, we obtain the following result:

Theorem 3. For any ε > 0, there exists an O(ε−3n(log n)2) time high-probability Monte-
Carlo (1− ε)-approximation algorithm for ProductDesign(2).

4 A near-linear approximation algorithm for constant d

In this section we extend the algorithm from the previous section to (approximately) solve
ProductDesign(d) for any constant value of d. The algorithm is more or less unchanged,
except that the proof requires some new results on the combinatorics of arrangements of
homothets.

As before, let r = max{ppu(Ci) : i ∈ {1, . . . , n}} and let ` = dlogE ne. For each
i ∈ {0, 1, 2, . . . , `}, define the hyperplane Hi = {(p, q1, . . . , qd) : p −

∑d
i=1 qi = r(1 − ε)i}.

The following lemma has exactly the same proof as Lemma 3.

Lemma 4. For any product P ∗ = (p∗, q∗1, . . . , q
∗
d), there exists a product P = (p, q1, . . . , qd)

such that P ∈ Hi for some i ∈ {0, . . . , `} and profit(P ) ≥ (1− ε) profit(P ∗).

Again, each customer Cj defines a regular simplex ∆i,j in Hi such that Cj will
consider P ∈ Hi if and only if P ∈ ∆i,j . In this way, we obtain a set ∆i = {∆i,1, . . . ,∆i,n}
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of homothets of a regular simplex in Rd and we require an algorithm to find a ((1 − ε)-
approximation to) the point that is contained in the largest number of these simplices. The
machinery of Aronov and Har-Peled [1] can be used to help solve this problem, but not
before we prove some preliminary results, the first of which is a combinatorial geometry
result.

Lemma 5. Let ∆ be a set of n homothets of a regular simplex in Rd, for d = O(1), and such
that no point in Rd is contained in more than k elements of ∆. Then, the total complexity
of the arrangement, A(∆), of the simplices in ∆ is O(nkd−1).

Proof. We first consider the simpler case in which the elements of ∆ are translates (without
scaling) of a regular simplex. Suppose that the total complexity of A(∆) is m. Then, by the
pigeonhole principle, there is some element T in ∆ whose surface is involved in m/n features
of A(∆). (Note that this implies that T intersects all the elements of a set ∆′ ⊆ ∆ with
|∆′| = Ω((m/n)1/(d−1)), since otherwise there are not enough elements in ∆′ to generate
m/n features on the surface of ∆.)

Observe that, since the elements of ∆′ are all unit size and they all intersect T , that
they are all contained in a ball of radius O(1) centered at the center of T . Furthermore,
since each element of ∆′ has volume Ω(1) this implies that some point must be contained
in Ω((m/n)1/(d−1)) elements of ∆′. Thus, we obtain the inequality k ≥ Ω((m/n)1/(d−1)),
or, equivalently, m ≤ O(nkd−1), as required.

Now, for the case where the elements of ∆ are homothets (translations and scalings)
of a regular simplex, we proceed as follows. Suppose that |A(∆)| = rn. Our goal is to
show that r = O(kd−1). Label the elements of ∆ as T1, . . . , Tn in increasing order of
size and consider the smallest element Ti such that Ti contributes at least r features to
A({Ti, . . . , Tn}). Such a Ti is guaranteed to exist, since otherwise |A(∆)| ≤ rn.

Now, Ti intersects all the elements in some set ∆′ ⊆ {Ti+1, . . . , Tn} with |∆′| =
Ω(r1/(d−1)). Shrink each element T ′ in ∆′ so as to obtain an element T ′′ such that (a) the
size of T ′′ is equal to the size of Ti, (b) T ′′ ⊆ T ′, and (c) T ′′ intersects Ti. Call the resulting
set of shrunken elements ∆′′. Condition (a) and the packing argument above imply that
there is a point p ∈ Rd that is contained in Ω(r1/(d−1)) elements of ∆′′. Condition (b)
implies that p is contained in Ω(r1/(d−1)) elements of ∆′ and hence also ∆. Therefore, we
conclude, as before, that r = O(kd−1), which completes the proof.

Remark. Lemma 5 is somewhat surprising, since the union of n homothets of a regular
tetrahedron in, for example, R3 can easily have complexity Ω(n2). This fact makes it
impossible to apply the “usual” Clarkson-Shor technique [5] that relates the complexity of
the first k levels to that of the boundary of the union (the 0-level).

Lemma 6. Let ∆ be a set of n homothets of a regular simplex in Rd such that no point of
Rd is contained in more than k simplices of ∆. Then the arrangement A(∆) of ∆ can be
computed in O(n(kd−1 + (log n)d)) time.

Proof. Computing the arrangement A(∆) can be done in the following way. Sort the ele-
ments of ∆ by decreasing size and construct A(∆) incrementally by inserting the elements
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Figure 5: The simplex T ∈ ∆ intersects T ′ ∈ ∆ if and only if hTi contains t′i for all
i ∈ {1, . . . , d}.

one by one. When inserting an element T , use a data structure (described below) to retrieve
the elements of ∆ that intersect T and discard the elements that are smaller than T . The
proof of Lemma 5 implies that there will be at most O(k) such elements. The intersection
of the surfaces of these O(k) elements with the surface of T has size O(kd−1) and can be
computed in O(kd−1) time using d+ 1 applications of the standard algorithm for comput-
ing an arrangement of hyperplanes in Rd−1 [7, 8]. Thus, ignoring the cost of finding the
elements that intersect T , the overall running time of the algorithm is O(nkd−1).

All that remains is to describe a data structure for retrieving the elements that
intersect a given simplex T ∈ ∆. In the following we describe a data structure that can be
constructed in O(n(log n)d) time and can answer queries in O(x + (log n)d) time, where x
is the size of the output. This data structure will be constructed once and queried n times.
The total size of the outputs over all n queries will be the O(|A(∆)|) = O(nkd−1).

Refer to Figure 5. Suppose that every element T ∈ ∆ is a homothet of the regular
simplex V whose vertices are v1, . . . , vd+1 and let n1, . . . , nd+1 be the inner normals of the
faces of V where ni is the face opposite (not incident on) vertex vi. For any T ∈ ∆, let ti be
the image of vi under the homothetic transformation that takes V onto T . Observe that,
if h is a halfspace of Rd with inner normal ni, then h intersects T if and only if h contains
ti. Furthermore, every simplex T ∈ ∆ is the intersection of d halfspaces hT

1 , . . . , h
T
d+1 where

the inner normal of ht
i is ni. Therefore, a simplex T ∈ ∆ intersects a simplex T ′ ∈ ∆ if and

only if hT
i contains t′i for all i ∈ {1, . . . , d+ 1}.

This implies that the elements of ∆ can be stored in a (d+1)-layer range tree [3]. The
ith layer of this tree, for i ∈ {1, . . . , d+1}, stores elements of ∆ ordered by the projection of
ti onto ni. In this way, the range tree can return the set of all simplices in ∆ that intersect
a query simplex T ∈ ∆. The size of this range tree is O(n(log n)d) and it can answer queries
in time O(x + n(log n)d) where x is the size of the query result. Since each simplex in ∆
is passed as a query to this data structure exactly once, the total sizes of outputs over all
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n queries is equal to the number of pairs T1, . . . , T2 ∈ ∆ such that T1 ∩ T2 6= ∅. But the
number of such pairs is certainly a lower bound on |A(∆)| so it must be at most O(nkd−1).
This completes the proof.

Lemma 6 can be used as a subroutine in the algorithm of Aronov and Har-Peled [1,
Theorem 3.3], to obtain the following Corollary.

Corollary 1. Let ∆ be a set of n homothets of a regular simplex in Rd such that some point
p ∈ Rd is contained in δ elements of ∆. Then there exists an algorithm whose running time
is O(ε−2dn(log n)d−1 + n(log n)d) and that, with high probability, returns a point p′ ∈ Rd

contained in at least (1− ε)δ elements of ∆.

As before, an approximate solution to ProductDesign(d) problem reduces to find-
ing deepest point in each of the sets ∆1, . . . ,∆` where ∆i is a set of n d-simplices in Hi.
By using the algorithm of Corollary 1 to do this we obtain the following result:

Theorem 4. For any ε > 0, there exists an O(ε−(2d+1)n(log n)d + n(log n)d+1) time high-
probability Monte-Carlo (1− ε)-approximation algorithm for ProductDesign(d).

5 Conclusions

We have given an O(n log n) time exact algorithm for solving ProductDesign(1) and
O(n(log n)d+1) time approximation algorithms for solving ProductDesign(d). The run-
ning time of the exact ProductDesign(1) algorithm is optimal and no algorithm that
produces a (2− ε)-approximation, for any ε > 0, can run in o(n log n) time.

In developing these algorithms, we gave a proof (the proof of Lemma 5) that shows
that an arrangement of n fat convex objects in Rd has complexity O(nkd−1) where k is the
maximum number of objects that contain any given point. We expect that this result, and
the algorithm for approximate depth that arise from it [1], will find other applications.

An exact near-linear time algorithm for the case d = 2 seems to be out of reach.
It appears as if this problem requires (at least) a solution to the problem of finding a
point contained in the largest number of homothets of an equilateral triangle, a problem
for which no subquadratic time algorithm is known. Is it possible to prove some kind of a
lower bound? The related problem of finding the point contained in the largest number of
unit disks is 3-Sum hard [1] providing some evidence that this problem will be difficult to
solve in subquadratic time.

In this paper we considered the case where the problem is parameterized by the
number, d, of orthogonal qualities that a product may have. Another case to consider is the
case in which a manufacturer wishes to introduce some number, k, k > 1, of new products
into a market. Is this problem NP-hard? Does it have a polynomial time approximation
algorithm?
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