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Abstract

Dot maps—drawings of point sets—are a well known cartographic method to visu-
alize density functions over an area. We study the problem of simplifying a given
dot map: given a set P of points in the plane, we want to compute a smaller set Q
of points whose distribution approximates the distribution of the original set P .

We formalize this using the concept of ε-approximations, and we give efficient
algorithms for computing the approximation error of a set Q of m points with
respect to a set P of n points (with m ≤ n) for certain families of ranges, namely
unit squares, arbitrary squares, and arbitrary rectangles.

If the family R of ranges is the family of all possible unit squares, then we compute
the approximation error of Q with respect to P in O(n log n) time. If R is the family
of all possible rectangles, we present an O(mn log n) time algorithm. If R is the
family of all possible squares, then we present a simple O(m2n + n log n) algorithm
and an O(n2√n log n) time algorithm which is more efficient in the worst case.

Finally, we develop heuristics to compute good approximations, and we evaluate
our heuristics experimentally.
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1 Introduction

An important component in the area of cartography is the ability to represent
and visualize the distribution or density of some phenomenon such as the
population distribution over a certain region. The most common technique
to achieve this is the dot map, as shown in Fig. 1. The term dot map is
self-explanatory—it refers to the use of dots or points placed on a map to
represent a given distribution. Dot maps are quite important and their use
has been extensively studied in cartography—see for instance Chapter 8 of
the book by Dent [6].
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Fig. 1. Example of a dot map.

There are many issues involved in the use of dot maps as a tool for represent-
ing distributions. For example, the radius of the dots used, or the decision to
allow or disallow dots to overlap are important visual considerations [6]. De-
pending on the application, it can also be important to take the topographic
‘background map’ into account: a dot map representing population density
should not have dots inside lakes, in mountainous areas one may have to take
altitude into account, and it may be important to ensure that dots are on the
correct side of borders or other features [11]. In this paper, we concentrate on
two related computational issues that purely deal with distribution issues; vi-
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sual considerations and adherence to a background map are beyond the scope
of this paper.

The first question we study is: Given a point set P representing a certain
distribution, how can we automatically simplify it, that is, generate a smaller
representative point set Q of a given size? This question arises when one wishes
to scale a map: the number of points in the map has to decrease when the
size of the map is decreased, otherwise it would become too cluttered. It may
also arise in the generation of the initial dot map: “The printed dot map of
the population distribution should be constructed at a larger scale based on
more detailed information such as settlements and houses and then reduced
to the final scale.”, as Ditz [11] writes. The first question—how can we com-
pute a good approximation?—immediately leads to the second: Given sets P
and Q, how can we determine the quality of Q as an approximation to P? To
determine the quality of an approximation, we need a quantatitive measure
of similarity between dot maps. Our measure is inspired by interactive GISs
where a user can use a dot map of, say, the population density, to estimate
the population within a region [11]. This can either be a user-defined area—a
square, for example—or a geographically meaningful region such as the area
within a certain distance from a river. This leads us to propose the notion of
ε-approximations [17] as a quantitative measure of the quality of an approx-
imation. A set Q of m points is called an ε-approximation of a set P of n
points 1 with respect to a family R of ranges, if for any range r ∈ R we have

| |r ∩ P |/n− |r ∩Q|/m | ≤ ε.

In other words, if we approximate the number of points from P inside a range
r by multiplying the number of points from Q inside the range by n/m, then
we make an error of at most εn. This leads us to define ∆R(Q,P ), the approx-
imation error of Q with respect to P , for a family R of ranges, as

∆R(Q,P ) = max
r∈R

||r ∩ P | − (n/m) · |r ∩Q||.

The value n/m, which can be viewed as the weight of a point in Q as compared
to a point in P , is called the dot value of the points in Q. We usually denote
it by δ. In this paper we focus on squares and rectangles 2 as ranges. Of these
types of ranges, squares are probably most natural in our application. Another
natural range to consider would be discs.

1 Traditionally, in the definition of ε-approximation it is required that Q ⊂ P , but
this is not necessary.
2 In this paper squares and rectangles are always axis-parallel.
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1.1 Related work.

ε-Approximations have been studied and used extensively in computational
geometry—see for instance Chazelle’s book [5]—and various algorithms are
known to compute ε-approximations of asymptotically optimal size for a set
P and a given value of ε. Note that we want to solve a slightly different
problem: in our case ε is not given, but the desired number of points in the
approximation Q. Still, one may use the same type of algorithms. For instance,
in many cases it turns out that random sampling is expected to produce an
approximation of asymptotically optimal size. (One caveat is in place here:
the optimality here refers to the worst-case size of an ε-approximation over
all point sets P of n points, not to the minimum size needed for the given set
P . These two sizes need not be the same.) Thus, for our problem we could
simply take a random subset Q ⊂ P of the desired size. Then, of course, one
would want to check how good the sample is, that is, one needs an algorithm
to compute the approximation error of given sets P and Q.

The use of ε-approximations to measure the similarity of two point sets is
related to some statistical methods to derive a (continuous) density function
from a given point set; see the book by Baily and Gatrell [2] for more infor-
mation on statistical methods for spatial data analysis. For example, kernel
estimation defines the density λ(x) at a point x in the plane by summing the
number of points within a region around the point x in a weighted manner;
the shape of the region and the exact weighting scheme depends on the kernel
used. Comparing two point sets—for example, to see whether the distribution
of some feature of the population (number of cancer deaths, for instance) de-
viates from the population distribution itself—is then done by comparing the
density functions λ1(x) and λ2(x) obtained for the two points sets. Usually
one takes the quotient of these two values, but if one wants to bound the
worst-case error this doesn’t work (λ2(x) may be zero) and one could take the
absolute difference. The notion of ε-approximation with unit squares as ranges
can be seen as a special case of this, where the kernel is a block function with
value 1 inside the unit square centered at the point x and value 0 elsewhere
(and the other parameters of the kernel estimation method choosen suitably).
The advantage of such a simple kernel function is that it is computationally
easier, in the sense that it makes computing the approximation error easier.
Recall that the motivation behind our use of ε-approximations is that we want
to bound the maximum error when an approximating set Q is used to esti-
mate the number of points from a set P inside a range. The size of such a
range is not fixed in an interactive setting. Hence, we also look at squares of
arbitary sizes, which makes our error measure different from traditional kernel
methods.

The approximation error as defined above is a generalization of the bichromatic
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discrepancy (or combinatorial discrepancy). Here one colors each point of a
given set either red or blue and one is interested in the maximum difference,
over all possible ranges of the given family, between the number of red points
and the number of blue points inside a range. If we call the red point set P
and the blue point set Q, and we define the dot value to be 1 (even when
|P | 6= |Q|), then the bichromatic discrepancy equals the approximation error.
Also, finding an optimal red-blue coloring of a given set P is identical to
finding a subset Q ⊂ P such that the discrepancy of Q with respect to P
and dot value 2 is minimized. The concept of bichromatic discrepancy arises
in computational learning theory, in particular in the so-called minimizing
disagreement problem in agnostic PAC-learning [8,12]. Thus our algorithms
to compute the approximation error of two given sets with respect to a family
R of ranges may be used to solve the minimizing disagreement problem when
the class of hypotheses is R—see the paper by Dobkin et al. [9] for details.

Finally, we note that our problem is related to that of computing the area
discrepancy (or continuous discrepancy) of a point set P . This is a measure
of how uniform that point set is, and it has applications in computer graph-
ics [9,7,16].

1.2 Our results.

Computing the approximation error of a set Q of m points with respect to
a set P of n points, with m ≤ n, is the topic of Section 2. We obtain the
following results. If R is the family of all possible unit squares, then we can
compute the approximation error of Q with respect to P in O(n log n) time.
If R is the family of all possible rectangles, then we present two algorithms,
a simple O(m2n + n log n) algorithm and a more efficient O(mn log n) time
algorithm. This is a slight improvement over an algorithm of Dobkin et al. [9]
when m is o(n). Their algorithm runs in O(n2 log n) time regardless of how
small m is. If R is the family of all possible squares, then we present a simple
O(m2n + n log n) algorithm and an O(n2

√
n log n) time algorithm which is

more efficient in the worst case.

We turn our attention in Section 3 to the experimental component of the
paper. The goal is to develop heuristics to generate for a given set P an
approximation Q of the desired size with as small an error as possible. We
concentrate on the case of square ranges, as this seems most relevant to our
application. Our heuristics use as a subroutine an algorithm to compute the
error for given P and Q. Unfortunately, our algorithm for arbitrary squares is
rather slow, and some of the heuristics call this subroutine many times. Hence,
we first show experimentally that the exact error with respect to squares can be
approximated well by computing the error with respect to fixed-size squares
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for a number of different sizes. After having established this, we compare
various heuristics to find a good approximation of a given point set P . One
of our findings is that taking the best approximation out of a large collection
of random samples does not work so well, even though random sampling is
guaranteed to find approximations that are asymptotically worst-case optimal.

2 Computing the approximation error

Let P be a set of n points and Q be a set of m points in the plane, with
m ≤ n. In this section we show how to compute the approximation error of Q
with respect to P for three different families of ranges: unit squares, arbitrarily
sized squares, and arbitrarily sized rectangles. By δ := n/m we denote the dot
value of the points in Q.

2.1 Unit squares as ranges

Let R be the family of all possible unit squares. When we want to compute
the approximation error of Q with respect to P for unit squares, it can make
a difference whether we consider open or closed squares. In the description of
the algorithm, we will consider the squares to be closed; it is easy to adapt
the algorithm to the case of open squares.

Recall that we use the absolute value of the error in the definition of approx-
imation error. It is convenient to compute separately the maximum positive
error and the maximum negative error. Below we describe how to compute
the maximum positive error; computing the maximum negative error can be
done in a similar way.

A unit square contains a point if and only if the center of the unit square is
contained in the unit square centered at the point. Hence, instead of consid-
ering the point sets P and Q and the family of all unit squares as ranges, we
can use the sets SP and SQ of unit squares centered at the points in P and Q,
and all points in the plane as ranges. Call the squares in SP the red squares,
and the squares in SQ the blue squares. The (positive) approximation error of
a point x in the plane is now

(# of red squares containing x)− δ · (# of blue squares containing x).

The approximation error of SQ with respect to SP is the maximum approxi-
mation error over all points in the plane. From the discussion above it follows
that this is the same as the approximation error of Q with respect to P for
the family R of unit squares as ranges.
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The arrangement formed by the squares SQ and SP partitions the plane into
faces where the approximation error of any point in a face of the arrangement
is the same. Therefore, finding the maximum approximation error amounts
to finding the face with maximum approximation error. We compute the ap-
proximation of SQ with respect to SP with a plane-sweep algorithm. In this
algorithm, we sweep a vertical line ` from left to right over the arrangement.
As we sweep the arrangement, we maintain the maximum approximation er-
ror over the faces of the arrangement intersected by `. Since the arrangement
is formed by squares, the only events are when the sweep lines reaches a left
or right edge of a square. At each event we compute the maximum error of
all points on ` and of all points slightly to the right of ` (but to the left of
the previous event). The maximum error found in all the events will be the
maximum error of SQ with respect to SP . We now describe the information
we maintain during the sweep—the status structure—and how to handle the
events.

2.1.1 A dynamic 1-dimensional structure.

The status structure is a dynamic data structure for solving the following 1-
dimensional version of the problem. We are given a set IR of red segments and
a set IB of blue segments on the real line, and a parameter δ. The (positive)
approximation error of a point x ∈ R is defined as

(# of red segments containing x)− δ · (# of blue segments containing x).

We want to maintain the maximum error over all points in R under insertions
and deletions of segments.

The structure we use is essentially the structure described in [4] in the context
of grid placement problems. A similar structure is also presented in [9]. The
structure maintains a function f : R → R. Initially, it is assumed that f(x) =
0, for all x ∈ R. The following update and query operations are allowed on
the structure:

(1) Insert([a : b], d): Increase the value of f(x) by d over the interval [a : b].
(2) Delete([a : b], d): Decrease the value of f(x) by d over the interval [a : b].
(3) Max(): Return max{f(x) : x ∈ R}.

The first two operations can be performed in O(log n) time where n is the
number of intervals currently inserted and the third operation takes O(1) time.
Essentially, the data structure is a balanced binary tree (similar to a segment
tree [3]) whose leaves represent the elementary intervals (of the inserted in-
tervals) ordered from left to right. An internal node of the tree represents the
interval that is the union of the elementary intervals of the leaves in its sub-
tree. The nodes have been augmented with additional information in order
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to answer the queries. The structure has O(n) size where n is the number
of intervals currently in the structure. For more details on the structure, the
reader is referred to the paper of Bose et al. [4].

With this structure, the 1-dimensional problem is easily solved. When inserting
(resp. deleting) a red segment, we increase (resp. decrease) the value of f(x) by
1 over this segment. Similarly, when inserting (resp. deleting) a blue segment,
we decrease (resp. increase) the value of f(x) by δ over this segment. Max()
allows one to recover the maximum approximation error over the currently
inserted segments.

This leads to the following lemma.

Lemma 2.1 The maximum approximation error of a set of red and blue seg-
ments on a line can be maintained with a structure of O(n) space that takes
O(log n) time per insertion and deletion, where n is the number of red and
blue segments.

We now return to the 2-dimensional problem, where we want to compute the
approximation error of a set of blue squares with respect to a set of red squares,
with the points in the plane as ranges. Recall that our approach is a plane-
sweep algorithm. The algorithm maintains the maximum error along the sweep
line ` using the structure T just described above. Whenever the left edge of a
square is encountered, we insert its y-interval into the structure along with the
appropriate value (that is, 1 if it is red and −δ otherwise), and whenever the
right edge of a square is encountered, we delete its y-interval. If events happen
simultaneously—multiple edges have the same x-coordinate—then we process
the events in the following order. First we handle all left boundaries. After
this, Max() tells us the maximum error on `. Next, we handle all the right
boundaries, and get the maximum error slightly to the right of `. Hence, every
event takes O(log n) time to process and the initialization takes O(n log n)
time. Since there are O(n) events to process, we get the following theorem.

Theorem 2.2 Let P be a set of n points in the plane, and let Q be a set of
m points in the plane, with m ≤ n. The approximation error of Q with respect
to P for the family of all unit squares can be computed in O(n log n) time.

2.2 Arbitrarily sized squares as ranges

The case of squares of arbitrary size as ranges is probably the most interesting
in our application. Note that, unlike in the case of unit squares, the approxi-
mation error does not depend on whether we consider open or closed squares:
for any open (closed) square, there is a slightly smaller closed (larger open)
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square that contains exactly the same points. We start by showing a fairly
simple algorithm that runs in O(m2n + n log n) time.

We first prove a lemma which restricts the number of candidate squares. Let
B be the bounding box of P ∪Q.

Lemma 2.3 There is an open square with maximum positive error such that
two opposite sides of the square each either contain a point from Q or are con-
tained in the boundary of B. Similarly, there is a closed square with maximum
negative error such that two opposite sides of the square each contain a point
from Q.

Proof: Let s be an open square of maximum positive error, that is, a square
that maximizes |r ∩ P | − δ · |r ∩ Q|. Suppose the top and right edge do not
contain a point from Q or a part of the boundary of B. Fix the bottom left
corner of s and grow the square until either a point from Q or the boundary of
B hits the top or right edge of s. No point of P can enter s during this process
since otherwise s was not a maximum. Next, fix the top right corner of s and
grow the square until either a point from Q or the boundary of B hits the
bottom or left edge of s. Again, no point of P can enter s during this process.
At this point, the conditions of the lemma are met or two adjacent edges of s
contain a point from Q or the boundary of B. If the latter holds, then assume,
without loss of generality, that the top and left edges of s contain a point of
Q. Then fix the top left corner and grow the square until the condition of the
lemma is met.

Now let s be a closed square of maximum negative error, and suppose the top
and right edge do not contain a point from Q or a part of the boundary of
B. We can transform s into a square with the same error that satisfies the
conditions of the lemma using the same procedure as above, except this time
we shrink s instead of growing s. Because of the shrinking, we do not have the
case where the boundary of s hits the boundary of B, since we can assume
that initially s lies completely inside B. 2

2.2.1 A simple algorithm

Next we describe a simple algorithm, based on Lemma 2.3, to compute the
maximum positive approximation error; the maximum negative error can be
computed in a similar way.

By Lemma 2.3, the square of maximum discrepancy must have a blue point
(i.e. a point from Q) on two opposite sides. Given two blue points, if the
absolute value of the difference in their x-coordinate is larger than the absolute
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value of the y-coordinate difference, then the two points can only lie on the left
and right sides of a square. Similarly, if the y-coordinate difference is larger,
than the two points can only lie on the top and bottom edges of the square.
Finally, if the differences are the same, then there is a unique square with the
points at the opposite corners. This implies that a given pair of blue points
determines the size of the square and the direction of search. Since there are
m blue points, there are

(
m
2

)
candidate pairs. Select one such pair, qi, qj, and

assume without loss of generality that the y-coordinate difference is larger.
The case where the x-coordinate difference is larger is symmetric, and the
other case is trivial.

Given qi and qj, let hi and hj be the horizontal lines through the respective
points. We have to find the maximum error over all squares whose top end
bottom edges are contained in those lines. In order to find this maximum, we
will sweep (i.e. move) the square from left to right through the strip.

Consider the points in P∪Q that lie within this strip. Sort these points by their
x-coordinates, and let S represent this set in sorted order. Start with the left
boundary of the square on the left boundary of B. Compute the discrepancy
of this square by finding the points of S in this square. Now, sweep the square
from left to right until the right boundary reaches the right boundary of B and
maintain the maximum at each step. The events in this sweep are that either
a point leaves the square or a point enters the square. The order in which
the points enter as well as the order in which the points leave is the sorted
order. Processing an event amounts to adding or subtracting the appropriate
amount to the current discrepancy, depending on which point enters or leaves.
(Events that occur simultaneously should be handled together; the details of
how this should be done are easy to fill in.) Note that we do not need to
sweep the whole strip but only the portion of the strip where qi and qj are
on the top and bottom edges of the square. However, this optimization does
not make a difference asymptotically. Since each event can be processed in
O(1) time given the sorted order, we can compute in O(n) time the maximum
discrepancy given a candidate pair of points provided the points in the strip
are sorted. If we pre-sort the points of P ∪ Q in O(n log n) time then O(n)
time the sorted order of points of P ∪Q within a strip can be obtained. Since
there are O(m2) possible candidates and each candidate can be verified in
O(n) time, the total time for the algorithm is O(m2n + n log n).

Theorem 2.4 Let P be a set of n points in the plane, and let Q be a set of
m points in the plane, with m ≤ n. The approximation error of P with respect
to Q for squares can be computed in O(m2n + n log n) time.
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2.2.2 A subcubic algorithm

The algorithm of Theorem 2.4 runs in cubic time if m = Θ(n). Next we
describe a subcubic algorithm. Recall that in the case of unit squares as ranges,
we replaced every point in P ∪ Q with a unit square and we looked at the
maximum error of points in the plane with respect to the resulting sets SP

and SQ of squares. This approach does not apply here since the size of the
square is not fixed. However, we can do something similar: replace every point
in P ∪Q with a square of size ρ, let ρ grow from zero to infinity, and maintain
the maximum error of points in the plane with respect to the resulting sets SP

and SQ of squares over the whole growing process. Notice that the maximum
error only changes when two squares start overlapping. This is precisely when
new faces in the arrangement of squares appear and other faces disappear.
This happens O(n2) times. The approach is to maintain the maximum over
the whole growing process. In the remainder we develop a structure that allows
us to compute in O(

√
n log n) time the new maximum discrepancy when such

an event takes place, leading to an algorithm with overall running time of
O(n2

√
n log n).

A dynamic 2-dimensional structure. We develop a dynamic structure for the
following 2-dimensional problem. We are given sets RR and RB of red and
blue rectangles, respectively, and a parameter δ. The error of a point x in the
plane is defined as

(# of red rectangles containing x)− δ · (# of blue rectangles containing x).

The approximation error of RB with respect to RR is the maximum approxi-
mation error over all points in the plane. Our goal is to maintain the approx-
imation error of RB with respect to RR under insertions into and deletions
from RR and RB. We use n to denote the total number of rectangles in the
current sets.

Our structure uses a partitioning of the plane similar to the one used by Over-
mars and Yap [14]. More precisely, we partition the plane into vertical slabs by
drawing O(

√
n) vertical lines such that in between any two consecutive lines

there are at most
√

n vertices of rectangles (in the current set). A rectangle
is said to belong to a slab if any vertex of the rectangle is contained within
the slab. A rectangle is said to cross a slab if the intersection of the slab and
the rectangle is not empty but the rectangle does not belong to the slab. Each
slab σ is further subdivided by drawing horizontal segments connecting its
two bounding lines through every vertex of a rectangle inside σ. This way we
obtain a subdivision of the plane into cells with the following properties.

• There are O(
√

n) slabs and O(n) cells.
• No cell contains a vertex of a rectangle from RR ∪RB in its interior.
• A cell is crossed by at most O(

√
n) vertical edges.
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Let A represent the arrangement of RB∪RR. Essentially, we need to maintain
the face of this arrangement with maximum error under insertions and dele-
tions of red or blue rectangles. The main idea is to maintain the maximum for
each slab σ. In order to do this, we maintain for each cell in a given slab, the
maximum in that cell with respect to the rectangles belonging to the slab. We
first describe how to maintain the maximum in a given cell and then we show
how to use this in order to maintain the maximum in a given slab.

As we are concentrating on a particular cell C in a slab σ, let R(σ) represent
the rectangles of RR ∪RB that belong to σ clipped to within σ, and let A(σ)
be the arrangement of rectangles R(σ). Since C has no vertices in its interior
and all rectangles in R(σ) belong to σ, the part of A(σ) within C is formed
by O(

√
n) vertical edges crossing C. Therefore, maintaining the maximum in

C is a 1-dimensional problem and we can use the tree structure TC described
in Lemma 2.1 to maintain the maximum. For each rectangle r of R(σ) in C,
insert an interval [rs, re] in TC where rs and re are the x-coordinates of the
left and right edges of r. The value associated with this interval is 1 if r is red
and −δ otherwise. If rs is to the left of the left side of the slab or re is to the
right of the right side of the slab, we truncate rs or re to the slab boundary
since we only concentrate on what is within C.

We now turn our attention on how to maintain the maximum within a slab
σ. There are two types of rectangles that contribute to the error of the faces
of A within σ: those that belong to σ and those that cross σ. The error of the
rectangles that belong to σ are taken care of within each cell, so to maintain
the maximum for the slab, we need to incorporate the information pertaining
to the rectangles crossing the slab. Let X(σ) represent all of the rectangles that
cross σ. For a rectangle r ∈ X(σ), consider the cells of σ that are contained
in r. For each such cell, the maximum error in that cell only changes by a
constant (depending on the color of r) because the whole cell is contained in
r. So again, we are able to transform the problem to a 1-dimensional problem.
Let Yσ be the y-intervals of the cells of σ and let YX(σ) be the y-intervals of
the rectangles in X(σ). To maintain the maximum in σ, we construct a tree
Tσ. For each interval yi in Yσ, we insert yi in Tσ and the associated value is
the maximum error in the cell. For each y-interval yj in YX(σ), we insert yj in
Tσ and the associated value is either 1 or −δ depending on the color of the
rectangle.

Our structure consists of one tree for each slab and one tree for each cell
within a slab. Therefore, the structure consists of O(

√
n) slab trees and O(n)

cell trees.

Updates. To insert a rectangle r into the structure, we proceed as follows: First,
we find in O(

√
n) time all O(

√
n) slabs that are completely crossed by r. For

each such slab σ, we insert the y-interval of r and the value of r into Tσ. This
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takes at most O(
√

n log n) time.

Next we deal with the at most two slabs that contain a vertex of r. For each
such slab σ, we find in O(

√
n) time all O(

√
n) cells intersected by r. There are

two types of cells: the ones that contain a vertex of r and the ones that are
crossed from top to bottom by r. For cell C of the latter type, we insert the
error of r and the x-interval of r (clipped to within σ) into TC . Cells of the
former type—there are at most two of them—have to be split using horizontal
segments through the vertices of r. Since the number of intervals stored with
a cell is O(

√
n), splitting a cell and rebuilding its structure can be done in

O(
√

n) time. For each affected cell C in σ we now know its new error, so we
update the slab tree Tσ by deleting and re-inserting the affected cells. Overall,
we spend O(

√
n log n) time to handle the at most two slabs containing an

endpoint of r.

After this, we go over all slabs to recompute the new maximum error.

Deleting a rectangle is done using a similar procedure, so we omit the details.
Finally, during the course of insertions and deletions, we may have to split a
slab into two or merge two neighboring slabs in order to maintain the parti-
tion into O(

√
n) slabs each containing O(

√
n) cells. Merging or splitting can

be done in O(n log n) time by simply reconstructing the trees for the slabs
and cells. If we split a slab whenever its size is more than 2

√
n or merge two

slabs when both their sizes are less than
√

n/2 then a standard amortiza-
tion argument shows that given an update sequence containing n insertions
and deletions that merges and splits can be can be achieved in amortized
O(
√

n log n) time.

Lemma 2.5 The maximum approximation error of a set of red and blue rect-
angles in the plane can be maintained in O(

√
n log n) amortized time per up-

date, where n is the number of rectangles in the set.

We now return to the original problem, of computing the approximation error
of a set Q of m points in the plane with respect to a set P of n points, where the
set of ranges is the family of all possible squares. Let sρ(p) denote the square
of size ρ centered at a point p. Furthermore, let SP (ρ) = {sρ(p) : p ∈ P}
and let SQ(ρ) = {sρ(q) : q ∈ Q}. Define the maximum error of SP (ρ) with
respect to SQ(ρ) for point ranges as before. Then the maximum error we
want to compute is given by maxρ>0{error of SP (ρ) wrt SQ(ρ)}. When we let
ρ increase, the error of SP (ρ) with respect to SQ(ρ) can only change when
two edges of squares meet. Hence, we proceed as follows. We normalize the
problem by replacing the x-coordinates of the vertical edges by their rank,
and by replacing the y-coordinates of the horizontal edges by their rank. Now
every square becomes a rectangle with coordinates from a universe of size
U = 2(n + m). We store these rectangles in a dynamic structure as described
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above. Whenever two vertical (or horizontal) edges swap ranks, we delete
the rectangles from our structure, and re-insert the rectangles with their new
normalized coordinates. This takes O(

√
n log n) time, and gives us the new

error.

We start the process with a value of ρ that is small enough so that all rectangles
are disjoint (and the error is δ or δ − 1, depending on whether Q ⊂ P ). The
number of swaps we have to process is O(n2). We get the following result.

Theorem 2.6 Let P be a set of n points in the plane, and let Q be a set of
m points in the plane, with m ≤ n. The approximation error of Q with respect
to P for the family of all squares can be computed in O(n2

√
n log n) time.

2.3 Rectangles as ranges

Let R be the set of all possible rectangles in the plane. Dobkin et al. [9] present
an algorithm that computes the approximation error of Q with respect to P
in O(n2 log n) time. Their algorithm is not sensitive to the size of the set Q.
We present an algorithm that is sensitive to the relative sizes of the two point
sets.

Like in the case of arbitrarily sized squares, the approximation error does
not depend on whether we consider open or closed rectangles: for any open
(closed) rectangle, there is a slightly smaller closed (larger open) rectangle
that contains exactly the same points.

We start with a simple lemma limiting the number of rectangles to consider.
Let B be the bounding box of P ∪Q.

Lemma 2.7 There is an open rectangle with maximum positive error such
that each side either contains a point from Q or is contained in the boundary
of B. Similarly, there is a closed rectangle with maximum negative error such
that each side contains a point from Q.

Proof: Let r be an open rectangle of maximum positive error, that is, a
rectangle that maximizes |r ∩ P | − δ · |r ∩ Q|. While there is a side of r that
does not contain a point from Q on its boundary, move that side away from
the center of r until it does contain a point of Q on its boundary or until the
side is contained in the boundary of B. Since r is open, |r ∩ Q| remains the
same as before the growing operation. Clearly, |r ∩ P | has not decreased, so
the new rectangle still gives the maximum error.

Similarly, we can transform a closed rectangle of maximum negative error to
one satisfying the conditions of the lemma by moving the sides towards the
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center (thus shrinking the rectangle) until each side contains a point of Q on
its boundary. 2

Herein lies the main difference in approach between our algorithms and the
algorithm of Dobkin et al. [9]: they verify all pairs of points rather than ex-
ploiting the above lemma. Lemma 2.7 immediately implies a fairly simple
algorithm with O(m2n + n log n) running time, very similar to the first al-
gorithm we presented for squares. However, we can do better, by using the
following divide-and-conquer approach. As before, we show how to compute
the positive approximation error; the negative error can be computed in a
similar way.

Split the plane into two half-planes using a vertical line, and recursively com-
pute the maximum error over all rectangles lying completely to the left of `,
and the maximum error over all rectangles lying completely to the right of `.
What remains is to compute the maximum error over all rectangles crossing
`, i.e. the merging step, which we describe below. The maximum of the three
values is the global maximum.

In the merging step we have to find the rectangle r∗ giving the largest error
over all rectangles crossing a given line ` : x = `x. Our algorithm is based on
the following observation. Let `− be the closed half-plane to the left of `, and
let `+ be the open half-plane to the right of `. (We make one of the half-planes
open to ensure that points on ` are counted only once.)

Observation 2.8 The rectangle r∗∩`− (resp. r∗∩`+) has the largest error of
all rectangles whose right (resp. left) side lies on ` and whose top and bottom
sides have the same y-coordinates as the top and bottom sides of r∗.

Let Y be the set of all y-coordinates of points in Q together with the y-
coordinates of the top and bottom edge of the bounding box B. Next we show
how to compute, for each y-interval (y1 : y2) defined by y-coordinates in Y ,
the rectangle of maximum error over all rectangles with this y-interval whose
right edge lies on `.

Fix some y1. We can now restrict our attention to the quadrant to the left of
` and above the line y = y1. Let P (y1) and Q(y1) be the subsets of P and Q,
respectively, inside this quadrant. The rectangles we are interested in all have
(`x, y1) as bottom right corner, so if we restrict our attention to P (y1)∪Q(y1),
we can regard the rectangles as being quadrants that are unbounded to the
right and bottom. Hence, we can apply the same algorithm as we used for
unit squares: First, we replace every point in P (y1) ∪ Q(y1) by a quadrant
unbounded to the top and left. See Figure 2. Next we sweep the arrangement
of quadrants from bottom to top. Events are the y-coordinates of Y larger
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`

y = y1

Fig. 2. Replacing points by quadrants in the merging step for rectangles.

than y1—these include those of the points in Q(y1)—and the y-coordinates
of the points in P (y1). We maintain a tree T that maintains the maximum
error of the intersections of the quadrants with the sweep line, as described
in Lemma 2.1, and at each y ∈ Y we report the maximum error. This gives
us for a fixed y1 in O((m + n) log(n + m)) time the maximum error for each
interval (y1, y2).

We perform this procedure with each y1 ∈ Y , taking O(m(m + n) log(n + m))
in total. Hence, the merging step can be performed in this amount of time. To
get a nicely balanced recursion tree, we choose ` at odd levels of the recursion
tree such that at most half the points from P lie on either side of `, and
we choose it at even levels such that at most half the points from Q lie on
either side of `. This way we get the following recurrence for the running time,
T (n,m):

T (n, m) = O(m(m + n) log(n + m)) +
∑4

i=1 T (ni, mi),

with
∑4

i=1 ni = n and ni ≤ n/2 for i = 1, . . . , 4,

and
∑4

i=1 mi = m, and mi ≤ m/2 for i = 1, . . . , 4.

This gives T (n,m) = O(m(n + m) log(n + m)).

Theorem 2.9 Let P be a set of n points in the plane, and let Q be a set of
m points in the plane, with m ≤ n. The approximation error of P with respect
to Q for the family of all rectangles can be computed in O(nm log n) time.

Remark 2.10 If m = o(n3), then the following simple approach is more effi-
cient than the one above: preprocess the points in P for range counting, and
query with each rectangle defined by four points from Q. Using O(n log n) pre-
processing, range counting queries can be answered in O(log n) time [1], so
this approach leads to a total time of O((n + m4) log n).
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3 Finding approximations with small error

We now turn our attention to finding good approximations of a specified size
m for a given set P of n points. We will concentrate on square ranges, as this
seems most natural in our application.

3.1 Data sets

Our input sets P consist of n points in the unit square, for various values
of n. We use three types of distributions: uniform, clustered, and real-world
data. The clustered data sets were generated as follows. We randomly choose
20 cluster centers, draw a circle around each center, and generate points ran-
domly within that circle according to a distribution that generates more points
close to the center. Which fraction of the points goes to which cluster is also
determined randomly. Fig. 3 shows an example of a clustered data set gener-
ated in this manner. The real-world data set represents the acres of harvested

Fig. 3. Clustered 1000-point set P (on the left), and two 250-point approximations
for P .

cropland in the USA in 1992 [15]—see Fig. 1.
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Uniform Clustered Real

n 1000 (20 samples) 5000 (5 samples) 1000 (5 samples) 5000 (5 samples) 11000 (1set)

m 50 100 250 100 250 500 50 100 250 100 250 500 500 1000

δ 20 10 4 50 20 10 20 10 4 50 20 10 22 11

k = 5 30 22 18 117 68 95 27 22 18 160 88 82 68 10

(104) (80) (80) (296) (183) (401) (121) (74) (92) (517) (230) (307) (68) (10)

k = 10 17 14 9 78 47 53 17 12 9 102 58 54 68 10

(50) (60) (36) (177) (138) (230) (71) (38) (40) (220) (228) (192) (68) (10)

k = 30 9 7 4 41 27 17 8 5 4 45 29 20 19 9

(30) (22) (15) (86) (65) (42) (28) (18) (22) (92) (119) (126) (19) (9)

k = 60 6 4 3 27 17 12 4 3 3 28 19 13 19 9

(18) (13) (9) (68) (44) (24) (27) (12) (12) (70) (90) (86) (19) (9)

Table 1
Estimating the square error by k fixed sizes.

3.2 Computing the error

Our heuristics call a subroutine to compute the error for given P and Q many
times. We have implemented the O(m2n + n log n) algorithm for computing
the error for square ranges. For large n and m, this is rather slow. To speed up
the heuristics we therefore want to replace the subroutine by a faster one. We
do this by computing the error for squares of a fixed size, for several different
sizes; for a fixed size we used the O(n log n) algorithm of Theorem 2.2. The
hope is that if the number of sizes is large enough, the error we find is close
enough to the real error, so that it will not harm our heuristics. Our first
experiment is to test whether this hope is justified: we compare the real error,
computed with the O(m2n + n log n) algorithm, to the error computed by
looking at squares of k different sizes only, for various values of k.

The results are summarized in Table 1.

For each distribution we have generated between 5 and 10 different sets P ,
and for each P between 8 and 20 different sets Q. Half of the choices for
Q were taken as random samples from P , the other half was generated using
another distribution. The table shows the average difference between the error
for arbitrary squares and the error for k different fixed sizes, where the sizes
were equally spaced. (We also tried sizes on a logarithmic scale, but obtained
poorer results.) The numbers between brackets in the table give the maximum
difference found in the experiments. If we take k = 60, then the average
difference between the real error and the estimated error is always close to
(and often smaller than) the dot value, and the maximum difference is close
to twice the dot value. We conclude from this that it is safe to use the estimated
error in our heuristics.

We use this estimate out of necessity. Computing the error exactly takes hours
for the U.S. data set, while computing the estimated error takes only a few
seconds. Since our algorithms for finding good approximations have to repeat-
edly compute the error of an approximation, computing the exact error is not
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a reasonable option.

3.3 The heuristics

Next, we experimented with several heuristics for generating an approximation
Q of a desired size m for a given set P of n points. These heuristics fall into
two classes:

(1) Iterative algorithms that start with a random solution and then apply
some iteration rule to try and improve upon it. These algorithms include
traditional optimization algorithms such as simulated annealing and tak-
ing the best of k random samples.

(2) Clustering algorithms that partition the set S into m groups and then
choose one representative point for each group. These algorithms may
partition the point set S directly (see Dobkin-Tal below) or may partition
the plane thereby inducing a partition of S.

3.3.1 Iterative algorithms

The first class of heuristics that we consider are iterative algorithms. For
this class, we consider any algorithm that works by testing many different
solutions, i.e., subsets Q, and taking the best one. The differences between
various iterative algorithms come from how the subsets Q are selected.

Heuristic 1: Best of k random samples. Here we take k random samples
Q1, . . . , Qk of P , compute the approximation error for each of them, and re-
turn the best sample. Here k is a parameter. The larger the value of k, the
better the approximation.

Heuristic 2: Simulated annealing. Simulated annealing (c.f., [13]) is a general
search technique that starts with an initial random solution (i.e., a random
sample) and then tries to converge to an optimal solution by introducing ran-
dom changes. A random change is kept if (1) it improves the current solution,
or (2) some annealing condition is met.

In our implementation of simulated annealing, a random change involves
choosing a random point of Q and replacing it with a random point from
P \ Q. The annealing criterion is the following: During the ith round of
annealing, we replace the solution Q by the solution Q′ with probability
exp((∆(Q,P ) − ∆(Q′, P ))/Ti). Here, Ti is a temperature parameter whose
value is Ti = (k − i)/k, where k is the total number of rounds the algorithm
runs for.
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Heuristic 3: Swapping. We first obtain an approximation Q by taking a random
sample of size m, and then try to improve it as follows. We compute a range
rpos with the largest positive error and a range rneg with the largest negative
error. We remove a random point in Q∩ rneg from Q, and add a random point
in (P \Q) ∩ rpos to Q.

Initial experimental results with the swapping heuristic were encouraging.
However, this heuristic is highly dependent on having a good starting con-
figuration. When this doesn’t happen, the algorithm can get stuck in a local
minimum, after which no further improvement can be made. To overcome this
problem, we implemented two variants of the swapping heuristic.

Heuristic 4: Swapping with restart. This is a version of the swapping heuristic
that starts with a new random sample Q if 10 consecutive rounds of swapping
fail to improve the solution.

Heuristic 5: Swapping with 10% perturbation. This is a version of the swapper
that, after 10 consecutive rounds of swapping fail to improve the solution,
removes dm/10e points of Q at random and replaces them with dm/10e points
of P \Q selected at random.

3.4 Experimental results.

Fig. 1 shows the progress of iterative algorithms for 1000 rounds on a set P
of n = 5000 points chosen uniformly at random from the unit square. The
algorithms are attempting to find a good approximation Q of size m = 100.
The x-axis of the figure represents time (number of rounds) and the y-axis
represents the approximation error. Note that, although the figure looks as
if the various heuristics began with different starting configurations, this is
cause by a lack of resolution, and is not actually the case. All experiments
began with the same initial configuration.

The worst of the heuristics is clearly simulated annealing (Heuristic 2), which
makes some quick improvements in the first few rounds and then gets trapped
in a local minimum. Part of the problem with simulated annealing is that
it completely ignores the problem and tries to make progress by introducing
small random changes. It is very easy for the simulated annealing strategy to
get stuck in a local minimum and never improve. Although it may be possible
to improve the performance of the simulated annealing heuristic by tweaking
the parameters, we were unable to do significantly better than the results
presented here.

The second-worst heuristic is the swapping heuristic (Heuristic 3). The swap-
per performs better than simulated annealing because it introduces a carefully-
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Fig. 4. The progress of Heuristics 1-5 over 1000 rounds.

chosen change that is more likely to improve the current solution. However, it
still only changes the current solution by one point and therefore quickly gets
caught in a local minimum.

The two best heuristics are modifications of the swapping heuristic. Swapping
with restart (Heuristic 4) and swapping with 10% perturbation (Heuristic 5)
both achieve comparable results after 1000 rounds. However, swapping with
10% perturbation converges more quickly to a good solution. This seems to be
due to the fact that, when it gets stuck in a local minimum, it restarts with a
new solution that is still much better than a random sample.

Choosing the best of k random samples (Heuristic 1), a technique that is often
mentioned in the literature, does not perform as well as the modified swapping
heuristics. It reliably finds good approximations, but these are not quite as
good as those found by the two modified swapping heuristics.

3.5 Clustering algorithms

We also considered algorithms that can be loosely termed “clustering” algo-
rithms. These are algorithms that (implicitly or explicitly) partition the point
set S into m groups and then select a representative point or points from each
group.
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Heuristic 6: Rows and columns. This heuristic produces a subset Q with m =
r×s points by first sorting the points by x-coordinate and grouping the points
into r columns, i.e., vertical strips, each containing n/r points. Next, the points
within each column are sorted and grouped into s = m/r rows, i.e., horizontal
strips, of size n/m. Thus we obtain a partition of the plane into m rectangular
cells each containing exactly n/m points.

For our set Q, we take a sample from each cell. Several strategies for choosing
the best sample in each square were implemented. The one that worked best
was to try k = 50 random samples and choose the sample with smallest error
constrained to that cell.

Note that, in these experiments, the value of m is given, so we must factor m
into r and s. We did this by taking r = b

√
mc and then taking s to be the

largest integer so that r× s ≤ m. This gives us an approximation that uses at
most m points. When computing the quality of the resulting approximation
we adjust the dot value δ accordingly.

Heuristic 7: Quadtrees. This heuristic is based on the well-known quadtree
data structure. Let S be some axis-aligned square containing the point set P .
We recursively partition S into squares as follows. If S contains fewer than
4δ points of P then we do nothing. Otherwise, we partition S into 4 equal
squares and recursively partition each square.

Once this partition is computed, we choose a sample from each square of the
partition. If a square contains k points of P then we choose a sample of size
bk/δ + 1/2c from that particular square. The sampling strategy is the same
used for Heuristic 6. As before, this does not always yield a solution with
exactly n/δ points so, when computing the error we adjust the dot value δ
accordingly.

Heuristic 8: Dobkin-Tal. The algorithm proposed by Dobkin and Tal [10] pro-
duces an approximation that is not a subset of P , by repeatedly finding closest
pairs and replacing them by their midpoint.

Dobkin and Tal were originally interested in the dual setting of our problem:
given a set of lines, find a smaller set of lines whose arrangement approximates
the original arrangement. They solve the problem using dualization, so they
arrive exactly at our problem.

Although their approach seems more suited to minimizing the Hausdorff dis-
tance between P and Q—indeed, they prove bounds on the minimal Hausdorff
distance they achieve—they also use their algorithm in an application that is
closely related to ours. Namely, they want to approximate the area half-plane
discrepancy [5] of P with the discrepancy of Q. (The area half-plane discrep-
ancy of a set of points in the unit square is defined as the maximum, over

22



all half-planes, of the absolute difference between the fraction of points in the
half-plane and the fraction of the unit square covered by the half-plane.) Now
if we considered half-planes as regions, then the approximation error of Q with
respect to P is an upper bound on the difference between the area discrepan-
cies of P and Q. Dobkin and Tal claim that for some distributions of P the
area discrepancy of P can be estimated better by a set Q computed with their
algorithm than by a random sample. For this reason we also consider their
algorithm in our experiments.

3.6 Experimental results.

Table 2 shows the results for Heuristic 5, the best of the iterative heuris-
tics, after 50 rounds and all the clustering algorithms. The tests were per-
formed on 6 data sets of size n = 5000 and one real world data set. The data
sets U5K{a,b,c} each consist of 5000 points uniformly distributed in the unit
square. The data sets C5K{a,b,c} each consist of 5000 points drawn from the
“city” distribution described earlier. The US1 data set is the data set shown in
Fig. 1 and consists of 82516 points. For each data set, we used the algorithms
to compute approximations with dot values δ = 100, 50, 20 and 10.

These results suggest that the “rows and columns” heuristic seems to be the
best choice of the clustering heuristics. For large values of δ, it is competitive
with the quadtree heuristic and much better than Dobkin-Tal. For small values
of δ, the “rows and columns” heuristic is definitely the method of choice and
outperforms the quadtree heuristic by a significant margin. This seems to be
because the quadtree heuristic has trouble controling the number of points in
each cell, while the “rows and columns” heuristic has exactly δ points per cell.

Surprisingly, the simple “rows and columns” heuristic also seems to perform
better than Heuristic 5, even though we allow Heuristic 5 to run for 50 rounds.
This makes the “rows and columns” heuristic a very fast method of obtaining
good quality solutions. In terms of computation time, the entire running time
of the rows and columns heuristic is roughly the same as one or two rounds
of an iterative heuristic.

Finally, the Dobkin-Tal heuristic does reasonably well for uniformly distributed
points, but does very poorly with clustered point sets. This seems to be an
artifact of the averaging effect obtained by repeatedly taking the midpoints of
the pairs of points.
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Heuristic δ US1 U5Ka U5Kb U5Kc C5Ka C5Kb C5Kc

100 3206 570 674 655 570 730 680

Heuristic 5 50 3066 556 507 427 515 407 614

(Swap w. 10%) 20 4396 359 268 310 364 368 343

10 789 309 236 243 227 231 223

100 1924 650 682 657 491 487 524

Heuristic 6 50 1036 705 359 748 405 410 367

(Rows & Cols.) 20 885 315 256 294 188 273 203

10 780 153 195 156 119 128 132

100 2289 582 604 739 520 400 524

Heuristic 7 50 1612 500 508 356 421 321 353

(Quadtree) 20 4285 261 230 276 225 217 207

10 6728 439 467 398 398 396 343

100 — 824 742 691 1445 1806 1335

Heuristic 8 50 — 575 519 704 1479 1752 1133

(Dobkin-Tal) 20 — 414 392 399 1378 1631 1028

10 — 280 302 309 1302 1586 1011
Table 2
Experimental results for clustering algorithms.

4 Concluding remarks

In some applications, it may be desirable to give outliers in P a bigger chance
to be present in Q. This can be done by giving these points a higher weight.
For instance, we can let the weight of each point be dependent on the number
of points within a fixed distance from that point. By giving more and more
weight to isolated points, the approximation is likely to become more and more
uniform. The definition of approximation error and our algorithms can easily
be extended to the weighted case, and it would be interesting to experiment
with this.

In our application it seems most reasonable to look at the approximation error
for families of squares or discs. We studied the case of squares, but it would be
interesting to see if our algorithm to compute the approximation error in this
case can be improved. We did not study discs at all in this paper. It is easy
to compute the approximation error for discs in (close to) cubic time, but it
remains open whether this can be done faster.
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Finally, we suspect that computing the best approximation of a given size
with respect to a given set P is NP-hard, but we have not been able to prove
this.
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