Eleventh Annual
Symposium

on Geographic
Information
Systems

T
Vancouver

British Columbia
Canada

16

A Parallel Cartographic
Modelling System:

Design, Implementation, and

Performance

Morin, Patrick R.. M.C.S. Student, Carleton University, Ottawa
Dubrule, Diane E., Assistant Professor of Philosophy, Carleton

University, Ottawa

Sack, Jérg-Riidiger, ALMERCO-NSERC Chair and Professor of Computer

Science, Carleton University, Ottawa

Abstract

We describe a parallel implementation of C. Dana Tomlin's map algebra (Tomlin 1990). The
implementation adheres as closely as possible to Tomlin’s specifications. It is written in C
with the MPI (“Message-Passing Interface”) library of parallel functions. The implementa-
tion is portable to a wide number of parallel computing platforms and has been tested on 3
different platforms ranging from a loosely coupled cluster of workstations to a tightly couple

supercomputer.

1. Introduction

In recent years GIS and Cartography have
gone through substantial changes with
respect (o users, problems, problem domains,
and data. The user community is rapidly
expanding to include users from different
sectors of the economy; along with this come
different demands regarding the type,
required speed, scope and scale of applica-
tions. The effect of these changes is a rapid
and huge increase in the computational
demands placed on GIS and Cartographic
modelling. To keep up with the computation-
al demands without sacrificing accuracy of
models or resolution, parallel computing
appears to be the only solution.

In this paper, we describe the design and
implementation of a parallel system for carto-
graphic modelling. The remainder of the

paper is organized as follows: Section 2
describes the Map Algebra specification.
Section 3 gives a high level description of our
implementation. Section 4 discusses design
issues which arose during the implementa-
tion. Section 5 presents a simple application.
Section 6 presents performance results for the
system. Section 7 concludes with some open
problems and ongoing projects.

2. Map Algebra

Each of the fifty-nine operations described by
Tomlin (1990) operates on geographic data
stored in one or more “map layers” and pro-
duces a single output layer. A layer consists of
a two-dimensional array (“raster”) of loca-
tions (each containing a single value), togeth-
er with general facts about the layer, such as
its dimensions and resolution. The functions




we have implemented include all of Tomlin’s local, zonal and
incremental functions and most of the focal functions.

The local map algebra functions perform operations on the
values at a single location on one or more layers and assign the
result of the calculation to the corresponding location in the
output layer. For example, LocalMean computes a new raster in
which the value of the raster at each location is the mean of the
values at that location in the input rasters.

The zonal functions input two layers (“firstlayer’” and “second-
layer”) and compute a new value for a location in the output layer
(“newlayer”) as a function of firstlayer values in the location’s sec-
ond- layer zone. In Tomlin’s terminology, a zone is a set of loca-
tions (not necessarily contiguous or having any special shape) that
have the same value. It can be as small as a single location or as
large as all the locations in a raster. Although the term is used with
respect to all layers and types of functions, when referring to the
zonal functions, the term signifies a group of secondlayer locations
with the same value which determine the firstlayer locations to be
used in computing newlayer values. For example, ZonalPercentage
computes a newlayer in which the value at each location is the per-
centage of firstlayer locations within that location’s secondlayer
zone that have a value equal to the value at that location.

Focal map algebra functions treat locations as the foci of
neighbourhoods, computing new values for a location on the
basis of the values in the location’s neighbourhood. Tomlin
defines a neighbourhood as a set of locations each of which
bears a specified distance and/or directional relationship to a
particular location, as defined by a range of distances, ranges of
directions or combinations of distance and direction. A
FocalVariety operation, for example, computes a newlayer in
which the value of the raster at each location is the number of
distinct values in that location’s neighbourhood.

The incremental functions are a second type of map algebra
function that treats locations as the foci of neighbourhoods. All
compute new values for a location on the basis of the values in the
location’s immediate (nine-location) neighbourhood, which is used
as a way of defining the non-punctual cartographic form of a loca-
tion, i.e. its lineal, areal and surficial characteristics. For example,
the length of a road can be computed using Incremental Length,
which looks at each location as the focus of an immediate neigh-
bourhood: If the focus contains part of the road, it identifies its lin-
ear form, which depends on which of the immediately adjacent
locations also contain parts of the road, then multiplies the length
associated with that lineal form by the resolution of the raster, and
assigns the result—this location’s contribution to the road length—
to the location in an intermediate layer. ZonalSum (with the inter-
mediate layer as firstlayer and a layer with all locations set to the
same value as secondlayer) is used to sum the contributions of all
the locations, which the total length of the road. The areal group of
incremental functions produce similar results with areas. The calcu-
lation of surficial features, such as slopes and drainage, depend on
viewing the location as a grid square, which is bevelled by taking
into consideration the relative heights of locations in the immediate
neighbourhood. The heights, given in a surfacelayer, can also be
considered in determining linear and areal features.

3. A Parallel Map Algebra
Implementation

Map Algebra forms the heart of a geographic information sys-
tem based on a cartographic modelling approach (Tomlin

Cartography 17

1990). Map algebra operations are concerned solely with data
interpretation (as opposed to data preparation or presentation):
they uncover facts, relationships and meanings implicit in exist-
ing data and express them explicitly as values assigned to loca-
tions in output layers. The map algebra operations must be
complemented by facilities for preparing data for analysis and
presenting results. The project described here makes use of fea-
tures provided by NEMO (Hutchinson, et al. 1996), a system
for parallel neighbourhood modelling. The interface with the
data-preparation and presentation facilities is accomplished by a
function that (1) builds a standard information structure from
the partly processed map data and the parsed user requests it
receives, (2) calls one or more map algebra functions and then
(3) sends the result to the presentation facility.

Some of the map algebra functions are computationally very
intensive; e.g., it takes 10 hours to process a raster of size
6000x6000 at 1000 cells/second. There are significant advantages
in parallelizing the map algebra functions. Our work shows that
processing time can be reduced linearly (in the number of proces-
sors) so that even a relatively simple map algebra operation that
requires 104 seconds on a single processor machine can be carried
out in 6.5 seconds on a sixteen processor machine.

Our implementation contains fifty-five of the fifty-nine opera-
tions and may be classified as a data parallel MIMD (“multiple in-
struction, multiple data”) implementation. NEMO splits the raster
that represents the map as a whole into subrasters. Each is sent to
one of the processors together with the location of the subraster in
the raster and other facts about the raster and the data it contains.
Each processor uses its own program to compute as much as it can
with the data it has. It passes messages to other processors to obtain
additional data it requires to execute the program. Two types of com-
munication are used: point-to-point communication, in which one
processor receives data from another, and collective communication
using MPI reduction functions, in which data is collected from all the
processors, a predefined or user-defined reduction operation is per-
formed on it, and the result is returned to all the processors.

A very different type of parallel implementation of the map
algebra functions was carried out by Li (1992). He describes an
SIMD (‘“single instruction, multiple data™) implementation of map
algebra functions of each type on a massively parallel Connection
Machine (with 16,384 processors) in C*. A major advantage of a
MIMD implementation is that general purpose MIMD hardware
is readily available at a good price to performance ratio (as little
as a cluster of 4 Intel Pentium processors), while SIMD hardware
is typically very special purpose and expensive.

4. Design Issues

This section discusses some of the issues encountered in the
design of the Map Algebra library and the design decisions made.

4.1. Zonal Operations

Zonal functions pose a problem for parallelism in that zones need
not be contiguous, of equal size, or of a regular shape. Because of
this, a single zone can span multiple subrasters which makes the
parallel computation of, say, a ZonalMaximum non-trivial. The
approach taken in our implementation is to have each processor
compute values for its subraster, perform a global communication
operation to combine the values for all zones, and then write out
the appropriate values in its subraster. MPI provides efficient sup-
port for this type of operation in the form of the MPI_Allreduce




18 Eleventh Annual Symposium on Geographic Information Systems

function. For example, we can compute the maximum value for
each zone across all processors by performing an MPI_Allreduce
operation with the parameter MPI_MAX. Another example is the
calculation of a mean by performing two MPI_Allreduce opera-
tions, to sum the counts and values of each zone.

4.2. Focal Operations

The Focal family of Map Algebra functions implemented operate
on a single raster using fixed shape neighbourhoods. The neigh-
bourhoods can be specified either as an integer radius in which
case all cells within the given radius are used in the computation,
or as a list of (x.y) offsets which are taken as relative to the pixel
being operated on. In this way, arbitrarily complex neighbourhoods
can be specified. For the sake of efficiency, neighbourhoods speci-
fied as a radius are converted internally to a list of offsets.

The non-trivial aspect of implementing focal operations is
that the neighbourhood data for a pixel may not be stored on
the same processor that the pixel itself is stored. One way of
handling this is to implement a demand-driven system in which
each processor determines which pixels it needs from other
processors and requests them from the other processors. The
other processors then send the requested pixels.

We chose to implement a solution more efficient in terms of
communication, in which each processor determines beforehand
which of its pixels will be needed by other processors and sends
them these pixels. This is done by measuring the absolute value of
the largest offset and padding the subrasters of the raster with data
from neighbouring processors. Although this method may not
always be optimal in terms of communication, its simplicity, cou-
pled with the fact that most focal operation operate on circular
neighbourhoods, makes it the most effective. This method has the
additional advantage that it requires half as many communication
operations as the previously described method.

Another important issue in the implementation of the focal oper-
ations was the question of whether to store extra neighbourhood
data separately, or to create a new “padded” subraster which con-
tains the pixels of the original subraster as well as those on the
boundary which are needed as neighbourhood data. The second
approach has the apparent disadvantage that a new area of memory
must be allocated for all the pixels in the padded subraster, and all
the pixels of the original subraster must be copied to this area. Both
approaches were implemented and experimentally compared; the
padded subraster approach proved to be more efficient. The reason
for this is that, although there is some overhead involved in copying
the pixels of the old subraster, pixel indexing becomes simpler
(roughly six machine instructions per lookup). Since focal opera-
tions tend to look at many pixels, particularly when the neighbour-
hood size is large, this was the approach finally chosen.

4.3. FocalMajority, FocalMinority, and FocalVariety

Initially, a naive implementation of the FocalMajority,
FocalMinority, and Focal Variety functions was implemented but
was found to be unacceptably slow when the size of the neighbour-
hood was large. This is due to the fact that it performed a number of
pixel operations quadratic in the size of the neighbourhood. Divide-
and-conquer algorithms exist which use less than a quadratic num-
ber of pixel operations, but these methods have unacceptably high
overheads when the neighbourhood size is small. After some per-
formance tests, we designed and implemented a method which per-
forms a linear number of pixel operations and uses a technique sim-
ilar to that of the Counting Sort algorithm described in Knuth 1973.

This technique exploits the fact that there are only a finite
number of possible values a pixel can have. It uses just two auxil-
iary arrays to keep track of the counts of each pixel type in the
neighbourhood and the pixel types that have been encountered. In
this way, the second array can be used as an index into the first to
compute the majority, minority, or variety in time linear in the
neighbourhood size. Also, the arrays need to be initialized only
once, so that much of the overhead of the algorithm is incurred
once for each processor rather than once for each pixel.

5. A Simple Application

Figure 1 shows the results of applying two map algebra operations
in order to trace the shorelines of lakes. The first image is the origi-

Figure 1. Shoreline tracing using the Map Algebra functions.




nal input raster, an aerial view of a forest and several lakes. The sec-
ond image is the result of using a LocalRating operation to convert
the image into two distinct parts, land and water. The third image is
the result of applying the Focal Variety operation to the second image
with a distance of 1. In this case, since there are only two types of
pixels, land and water, the Focal Variety function sets a pixel to the
value 1 (white) if it is not on a shoreline and 2 (black) if it is.

6. Experimental Results

This section presents performance results for the parallel Map
Algebra implementation. The tests described herein were per-
formed on a cluster of 16 166MHz Pentium processors connected
by a 100MHz fast Ethernet switch. Each processor has 32 Mbytes
of main memory and a 1GB SCSI hard disk. Results are presented
for representative zonal and focal functions. (As far as implemen-
tation goes the focal and incremental functions are equivalent.)
For these tests we were interested in measuring the perfor-
mance of our implementation with respect computing perfor-
mance and not I/O. (Typically, a sequence of Map Algebra func-
tions is executed on given input.) Towards this end, all tests
loaded the input data, synchronized the processors (with a call to
MPI_Barrier), performed the Map Algebra computations, and
synchronized the processors again. The time measured was the
time elapsed after the first synchronization until after the second.
Figure 2 shows the performance of the LocalMaximum
function for between 1 and 16 processors on two input rasters
of size 2048x2048. The performance is very near optimal for up
to 6 processors and then drops off slightly. The reason for this

LocalMaximum
T T

3e+07 T T T T T T

T T T T T

Measured —<—
Optimal ----

2.5e+07

2e+07

1.5e+07

Speed (pixels/sec)

1e+07

L s L L i L L

0 L L L L n s L
5 6 7 8 9 10
Number of Processors

Figure 2: Performance of LocalMaximum.

is that at this point, the computation time is so small that the
synchronization step begins to have a noticeable effect.

Figure 3 shows the performance of the FocalMaximum function
on two rasters of size 2048x2048 with a neighbourhood of radius 5.
Surprisingly, the speedup is better than optimal for some numbers of
processors. This can be explained by the fact that as the number of
processors increases, the number of pixels stored by each processor is
smaller which allows the processor’s on board cache to achieve better
hit rates. This effect is only noticeable with focal functions since the
local and zonal functions examine each pixel only once whereas the
focal functions examine each pixel up to n times for a neighbourhood
of size n. Similar, but more marked effects have been observed when
the size of the raster exceeds the capacity of a processor’s main mem-
ory and parts of the raster must be swapped to disk.

Cartography 19

Another interesting aspect of Figure 3 is the manner in which
the performance fluctuates with the number of processors. At first
it may appear that these fluctuations are caused by measurement
errors, but in fact they are related to the factorization of the num-
ber of processors and its effect on communication. To see this,
consider 16 processors which are arranged as a 4x4 mesh. These
processors must communicate roughly 2048x5x2x6=12280 pixels
in all. If we consider 13 processors arranged as a 1x13 mesh, we
would expect the amount of communication to be less since there
are fewer processors, but in fact we see that roughly
2048x5x2x12=24560 pixels must be communicated between
processors. The worst configurations occur when the number of
processors is a prime number, and the best when it is a perfect
square. In our system, this is not a serious issue since it consists of
a high bandwidth network and the computing power gained by the
extra processors makes up for the extra communication overhead,
but in more loosely coupled networks it is conceivable that it may
be wise to not use some processors in order to avoid this effect.

FocalMaximum at 5
700000 T T T T T T T T T T T T T T
Measured <—
Optimal -~
600000 |- / g
500000 - 4
o
& 400000 b
el
]
4
£
-3
2 300000 | g
a
7]
200000 | 4
100000 b
0 n L 1 L L s L L L ' n n L n
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
Number of Processors

Figure 3: Performance of FocalMaximum.

Another method would be to write the number of processors as a
sum of squares and treat each square as an individual mesh. The dis-
advantage of this approach is that it causes irregular communication
patterns, increasing the complexity of the message passing code.

7. Conclusion

Continuing work on this project includes using the built-in
NEMO facilities to help implement the remaining four Map
Algebra operations involving spreading and radiating clauses of
the focal functions. Other ongoing projects include a graphical
Map Algebra specification language and a full featured Map
Algebra parser and execution platform.

References

Message Passing Interface Forum. 1995. MPI: A Message-
Passing Interface Standard. Knoxville, TN: University of Tennessee.

Hutchinson, David, Lars Kiittner, Mark Lanthier, Anil
Maheshwari, Doron Nussbaum, David Roytenberg, and Jorg-
Riidiger Sack. 1996. “Parallel Neighbourhood Modelling:
Research Summary”, SPAA ’96 Proceedings, pp. 204-207; con-
ference version in Proceedings of the 4th ACM Workshop on
Advances in GIS, Rockville, MD, pp. 25-34.



20 Eleventh Annual Symposium on Geographic Information Systems

Li, Bin. 1992. “Opportunities and Challenges of Parallel Professor in the Philosophy Department and a fourth year
Processing in Spatial Data Analysis: Initial Experiments with undergraduate in the School of Computer Science at Carleton
Data Parallel Map Analysis.” GIS/LIS Proceedings, 2:445-458. University.

Tomlin, C. Dana. 1990. Geographic Information Systems and
Cartographic Modeling. Englewood Cliffs, NJ: Prentice Hall. Pat Morin holds a B.C.S. degree (Highest Honours) from Carleton

Knuth, Donald E. 1973. Searching and Sorting, volume 3 of

. . University and is currently an M.C S student at Carleton.
The Art of Computer Programming. Addison-Wesley.

Jérg-Riidiger Sack holds degrees in Computer Science from
Bonn (Diplom), Germany and McGill, Montréal (Ph.D.), holds
Diane Dubrule holds degrees in Philosophy from Cornell an ALMERCO-NSERC Chair and is a Professor in the School
(A.B.), and Toronto (M.A., Ph.D.) and is an Assistant of Computer Science at Carleton University.

Biographies



