
Algorithms for Optimal Outlier Removal 1

Rossen Atanassov, Prosenjit Bose, Mathieu Couture,
Anil Maheshwari, Pat Morin, Michel Paquette,

Michiel Smid, and Stefanie Wuhrer

School of Computer Science, Carleton University
1125 Colonel By Drive, Ottawa, CANADA K1S 5B6

Abstract

We consider the problem of removing c points from a set S of n points so that the
remaining point set is optimal in some sense. Definitions of optimality we consider
include having minimum diameter, having minimum area (perimeter) bounding
box, having minimum area (perimeter) convex hull. For constant values of c, all our
algorithms run in O(n log n) time.

Key words: Computational geometry, outlier removal, computational statistics

1 Introduction

Motivated by the problem of removing outliers in a data set, this paper consid-
ers the following problem: Let S be a set of n points in R2 and let f : 2R2 7→ R
be a function mapping point sets onto real values. We consider the problem
of selecting a subset S ′ ⊆ S, |S ′| = c such that f(S \ S ′) is minimum. The
objective functions f that we consider are:

(1) f(X) is the diameter of X,
(2) f(X) is the area/perimeter of the smallest axes-parallel rectangle con-

taining X, and
(3) f(X) is the area/perimeter of the convex hull of X.

We call these problems the f -based c outlier removal problems. We are par-
ticularly interested in the case when c (the number of outliers) is small. The
functions we consider all have the property that their values can become very

1 This work was partly supported by NSERC

Preprint submitted to JDA 6 January 2009

large in the presence of even one outlier. Indeed, the same types of outliers
that can skew non-robust summary statistics such as the mean and standard
deviation make these functions very large. The choice of which function to use
for outlier removal depends on the particular application. Methods based on
bounding boxes are well-suited for situations where the data consists of two
measured variables in which scale is important. The methods based on diame-
ter are well-suited to situations where rotations of the data are irrelevant. The
methods based on area of the convex hull are well-suited to situations where
even affine transformations of the data are irrelevant.

1.1 Previous Work.

The outlier removal problems stated above and similar problems are fairly
well-studied problems in the field of computational geometry. However, most
work thus far has focused on the case when c is large. 2 More specifically, most
research has been on the problem of finding a k point subset (a k-cluster)
X ⊆ S, |X| = k, such that f(X) is minimum. These are the same problems
studied in the current paper with k = n− c except that our focus is on large
values of k (small c) and most existing research focuses on designing efficient
algorithms for small values of k.

Minimum Diameter. The problem of finding a subset of S of size k with
minimum diameter has been studied by Aggarwal et al. [1] who give an
O(k2.5n log k + n log n) time algorithm. Using a different approach, Eppstein
and Erickson [12] improve the running time to O(n log n + k2n log2 k).

Minimum-Perimeter/Area Enclosing Rectangle. Aggarwal et al. [1]
also give an O(k2n log n) time algorithm to find the subset of S with the
minimum-perimeter enclosing axes-parallel rectangle. Eppstein and Erickson
[12] improve the running time to O(n log n + k2n). Segal and Kedem [19]
present an algorithm for this problem that runs in O(n+k(n−k)2) time, pro-
vided n

2
< k ≤ n. Their algorithm can also find the minimum area rectangle.

Minimum-Perimeter/Area Convex Hull. The problem of finding a sub-
set of S of size k that has the least perimeter convex hull was first considered
over 20 years ago by Dobkin et al. [8] who gave an O(k2n log n + k5n) time
algorithm. This algorithm can be improved to run in O(k2n log n + k4n) time

2 One notable exception to this statement is the work on linear programming with
c violations, which includes the problem of finding a subset S′ of S, |S′| = c such
that the radius of the smallest disk containing S \S′ is minimum. For this problem,
Matoušek gives an O(n log n + c3nε) time algorithm [16] and Chan [4] gives an
O(nβ(n) log n + c2nε) time algorithm, where ε > 0 is an arbitrarily small constant
and β(·) is related to the inverse Ackermann function.

2

using techniques of Aggarwal et al. [1]. Eppstein and Erickson [12] hold the
record with a running time of O(n log n + k3n).

The problem of finding a subset of S of size k that has the minimum area
convex hull was considered by Eppstein et al. [13] and later by Eppstein [11]
who give O(kn3) and O(n2 log n + k3n2) time algorithms for this problem,
respectively.

1.2 New Results.

For fixed values of k, the results described above give O(n log n) or O(n2 log n)
time algorithms for finding the k point subset of S that minimizes f . However,
when k is close to n, all but one of the algorithms cited above require Ω(n3)
time. The one exception to this is the algorithm of Kedem and Segal [19],
which runs in O(n + k(n− k)2) = O(n + (n− c)c2) and is therefore fast when
k is very large.

In the current paper we consider specifically the case when k = n − c. For
Problem 1 (diameter) we obtain an O(n log n + cn + c6 log2 c) time algorithm.
For problem 2 (minimum area/perimeter bounding rectangle) we obtain an
O(n + c3) time algorithm. For Problem 3 (minimum area/perimeter convex

hull) we obtain an O
(
n log n +

(
4c
2c

)
(3c)c+1n

)
time algorithm. We also give

Ω(n log n) lower bounds for Problems 1 and 3, thereby showing that, for con-
stant values of c, our algorithms are optimal.

We obtain many of our results by borrowing techniques from the theory of
fixed-parameter tractability (FPT) that are typically applied to NP-hard prob-
lems [9]. In particular, our solutions to Problems 1 and 2 use the technique
of kernelization by using a fast algorithm to find a problem kernel of size
cO(1) whose solution gives a solution to the original problem. Our solution to
Problem 3 can also be viewed as a form of the bounded search tree method
[9], although its implementation differs considerably from that used in typical
FPT algorithms.

The remainder of the paper is organized as follows: Section 2 presents an algo-
rithm for the diameter-based c outlier removal problem. Section 3 presents al-
gorithms for the (bounding box) area/perimeter-based c outlier removal prob-
lems. Section 4 presents algorithms for (convex hull) area/perimeter-based c
outlier removal problems. An abstract of the results in Section 4 has appeared
in the proceedings of the 18th Canadian Conference on Computational Ge-
ometry [2].

3

2 Minimizing Diameter

The diameter of a set X is defined as max{‖pq‖ : p, q ∈ X}. In this section
we consider the diameter-based c outlier removal problem of finding a subset
S ′ ⊆ S, |S ′| = c such that the diameter of S \ S ′ is minimum over all choices
of S ′. We begin by showing that this problem has an Ω(n log n) lower bound
even for the case c = 1.

2.1 The Lower Bound

Theorem 1 In the algebraic decision tree model of computation the diameter-
based 1 outlier removal problem has an Ω(n log n) lower bound.

Proof Computing the diameter of a set S of n points in R2 has an Ω(n log n)
lower bound in the algebraic decision tree model [17]. We simply observe that
the point x that defines the optimal solution is one of the two points that
define the diameter of S. Thus, given x we can compute the diameter of S
in O(n) time by computing the distance from x to every other point of S. It
must therefore take Ω(n log n) time to determine x. 2

2.2 The Algorithm

Next we give an algorithm for the diameter-based c outlier removal problem.
We do this by first considering a more general problem in Rn2

and then use
the resulting algorithm to find a set S̃ of O(c2) points with the property that
any optimal set S ′ for S is also an optimal set for S̃.

Let A denote an n× n symmetric matrix of non-negative real numbers whose
diagonal entries are all equal to 0 and whose off-diagonal entries are all unique.
An example of such a matrix, which is used for diameter-based outlier removal,
is the matrix in which Ai,j denotes the distance from point i to point j in an
n point set in which all interpoint distances are unique.

Let Ai,? and A?,i denote the ith row and column of A, respectively. For a set
I of indices we denote by A \ I the submatrix of A obtained by deleting Ai,?

and A?,i for every i ∈ I from A. We consider the problem of selecting a set T
of c indices, such that the largest value in A\T is minimum over all choices of
T . We begin by showing that the algorithm DeepSet described below selects
a set T̃ of at most (c + 1)2 indices that are a superset of some optimal set T .

In the following, marking an index i means adding i to T̃ and deleting an

4

index i means removing row i and column i from A. In words, Algorithm
DeepSet(A, c) finds the maximum entry Ai,j of A, marks the indices of the
c+1 largest entries in Ai,? and A?,j, and finally deletes i and j. The algorithm
repeats this process c + 1 times. In pseudocode, Algorithm DeepSet(A, c) is
given below:

DeepSet(A, c)

1: for g = 1 to c + 1 do
2: Ai,j ← maximum entry of A
3: x← (c + 1)-st largest entry in Ai,?

4: T̃ ← T̃ ∪ {k : Ai,k ≥ x} {* mark c + 1 largest entries in row/column i
*}

5: x← (c + 1)-st largest entry in A?,j

6: T̃ ← T̃ ∪ {k : Ak,j ≥ x} {* mark c + 1 largest entries in row/column j
*}

7: A← A \ {i, j} {* delete i and j *}
8: return T̃

Lemma 2 Let T be a set of c indices such that the largest value in A \ T
is minimum over all choices of T . Then Algorithm DeepSet(A, c) returns a
superset T̃ ⊇ T .

Proof To prove the lemma we first impose an order on the elements of T =
{t1, . . . , tc}, such that the maximum element of A\{t1, . . . , ti−1} is in Ati,? (and
symmetrically in A?,ti). This ordering always exists, otherwise T is not optimal.
Let Ti = {t1, . . . , ti} and let T̃i denote the set of indices contained in T̃ after the
execution of the i-th iteration of the algorithm DeepSet. Let Di denote the
set of 2i indices that have been deleted after the ith iteration of the algorithm
DeepSet. For convenience we use the convention T0 = T̃0 = D0 = ∅. The
following claim is easily established by induction on i:

Claim 1 The maximum value in A\Di is less than or equal to the maximum
value in A \ Ti.

Next we prove, by induction on i, that T̃i ⊇ Ti. The base case, i = 0, is trivial.
For the inductive step, we show that T̃i ⊇ Ti if T̃i−1 ⊇ Ti−1. Let Ak,` be the
maximum element of A\Ti−1. Recall that, by the ordering we have chosen for
T , this implies that Ti = Ti−1 ∪{ti} where ti ∈ {k, `}. We will show that both
k and ` are in T̃i. Three cases are possible:

(1) k 6∈ T̃i−1 and ` 6∈ T̃i−1. Since the marked elements are a superset of the
deleted elements, Ak,` is an element of A \Di−1. Therefore, by Claim 1,
Ak,` is the largest element in A \ Di−1. Thus, k and ` are marked (and
deleted) during the ith iteration of DeepSet so {k, `} ⊆ T̃i.

(2) k ∈ T̃i−1 and ` ∈ T̃i−1. Then {k, `} ⊆ T̃i−1 ⊆ T̃i.

5

(3) Without loss of generality k ∈ T̃i−1 and ` 6∈ T̃i−1. Two cases are possible.
(a) k was marked and deleted during the first i−1 iterations of algorithm

DeepSet. Hence, the indices of the c+1 largest entries in Ak,? are in
T̃i−1 and none of these indices is `. On the other hand, Ti−1 contains
only i − 1 < c + 1 indices and none of these is k. Thus, it must be
that A \ Ti−1 contains a value Ak,`′ > Ak,`, but this contradicts the
ordering of T .

(b) The index k was marked, but not deleted, during the first i − 1
iterations of algorithm DeepSet. Thus, the same argument used in
Case 1 above implies that {k, `} ⊆ T̃i.

This completes the proof of Lemma 2. 2

Carefully inspecting the proof of Lemma 2 shows that it actually implies the
following slightly stronger statement (because T̃c+1 contains the indices of the
largest element in A \ Tc).

Lemma 3 Let Ã be the submatrix of A induced by the row and column indices
in the set T̃ produced by Algorithm DeepSet. Then the value of the optimal
solution for Ã is equal to the value of the optimal solution for A.

We can use the algorithm DeepSet to reduce a problem of size n to one of
size O(c2). The set S implicitly defines an n×n distance matrix A where Ai,j

is the distance from the ith point in S to the jth point in S. Note that A is
a symmetric matrix of non-negative real numbers with zero values along the
diagonal. To ensure that A also has the second property we perform compar-
isons between the elements of A lexicographically using the key (Ai,j, i, j) for
the element Ai,j. In this way we can run algorithm DeepSet on A to obtain
a superset of the indices of points that need to be removed to minimize the
diameter of S.

Lemma 4 There exists an O(n log n + cn + c6 log2 c) time algorithm to solve
the diameter-based c outlier removal problem.

Proof To execute algorithm DeepSet on the matrix A implicitly defined by
S, we first preprocess S, in O(n log n) time, using the deletion-only convex hull
structure of Hershberger and Suri [15], which allows the deletion of a point in
O(log n) time and makes it possible to find the diameter in O(n) time [20].

Denote the two points forming the diameter of S by p and q. After the pre-
processing described above, p and q can be found, and deleted, in O(n) time.
Next, using an O(n) time selection algorithm we mark the c+1 furthest points
from p and q. Repeating this c + 1 times we obtain, in O(cn) time a set S̃
of O(c2) marked points such that the optimal solution S ′ for S is also the
optimal solution for S̃.

6

Once we have computed S̃ we apply the algorithm of Eppstein and Erickson
[12] to find the set S ′ in O(c2(c2)2 log2(c2)) = O(c6 log2 c) time. These three
steps (preprocessing, finding S̃ and finding S ′) take a total time of O(n log n+
cn + c6 log2 c), as promised. 2

Remark. The DeepSet algorithm can be extended to handle slightly more
general problems for which the matrix A is not necessarily symmetric. The
only modification needed for this extension is that the indices of the c + 1
largest entries in Ai,? and in A?,i as well as Aj,? and A?,j should be marked.
This modification at most doubles the size of the resulting set T̃ of marked
indices.

3 Minimizing the Enclosing Rectangle

In this section we propose a simple algorithm for the following (bounding box)
area/perimeter-based c outlier removal problem: given a set S of n points in
the plane, find an axes-parallel closed rectangle R of minimum area/perimeter
that has exactly c points of S in its exterior. Our algorithm first computes a
set of O(c) candidate points and then uses the algorithm of Kedem and Segal
[19] to compute the desired rectangle. The main steps of our algorithm are
given by the following pseudocode:

FindOptimalRectangle(S, c)

1: Find a subset K ⊆ S consisting of c leftmost, c rightmost, c topmost and
c bottommost points in S.

2: Compute the smallest axes-parallel bounding box B for points in S \K,
and then delete S \K.

3: Insert c points at the bottom-left corner of B. Also insert c-points at the
top-right corner of B. Let the set of newly inserted points be I.

4: Compute the minimum area/perimeter axes-parallel rectangle R that en-
closes exactly c + |K| points out of 2c + |K| points in the set K ∪ I using
the algorithm in [19].

Lemma 5 The bounding box B is in the interior of the rectangle R reported
by FindOptimalRectangle.

Proof The proof is by contradiction. Assume that the box B is not completely
in the interior of R. Then at least one of the points in the set I is in the exterior
of R. Let p be one such point. Imagine the coordinate system with its origin
at p. Notice that R does not overlap with at least one of the following four
halfspaces: (1) y ≥ 0 (2) x ≥ 0 (3) y ≤ 0 (4) x ≤ 0. Each of these half spaces
contains more than c points (including p). Hence there are more than c points
in the exterior of R, a contradiction. 2

7

Theorem 6 There exists an O(n + c3) time algorithm to solve the (bounding
box) area/perimeter-based c outlier removal problem.

Proof Correctness follows from Lemma 5. As for the complexity analysis, Steps
1–3 take O(n) time. Since |K| ≤ 4c, Step 4 requires O(c3) time [19]. Hence
the overall time complexity of the algorithm is O(n + c3). 2

4 Minimizing the Convex Hull

In this section we consider the following (convex hull) area/perimeter-based
c outlier removal problems : Given a set S of n points, find a subset S ′ ⊆ S,
|S ′| = c such that the area/perimeter of the convex hull of S \ S ′ is minimum
over all choices of S ′. Throughout this section, we use conv(X) to denote the
convex hull of the point set X. We start by giving an Ω(n log n) lower bound,
even for the case when c = 1.

4.1 The Lower Bound

Theorem 7 In the algebraic decision tree model of computation, the (convex
hull) area/perimeter-based 1 outlier removal problem has an Ω(n log n) lower
bound.

Proof The proof is by a reduction from the problem Set-Equality, of de-
termining whether two sets A and B of real numbers are equal, which has
an Ω(n log n) lower bound in the algebraic decision tree model [3]. The Set-
Equality problem can be mapped to an outlier removal problem on the point
multiset S = SA] SB where SA = {(x, x2) : x ∈ A}, SB = {(x, x2) : x ∈ B}
and] denotes multiset union. The sets A and B are equal if and only if for
every p ∈ S, conv(S) = conv(S \ {p}). 2

4.2 The Algorithm

In this subsection we present an algorithm to solve the (convex hull) area/perimeter-
based c outlier removal problem. Throughout this subsection we will simply
discuss the area-based problem. The bulk of the computational work in the
algorithm is done by a dynamic programming subroutine that handles area or
perimeter equally well. We start with some geometric preliminaries.

8

p0,j

p0,j−1
p0,j+1

p1,` p1,k

S0 S1

Fig. 1. Removing a point p0,j from S0 exposes a chain p1,k, . . . , p1,` of S1.

4.2.1 Preliminaries

The convex layers S0, . . . , Sk of S are defined as follows: S0 is the subset of S
on the boundary of conv(S). Si, for i ≥ 1 is the subset of S on the boundary of
conv(S \⋃i−1

j=0 Sj). The convex layers of S can be computed in O(n log n) time
[5,15] or, more simply, the first c convex layers can be computed in O(cn log n)
time by repeated applications of any O(n log n) time convex hull algorithm.
For the remainder of this paper we will use the notation pi,j to denote the
(j mod |Si|)th point of Si, and use the convention that pi,0, . . . , pi,|Si|−1 occur
in counterclockwise order on the boundary of conv(Si).

Once the first c+ 1 convex layers S0, . . . , Sc have been computed, we can find,
in O(c2n) time, for each point pi,j on layer i and for each layer i′ > i and
i′ ≤ c the two points pi′,k and pi′,` such that the line through pi,j and pi′,k
(respectively pi,j and pi′,`) is tangent to Si′ . This is accomplished by a simple
walk around Si, updating tangents pi′,k and pi′,` as we proceed.

Consider a point p0,j ∈ S0 and refer to Figure 1. If we remove p0,j from S then
a (possibly empty) sequence p1,k, . . . , p1,` of S1 appears on the boundary of
conv(S \ {p0,j}). When this happens we say that p1,k, . . . , p1,` is exposed. This
exposed sequence can be obtained from the preprocessing described above
by using two tangents joining p0,j−1 and p0,j+1 to p1,k and p1,`, respectively.
Finding the two tangent points p1,k and p1,` takes O(1) time and traversing
the sequence takes O(tj) time, where tj = `− k + 1.

Once we have removed a point p0,j from S0, if we know the area (or perimeter)
of conv(S), then we can compute the area (or perimeter) of conv(S \{p0,j}) in
O(tj) time. We do this by computing the area of the triangle 4p0,j−1p0,jp0,j+1

and subtracting from it the area of conv({p0,j−1, p0,j+1}∪{p1,k, . . . , p1,`}). This
gives us the difference in area (perimeter) between conv(S) and conv(S \
{p0,j}).

In this section we present our algorithm for solving the perimeter-based and
area-based outlier removal problems. Our solution to both problems is to enu-
merate all the combinatorial types of solutions of size c. For each such solution
type, we then use a combination of divide-and-conquer and dynamic program-

9

ming to find the optimal solution of that particular solution type. Before pre-
senting the general algorithm, it will be helpful to discuss the special cases
c = 1 and c = 2 to illustrate the principles involved.

4.2.2 Removing 1 Outlier

The case c = 1 asks us to remove 1 point of S so that the convex hull of
the resulting set has minimum area. This can be solved as follows: We first
compute the two convex layers S0 and S1 in O(n log n) time and preprocess
them for the tangent queries described in the previous section. We then de-
termine, for each point p0,j ∈ S0 the difference in area between conv(S) and
conv(S \ {p0,j}) using the method described in the previous section. This pro-
cess takes O(1 + tj) time, where tj is the number of vertices of S1 exposed by
the removal of p0,j. We output the point p0,j that gives the largest difference
in area.

To analyze the overall running time of this algorithm we observe that any
particular point p1,k ∈ S1 appears in at most two triangles 4p0,j−1, p0,j, p0,j+1

and 4p0,j, p0,j+1, p0,j+2. Stated another way,

|S0|−1∑
j=0

tj ≤ 2|S1| ≤ 2n .

Thus, the overall running time of this algorithm is

T (n) = O(n log n) +
|S0|−1∑
j=0

O(1 + tj) = O(n log n) ,

as claimed.

4.2.3 Removing 2 Outliers

Next we consider the case c = 2. In this case, the optimal solution S ′ has one
of the three following forms:

(1) S ′ contains two consecutive points p0,j and p0,j+1 of S0.
(2) S ′ contains two non-consecutive points p0,j1 and p0,j2 of S0 (with j2 6∈
{j1 − 1, j, j1 + 1}).

(3) S ′ contains one point p0,j of S0 and one point p1,j′ of S1.

The solutions of Type 1 can be found in much the same way as the algorithm
for the case c = 1. For each j ∈ {0, . . . , |S0| − 1} we compute the difference in

10

area between conv(S) and conv(S\{p0,j, p0,j+1}). The analysis remains exactly
the same as before except that, now, each point of S1 can appear in at most
3 area computations, instead of only 2. Thus, all solutions of Type 1 can be
evaluated in O(n log n) time.

The solutions of Type 3 can also be found in a similar manner. For each
point p0,j ∈ S0 we remove p0,j to expose a sequence p1,k, . . . , p1,` of S1 and
compute the area of conv(S \ {p0,j}). We then remove each of p1,k, . . . , p1,`

in turn (exposing a chain of points from S2) and compute the area of the
resulting convex hull. To analyze the cost of all these, we observe that each
point p1,j ∈ S1 appears in at most 2 subproblems because there are at most 2
points in S0 whose removal causes p1,j to appear on the convex hull. Similarly,
for each point p2,j ∈ S2 there are at most 2 points of S1 whose removal causes
p2,j to appear on the convex hull. Thus, each point in S1 appears in at most
2 subproblems and each point in S2 appears in at most 4 area computations.
The overall running time of this algorithm is therefore bounded by

O (n log n + |S0|+ 2|S1|+ 4|S2|) = O(n log n) ,

as required.

Finally, we consider solutions of Type 2. To find these we compute, for each
p0,j ∈ S0, the difference xj between the area of conv(S \ {p0,j}) and conv(S)
using the technique described for the case c = 1. In this way, we reduce the
problem to that of finding two indices 0 ≤ j1, j2 < |S0| with j2 ≥ j1 + 2
such that xj1 + xj2 is maximum. This can be accomplished by computing the
quantity

D|S0| = max{xj1 + xj2 : 0 ≤ j1, j2 ≤ |S0| and j2 ≥ j1 + 2} ,

which can be computed in O(|S0|) time using the dynamic-programming re-
currence

Dj = max{Dj−1, xj + max{x0, . . . , xj−2}} .

Since the best solution of each of the three types can be found in O(n log n)
time, we can find the overall best solution in O(n log n) time by keeping the
best of the three.

4.2.4 Removing c Outliers

The solution for the case c = 2 illustrates all of the ideas used in our algo-
rithm. We begin by enumerating the combinatorial types of solutions and then

11

p0,0 p0,0

3

1

3 4

1

(a) (b) (c)

Fig. 2. Examples of (a) a point set S, (b) a solution S \S′, and (c) the solution tree
for S′.

compute the best solution of each type. The algorithm for computing the best
solution of each type is a divide-and-conquer algorithm whose merge step is
accomplished by solving a dynamic programming problem (as in the Type 2
solutions described above).

4.2.5 The Types of Solutions

We represent the type of a solution as a rooted ordered binary tree in which
each node is labeled with a positive integer and the sum of all node labels
is c. We call such trees solution trees and interpret them as follows (refer to
Figure 2 for an example): Any solution removes some elements of S0 and the
elements removed come in d groups G1

0, . . . , G
d
0 of consecutive elements with

each group separated by at least one element of S0. The sizes of these groups
are given by the labels of the nodes on the rightmost path in T , in the order
in which they occur. That is, the jth node, N j

0 on the rightmost path of T has
the label |Gj

0|.

For some group Gj
0, let p1,k, . . . , p1,` denote the points of S1 that appear on the

boundary of conv(S \ Gj
0). Any solution removes some subset of p1,k, . . . , p1,`

of elements from S1. Again, this subset can be partitioned into groups of
consecutive elements with any two groups separated by at least one element
of S1. In the solution tree T , the sizes of these groups are given, in the order
in which they occur, by the labels of the rightmost path in the subtree of T
rooted at the left child of N j

0 .

This process is repeated recursively: Let S<i =
⋃i−1
j=0 Sj and let S ′<i = S<i ∩

S ′. For each consecutive group Gj
i of nodes that are removed from Si, let

pi+1,k, . . . , pi+1,` denote the vertices on Si+1 that appear on the boundary of
CH(S \ (S ′<i ∪ Gj

i)). In the solution tree T , the rightmost path of the left
subtree of the node representing Gj

i contains nodes representing the sizes of
consecutive groups of nodes that are removed from the chain pi+1,k, . . . , pi+1,l

of Si+1. In this way, any solution S ′ to the outlier removal problem that does
not remove both p0,0 and p0,−1 maps to a unique solution tree.

12

Since we will be exploring all possible solution trees, we require the following
lemma to show that, for small values of c, there are not too many solution
trees:

Lemma 8 The number of solution trees is at most O(C(2c)), where C(r) =(
2r
r

)
/(r + 1) is the rth Catalan number.

Proof Given a solution tree T , we convert it to an unlabelled rooted binary
tree as follows: First, for each node N of T whose label is `, we color N black,
leave N ’s left child unchanged and replace N ’s right child with a (right) path
of `− 1 white nodes, the last node of which has N ’s original right child as its
right child. Note that this gives us a binary tree with exactly c nodes in which
no white node has a left child. Next, for each black node we add a white leaf,
if necessary, to guarantee that each black node has a left child. This gives us
an unlabelled rooted ordered binary tree T ′ with at most 2c nodes.

Observe that, given only T ′, we can recover T and its labels since we can
recognize white nodes by the fact that they have no left child. Thus, the
number of solution trees is at most equal to the number of unlabelled rooted
ordered binary trees with at most 2c nodes. The number of such trees is

2c∑
i=1

C(i) = O(C(2c))

[14], as required. 2

Note that the proof of Lemma 8 shows how to convert a binary tree with
at most 2c nodes into a solution tree. Thus, we can enumerate all possible
solution trees by enumerating all binary trees having at most 2c nodes using,
for example, the algorithm of Solomon and Finkel [21].

4.2.6 Computing the Solution of a Specific Type

In this section we describe an algorithm that takes as input a solution tree T
and outputs the value of the optimal solution S ′ whose solution tree is T .

The algorithm we describe is recursive and operates on a subchain pi,j, . . . , pi,k
of Si along with a solution (sub)tree T . The algorithm requires that some
subset of S<i has already been removed from S so that pi,j, . . . , pi,k are on
the boundary of the convex hull of the current point set. The algorithm finds
an optimal solution of type T such that the only points removed from the
convex hull of the current point set are in pi,j, . . . , pi,k. The initialization of
this algorithm requires special care and will be described later.

13

Let d denote the number of nodes on the rightmost path of T . The algorithm
accomplishes its task by recursively solving O(d(k − j + 1)) subproblems on
the left children of these d nodes and then combining these solutions using
dynamic programming. The following pseudocode gives a detailed description
of the algorithm’s operation with the exception of the dynamic programming
component, whose description and analysis is discussed in the next subsection.
Note that the algorithm below only computes the maximum amount of area
(perimeter) that can be removed from conv(S) by a solution S ′ whose solution
tree is T . To obtain the points in S ′ the algorithm can be augmented using the
standard trick of remembering, whenever the algorithm takes the maximum
of two values, which of the two values produced the maximum. The details of
this are standard and omitted here.

FindOptimalOfType(T, i, j, k)

1: if T is empty then
2: return 0
3: d← the number of nodes on the rightmost path of T
4: N ← the sum of node labels on rightmost path of T
5: if k − j < N + d then
6: return −∞ {* No solution possible *}
7: for g = 1 to d do
8: Ng ← gth node on the rightmost path of T
9: cg = label(Ng)

10: for ` = j to k − cg + 1 do
11: delete Si,`, . . . , Si,`+cg−1 from Si exposing Si+1,j′ , . . . , Si+1,k′ on Si+1

12: s ← reduction in area (perimeter) obtained by the deletion of
Si,`, . . . , Si,`+cg−1

13: Xg,`−j+1 ← s + FindOptimalOfType(left(Ng), i + 1, j′, k′)
14: reinsert Si,`, . . . , Si,`+cg−1 into Si
15: return CombineSolutions(X, d, k − j + 1, c1, . . . , cd)

The call to CombineSolutions in the last line of the algorithm is a dynamic
programming subroutine described in the next section that runs in O(d(k−g))
time. The CombineSolutions subroutine computes the optimal locations of
the groups of points represented by N1, . . . , Nd in T . At the topmost level, the
algorithm is called as FindOptimalOfType(T, 0, 0, |S0| − 1).

To analyze the cost of FindOptimalOfType it suffices to determine, for
each point pi,j, the maximum number of times pi,j is deleted (in line 9) by
the algorithm. All other work done by the algorithm can be bounded in terms
of this quantity. For points p0,j ∈ S0, each point is deleted exactly g0, times,
where g0 is the sum of labels of nodes on the rightmost path of T .

More generally, let gi denote the sum of labels of all nodes N of T for which
the path from the root of T to N makes exactly i left turns. (These nodes

14

correspond to groups that are deleted from Si). Consider some point pi,j ∈ Si,
for i ≥ 1. By Carathéodory’s Theorem [10], each such point is contained in
some triangle ∆i,j = 4pi−1,`1 , pi−1,`2 , pi−1,`3 . If pi,j is deleted by FindOpti-
malOfType, then it is on the boundary of the convex hull of the current
point set. However, this implies that at least one of the three vertices of ∆i,j

must be deleted from the current point set. Thus, if we define mi as the maxi-
mum number of times a point of Si is deleted by FindOptimalOfType then
we have the relationships:

mi ≤


g0 if i = 0

3mi−1gi if 1 ≤ i < c

0 otherwise

Using the fact that gi ≤ c, we obtain the (extremely loose) upper bound
mi ≤ (3c)i+1. This implies that the points of Sc (which are never deleted)
appear in at most 3mc−1 subproblems.

All that remains is to describe how we initialize the algorithm. To do this, we
first check if the label at the root of T is equal to |S0|. If so, and the root of T
has a right child, then we immediately return the value −∞ since no solution
is possible. Otherwise (the root of T has no right child) we remove S0 from
our point set and recurse on S \ S0 and the left child of the root of T .

Otherwise (the label at the root of T is not equal to |S0|) then we make c + 1
calls to FindOptimalOfType using as inputs the chains p0,t, . . . , p0,|S0|−2+t,
for t = 0, . . . , c. Note that each such call fixes one of p0,0, . . . , p0,c. Since the
optimal solution must leave one of these c + 1 points we are guaranteed that
at least one of these calls will find the optimal solution.

Putting all this together we obtain:

Lemma 9 The algorithm FindOptimalOfType finds the optimal solution
whose solution tree is T in O((3c)c+1n) time.

4.2.7 Combining the Solutions

One aspect of the algorithm that we have not yet described is how the sub-
routine CombineSolutions works. This subroutine is given positive integers
c1, . . . , cd and a d × m positive real-valued matrix X and must find indices
1 ≤ i1, . . . , id ≤ m− cd such that

ij+1 ≥ ij + cj + 1

15

for all 1 ≤ j < d and such that the sum

h(i1, . . . , id) =
d∑
j=1

Xj,ij

is maximum. In the terminology of the previous section, the value d is the
number of nodes in the rightmost path of T , m = k − j + 1, and the indices
i1, . . . , id correspond to the indices of the first element of each group on the
chain pi,j, . . . , pi,k considered by the algorithm. We solve this problem by filling
out the d×m dynamic programming table:

Dj,` = max{h(i1, . . . , ij) : 1 ≤ i1, . . . , ij ≤ `, and ij′+1 ≥ ij′ + cj′ + 1 for all 1 ≤ j′ < j}

for j = 1, . . . , d and ` = 1, . . . ,m − cj + 1. We can do this in O(dm) time
because the table entries satisfy the recurrence

Dj,` = max{Dj,`−1, Dj−1,`−cj−1−1 + Xj,`}

where we use the convention that Dj,` = 0 if j = 0 and Dj,` = −∞ if ` < 0.
This yields the last lemma required by the algorithm:

Lemma 10 The function CombineSolutions can be implemented in O(dm)
time.

This (finally) completes the proof of:

Theorem 11 There exists an O
(
n log n +

(
4c
2c

)
(3c)c+1n

)
time algorithm to

solve the (convex hull) area/perimeter-based c outlier removal problem.

5 Conclusions

We have given algorithms for removing c outliers to optimize various criteria.
For any constant value of c, all our algorithms run in O(n log n) time. It is
interesting to note that our simplest and fastest algorithms, running in O(n)
time, are for methods based on bounding boxes, which are not invariant to
rotations of the input. At the next level is the diameter-based method, which
is invariant to rotations of the input, but not invariant to non-uniform scaling.
The most complicated of our algorithms is the algorithm based on convex hull
area, whose results are invariant to any affine transformations of the input.

16

We conclude with a few directions for further research:

(1) Our algorithm for minimizing the diameter of S \ S ′ extends readily to
point sets S in R3. Using an O(n log n) diameter-finding algorithm [7,18]
and the fastest algorithms for Vertex-Cover [6] we obtain an algorithm
with running time O(cn log n + c41.27(c2)). Is there an algorithm whose
running time depends only polynomially on c?

(2) The running time of our algorithm for minimizing the area/perimeter
of the convex hull has a superpolynomial dependence on the value of c.
Does there exist an algorithm that is polynomial in c but that still runs
in O(n log n) time for any fixed value of c?

References

[1] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. Finding k points
with minimum diameter and related problems. Journal of Algorithms, 12:38–56,
1991.

[2] Rossen Atanassov, Pat Morin, and Stefanie Wuhrer. Removing outliers to
minimize area and perimeter. In Proceedings of the 18th Canadian Conference
on Computational Geometry (CCCG 2006), 2006.

[3] M. Ben-Or. Lower bounds for algebraic computation trees (preliminary report).
In Proceedings of the 15th Annual ACM Symposium on Theory of Computing
(STOC’83), pages 80–86, 1983.

[4] Timothy M. Chan. Low-dimensional linear programming with violations. SIAM
Journal on Computing, 32:879–893, 2005.

[5] Bernard Chazelle. On the convex layers of a planar set. IEEE Transactions on
Information Theory, 31:509–517, 1985.

[6] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations
and further improvements. Journal of Algorithms, 41(2):280–301, 2001.

[7] Kenneth L. Clarkson and Peter W. Shor. Algorithms for diametral pairs and
convex hulls that are optimal, randomized, and incremental. In Proceedings of
the Fourth Annual ACM Symposium on Computational Geometry (SoCG’88),
pages 12–17, 1988.

[8] David Dobkin, Robert Drysdale, and Leo Guibas. Finding smallest polygons.
Computational Geometry: Theory and Applications, 1:181–214, 1983.

[9] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[10] Jürgen Eckhoff. Helly, Radon, and Carathéodory type theorems. In P. M.
Gruber and J. M. Wills, editors, Handbook of Convex Geometry, volume B,
chapter 2.1, pages 389–448. North-Holland, 1993.

17

[11] David Eppstein. New algorithms for minimum area k-gons. In Proceedings of
the Third ACM-SIAM Symposium on Discrete Algorithms (SODA 1992), 1992.

[12] David Eppstein and Jeff Erickson. Iterated nearest neighbors and finding
minimal polytopes. Discrete & Computational Geometry, 11:321–350, 1994.

[13] David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger.
Finding minimum area k-gons. Discrete & Computational Geometry, 7:45–58,
1992.

[14] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics: A Foundation for Computer Science, Second Edition. Addison-
Wesley, 1994.

[15] John Hershberger and Subhash Suri. Applications of a semi-dynamic convex
hull algorithm. BIT, 32(2):249–267, 1992.

[16] Jiri Matoušek. On geometric optimization with few violated constraints.
Discrete & Computational Geometry, 14:365–384, 1995.

[17] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An
Introduction. Springer-Verlag, New York, 1985.

[18] Edgar A. Ramos. An optimal deterministic algorithm for computing the
diameter of a three-dimensional point set. Discrete & Computational Geometry,
26(2):233–244, 2001.

[19] Michael Segal and Klara Kedem. Enclosing k points in the smallest axis parallel
rectangle. Information Processing Letters, 65(2):95–99, 1998.

[20] Michael Ian Shamos. Computational Geometry. PhD thesis, Yale University,
1978.

[21] Marvin Solomon and Raphael A. Finkel. A note on enumerating binary trees.
Journal of the ACM, 27(1):3–5, 1980.

18

