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Abstract

A space-efficient algorithm is one in which the output is given in the same location
as the input and only a small amount of additional memory is used by the algorithm.
We describe four space-efficient algorithms for computing the convex hull of a planar
point set.
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1 Introduction

Let S = {S[0], . . . , S[n − 1]} be a set of n distinct points in the Euclidean
plane. The convex hull of S is the minimal convex region that contains every
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point of S. From this definition, it follows that the convex hull of S is a convex
polygon whose vertices are points of S. For convenience, we say that a point
p ∈ S is “on the convex hull of S” if p is a vertex of the convex hull of S.
The convex hull problem is the problem of computing the convex hull of S and
reporting the points on the convex hull in the order in which they appear on
the hull.

As early as 1972, Graham [1] gave a convex hull algorithm with O(n log n)
worst-case running time in which all branching is done based on the results of
comparisons between quadratic polynomials. Shamos [2] later showed that, in
any model of computation where sorting has an Ω(n log n) lower bound, every
convex hull algorithm must require Ω(n log n) time for some inputs. Despite
these matching upper and lower bounds, and probably because of the many
applications of convex hulls, a number of other planar convex hull algorithms
have been published since Graham’s algorithm. For a sample, see References
[3–12].

Of particular note is the “Ultimate(?)” algorithm of Kirkpatrick and Seidel
[11] that computes the convex hull of a set of n points in the plane in O(n log h)
time, where h is the number of vertices of the convex hull. (Later, the same
result was obtained by Chan using a much simpler algorithm [13].) The same
authors show that, on algebraic decision trees of any fixed order, Ω(n log h) is
a lower bound for computing convex hulls of sets of n points having convex
hulls with h vertices.

Because of the importance of planar convex hulls, it is natural to try and
improve the running time and storage requirements of planar convex hull
algorithms. In this paper, we focus on reducing the intermediate storage used
in the computation of planar convex hulls. In particular, we describe in-place
and in situ algorithms for computing convex hulls. These algorithms take the
input points as an array and output the vertices of the convex hull in clockwise
order, in the same array. During the execution of the algorithm, additional
working storage is kept to a minimum. In the case of in-place algorithms, the
extra storage is kept in O(1) while in situ algorithms allow an extra memory
of size O(log n). After execution of the algorithm, the array contains exactly
the same points, but in a different order. For convenience, we use the general
term space-efficient to mean in-place or in situ.

Space-efficient algorithms have several practical advantages over traditional
algorithms. Primarily, space-efficient algorithms allow for the processing of
larger data sets. Any algorithm that uses separate input and output arrays
will, by necessity, require enough memory to store 2n points. In contrast, a
space-efficient algorithm needs only enough memory to store n points plus
O(log n) or O(1) working space. Related to this is the fact that space-efficient
algorithms usually exhibit greater locality of reference, which makes them very
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practical for implementation on modern computer architectures with memory
hierarchies. A final advantage of space-efficient algorithms, especially in mis-
sion critical applications, is that they are less prone to failure since they do not
require the allocation of large amounts of memory that may not be available
at run time.

We describe four space-efficient planar convex hull algorithms. The first is in-
place, uses Graham’s Scan in combination with an in-place sorting algorithm,
and runs in O(n log n) time. The second and third algorithms run in O(n log h)
time, are in situ and are based on algorithms of Chan et al. [5] and Kirkpatrick
and Seidel [11], respectively. The fourth (“More Ultimate?”) algorithm is based
on an algorithm of Chan [13], runs in O(n log h) time and is in-place. The first
two algorithms are simple, implementable, and efficient in practice. To justify
this claim, we have implemented both algorithms and made the source code
freely available [14].

To the best of our knowledge, this paper is the first to study the problem of
computing convex hulls using space-efficient algorithms. This seems surprising,
given the close relation between planar convex hulls and sorting, and the large
body of literature on space-efficient sorting and merging algorithms [15–30].
The main reason for this is probably that the scan portion of Graham’s origi-
nal algorithm [1] is inherently in-place, so in-place sorting algorithms already
provide an O(n log n) time in-place convex hull algorithm.

The remainder of the paper is organized as follows: In Sections 2, 3 and 4 the
four algorithms are described, and in Section 5 the results are summarized
and some open problems are presented.

2 An O(n log n) Time Algorithm

In this section, we present a simple in-place implementation of Graham’s con-
vex hull algorithm [1] or, more precisely, Andrew’s modification of Graham’s
algorithm [3]. The algorithm requires the use of an in-place sorting algorithm.
This can be any efficient in-place sorting algorithm (see, e.g., [24,30]), so we
refer to this algorithm simply as InPlace-Sort.

Because this is probably the most practically relevant algorithm given in this
paper, we begin by describing the most conceptually simple version of the
algorithm, and then describe a slightly more involved version that improves
the constants in the running time.
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2.1 The Basic Algorithm

Let S be a set of n > 1 points and Let l be the line through the bottommost-
leftmost point of S and the topmost-rightmost point of S. The upper convex
hull of S is the convex hull of all points in S that are above, or on, l and the
lower convex hull of S is the convex hull of all points of S that are below, or
on, l. It is well-known that the convex hull of a point set is the union of its
upper and lower convex hulls (cf. [31]).

Graham’s Scan computes the upper (or lower) convex hull of an x-monotone
chain incrementally, storing the partially computed hull on a stack. The ad-
dition of each new point involves removing zero or more points from the top
of the stack and then pushing the new point onto the top of the stack.

The following pseudo-code uses the InPlace-Sort algorithm and Graham’s
Scan to compute the upper or lower hull of the point set S. The parameter d
is used to determine whether the upper or lower hull is being computed. If d =
1, then InPlace-Sort sorts the points by increasing order of lexicographic
(x, y)-values and the upper hull is computed. If d = −1, then InPlace-Sort
sorts the points by decreasing order and the lower hull is computed. The value
of h corresponds to the number of elements on the stack.

In the following, and in all remaining pseudo-code, S = S[0], . . . , S[n − 1] is
an array containing the input points.

Graham-InPlace-Scan(S, n, d)

1: InPlace-Sort(S, n, d)
2: h← 1
3: for i← 1 . . . n− 1 do
4: while h ≥ 2 and not right turn(S[h− 2], S[h− 1], S[i]) do
5: h← h− 1 { pop top element from the stack }
6: swap S[i]↔ S[h]
7: h← h + 1
8: return h

It is not hard to verify that when the algorithm returns in Line 8, the el-
ements of S that appear on the upper (or lower) convex hull are stored in
S[0], . . . , S[h− 1]. In the case of an upper hull computation (d = 1), the hull
vertices are sorted left-to-right (clockwise), while in the case of a lower hull
computation (d = −1), the hull vertices are sorted right-to-left (also clock-
wise).

To compute the convex hull of the point set S, we proceed as follows (refer
to Fig. 1): First we make a call to Graham-InPlace-Scan to compute the
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A︸ ︷︷ ︸
compute upper hull

aS[1], . . . , S[h− 2] b︸ ︷︷ ︸ S[h], . . . , S[n− 1]

move a

b a S[h], . . . , S[n− 1]︸ ︷︷ ︸
compute lower hull

S[0], . . . , S[h + h′ − 2]︸ ︷︷ ︸
output hull

Fig. 1. The execution of the Graham-InPlace-Hull algorithm.

vertices of the upper hull of S and store them in clockwise order at positions
S[0], . . . , S[h − 1]. It follows that S[0] is the bottommost-leftmost point of S
and that S[h − 1] is the topmost-rightmost point of S. We then use h − 1
swaps to bring S[0] to position S[h− 1] while keeping the relative ordering of
S[1], . . . S[h − 1] unchanged. Finally, we make a call to Graham-InPlace-
Scan to compute the lower convex hull of S[h−2], . . . , S[n−1] (which is also
the lower convex hull of S). This stores the vertices of the lower convex hull
in S[h − 2], . . . , S[h + h′ − 2] in clockwise order. The end result is that the
convex hull of S is stored in S[0], . . . , S[h + h′ − 2] in clockwise order.

The following pseudo-code gives a more precise description of the algorithm.
We use the C pointer notation S + i to denote (the starting position of) the
of array S[i], . . . , S[n− 1].

Graham-InPlace-Hull(S, n)

1: h← Graham-InPlace-Scan(S, n, 1)
2: for i← 0 . . . h− 2 do
3: swap S[i]↔ S[i + 1]
4: h′ ← Graham-InPlace-Scan(S + h− 2, n− h + 2,−1)
5: return h + h′ − 2

Each call to Graham-InPlace-Scan executes in O(n log n) time, and the
loop in lines 2–3 takes O(h) time. Therefore, the total running time of the
algorithm is O(n log n). The amount of extra storage used by InPlace-Sort
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is O(1), as is the storage used by both our procedures.

Theorem 1 Algorithm Graham-InPlace-Hull computes the convex hull
of a set of n points in O(n log n) time using O(1) additional memory.

The algorithm of Section 4 makes use of Graham-InPlace-Scan. However,
the algorithm requires that the resulting convex hull be stored in clockwise
order beginning with the leftmost vertex. We note that this output format can
easily be achieved in an O(n) time postprocessing step.

2.2 The Optimized Algorithm

The constants in the running time of Graham-InPlace-Hull can be im-
proved by first finding the extreme points a and b and using these points to
partition the array into two parts, one that contains vertices that can only
appear on the upper hull and one that contains vertices that can only appear
on the lower hull. Fig. 2 gives a graphical description of this. In this way, each
point (except a and b) takes part in only one call to Graham-InPlace-Scan.

To further reduce the constants in the algorithm, one can implement InPlace-
Sort with the in-place merge-sort algorithm of Katajainen et al. [24]. This
algorithm requires only n log2 n + O(n) comparisons and 3

2
n log2 n + O(n)

swaps to sort n elements. Since Graham’s Scan performs only 2n − h right-
turn tests when computing the upper hull of n points having h points on the
upper hull, the resulting algorithm performs at most 3n − h right-turn tests
(the extra n comes from the initial partitioning step). We call this algorithm
Opt-Graham-InPlace-Hull.

Theorem 2 Opt-Graham-InPlace-Hull computes the convex hull of n
points in O(n log n) time using at most 3n−h right turn tests, 3

2
n log2 n+O(n)

swaps, n log2 n+O(n) lexicographic comparisons and O(1) additional memory,
where h is the number of vertices of the convex hull.

Finally, we note that if the array A is already sorted in lexicographic order then
no lexicographic comparisons are necessary. One can use an in-place stable
partitioning algorithm to partition A into the set of upper hull candidates
and the set of lower hull candidates while preserving the sorted order within
each set. There exists such a stable partitioning algorithm that runs in O(n)
time and performs O(n) comparisons [22]. (In this context, each comparison
is actually a right turn test.) Since the algorithm is stable, the original sorted
order of the input is preserved and no additional sorting step is necessary. We
call the resulting algorithm Sorted-Graham-InPlace-Hull.

Theorem 3 Sorted-Graham-InPlace-Hull computes the convex hull of
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A︸ ︷︷ ︸
partition

upper hull candidates︸ ︷︷ ︸ lower hull candidates

compute upper hull

a upper hull b︸ ︷︷ ︸ lower hull candidates︸ ︷︷ ︸
move a shift

upper hull b a lower hull candidates︸ ︷︷ ︸
compute lower hull

convex hull︸ ︷︷ ︸
output hull

Fig. 2. A faster implementation of Graham-InPlace-Hull.

n points given in lexicographic order in O(n) time using O(n) right turn tests,
O(n) swaps, no lexicographic comparisons and O(1) additional memory.

A final option for an in-place implementation of Graham’s Scan is to sort the
points in S radially about some point p in the interior of the convex hull.
Once this is done, one call to Graham-InPlace-Scan will compute the
entire convex hull. Unfortunately, this method uses O(n log n) right turn tests
during the sorting step, so it will likely be slower than methods that use only
O(n) right turn tests.

3 Two O(n log h) Time In-Situ Algorithms

In this section, we show how to compute the upper (and symmetrically, lower)
hull of S in O(n log h) time in situ, where h is the number of points of S that
are on the upper (respectively, lower) hull of S. We discuss two algorithms,
due to Kirkpatrick and Seidel [11], and Chan, Snoeyink and Yap [5]. Both
algorithms are recursive and partition the problem into two roughly equal-
sized subproblems. They use different strategies for this purpose, however.
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3.1 Chan, Snoeyink and Yap’s Algorithm

We first show how to transform the O(n log h) time algorithm of Chan et al. [5]
into an in situ algorithm. The algorithm begins by arbitrarily grouping the
elements of S into bn/2c pairs. From these pairs, the pair with median slope s
is found using a linear-time median-finding algorithm. 2 We then find a point
p ∈ S such that the line through p with slope s has all points of S below it.
Naturally, p is a vertex of the convex hull of S.

Let q.x denote the x coordinate of the point q and let π(i) denote the index
of the element that is paired with S[i]. We use the notation (a, b) to denote
the line segment with endpoints a and b. We now use p, and our grouping to
partition the elements of S into three groups S0, S1, and S2 as follows (see
Fig. 3):

S[i] ∈


S0 if S[i].x ≤ p.x and (S[π(i)], p) is not above S[i],

S1 if S[i].x > p.x and (S[π(i)], p) is not above S[i], and

S2 otherwise.

The algorithm then recursively computes the upper hull of S0∪{p} and S1∪{p}
and outputs the concatenation of the two. For a discussion of correctness and
a proof that this algorithm runs in O(n log h) time, see the original paper [5].

Now we turn to the problem of making this an in situ algorithm. The choice
of median slope s ensures that S0 ≤ 3n/4 and S1 ≤ 3n/4, so the algorithm
uses only O(log n) levels of recursion. Our strategy is to implement each level
using O(1) local variables.

For simplicity, assume n is odd. The case when n is even is easily handled
by processing an extra unpaired element after all the paired elements have
been processed. To pair off elements, we pair consecutive elements of S, so
that π(i) = i + 1 if i is even or π(i) = i − 1 if i is odd. Several in situ (even
in-place) linear time median-finding algorithms exist (see, e.g., Horowitz et
al. [32, Section 3.6] or Lai and Wood [33]) that can be used to find the pair
(S[i], S[i + 1]) with median slope.

The tricky part of the implementation is the partitioning of S into sets S0,
S1 and S2. 3 The difficulty lies in the fact that the elements are grouped into

2 Bhattacharya and Sen [4] and Wenger [12] have both noted that median-finding
can be replaced by choosing a random pair of elements. The expected running time
of the resulting algorithm is O(n log h).
3 This is a slight variant of Feijen’s Dutch National Flag problem (see Dijkstra [34])
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p

S[i]

S[π(i)]

p

S[i]

S[π(i)]

S[i] ∈ S0 S[i] ∈ S1

p

S[i]

S[π(i)]

p

S[i]

S[π(i)]

S[i] ∈ S2 S[i] ∈ S2

Fig. 3. Partitioning S into S0, S1 and S2.
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S0 S1 S2 unprocessed pairs

i0 i1 i2

Fig. 4. Paritioning into sets S0, S1 and S2.

pairs, but the two elements of the same pair may belong to different sets Si

and Sj. To do this partitioning, we process the pairs from left-to-right and
maintain the sets S0, S1 and S2 in the leftmost part of the array (see Fig. 4).
More precisely, we maintain three indices i0, i1 and i2, where ij−1 is the index
of the last element in Sj. In this way, i2 is the index of the first element in the
next unprocessed pair. At each step, we examine the next unprocessed pair,
classify each of the two points as belonging to S0, S1 or S2 and add them to
the appropriate sets. While adding the points to these sets, we may have to
shift each of the Si by up to two locations. However, we are not required to
preserve the order within each set Si, so this shifting is easily done in O(1)
time by moving at most two of the leftmost elements in each set.

Fig. 5 recaps the algorithm for computing the upper hull of S. First the al-
gorithm partitions S into the sets S0, S1 and S2. It then recurses on the set
S0. After the recursive call, the convex hull of S0 is stored at the beginning of
the array S, and the last element of this hull is the point p that was used for
partitioning. The algorithm then shifts S1 leftward so that it is adjacent to p
and recurses on S1 ∪ {p}. The end result is the upper hull of S being stored
consecutively and in clockwise order at the beginning of the array S. Using the
technique from Section 2 (Figures 1 and 2), this upper hull algorithm can be
made into a convex hull algorithm with the same running time and memory
requirements.

Theorem 4 Algorithm CSY-InSitu-Hull computes the convex hull of n
points in O(n log h) time using O(log n) additional storage, where h is the
number of vertices of the convex hull.

3.2 Kirkpatrick and Seidel’s Algorithm

The previous algorithm solves the partitioning problem by finding a point p on
the convex hull that leaves roughly the same number of vertices on each side.
Kirkpatrick and Seidel’s original solution to the partitioning problem is to first
find an edge of the upper hull (the upper bridge) that leaves approximately
the same number of points on each side.

in which the input array consists of red, white and blue points and the goal is to
rearrange the input so that all the red points appear first, followed by all white
points, followed by all blue points.
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A︸ ︷︷ ︸
partition

S0

︸ ︷︷ ︸ S1 S2

recurse

UH(S0) S1

︸ ︷︷ ︸ S2

compact

p S1

︸ ︷︷ ︸ S2

recurse

UH(S)︸ ︷︷ ︸
output hull

Fig. 5. Overview of the CSY-InSitu-Hull algorithm.

Suppose that we can find such an edge pq with p.x < q.x, such that S0 consists
of the points left of p, S1 the points right of q, and S2 the points below
pq, and furthermore such that |S0| ≤ n/2 and |S1| ≤ n/2. The algorithm
recursively computes the upper hulls of S0 ∪ {p} and S1 ∪ {q}, and outputs
the concatenation of the two, in O(n log h) total time. Clearly, if pq is an edge
of the convex hull, the result is the upper hull of S. For a proof of the running
time, see the original paper [11].

Unlike the previous algorithm, partitioning S in-place into S0, S1 and S2 once
p and q are known is trivial, since it is not necessary to maintain a pairing of
the edges. Furthermore, since |S0| ≤ n/2 and |S1| ≤ n/2, there are O(log n)
levels of recursion. Therefore, if we can find the upper bridge in linear time
in-place, the algorithm will thus be performed in situ.

The upper bridge problem asks: Given two sets S0 and S1 of points separated
by a vertical line y = x0, which are the two endpoints p ∈ S0 and q ∈ S1 such
that the edge pq is on the upper hull of S0 ∪ S1? This problem is dual to
the separated 2D linear programming problem which can be phrased as:
Given two sets L0 and L1 of lines with positive and negative slopes respectively,
compute the point with smallest y-coordinate that is above all the lines. This
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linear program is always feasible and the solution is always the intersection of
a pair of lines, one with positive slope and one with negative slope.

Denoting the point of coordinates x and y by [x, y], and the line of equation
ax + by + c = 0 by [a, b, c], the duality given by ϕ([x, y]) = [x0 − x,−1, y −
x0(x0−x)] and ϕ([a, b, c]) = (x0+

a
b
,− c+ax0

b
) has the property that if p is below

l, then ϕ(l) is above ϕ(p). Moreover, p is to the left (resp. right) of y = x0

if and only if ϕ(p) has positive (resp. negative) slope. In turn, this implies
that the solution to the separated 2D linear programming problem given by
L = ϕ(S) is dual to the solution of the upper bridge problem. This is the
intuition behind the original algorithm [11].

Note that the duality does not really have to be computed: the 2D linear
programming problem can be solved directly with the points of S, only the
geometric predicates involving the points are transformed into predicates on
lines via the transformation ϕ. Thus if we can solve 2D linear programming
in-place, we can also answer the upper bridge problem in-place.

As in the original algorithm, we first compute the median abscissa x0 of S
in-place and partition S into two roughly equal-sized subsets around x0. This
enforces that |S0| ≤ n/2 and |S1| ≤ n/2.

There is an algorithm due to Seidel [35] which solves the 2D linear program-
ming problem in expected linear time and is very simple. It assumes that the
order of the lines is random (we could always enforce this by shuffling the
set S randomly in linear time prior to each linear programming query). Upon
close examination, the algorithm does not need to reorder the input and in
fact works in-place, maintaining only two indices to scan both sets of lines,
and two indices to remember the two lines making up the current optimal
solution.

Megiddo [36] gave a worst-case linear-time algorithm. We adapt this algorithm
to run in-place, and explain it for lines in the dual setting. Megiddo’s algorithm
assumes that there are at least 8 lines, otherwise a brute force method can
be used. The lines in L are paired up and ordered by slope within each pair:
in the in-place implementation, L[i] is paired with L[π(i)]. Using an in-place
median-finding algorithm [33], the pair whose point of intersection has median
abscissa x0 can be found in linear time (and those pairs intersecting to the left
of x0 are placed in the first half, while the pairs intersecting to the right of
x0 in the second half). We only have to take care that when exchanging two
pairs, each line in the first pair is exchanged with the corresponding line in the
second pair. Next, the line l ∈ L that intersects the vertical line x = x0 at the
highest ordinate is found. Recall that the solution to the linear programming
problem is the lowest point which is above all lines. Therefore, if the slope of
l is negative, then the solution to the linear programming problem is to the
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right of x0, otherwise the solution is to the left of x0.

In the first case, we scan the pairs in the first half: the line of smallest slope in
each pair of the first half can be discarded since to the right of x0 it is always
below its paired line and hence cannot define the solution. In the second case,
the line of largest slope in each pair of the second half can be discarded.
Discarded lines can be put at the end of the array by swapping with the last
as yet undiscarded line. This works in the second case as well if the pairs in
the second half are examined in the reverse order (beginning at the end and
moving towards the middle of the array) since the discarded zone grows twice
as slowly as the lines in the examined pairs.

The choice of medians ensure that n/4 lines have been discarded in any case.
At the end of this process, we are left with a set L′ of at most d3n/4e lines,
such that the solution to the original problem is defined by two of these lines.
Care must be taken to include the last line in the 3n/4 if the original number
of lines was odd. Hence, the solution of the linear programming problem on L′

is the same as that of L. The algorithm is run again on L′ instead of L, until
the size of L′ falls below 8 at which point a brute-force method is used. (In
practice, Seidel’s algorithm can be used under a certain fixed size determined
during the fine-tuning.)

Theorem 5 The above algorithm, Megiddo-Inplace-LP-2D, solves a sep-
arated 2D linear programming problem in-place in linear time.

Figure 6 recaps the algorithm for computing the upper hull of S. First the
algorithm computes the median abscissa x0 of S, and the upper bridge pq by
using the dual of the algorithm Megiddo-InPlace-LP-2D. The bridge is
used to partition S into the sets S0, S1 and S2. The algorithm then recurses
on the set S0. After the recursive call, the convex hull of S0 is stored at the
beginning of the array S, and the last element of this hull is the first endpoint
p of the upper bridge. The algorithm then shifts S1 leftward so that it is
adjacent to pq and recurses on S1 ∪ {q}. The end result is the upper hull of
S being stored consecutively and in clockwise order at the beginning of the
array S.

Theorem 6 The above algorithm, KS-InSitu-Hull, computes the convex
hull of S in O(n log h) time using O(log n) additional storage, where h is the
number of vertices of the convex hull.
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A︸ ︷︷ ︸
partition

S0

︸ ︷︷ ︸ S1 S2

recurse

UH(S0) S1

︸ ︷︷ ︸ S2

compact

p q S1

︸ ︷︷ ︸ S2

recurse

UH(S)︸ ︷︷ ︸
output hull

Fig. 6. Overview of the KS-InSitu-Hull algorithm.

4 An O(n log h) Time In-Place Algorithm

Next, we give an O(n log h) time in-place planar convex hull algorithm. Our
algorithm is a modification of Chan’s O(n log h) time algorithm, which is es-
sentially a speedup of Jarvis’ March [8]. We begin with a review of Chan’s
algorithm, and thereafter we describe the modifications needed for making it
in-place.

Chan’s algorithm runs in rounds. During the ith round the algorithm finds
the first gi = 22i

points on the convex hull. Once gi ≥ h the rounds end as
the algorithm detects that it has found all points on the convex hull. During
round i, the algorithm partitions the input points into n/gi groups of size
gi and computes the convex hull of each group. The vertices on the convex
hull are output in clockwise order beginning with the leftmost vertex. Each
successive vertex is obtained by finding tangents from the previous vertex to
each of the n/gi convex hulls. The next vertex is determined, as in Jarvis’
March, by choosing the vertex having largest polar angle with respect to the
previously found vertex as origin. In the case where the largest polar angle is
not unique, ties are broken by taking the farthest vertex from the previously
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found vertex.

Finding a tangent to an individual convex hull can be done in O(log gi) time
if the vertices of the convex hull are stored in an array in clockwise order
[37,31,38]. There are n/gi tangent finding operations per iteration and gi it-
erations in round i. Therefore, round i takes O(n log gi) = O(n2i) time. Since
there are at most dlog log he rounds, the total cost of Chan’s algorithm is∑dlog log he

i=1 O(n2i) = O(n log h).

Next we show how to implement each round using only O(1) additional stor-
age. Assume for the sake of simplicity that n is a multiple of gi. For the group-
ing step, we build n/gi groups of size gi by taking groups of consecutive ele-
ments in S and computing their convex hulls using Graham-InPlace-Hull.
Two questions now arise: (1) Once we start the tangent-finding steps, where
do we put the convex hull vertices as we find them? (2) In order to find a
tangent from a point to a group in O(log gi) time we need to know the size of
the convex hull of the group. How can we keep track of all these sizes using
only O(1) extra memory?

To answer the first question, we store convex hull vertices at the beginning
of the array S in the order that we find them. That is, when we find the kth

vertex on the convex hull, we swap it with S[k− 1]. At this point, the convex
hull of the first group and the group containing the newly found convex hull
vertex have changed. Therefore, we recompute both of these convex hulls at a
cost of O(gi log gi).

To keep track of the size of the convex hull of each group without storing
the size explicity we use a reordering trick. Let G[0], . . . , G[gi − 1] denote
the elements of a group G and let < denote lexicographic comparison of (x, y)
values. We say that the sign of G[j] is + if G[j] < G[j+1], and − otherwise. If
the convex hull of G contains h vertices, then it follows that the first elements
G[0], . . . , G[h−2] have signs that form a sequence of 1 or more +’s followed by
0 or more −’s. Furthermore, the elements G[h], . . . , G[gi− 1] can be reordered
so that the remainder of the signs form an alternating sequence.

To test if a point G[i] is on the convex hull of G for i = 0, 1, 2 we simply
observe that all three such vertices must be on the convex hull of G unless
they are collinear, in which case only G[0] and G[1] are on the convex hull of
G.

To test if a point G[i], i ≥ 3 is on the convex hull of G, we examine the sequence
of signs formed by G[i], G[i−1], G[i−2], and G[i−3]. If this sequence does not
contain two consecutive +’s or two consecutive −’s then a simple case analysis
will convince the reader that G[i] is not on the convex hull of G. Otherwise,
at least one of G[i], G[i − 1], G[i − 2], or G[i − 3] is on the convex hull of
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G. To determine which of these vertices is the last such vertex, we perform
tests of the form right turn(G[j], G[j + 1], G[0]), for j = i − 3, . . . , i − 1 (see
Fig. 7). The first value for which this test returns false is the index j of the
final element of the convex hull of G. If no such test returns false then i is on
the convex hull of G.

We have now provided all the tools for an in-place implementation of Chan’s
algorithm. Except for the cost of recomputing convex hulls of groups after
modifying them, the running time of this implementation is asymptotically
the same as that of the original algorithm. Therefore, we need only bound
this extra cost. During one step of round i, we find one convex hull ver-
tex and recompute the convex hull of two groups. The cost of recomputing
these convex hulls is O(gi log gi) and there are at most gi steps in round i.
Therefore, the total cost of recomputing convex hull vertices in round i is
O(gi

2 log gi) ⊆ O(n) for all gi ≤ (n/ log n)1/2. Hence, the total cost of round
i is O(g2

i log gi + n log gi) ⊆ O(n log gi) for any gi < (n/ log n)1/2. Since we
can abort the algorithm when gi ≥ (n/ log n)1/2 and use Graham-InPlace-
Hull, the overall running time of the algorithm is again O(n log h).

Theorem 7 The above algorithm, Chan-InPlace-Hull, computes the con-
vex hull of n points in O(n log h) time using O(1) additional storage, where h
is the number of vertices of the convex hull.

The constants in Chan-InPlace-Hull can be improved using the following
trick that is mentioned by Chan [13]. When round i terminates without finding
the entire convex hull, the gi convex hull points that were computed should
not be discarded. Instead, the grouping in round i+1 is done on the remaining
n− gi points, thus eliminating the need to recompute the first gi convex hull
vertices. This optimization works perfectly when applied to Chan-InPlace-
Hull since the first gi convex hull points are already stored at locations
S[0], . . . , S[gi − 1].

5 Conclusions

We have given four space-efficient algorithms for computing the convex hull
of a planar point set. The first algorithm is in-place and runs in O(n log n)
time. The second and third algorithms are in situ and run in O(n log h) time.
The fourth algorithm is in-place and and runs in O(n log h) time. The first
two algorithms are reasonably simple and implementable, and their running
times compare favourably with those of convex hull algorithms that use ad-
ditional storage. In order to facilitate comparisons with other convex hull
implementations, our source code is available for download [14].
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G[i]

G[i−1] G[i−2]

G[i−3]

G[0]

. . .

Fig. 7. The first vertex to fail the right turn test is the last vertex on the convex
hull of G.
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Although we have assumed throughout the paper that all of the input points
are distinct, the algorithms in this paper can be modified to handle the case in
which the input is a multiset. These modifications are technical, but relatively
straightforward. In particular, care must be taken with respect to “side of
line” tests and the size encoding scheme used in Section 4 needs to make use
of a third symbol, 0, used for consecutive identical elements.

The ideas presented in this paper also apply to other problems. The maximal
elements problem is that of determining all elements S[i] such that S[j].x ≤
S[i].x or S[j].y ≤ S[i].y for all 0 ≤ j < n. An algorithm almost identical
to Graham’s Scan can be used to solve the maximal elements problems in
O(n log n) time, and this can easily be implemented in-place. Furthermore, an
in-place algorithm almost identical to that in Section 4 can be used to solve
the maximal elements problem in O(n log h) time, where h is the number of
maximal elements.

The question of in situ and in-place algorithms for convex hulls in dimensions
d ≥ 3 is still open. In order for this question to make sense, we ask only
that the algorithm identify which input points are on the convex hull (ex-
treme points). An algorithm independently discovered by Chan [39], Clarkson
[40] and Ottman et al. [41] identifies convex hull points by solving n linear
programs each of size h and h linear programs each of size n and is already
in-place. Combining this with Seidel’s linear programming algorithm gives an
O(d!nh) time in situ algorithm for computing the extreme points of an n point
set in d dimensions. Is there an in-place or in situ algorithm with a reduced
dependence on h? This is still open even for the case d = 3.

More generally, one might ask what other computational geometry problems
admit space-efficient algorithms. Some problems that immediately come to
mind are those of computing k-piercings of sets, finding maximum cliques
in intersection graphs, computing largest empty disks inside polygons, and
finding ham-sandwich cuts.
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